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CONSTRUCTION OF TWO-LEVEL SATURATED SYMMETRICAL
FACTORIAL DESIGNS OF RESOLUTION VI

By BopH RAJ GULATI

Southern Connecticut State College

In this paper we have established the maximum number of constraints
in a two-level orthogonal array of 192 runs of resolution VI.

1. Introduction. The problem of constructing fractional replicates of 2™ de-
signs is not new in the literature. However, so far as the subject matter of this
paper is concerned, the contributions made by Bose and Bush [3], Seiden and
Zemach [11] and very recently by Draper and Mitchell [4], [5], [6] are of special
interest. The basic concept pertains to the maximum number of factors that
can be accommodated in a two-level symmetrical factorial design in which blocks
are of size 2™ and no main effect or t-factor or lower order interaction is con-
founded. Since saturated designs of resolution VI with 25*¢runs, ¢ = 1,2,3,4,5,
have been constructed by Draper and Mitchell, we have considered it worthwhile
to undertake a similar investigation pertaining to the maximum number of vari-
ables in 192 runs resolution VI designs.

Let 4, t (= 2), and k (= ) be positive integers. Let A be a k x 42¢ matrix of
zeros and ones. Let B be a r x A2¢ submatrix of 4. Then A is called a two-
level orthogonal array if, and only if, for each choice of ¢, each of 2 possible
column vectors occurs exactly 1 times. An orthogonal array A4 of the weight
4, strength r and k constraints, may symbolically be denoted by (42, k, 7).

If k x 42 matrix A is of strength 7, so is any subarray of k¢’ rows if ¢t < k' < k.
Hence nonexistence of (42¢, k', r) implies the nonexistence of (12, k, ¢) if k > k'.
Again, it may be observed that if a k x 42" matrix A4 is of strength ¢, it is also
of strength ¢’ for all ¢/ < ¢. In a symmetrical factorial design with k factors
each operating at two levels, 12¢ columns of an orthogonal array may be iden-
tified with treatment combinations or runs; k factors correspond to k rows of
the array while an entry stands for the level of the factor against which it is
shown. These 42¢ runs constitute a subset of 2* possible treatment combinations
needed in a complete factorial design.

2. Construction of orthogonal arrays. A necessary condition for an array to be
orthogonal [3] is that for each nonnegative integer % not exceeding ¢, k must
satisfy the following ¢ 4 1 linear inequalities.
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that have j coincidences with ith column of an orthogonal array, i = 1,2, ...,
257=0,1, ..., k.
Recently, Blum, Schatz and Seiden [2] proved the following theorem.

THEOREM 2.1. If A is odd and A < t — 1, then the maximum number of variables
in a resolution (t + 1)-design is exactly t + 1.

Consider any s + 1 tuple and adjoin it to all the 2* — 1 (¢ + 1)-tuples that
differ from it by an even number of elements. It is readily seen that for ¢ odd,
the columns of the array consist of either an even or an odd number of both
zeros and ones. The array with the first column consisting of all zeros will be
denoted by D whereas D* will represent an array with an odd number of both
zeros and ones. For ¢ = 5, the two forms of the array (32, 6, 5) are given below:

00000011111111111111100000000001
00111100001111111000011110000001
D 01011101110001110100010001110001
©011011101101100100100010010011011
01110111011010100001000100101011
01111011101101000000100010010111
01111100000000001111111111100000
10111100001111110000001111010000
D 11011101110001110001110001001000
©11101110110110010110010010000100
11110111011010101010100100000010
11111011101101001101001000000001

THEOREM 2.2. For an orthogonal array (96, k, 5), the maximum value of k is six.

This is a trivial consequence of Theorem 2.1. The array can be expressed as
a juxtaposition of three arrays (32, 6, 5) each of unit weight.

THEOREM 2.3. For an orthogonal array (160, k, 5), the maximum value of k is
seven.

Propositions 2.3 and 3.6 in [1}], taken together, immediately imply this
assertion.

THEOREM 2.4. For an orthogonal array (192, k, 5), the maximum possible value
of k is seven.

We will enumerate first all the solutions of (2.1.1) and (2.1.2) for k = 6 and
7 and observe that each of these solutions represents an array.

Arrays admitting each of the solutions for k = 6 will not be exhibited sepa-
rately since each of them is a subarray of an array for k = 7. Accordingly, we
need to investigate which of the arrays with k= 6 can be extended to arrays
with seven constraints.
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TABLE 1

nio i1 iz nig Mg nis Nig i1
6.1 1 30 15 100 15 30 0
6.2 2 24 30 80 30 24 1
6.3 3 18 45 60 45 18 2
6.4 4 12 60 40 60 12 3
6.5 b 6 75 20 75 6 4
6.6 6 0 90 0 90 0 5
7.1 0 19 12 75 40 33 12 0
7.2 1 13 27 55 55 27 13 0
7.3 2 7 42 35 70 21 14 0
7.4 3 1 57 15 85 15 15 0
7.5 0 20 6 90 20 48 6 1
7.6 1 14 21 70 35 42 7 1
7.7 2 8 36 50 50 36 8 1
7.8 3 51 30 65 30 9 1
7.9 0 21 0 105 0 63 0 2
7.10 1 15 15 85 15 57 1 2
7.11 2 30 65 30 51 2 2
7.12 3 45 45 45 45 3 2

We will assume throughout our discussion, unless stated otherwise, that the
first column consists of all 0’s and the array admits the solution under con-
sideration in respect to the first column. The proof of the theorem and an
effective construction of the arrays will require several steps.

(i) That the array 6.1 can be extended only to 7.1 and 7.2 follows from
the fact that n, =1 and n, =0 in the solution 6.1; its extension must
therefore have n,, <1 and n;;, = 0. The solution 7.1 may be represented as
under:

D D* D* D* D* D*
1 0 0 o0 1 1

Zero or one below the array means that to each column of the array the same
element, either O or 1, is added. The structure of the array 7.2, as extended
from 6.1, is complex. A completed array satisfying the solution 7.2 is given
on the next page.

(i) The array 6.2 is extended to the solutions 7.2 and 7.5 only. Clearly,
seven-rowed arrays with n,, = 3 cannot be considered for possible extension of
the six-rowed array with n,, = 2. Further, since arrays 7.10 and 7.11 are ob-
tainable from the solutions 7.4 and 7.8 respectively by a permutation of 0 and 1,
it follows that the array 6.2 cannot be extended to 7.4 and 7.8. One can simi-
larly obtain 7.6 from the solution 7.3. Thus, it remains to be shown that 6.2
cannot be extended to 7.1, 7.3, 7.7 and 7.9.
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The first six rows of the following matrix are part of the array 6.2:

(@) (b)
11 0000 1111 1111 1111 1111 1111 0000000000
11 1111 0000 1111 1111 1111 1111 0011111111
11 1111 1111 0000 1111 1111 1111 1100111111
11 1111 1111 1111 0000 1111 1111 1111001111
11 1111 1111 1111 1111 0000 1111 1111110011
11 1111 1111 1111 1111 1111 Q000 1111111100

The extended row would have two 0’s added to the first two columns if 6.2 is
extended to 7.1. This necessitates 7n,’s (going in n,’s) to be divided into six sets
consisting of four columns having zeros in different rows. This, in turn, implies
an existence of at least one set that has to have two zeros in the extended row.
Further, since n,, = 12 in 7.1, five columns of 6.2 that have two zeros in each
column would have 1’s added in the extended row. Without any loss of gener-
ality, we may assume that the last two columns of (a) and columns 1, 3, 5, 7,
and 9 in (b) have 0’s and 1’s in the extended row while the remaining columns
in (a) and (b) have 1’s and 0’s respectively. If the first two rows are dropped,
there results a five tuple (11111)" appearing seven times, a contradiction.

Suppose that the array 6.2 is extended to 7.9. As before, we would have two
0’s in the first two columns in the extended row. Of 24n’s in 6.2, 19 would
have to have 1’s added while the remaining five columns have 0’s in the extended
row. This gives n;, > 0, but 7.9 has n,, = 0.

Consider next a possibility of an extension of 6.2 to 7.3. The first two columns
would have 1’s in the extended row. Further, since 6.3 is a subarray of 7.3, we
have to have a 1 and three 0’s in columns four through six so that dropping of
the first row results in a subarray with n, = 3. Of 17n,’s going in n,’s, selec-
tion of three 0’s in columns four through six leaves 14n,’s to be distributed in
the remaining five sets in (a). This demonstrates an existence of at least three
sets that have to have zeros in the extended row. This shows that n,, > 2, con-
tradicting that 7.3 has n;, = 0.

An array satisfying 7.7 must satisfy 7.3 in respect to at least one of the columns
having one coincidence with the ith column, since n;, = 8 in 7.7. Since 6.2
cannot be extended to the array 7.3 and 7.7 must include a column in respect to
which it satisfies 7.3, it is clear that 6.2 cannot be extended to 7.7.

The arrays 7.2 and 7.5, when extended from 6.2, are of the following nature:

7.9 D D D* D* D* D* 75 D D D* D* D* D*
1 0 1 l 0o o0 0 0 1 1 1 0.

(iif) The array 6.3 can be extended to all the seven-rowed arrays 7.1 through
7.12. This can easily be verified by dropping an appropriate row from each
array.

(iv) An array satisfying solution 6.4 can be extended to an array with seven
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constraints with n;, + n;, < 16. Further, since 7.3 and 7.11 are obtainable from
7.6 and 7.8 by interchanging the two elements 0 and 1, it suffices to show that
6.4 cannot be extended to the arrays 7.6 and 7.8. Consider now an array 7.2.
If the first row is dropped, a six-rowed array remains with n,, = 4 and n;,, = 16,
contradicting that n;; = 12 in the solution 6.4. It may also be observed that
the arrays 7.6 and 7.11 come only from the subarray 6.3 while an array 7.12 is
extended only from the solutions 6.3 or 6.5. We now give below arrays satisfy-
ing solutions 7.4, 7.7 and 7.10 as extended from the array 6.4.

7
D D D
1 1 1

7.7 7.10
bx px D D D D D* D*¥ D D D D D* D*
0 0 0o 0 1 1 1 0 0 0 0 1 1 1

SN

(v) The array 6.5 can be extended to 7.8 and 7.11.

Since an extension of 6.5 must have n;,, + n,, < 11, it is clear that 7.1, 7.2,
7.5, 7.6, 7.9 and 7.10 cannot be considered as possible extensions of 6.5. Fur-
ther, arrays 7.3 and 7.4 can be obtained from 7.6 and 7.10 by interchanging two
elements.

An array 6.5 has five columns of all 1’s, one column of each possible type
with a zero in a different row as in (a), and one column of every type with a 1
in a different row as in (c) respectively. Seventy-five columns of n,, in 6.5 can
be split into 15 sets so that each set of five identical columns has four coinci-
dences with the column af all 0’s. The first six rows of the following matrix

are part of such an array and the seventh row is the extension, if possible:

(a) (b) ()
11111 011111 11111 00000 100000 00000
11111 101111 11111 00000 010000 00000
11111 110111 00000 00000 001000 00000
11111 110111 ~°° 00000 00000 ~~~ 000100 00000
11111 111101 00000 11111 000010 00000
11111 111110 00000 11111 000001 00000
11000 111110 00011 00111 000001 11100

The elements in the extended row are determined by the solution 7.7. Thirty-
five columns of n,, that have to have zeros in the extended row could be obtained
by adding two 0’s in any of the ten sets and three 0’s in the remaining five sets.
We may assume that the first set in (b) has three 0’s and two 1’s in the extended
row while the second set has two 0’s and three 1’s added. If the sixth row is
dropped, there results a six-rowed subarray with n,, = 2 which should, therefore,
satisfy the solution 6.2. But we have noticed earlier that the array 6.2 cannot
be extended to 7.7. In case any row, one through five, is deleted, a six-rowed
array remains with n,, = 3 and thus satisfies the solution 6.3. Since each column
with five 0’s in 6.3 is repeated three times, we have three 1’s and two 0’s in the
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extended row in the last five columns. If any one of the first two rows is de-
leted, a six tuple (100000)" appears four times, a contradiction. The fact that
6.5 cannot be extended to 7.12 follows from a similar argument. It now re-
mains to be shown that one can in fact construct arrays satisfying solutions 7.8
and 7.11.
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(vi) The array 6.6 can be extended to 7.12.

Any extension of 6.6 would have to have n,, + n,, < 6. This leaves 7.4 and
7.8 for further consideration, but these are obtained from 7.10 and 7.11 by
permuting 0 and 1. We demonstrate below the array 7.12 as extended from 6.6.

D D D D D D
0O 0 0 1 1 1

REMARK. Before completing the proof of this theorem, we wish to note that
one can always construct an array (64, 7, 6) and repeat it three times. That
the array so obtained cannot be extended follows from Theorem 2.1. The main
point of our proposition is to show that none of the seven rowed arrays can be
extended further. We will, however, eliminate arrays 7.6, 7.10 and 7.11 from
further considerations since these are equivalent to 7.3, 7.4 and 7.8 respectively
in the sense that one can be obtained from the other by permuting the elements
0 and 1.

TABLE 2
Hio 23 i nig Hig His Hig it Hig
8.1 0 8 25 18 95 4 39 2 0
8.2 0 9 19 33 75 19 33 3 0
8.3 1 3 34 13 90 13 34 3 0
8.4 1 4 28 28 70 28 28 4 0
8.5 0 11 7 63 35 49 21 5 0
8.6 1 b 22 43 50 43 22 S 0
8.7 0 12 1 78 15 64 15 6 0
8.8 1 6 16 58 , 30 58 16 6 0
8.9 2 0 31 38 45 52 17 6 0
8.10 1 7 10 73 10 73 10 7 0
8.11 2 1 25 53 25 67 11 7 0
8.12 2 2 19 68 5 82 5 8 0
8.13 0 12 2 72 30 44 30 0 1
8.14 1 6 17 52 45 38 31 0 1
8.15 2 0 32 32 60 32 32 0 1
8.16 1 7 11 67 25 53 25 1 1
8.17 2 1 26 47 40 47 26 1 1
8.18 1 8 5 82 5 68 19 2 1
8.19 2 2 20 62 20 62 20 2 1
8.20 2 3 14 77 0 77 14 3 1
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In order to investigate whether any of the seven-rowed arrays can be extended
further, we enumerate in Table 2 solutions of (2.1.1) and (2.1.2) for k = 8.

LEMMA 2.4.1. The solution 8.4 does not represent an orthogonal array.

PROOF. An array satisfying the solution 8.4 has one column of ones, four
columns with one zero in a different row and twenty-eight columns of each type
having two coincidences with the column of all zeros. The following thirty-
three columns constitute a part of the solution:

1011100000001 111111111111 11111111
110110111111000000111111111111111
l11r1rorro11111011111000001111111111
111101101111101111011110000111111
l11r1r1r1r111011111011110111011100011°1
111111111011111011110111011011001
l111r1r1r1r111101111101111011101101010
lIr1r1111111110111110111101110110100

If any one of the rows 1 through 4 is deleted, there results a seven-rowed sub-
array with n;, = 2 and n;, = 10. In case any row five through eight is dropped,
the resulting array would have n,, = 1 and n, = 11. Since none of these pa-
rameters satisfy a seven-rowed orthogonal array, it follows that 8.4 cannot pos-
sibly be considered as an extension of any seven-rowed array.

LEMMA 2.4.2. Arrays (192, 7, 5) cannot be extended to eight constraints.

Proor. First, we will consider the seven-rowed arrays with n;, = 2. Anarray
with solution 7.9 can be extended to an array of eight constraints with n, = 0
and n;, + n, = 2. Accordingly, 8.1 is the only solution which needs to be con-
sidered. Further, an extension of 7.9 would have to have n; + n;,, < 21, but
solution 8.1 has n,; + n,, = 33, a contradiction. The solution 7.12 is obtained
precisely by repeating three times an array (64, 7, 6). That the maximum number
of constraints in this array is seven is a consequence of previously mentioned
Theorem 2.1.

Next, we will consider 7.1, 7.4, 7.5 and 7.8. Since an extension of 7.1 must
have n,, = n;; = 0 and n;; 4+ n,, < 31, we would consider solutions 8.2, 8.5 and
8.7 only for possible extension. In all these solutions, there are at least two
identical columns having one coincidence with the column of all zeros. If the
row in which this coincidence occurs is deleted, there results a seven-rowed
array with n;y > 0, contradicting that 7.1 has n;, = 0. The array 7.4 has three
columns of all ones followed by a column with a single zero. The solutions 8.9,
8.11 and 8.12 need only be considered as possible extensions of 7.4, since an
extension of 7.4 must have n,;, = 0 and n;, + n,, < 4. If 8.9 is to be considered
as a possible extension, then the elements in the extended row are 1, 1, 0, 0. This
yields n; = 1, but 8.9 has n;; = 0. The array 7.4 cannot be extended to 8.11
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or 8.12since }}%z% n,; equals 81 in solution 8.11 and 91 in solution 8.12 respec-
tively, whereas any extension of 7.4 would have to have }}iz¥n,; < 76. Again,
an extension of 7.5 would have n,, = 0 and n;, 4+ n, < 26. The solutions 8.5,
8.7 and 8.13, which satisfy this property, have at least two identical columns
of type n;, and deleting the row in which this coincidence occurs yields a seven-
rowed subarray with n,, > 1, but n,; = 0 in 7.5. An array satisfying solution
7.8 includes three identical columns and must, therefore, satisfy one or more
solutions 7.9 and/or 7.12. Since none of the arrays with n,, = 2 can be extended,
we conclude that the array 7.8 cannot be extended further.

Consider next an array 7.3. It is obvious that any extension of 7.3 would
have to have n,; = 0 and n,, + n, < 9. Accordingly, we need to consider 8.1,
8.2, 8.3, 8.6, 8.8, 8.9, 8.10, 8.11 and 8.12. Anarray of type 8.1 has 8 columns
of each possible type with one zero in a different row; dropping any one of the
rows results in a seven-rowed subarray with n,; = 1.but 7.3 has n,, = 2. If 7.3
could be extended to the solution 8.3, then all the columns of type n;, would
have to go to n, of 8.3. This would leave fifty-five columns of type n; in 7.3
that would have one added in each of these columns in the extended row so that
n;, = 90 in the solution 8.3. The remaining fifteen columns (of type n,,) in 7.3
that would have zero added in the extended row yields n;; = 15 but 8.3 has
n,; = 13. That 7.3 cannot be extended to 8.10 and 8.12 follows easily, since

iz3n,;; equals 86 in 7.3 while >;i=8 n,; = 91 both in 8.10 and 8.12. The array
7.3 as extended from its subarray 6.3 must have the first fifty-one columns as
follows:

11 0111111 000000000000111111111111111111111111111111
11 1011111 001111111111000000000011111111111111111111
11 1101111 110011111111001111111100000000111111111111
11 1110111 111100111111110011111100111111000000111111
11 1111011 111111001111111100111111001111001111000011
11 1111101 111111110011111111001111110011110011001100
11 1111110 111111111001111111110011111100111100111100

The first two columns have 0’s while the next seven columns have 1’s added in
the extended row if 7.3 is to be extended to 8.2. Of 42 columns of type n,, in
7.3, 23 have 0’s while the remaining 19 columns have to have 1’s in the ex-
tended row. This may, without loss of generality, be accomplished by having
in the extended row 0’s in columns 46—51 and 1’s in alternate columns begin-
ning with a one in column 10. If three rows, five through seven, are dropped,
there results a five-rowed subarray with a five-tuple (11110)" appearing eight times.
In case 7.3 is extended to 8.6, then the elements in the first nine columns are
1,0,1,1,1, 1,0, 0, 0so that if any one of the rows, one through four, is deleted,
we have a seven-rowed subarray with n;, = 2. The elements in the first nine
columns in the extended row are 1,1, 1,0,0,0,0, 0, 0, if 8.11 is considered as
a possible extension of 7.3. We may have, as before, 0’s in columns 46—51 and
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1’s in the alternate columns beginning with a 1 in column 10, so that 23 columns
have 0’s and 19 columns have 1’s in the extended row, if 7.3 is extended to 8.6
or 8.11. Again, a five-tuple (11110)’ appears more than six times in a five rowed
subarray resulting from the deletion of the three rows five through seven. The
fact that 7.3 cannot be extended to 8.8 or 8.9 follows from a similar argument.

We have remarked earlier that the array satisfying solution 7.7 satisfies solu-
tion 7.3 in respect to at least one of the columns having one coincidence with
the ith column, since n; = 8. Since 7.7 includes a column in respect to which
it satisfies 7.3, it follows that 7.7 cannot be extended.

An array satisfying solution 7.2 includes two identical columns and must,
therefore, satisfy one or more solutions 7.5 through 7.8. Since we have estab-
lished above that arrays with n, = 1 cannot be extended, it follows that 7.2
cannot be extended to eight constraints.

The proof of the theorem is now complete.

3. Projective geometry and saturated designs. In this section, we sketch briefly
a relation between the Galois spaces, orthogonal arrays and saturated sym-
metrical factorial designs. The investigation pertaining to the maximum number
of constraints in an orthogonal array (42¢, k, r) for 4 = 2¢ becomes purely a geo-
metric problem. Bose [1] established that the maximum number of factors in
a symmetrical factorial design, in which each factor operates at two levels, blocks
are of size 2**! and no main effect or a r-factor or lower order interaction is con-
founded, is given by the maximum number of distinct points in an n-dimensional
projective space PG(n, 2) based on 0 and I such that no ¢ points among them are
linearly dependent. This number is usually denoted by m,(n + 1,2). If k =
my(n + 1, 2), then a premultiplication of a k¥ X (n 4+ 1) matrix by another matrix
consisting of all possible 2"+!(n + 1)-tuples yields an orthogonal array of strength
t, and hence a saturated design of resolution ¢ + 1.

The results in Theorems 3.1 and 3.2, when translated into the language of
saturated designs, agree with those of Draper and Mitchell [4], [5], but we have
considered it worthwhile to give independent proofs of their main results be-
cause their extensive use of ‘number of words’ in a ‘word length’ and ‘dead-end’
designs is rather involved and compligated, and partly to indicate that any re-
sults of this kind can scarcely be expected to be the best obtainable in as much
as their proof is in a sense independent of algebraic and geometric considera-
tions. The geometrical methods are sometimes direct and simpler as compared
to those considered by these authors.

THEOREM 3.1. my(8,2) = 12.

Proor. Let k = m,(n + 1, 2) have the usual meaning. Rao [9] has shown
that m,(7, 2) = 11. We have established elsewhere [7] that an increase in the
value of n and ¢ by one results in the corresponding increase in k by at most
one. Thus, it follows that my(8, 2) cannot exceed 12. We now demonstrate an
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existence of 12 points in PG(7, 2) in the columns of the matrix 4, no five of
which are linearly dependent.

M o0 0 0 0 0 0 01 0 0 17
01 000O0OO0O0OT1 O0T1°1
001 00O0O0OO0OT1O0T1SOQO0
0001 00O0O0OT1T1O0°71
G-1.1 4=lo000 10001 100 .
0000O0OT1 001110
000O0O0O0OT1 O0T11T11
000O0O0O0OO0OT1O0T1 1 1]
It is recently established [8] that
(3.1.2) my(t,2) =1+ 1 for r>2
(3.1.3) m(t+1,2)=1+2 for 1> 4
(3.1.4) m(t+2,2)=1t+4 for 1=4,5
(3.1.5) my(t+2,2) =1+ 3 for 1=6

THEOREM 3.2. [10] my(n +1,2) <32*°*—1)+9 for n=38.

Proor. Through a six-dimensional subspace, exactly (2"~®* — 1) seven-dimen-
sional spaces will pass. That my(7,2) = 9 is a consequence of (3.1.4) above
while the preceding Theorem 3.1 assures the existence of 12 points in PG(7,‘2),
no five linearly dependent. It follows, therefore, that each of the seven-flats can
have at most three points not lying on a six-flat. Hence, we have the upper
bound as asserted. []

We now give below an example of 18 points in PG(8, 2) in the columns of the
following matrix B satisfying the condition that no five of these points are line-
arly dependent.

m o0 0 0 0 000 01 1 1 001 1 0 07
01 000O0O0OO0OO0O0T1TUO0OO0OO0OTT1T1FQO0:'1
0 010O0O0OO0OO0OO0OT1 O1O0T1T1O0'1
0001 000O0OO0O0OO0OCOT1 OOT1T 111
(3.1.6) B=)j0 0 001 00O0OO0O0T1T111T1TT1TT1FP©0
00 0O0O0OT1 0O0O0OT1 0O0T1T0®O0TIT11
00 00O0O0O1 0011 1T0101T1'1
0000000101 101TT1TT1TSQO0OT1'1
10 0o 0000001111 1 1 1 1 1 1]
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