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SOME FAMILIES OF DESIGNS FOR MULTISTAGE EXPERIMENTS:
MUTUALLY BALANCED YOUDEN DESIGNS WHEN THE
NUMBER OF TREATMENTS IS PRIME
POWER OR TWIN PRIMES. 1!

By A. HEDAYAT, E. SEIDEN, AND W. T. FEDERER

Cornell University and Michigan State University

The concepts of balance for ordered and for unordered pairs of treat-
ments are introduced. Methods for constructing multistage experimental
designs which are Youden designs at each stage, are given. In the construc-
tion of these designs an attempt was made to accommodate as much
orthogonality and balance (both in our sense and in the classical sense) as
is possible. These constructions are presented in several theorems. In one
theorem, we give a uniform method of converting ¢ mutually orthogonal
Latin squares of order n into a r-stage balanced (n — 1) x n Youden designs.
Since the known methods of constructing orthogonal Latin squares of order
n =4t + 2, for t > 1, are not uniform, a uniform method for constructing
two-stage (n — 1) x n Youden designs for all even n has been developed. In
another theorem, a method of constructing (22+ 1)-stage balanced (21+1) X
(42 + 3) Youden designs, for 42 + 3 a prime power, is presented. A method
of constructing (px— 1)-stage balanced (v —1)/2 X v Youden designs is given
in another theorem for the case when v = 42 + 3 and is the product of twin
primes, i.e., v = pqf, g% = p* + 2. Difference sets based on the elements
of Galois fields were utilized for these constructions. Other miscellaneous
results are given.

1. Introduction and summary. Researchers in industry, biology, education,
marketing, psychology, and other fields often conduct two or more experiments
on the same set (or on an adjoining set) of experimental units either simul-
taneously or successively, with different sets of treatments in the different ex-
periments or stages. Such experiments are designated as multistage experimental
designs. For the class of multistage experiments considered herein, each single
stage contains the three factors, rows, columns, and treatments, that is, the
experimental design at each stage involves two-way blocking or control of heter-
ogeneity such as is obtained with the Latin square, the Youden (or Youden
square), and other Latin rectangle experimental designs. To satisfy such criteria
as minimum variances, equality of variances of differences between treatment
effects, efficiency as compared to other experimental designs, associated responses
of treatments at different stages, etc., it is desirable to have the treatment effects
at any given stage orthogonal, or at least balanced, with respect to all other
factors from the preceding stages. A set of + mutually orthogonal Latin squares
would achieve this for ¢ stages when it is feasible to use a Latin square design
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at each stage. However, it may be necessary or desirable to use only nk, k < n,
units in any given stage. For certain values of k a Youden design is possible.
(Here it should be noted that the rows of a Youden design form a randomized
complete block design and that the columns form a balanced incomplete block
design.) The question then arises as to the method of constructing the experi-
mental design in the second and succeeding stages in order to have the treatment
effects either orthogonal or balanced with respect to all factors from preceding
stages. Some special cases of this type of design and associated statistical ana-
lyses have been studied by Clarke [4], [5] and Pearce [10]. These designs can
also be considered as multistage three dimensional incomplete block designs.
Some constructions and analyses for multidimensional incomplete block designs
can be found in papers by Bose and Srivastava [1], Potthoff [11], [12], [13], [14],
[15], Causey [2], [3] and Srivastava and Anderson [17].

In this paper the concepts of “balance for ordered and for unordered pairs of
treatments” are introduced. Methods for constructing multistage experimental
designs which are Youden designs at each stage are given. In the construction
of these designs we have tried to accommodate as much orthogonality and bal-
ance, both in our sense and the classical sense, as is possible in these multistage
experiments. These constructions are given via several theorems of which the
following results highlight the contents of the paper. In one theorem we give
a uniform method of converting a set of # mutually orthogonal Latin squares of
order n into a t-stage balanced (for ordered pairs and also in the classical sense)
(n — 1) x n Youden designs. If one wants to apply this theorem he should first
construct ¢ mutually orthogonal Latin squares of order n. Unfortunately if
n = 6 then there are no orthogonal Latin squares of order 6 and, besides, the
known methods of construction of orthogonal Latin squares of order n = 4¢ + 2
are not uniform. We have partially overcome these difficulties by giving a uni-
form method for constructing 2-stage (n — 1) X n Youden designs for all even
n. In another theorem we give a method of constructing (24 + 1)-stage balanced
(for unordered pairs and also in the classical sense) (24 + 1) X (44 4 3) Youden
designs whenever 44 4 3 is a prime power. A method of construction of (p* — 1)-
stage balanced (in the classical sense) (v — 1)/2 X v Youden designs is given in
another theorem, whenever v = 41 + 3 = p*¢?, ¢ = p* + 2, p and ¢ primes
and « a positive integer. These constructions mainly depend on difference sets
based on the elements of Galois fields.

2. Preparatory definitions and result.

DEerINITION 2.1. Let X be a collection of v distinct elements (treatments).
Then, a balanced incomplete block design with parameters v, b, r, k, and 4 on
2 is an arrangement of v distinct elements of £ in b subsets (blocks) of k ele-
ments (k < v) satisfying the condition that any two distinct elements occur in
2 blocks. Any symbol occurs in r blocks and

) vr = bk, AAv—1)=rk—1), b=zwv.
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The customary notation for these designs is BIB(v, b, r, k, 2). (This has also
been denoted as a 2-design.) A BIB design is said to be symmetrical if v = b and
thus r = k and is denoted by BIB(v, k, 2). Some authors call a symmetrical
BIB design an SBIB design or a (v, k, 1) configuration.

DEerINITION 2.2. A k X v Youden design on a set £ of v distinct treatments
is a k x v matrix D filled out with the elements of X with the properties that
every row of D is a permutation of the set £ and that D is a BIB design with
respect to the columns.

DEerINITION 2.3. A k x s Latin rectangle on a set Q of s distinct elements is
ak x smatrix [a;], i =1,2, .- -, k; j= 1,2, ..., s with the requirement that
each row is a permutation of the set Q and for any j if i # i’ then a; #+ a;;.

DEFINITION 2.4. A set of k residues D = {d,, d,, ---,d,} mod v is called a
(v, k, A)-difference set if for every a = O(mod v), there are exactly 4 ordered
pairs (d;, d;), d;, d; € D such that d;, — d;, = a(mod v).

Now consider a k X v matrix M. Put d; -+ j(mod v) in the cell (i, j), i =
1,2, .-, k; j=1,2, ..., v. Then it is easy to see that the resulting matrix is
a k X v Youden design, and we have:

THEOREM 2.1. The existence of a (v, k, 2)-difference set implies the existence of
a k X v Youden design.

Difference sets arise in a natural way in many combinatorial and statistical
problems. The literature on difference sets is very extensive. A partial list is
given in [6] and [9].

3. Mutually balanced Youden designs for ordered pairs.

DeriNITION 3.1, Let Q = {D,, D,, ---, D,} be a set of r (v — 1) X v Youden
designs on a set Z consisting of v distinct elements to be designated by 1,2,..., .
Then we say Q is a set of + mutually balanced Youden designs for ordered pairs
if upon superposition of D; on D;, i + j, every ordered pair appears once in the
resulting array, i.e., every pair (/,k), I =k, I, k=1,2, ..., v should appear
once and the pair (/, /) should not appear.

LEMMA 3.1. There can be at most v — 1 (v — 1) X v mutually pairwise balanced
Youden designs for ordered pairs.

The proof is obvious.

As the reader may have noticed there is a direct connection between a set of
¢t mutually orthogonal Latin squares of order v and a set of 7 (v — 1) x v mutu-
ally balanced Youden designs.

DerINITION 3.2. A Latin square of order n on a set X containing n distinct
elements is an r X n matrix each of whose rows and columns is a permutation
of the set £. Two Latin squares of order n are said to be orthogonal if, when
they are superimposed, each symbol of the first square occurs just once with
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each symbol of the second square. A set of  mutually orthogonal Latin squares
of order n is a set of ¢ Latin squares of order n any two of which are orthogonal.

THEOREM 3.1. A set of t mutually orthogonal Latin squares of order v implies a
set of t (v — 1) X v mutually balanced Youden designs for ordered pairs.

Transform these ¢ mutually orthogonal Latin squares of order v into a set in
which the first row of each of the members is identical. Then delete the first
row of each square. The resulting rectangles produce the desired designs.

Even though there is only one way to complete a (v — 1) X v Youden design
into a Latin square of order v, the converse of Theorem 3.1 is trivially false, as
may be shown by the following counter example:

0231 1023
1023 2310.
2310 3102

Not only are the resulting Latin squares obtained by the completion of these
designs not orthogonal, but they are orthogonally mateless [8].

We shall now describe a uniform method of construction for mutually balanced
Youden designs of order (v — 1) x v for even v. Our method of construction
seems to be valuable because the method of orthogonal Latin squares fails for
v = 6 and is not simple and uniform for v = 4¢ + 2.

THEOREM 3.2. Let D, and D, be two (v — 1) X v matrices, v even. Put in the
(i, jycellof D,;i=0,1,...,v—2;j=0,1,2,.--,v— 1,

—i/2 + j(mod v),  for i even
(i + 1)/2 4 j(modwv),  for i odd,
and in the (i, j) cell of Dy, i = 0,1, ---, v —2;j=0,1,2, ..., v — 1
i/2 + 1 + j(mod v) , for i even
—(@{ + 1)/2 + j(mod v),  for i odd.

Then {D,, D,} forms a pair of balanced (v — 1) X v Youden designs for ordered
pairs. ‘

Proor. D, and D, are clearly Youden designs. Now we show that they are
balanced in the sense of Definition 3.1. Consider all the (v — 1) cells of D,
which contain a fixed integer, say «. Then « will be in the cell (i, j) with
j=a+i/2(mod v) if i is even and j = — (i + 1)/2 4+ a(mod v) if i is odd. Then
upon superposition of D, on D, we have the following entries in the correspond-
ing cells of D,, (i + 1 + a) modvand (—i — 1 + &) mod v if i is even and i is
odd respectively. Obviously, these entries in D, will exhaust{0,1,2, ..., v—1}—
{a}. A similar argument holds if we consider all v — 1 entries in D, corresponding
to a fixed element in D,.
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An example will elucidate the method of this theorem. Let v = 6. Then

012345 123450
123450 501234
D=501234 and D,=234501.
234501 450123
450123 345012

Note that if we extend D, and D, to Latin squares of order n, then the result-
ing Latin squares will be orthogonally mateless [8].

DEeFINITION 3.3. Let Fyand F, be two factors with v ,and v, levels respectively.
Now consider a design with n experimental units where each experimental unit
received a level of F, and a level of F,. Also, let N be the v, x v, incidence
matrix whose entry in the (i, j) cell, viz., n;; represents the number of experi-
mental units which have received the ith level of F, and the jth level of F,. Then
we say F, and F, are

(a) ina balanced arrangement if for some diagonal matrix 7 and a scalar ¢
NN' =T+ ¢J
(b) are orthogonal to each other if
ny; = (m.)(n;)/n..

where J is the v, X v, matrix of ones, n,, = ¥}%2,n,,n; = X, n

Zgil 23{2:1 5
The family of mutually balanced Youden designs for ordered pairs enjoys the
following properties in the sense of Definition 3.3.

and n =

179

1. In each stage

(a) Treatment effects are orthogonal to row effects.
(b) Treatment effects are in balanced arrangement with column effects.
(c) Row effects are orthogonal to column effects.

2. With respect to any two different stages i and j

(a) Treatment effects in the ith stage are orthogonal to row effects in the jth
stage.

(b) Treatment effects in the ith stage are in balanced arrangement with column
effects in the jth stage.

(c) Row (column) effects in the ith stage are orthogonal to the column (row)
effects in the ith stage and to the column (row) effects in the Jth stage.

(d) Treatment effects in the ith stage and the jth stage are in a balanced ar-
rangement. Note that in this case the corresponding NN’ = I + (v, — 2)J; 1 is
the identity matrix of order v,.

The above properties can be easily verified.
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4. Mutually balanced Youden designs for unordered pairs.

DEFINITION 4.1. Let S={D,, D,, ---,D,} be a set of ¢t k x v Youden designs
on a set X containing v distinct elements to be designated by 1,2, ..., v. Then
we say S is a set of + mutually balanced k X v Youden designs for unordered
pairs if upon superposition of D; on D; i  j, every unordered pair appears once,
i.e., the pairs (/, /) do not appear and if (/, k) appears then (k, /) should not
appear, l =k, ,k=1,2, ..., .

LemmMa 4.1. If S is a set of t mutually balanced k X v Youden designs for un-
ordered pairs then k = (v — 1)/2, where v is of the form 42 + 3 and t < v — 1.

Proor. From a set of v distinct elements we can form v(v — 1)/2 unordered
pairs and therefore k = (v — 1)/2. Since each design is a BIB with respect to
columns, we have

Z(v—l)zk(k—1):<v;1><v;3>.

This implies that 2 = (v — 3)/4 or v = 42 4 3. The proof that t < v — [ is
obvious. We remark that v — 1 is not a good upper bound for z.

Lemma 4.1 indicates that for the purpose of constructing mutually balanced
Youden designs for unordered pairs we should limit ourselves to the family of
k x v Youden designs with v of the form 41 4 3 and k = (v — 1)/2.

THEOREM 4.1. If v = 44 4 3 = p*, p a prime and a a positive integer, then the
quadratic residues in GF(p®) form a (42 + 3, 24 + 1, 2) difference set and hence a
(24 + 1) X (42 4+ 3) Youden design (see, for example, [7] or [16]).

THEOREM 4.2. If v =42 + 3 = p*q®, p and q primes with ¢ = p* + 2, then
there is a (44 + 3, 22 4 1, 2) difference set and hence a (22 + 1) X (44 + 3) Youden
design [18].

THEOREM 4.3. If v = 44 + 3 is of the form 4x* ++ 27 = p prime, then there is
a (42 + 3, 24 + 1, 2) difference set and hence a (24 4 1) X (42 + 3) Youden design
(see, for example, [7]).

Note that the family of designs constructed by Theorem 4.3 will be a subset
of designs constructed by Theorem 4.1; however, the method of constructing
corresponding difference sets is different. For v = 42 4+ 3 < 99 one can con-
struct all (24 4+ 1) x (44 + 3) Youden designs by the method of Theorems 4.1,
4.2 and 4.3, except for v = 39, 51, 55, 75, 87 and 95.

THEOREM 4.4. There exist at least 24 + 1 mutually balanced (22 + 1) X (42 + 3)
Youden designs for unordered pairs for 42 + 3 of the form p*, p a prime and « a
positive integer.

The proof is by construction. Identify the 44 + 3 treatments with the ele-
ments of the GF(p®) with x as a primitive element. Then, by Theorem 4.1
H={x" x* x* ..., x"} is a (42 + 3, 24 + 1, A) difference set. Note that the
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set x*H = {x¥«x° x*x? ...} = H. Now the (24 + 1) X (44 + 3) array D,
with entry in the (i, j) position equal to
X2+ (1 — 09)x9 | i=0,1,...,22; j=0,1,...,42 42

forms a (24 + 1) X (44 4+ 3) Youden design (I — 0 = 0 for j= 0 and 1 for
Jj # 0). We prove that D, and D,, r = s, r, s =0, 1, .., 24, are balanced for
unordered pairs. Consider the 24 + 1 cells of D, which contain a fixed element
of GF(p™), say 8 = x*. B will occur in row i and column j where j satisfies
(1 — 09)x7 = x* — x**+9 {1 =0,1, ...,24. The corresponding entries in the
cells of D, will be

u;, = x¥(x* — x) + B, i=0,1,...,24.

Conversely entries in 24 + 1 cells of D, corresponding to those cells of D, con-
taining 8 will be
v, = xB(x¥7 — x¥) 4+ B, i=0,1,...,22.
Now clearly {#;,i = 0,1, --.,24} U {v,,i = 0,1, .- -, 22} = GF(p*) — {B}, and
this completes the proof.
Let us clarify the method of Theorem 4.4 with an example. Let 44 + 3 = 7.
Then 3 is a primitive element of GF (7). Thus H = {1, 2, 4}. Hence

1430562 2541603 4063125
D,=2541603, D =4063125, D,=1430562.
4063125 1430562 2541603

It is, of course, desirable to have a set of Youden designs which satisfy both
balance properties in the sense of Definitions 3.3 and 4.1. The method of con-
struction of Theorem 4.3 guarantees that the constructed 24 -+ 1 Youden designs
are balanced in both senses. We point out that it is not in general true that if
a set of Youden designs are balanced in the sense of Definition 3.3 (Definition
4.1), then they are necessarily balanced in the sense of Definition 4.1 (Defini-
tion 3.3). To support this we present the following two counter examples.

The following two designs are balanced in the sense of Definition 3.3 but
not 4.1:

1234560 1345602
2345601 4560213
4560123 2134560

The following two designs are balanced in the sense of Definition 4.1 but
not 3.3:

1 2 3 4 5 6 7 8 91011121314 0
2 3 45 6 7 8 91011121314 0 1
4 5 6 7 8 91011121314 0 1 2 3
8 91011121314 0 1 2 3 4 5 6 7
01 2 3 45 6 7 8 910111213 14
56 7 8 91011121314 0 1 2 3 4
1011121314 0 1 2 3 4 5 6 7 8 9
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2 3 4 5 6 7 8 91011121314 0 1
4 5 6 7 8 91011121314 0 1 2 3
1011121314 0 1 2 3 4 5 6 7 8 9
5 6 78 91011121314 0 1 2 3 4
8 91011121314 0 1 2 3 4 5 6 17
1 23 45 6 7 8 91011121314 0
01 2 3 45 6 7 8 910111213 14

THEOREM 4.5. Any pair of Youden designs belonging to the 22 + 1 designs of
Theorem 4.4 are balanced in the sense of Definition 3.3, i.e.,

NN' = A+ DI+ AJ .

Proor. Let D, and D, be two Youden designs with the values in cells (i, j)
equal to x27+% 4 (I — 07)x7 and x*¢*" 4 (1 — 0%)x7 respectively, i=0, 1, - - -, 24;
j=0,1,...,42 4+ 2. Consider two sets of 22 4 1 entries of D, corresponding
to the entries in D, which take on exactly two distinct values, say, k and /.
Clearly

k= x?r+9 4 (1 — 09)x7 for 22+ 1 pairs (i, j)
and
[ = x2r+) 4 (1 — 09)x7 for 24+ 1 pairs (i, ).

For any j the corresponding entries in D, will be equal to

xZ(s+i) _I_ k — x2(7+i)
and
x2(s+i’) _I_ ] — x2(r+i)

for some i and i/. We want to show that there are 2 pairs, (i, i'), for which these
expressions coincide, i.e., that the equation x***% 4 k — x2rHi) — et ]
x2r+i" has 2 distinct solutions for variable i, /. We may rewrite this equation
in the form

xzi _ xZi' — ([ _ k)/(x2s _ xm) .

The right-hand side of this equation is a nonzero element of GF(p®). The left-
hand side is a difference of two elements belonging to the difference set. Hence,
the proof. (A result paralleling this theorem has been obtained by Causey [3].)

We note that this family of designs also satisfies all the properties listed under
properties 1 and 2 listed at the end of Section 3.

We shall now consider another family of Youden designs for 44 4 3 of the
form p“q® where p, q are primes and a, j positive integers such that ¢° = p* 4 2.
For this family we have the following theorem.

THEOREM 4.6. There exist at least (p* — 1) mutually balanced (v — 1)/2 X v
Youden designs in the sense of Definition 3.3 wherev = 42 + 3 = p°q®, ¢* = p* + 2.

The proof is by construction. Let x be a primitive root of GF(p*) and y be a
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primitive root of GF(¢?). Then, it has been shown by Stanton and Sprott [18]
that the following set forms a (42 + 3, 22 + 1, 2) difference set:
M={£2z... 2%, f), wo, wh, -, Wi
where
Z=(x ), 0=(0,0), w=(x0),

s = p~ and d=(s—1)2.
Addition and multiplication on M are defined by the relations

(r, ) + (rpty) =(n+ ry ity + tz) s

(ry, B)(Fys ty) = (11, 1i1)

It is clear that (x*, y*)M, k = 0,1, ..., s — 2, isalsoa (41 4 3, 22 4 1, 2) dif-
ference set. Indeed, for the given k’s (x*, y*)M = M. Let D, be the following
(24 + 1) X (42 + 3) array. Name the rowsof D, by 0, 1, - .-, 22 and its columns

in any manner by (j, ;) where (j,, j;) belongs to M. Put in (i, (ji, ,)) cells
of D,

(x*, Y92 + (o Jo) » 0<i<d-—1
(jl’ JZ) > l = d
(x5, YW+ (s o) d+1=i<22.
Now we prove that D, and D, are balanced in the sense of Definition 3.3, k =+ [,
k,1=20,1, ..., 5 — 2. Note that each row of D, and D, exhausts the 44 + 3

elements of the Galois Domain GD(v), that is, the set of elements (r, ) with r
in GF(p®) and ¢ in GF(¢"). Now consider the 22 4 1 cells of D, which con-
tain a fixed element of GD(v), say (r, f). This element occurs in row i/ and
column

(s Jo) = (1, 1) — (%, y)2*, 0=si<d-—-1
(v o) = (1, 1), i=d
(s Jo) = (r, 1) — (xF, yFywiztexv d+1<i<2

Then the corresponding entries in the cells of D, will be
(x!, Yzt + (r, 1) — (x*, y9)Z*, 0Zigd—1
2 (r, 9, i=d
(xl,yl)wi—-(d+l) + (r, t) _ (x_k, yk)wi—(d-H) s d + 1 é i é 22

Now consider all the 24 4+ 1 cells of D, which contain (/, ). Then the cor-
responding 24 + 1 cells in D, are

(xh, Yz + (', ) — (x*, yh)z, 0<i"<d—1
(3) (r,a t,) 5 [ — d
(xl,yl)wi’~(d+1) + (rl’ t’) _ (xk,yk)wi'—(dH) s d + 1 é i’ é 21.

We shall show analogously to the previous case that the following system of
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equations has exactly 2 solutions, i.e., there are 2 pairs (7, i’) such that

& p)Z 4 (r, 1) — (x*, y)7*
= (Xt Yz 4 (', 1) — (x*, y*)z¥ 0<i, "r<d—1
(xl,yl)wi~(d+1) + (r, t) _ (x",y")w"“d“)
= (b, Pywi TR (p 1) (xk, pryw - d+1<i, <22
or
22 = [0 = (Ol ) — (M), 0=i, P=d—1

Wi+l ir—(d+1)
= [0, 8) = (n OIS ) — (4, p9],  d+1<i, <20,

The right-hand side of this system of equations in a nonzero element of the
GD(v) and the left-hand side are differences of the elements belonging to the
difference set M in GD(v). Hence the proof.

The following example elucidates the method of Theorem 4.6. Let v = 15 =
3 x 5. For this case x = 2 and let y = 2.

M ={2, 2, 2, 2, 6, wh wil = {(1, 1), (2, 2), (1, 4), (2, 3), (0, 0), (1, 0), (2, 0)}
and
00 01 02 03 04 10 11 12 13 14 20 21 22 23 24

11|11 12 13 14 10 21 22 23 24 20 01 02 03 04 00
22122 23 24 20 21 02 03 04 00 01 12 13 14 10 11
14114 10 11 12 13 24 20 21 22 23 04 00 01 02 03
D, = 2323 24 20 21 22 03 04 00 01 02 13 14 10 11 12
0000 01 02 03 04 10 11 12 13 14 20 21 22 23 24
10110 11 12 13 14 20 21 22 23 24 00 01 02 03 04
20(20 21 22 23 24 00 01 02 03 04 10 11 12 13 14

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24

22122 23 24 20 21 02 03 04 00 01 12 13 14 10 11
1414 10 11 12 13 24 20 21 22 23 04 00 01 02 03
23123 24 20 21 22 03 04 00 01 02 13 14 10 11 12
D = 1111 12 13 14 10 21 22 23 24 20 01 02 03 04 00
00|00 O1 02 03 04 10 11 12 13 14 20 21 22 23 24
20120 21 22 23 24 00 01 02 03 04 10 11 12 13 14
1010 11 12 13 14 20 21 22 23 24 00 01 02 03 04

REFERENCES

[1] Bosk, R. C. and SRIvVASTAVA, J. N. (1964). Multi-dimensional partially balanced designs
and their analysis, with applications to partially balanced factorial fractions. Sankhya
Ser. A 26 145-168.

[2] Causkey, B. D. (1967). Some multi-dimensional incomplete block designs. Ph. D. disserta-
tion, Univ. of Chicago.



(3]
(4]
[5]
(6]
(7]
(8]

[0
[10]

1]
[12]
[13]
[14]
[15]

(16]
(17]

[18]
[19]

[20]

MUTUALLY BALANCED YOUDEN SQUARES 1527

CAusky, B. D. (1968). Some examples of multi-dimensional incomplete block designs. Ann.
Math. Statist. 39 1577-1590.
CLARKE, G. M. (1963). A second set of treatments in a Youden square design. Biometrics
19 98-104.
CLARKE, G. M. (1967). Four-way balanced designs based on Youden squares with 3, 6 or
7 treatments. Biometrics 23 803-812.
HaLL, M., Jr. (1956). A survey of difference sets. Proc. Amer. Math. Soc. T 975-986.
HaLL, M., TR. (1967). Combinatorial Theory. Blaisdell Publishing Co., Waltham, Mass.
HEDAYAT, A. and FEDERER, W. T. (1969). An application of group theory to the existence
and nonexistence of orthogonal Latin squares. Biometrika 56 547-551.
MaNN, H. B. (1967). Recent advances in difference sets. Amer. Math. Monthly 74 229-235.
PEARCE, D. A. (1966). Some row and column designs for two sets of treatments. Biometrics
22 1-25.
PorTHOFF, R. F. (1958). Multi-dimensional incomplete block designs. Inst. Statist. Mimeo
Series No. 211, Univ. of North Carolina.
PoTTHOFF, R. F. (1962a). Three-factor additive designs more general than the Latin square.
Technometrics 4 187-208.
PoTTHOFF, R. F. (1962b). Four-factor additive designs more general than the Greco-Latin
square. Technometrics 4 361-366.
PoTTHOFF, R. F. (1963a). Some illustration of 4 DIB design constructions. Calcutta Statist.
Assoc. Bull. 12 19-30.
PorTHOFF, R. F. (1963b). Three-dimensional incomplete block designs for interaction
models. Biometrics 19 229-263.
RyYSER, H. J. (1963). Combinatorial Mathematics. Wiley, New York.
SrIvasTAVA, J. N. and ANDERSON, D. A. (1970). Some basic properties of multi-dimen-
sional partially balanced designs. Ann. Math. Statist. 41 1438-1445.
STANTON, R. G. and SproTT, D. A. (1958) A family of difference sets. Canad. J. Math. 10
73-77.
Youpen, W. J. (1937). Use of incomplete block replications in estimating tobacco-mosaic
virus. Contributions Boyce Thompson Inst. 9 41-48.
Youpen, W. J. (1940). Experimental designs to increase accuracy of greenhouse studies.
Contributions Boyce Thompson Inst 11 219-228.
337 WARREN HALL
CoRNELL UNIVERSITY
ITHACA, NEW YORK 14850



