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MAXIMUM LIKELIHOOD ESTIMATION OF LIFE-DISTRIBUTIONS
FROM RENEWAL TESTING

By L. H. Crow AND I. N. SHIMI
Florida State University

In 1965 Marshall and Proschan (1965) (see also Grenander (1956)),
considered the maximum likelihood estimation for life-distributions with
monotone failure rate over the support of the distribution functions. They
considered data arising from a testing plan which does not allow censoring,
time-truncation or replacements. In the present paper we consider the
maximum likelihood estimation of life-distributions with monotone failure
rates over the interval [0, T), where T is a fixed positive real number, and
no other assumptions about the distribution or its failure rate are given
outside that interval. The following renewal type testing plan is used,
which allows for time-truncation and replacement. At time zero, the
beginning of the testing, n new items from the population to be tested are
put on test. When an item fails it is instantaneously replaced with another
new item from the same population and at time T all testing is stopped.
The maximum likelihood estimates of the distribution function and its
failure rate over [0, T) are given and shown to be uniformly strongly con-
sistent as » tends to infinity.

1. Introduction. In reliability studies many different testing plans are used.
Most of these testing procedures are designed to allow the experimenter to obtain
what he decides is a sufficient amount of information and still limit the number
of items tested, the number of items that fail, the total testing time, etc. For
example, an experimenter would rarely use a testing plan that did not limit the
total testing time when the items being tested can be assumed very reliable,
since the testing time would usually be very long. The total testing time must
also be limited if project deadlines must be met, or if equipment or personnel
used in the testing can only be spared for some specified length of time. This
limitation on the testing time need not, however, be detrimental to the goals of
the experimenter. For example, if the experimenter can assume that the general
form of the life-time distribution belongs to some parametric class defined on
the positive real axis, then limiting the testing time to, say T, (T < o0), he can
still estimate the unknown parameters of the distribution. This will give him an
estimate of the distribution on [0, co). Examples of this case are numerous.
(See Epstein (1959), Gnedenko e al., ((1969) Chapter 3) and Crow and Shimi
(1970), (1971).)

Another situation where limiting the testing time is both necessary and prac-
tical is the subject of the present paper. Suppose the experimenter cannot con-
clude that the life-time distribution has a particular form on [0, co) but only on
[0, T) (T < o) and suppose that this interval includes the mission time (the
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1828 L. H. CROW AND I. N. SHIMI

period of time during which the items being tested were intended to perform
under actual operating conditions) of the items tested. In this case the experi-
menter must limit his inferences to the interval [0, T') and, for all practical
purposes, he need not infer anything about the distribution outside this interval.

The concept of “failure rate” is a very important practical concept in reli-
ability and has motivated several very useful classes of distributions, e.g.,
Increasing Failure Rate (IFR) class, Decreasing Failure Rate (DFR) class, U-
Shaped Failure Rate class. The failure rate r(+) of a distribution function F
having derivative f is defined by

r(x) = f(x)/[1 — F(x)] for F(x) <1
and
r(x) = o0 for F(x) =1

The estimation problem that we shall be concerned with in this paper can be
summarized in the following way. The life-time distribution of the items to be
tested is assumed to have an increasing failure rate over the interval [0, T'], i.e.,
IFR on [0, T]. No other assumptions about the distribution or its failure rate
are given outside that interval. The assumption of increasing failure rate can
be changed to decreasing failure rate and the same results will follow with the
obvious modifications. Data arise from the following testing plan.

Testing Plan A. At time zero, the beginning of the testing, n new items from
the population are put on test. When an item fails it is instantaneously replaced
with another new item drawn from the same population and at time 7 the testing
is stopped.

The maximum likelihood estimation for parametric classes from this testing
plan has been investigated by Epstein ((1959), page 3.17), Gnedenko ez al.,
((1969), page 169) and Crow and Shimi (1970, 1971).

The notion of IFR on [0, T'] is made more precise by the following definition.

DEFINITION. Let T be a fixed positive real number. A cdf F, F(0) = 0, is said
to be IFR (Increasing Failure Rate) on [0, T] iff it satisfies one of the following
conditions: (i) —log[1 — F(x)] is convex on the intersection of the support of
F with [0, T], [a Bz], 0 £ ay < B, < T and F(B;) = L if , < T; or (ii) the
part of the support of F in [0, T'] is empty.

Let &% = {F: Fis IFR on [0, T']}.

The class . includes the usual class of IFR distributions. It is easy to show
that there exists no sigma-finite measure relative to which all the distributions
in . are absolutely continuous.

Since we are dealing with a nonparametric family of distributions for which
there exists no sigma-finite measure relative to which all the measures induced
by .5 are absolutely continuous, the usual concept of maximum likelihood
estimation cannot be applied. The general definition of MLE due to Kiefer and
Wolfowitz (1956) is used in this paper to determine the MLE of the life-time
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distribution F over [0, T'), where F ¢ % and data arise from Testing Plan A.
It is also shown that this MLE is strongly consistent as n, the number of original
items, tends to infinity.

We need to present the following preliminary notation and a couple of obvious
theorems.

Plan A can be considered as n independent experiments each beginning at time
zero and ending at time 7. Each experiment has a random number, K,, r = 1,
2, ..., n, of items that are put on test. Let X;, be the time-to-failure of the jth
item put on test in the rth experiment. Then K, is the first integer such that

Zg'(é’lXjr_z_T'
Let .
Y,, = X,,, r=1,...,ni=1,2,...,K, — 1
and
YKT7‘=T_ f:rl_lXi'r’ r=1,29"',n~

Observe that Y, ’s are “times-on-test” for the items tested. Let d(n) denote the
total number of distinct failures in [0, T') in the combined n experiments.
Note that
0<dn) < Xy (K, — 1).

Alsolet0 = Z, < Z, < - .- < Z,,, be the ordered, distinct, failure times X,,
j=1,---,K, —1, r=1, ..., n Finally, let p(n) be the number of YKT,.’S,
r=1, ..., n, strictly greater than Z,,.

The following theorem is similar to a theorem concerning IFR distribution
given by Marshall and Proschan (1965), and we shall omit its proof because of
this similarity.

THEOREM. Suppose F e & and 0 < Z < B,. Then F is absolutely continuous
on [0, Z]. Note that F may take a jump at B, if 8, < T. Also, using the definition
of failure rate, it follows that

(i) Fe F iff r(+) is non-decreasingon [0, 8;),0 < a, < B, < T, and F(B;) =
LifBp < T.

(ii) The part of the support of F in [0, T is empty iff r(x) = 0 on [0, T].

(iii) If Fe &, then for x€ [0, B;)

F(x) =1 — exp(—R(x)) , and
f(x) = r(x) exp(—R(x)), where
R(x) = §§r(y)dy -

2. Maximum likelihood estimate. In this section the MLE of that part of a
life-time distribution F e .& over the interval [0, T') will be presented when
data arise from Testing Plan A. The following general definition of a maximum

likelihood estimate is due to Kiefer and Wolfowitz (1956) and is needed to deter-
mine the MLE of F ¢ & for the two reasons mentioned earlier.
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DErFINITION 2.1. Let Q be a sample space, <% a o-field on Q, Z”a family of
probability measures on <% and © a set indexing the elements of & by P(.| ),
0 0. Let X bea random vector defined on Q with distribution function deter-
mined by P(.|6,), 6,€0. If X, X,, ..., X, denotes a random sample from
P(- | 6,) then the MLE of 6, is § if § ¢ © and

. f(X]0,0)

SUpg . ~— =
P e, [T — X0, )]
where
f(+ 165, 6,)
denote the Radon-Nikodym derivative of P(.|6,) with respect to P(«|6,) +
P(+6,). .

The Kiefer and Wolfowitz concept of MLE will now be considered within the
framework of Testing Plan A and for life-time distributions F e .. Let Q =
{¢#, and all finite sequences of nonnegative numbers whose sum is less than T},
where ¢ is the empty set. Also, let 27, = {x € Q which have exactly i/ elements},
i=0,1,.... Then Q = |J,Z. We define a set %7 to be measurable in Q
if and only if . = |, % and %7 is Borel measurable in .27. Let <% be
the o-field of measurable sets in €.

For each F e & we will define a probability measure P(+ | F) on <% and will
denote the collection of all such measures by &*. These probability measures
will be defined first on the Borel measurable sets of each .2;. Some preliminary
notation is needed. Denote by (|, F) the product measure on R’ (Euclidean
ith space) induced by F, where y(+ | 0, F) is defined to be one. Also, let F(x~) =
lim,_, F(x — ¢), e > 0, and define products of the form [J}_, and sums of the
form };%_, to be 1 and 0, respectively. For each Borel measurable set .7, C 27
and F ¢ & define the measure P(. | F) to be

P57 F) = § . (1 — F(T — Siey x,1)} dy(x]i, F) .
For any .97 ¢ &% we define P(.| F) to be
P(SA|F) = B, (V5| F)

where 7, = ¥ n 2.

This definition is motivated by the following observation. Let H be a distri-
bution function such that H(0~) = 0, H(0) < 1. Let X, X,, - .-, be a sequence
of independent random variables with distribution function H and let K be the
stopping variable defined to be the first integer such that 33X, X; > 7. It follows
that, with probability one, K < co and hence

@.1) L= 5§ 1T )

where
gk = {(xv Xgy * 00y Xk)I Zl;;% X; <T, Zl;‘=l X; = T} .

Since X, is, in general, unobservable when testing Plan A is used, we integrate
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out x, in (2.1) and obtain
(2:2) U= 2§ - = H(T — Zi=t x ]} T dH(x;) -
k-1

The integrand in the right-hand side of (2.2) yields the likelihood function if
H is parametric for Testing Plan A. The integrand motivates the measures in
Z for the nonparametric situation.

Note that for each F e &

PQIF) = MU 25| F) = D P25 | F)

Thus, for each F e &, P(+ | F) is a probability measure on <.

The Kiefer and Wolfowitz concept of maximum likelihood estimate together
with our definition of the measures P(- | F) e &, F e 7, yields the MLE F, of

F on [0, T) described in the next theorem.
Let I(- | 5”) be the indicator function of .. Also, let n,(y) denote

2 (Y | [ s 00))
THEOREM 2.1. The MLE F, of F has failure rate F, where F, is constant over
[Z,Z,.1), 9 =0, ---,d(n), where Z,,,,,, = T, and
v 250 1 X, | (24, Z,))
r=1 §2o n(y) dy ’
F(Zywy) = oo iff max {Yy ., r=1,...,n} < Z,,,.

(23) ?n(Zq) = mind(n)+1zvzq+1 maxoéuéq

Proor. The proof of this theorem follows in a straightforward manner from
the Kiefer-Wolfowitz definition of MLE using the probability measures we
introduced above and Brunk’s (1958) results.

REMARK 2.1. We will now give a useful method for determining 7,. Let T,
be the time on test over [Z,, Z,,,) (i.e., T\, = 27, $eti () dy), ¢ =0, -+,
d(n). T (T,)' < (T) ' S - = (Tyn)™ then 7(Z) = (T,)7, ¢ =0, -+,
d(n). If for some i, (T;,)"* > (T;11),)"" then replace (T,,)! and (T,,,)~" by
2T, + Tipnn)™
If a reversal still exists, replace by appropriate averages. That is, if 2(T,, +
Tiiin) ™ > (Tiisan)™" then replace (75,)7" (Ti41,) 7" and (Ti4s,,) 7" bY 3(T,, +
Tiipnm + Tivma) ™
Continue averaging whenever there is a reversal. This will yield the monotone
increasing sequence H(Z)) < F(Z,)) < - -+ < F(Zy,) given by (2.3).

3. Strong consistency of F,. The main result of this section is that the MLE
of F on [0, T') converges uniformly a.s. to F as the number of items put on test
at time O increases. To accomplish this we will prove a convergence theorem
for 7,(x), xe[0, T), 7,(x) defined in the last section. This result will allow us
to easily prove the main result plus several corollaries. Furthermore, since the
failure rate of a life distribution is an important practical concept, the conver-
gence theorem for 7,(x) is also a significant practical result.
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We will need several theorems before we can prove the convergence theorem
for 7,(x). We first rewrite 7,(x), given in the last section, in a form we need to
show consistency.

Let R(u, v)denote 3 7_, > %71 I(X;, |[u, v)) and S(u, v) denote Y;*_, §2 n,(y) dy.
Then
(31) fn(x) = infzév<T Supu<zn(z) ?Ez: ;l));

for x [0, T) and
Z,(x) = MaXg;cqm (£ Z; < x} -

To show consistency of 7, we need the next two theorems. Let
R(u, v)
S(u, v)
and let 7, be the intersection of the support of F with [0, T'].

THEOREM 3.1. Let 0 S u, < v, < T be fixed where, 0 < uy < T if I, = ¢,
0= u, <0y < Bpifly =ag, Bp]. Then, asn— oo

(i) M, (uy, v) converges uniformly, a.s., inv, < v < T,

(ii) M, (u, v,) converges uniformly, a.s., in 0 < u < u,.

M, (u, v) = O<u<v<T,

Proor. Let X, X,, ---, be a sequence of independent, identically distributed
random variables with cdf F, F(0) = 0. Let N, be the first integer such that
28 X; = T, N, the first integer such that 32, ,, X; = T, N, the first integer
such that 333y v ., X; = T,and soon. Then N;, N,, - - -, is a sequence of i.i.d.

random variables. For N(n) = }*_, N,
R, (u, v) = R(u, v)/N(n)
(3.2) — r=1 év=’1 I(Xir | [”’ ’U)) _ Dire1 [(XNTr | [”’ ?)))
N(n) N(n)
1 _ -
= (1= gy ) ) = Ao

uniformly a.s. for —oo < # < v < oo, from using the Glivenko-Cantelli theo-
rem and the strong law of large numbers.
Similarly one may show that as n — oo

(3.3) S, (4, v) = S(u, v)/N(n) converges uniformly a.s.
om0 u<vT.

Observe that for n, sufficiently large
(3.4) R, (uy, v) and (S, (uy, v))~" are uniformly bounded a.s.

onv,£v<T,nz=n,
Also for sufficiently large n,

3.5) R, (u, v,) and (S,(u, v,))~" are uniformly bounded a.s.

on0<u <L uy, n=n,
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The proof is completed since (3.2)—(3.4) imply (i) and (3.2), (3.3) and (3.5)
imply (ii).
THEOREM 3.2. Let F be IFR on [0, T] with failure rate r on [0, T). Then, for
0<u<v<T fixed, where 0 < u < Bif I = [a, B].
(3.6) r(u) < E(R I (X [[u4, ) < r(v)
E(§3 n(y) dy)
where K = Ky, n(+) = ny(+) and X; = X;;,, i = 1,2, ---.
Proor. If I, = ¢ then F has failure rate 0 on [0, 7) and (3.6) follows. If
I, = {B} then F(8) = 1, and r(x) = o0, x = f, and r(x) = 0, x < 8. Also,
E(CEDMI(X;|[u,v) =0 for u<v=2§ and
BRI [w o) =1 for a<p <0,

Also,
E(§: n(y)dy) > 0 for u<§g.

Thus, (3.6) easily follows.

Now, assume I, = [a, 8], 0 < @« < f < T. Crow and Shimi (1971) show that
if H is a cdf with failure rate constant, say, 4, on [a, b), then

(3.7) E(ZE (X [0, 0) _ ;|
E(§a n(y) 4y)
Case 1.
Oo<u<v<B.

If F has a non-decreasing step-function failure rate on [u, v) then (3.6) holds
by a simple application of (3.7). To prove that (3.6) holds in general for this
case, let r,(x), n = 1,2, - -+, x€[0, B) be a sequence of real-valued functions
such that r,(x) = r(x), x€[0, u), r,(x) is a non-decreasing step-function on [4, v)
and r,(x) 1 r(x) on [u,v). Note that r,(x) < r(x) = r(v) < co. Thus by the
Lebesgue Dominated Convergence theorem, as n — oo

§8 ru(x)dx— g r(x)dx,  ye[0,v).

Therefore,
F(y) =1 — exp{—§§ r,(x) dx} > 1 — exp{—§§ r(x) dx}
=F(y), y€[0,v), as n— oo .
Let F (y) = F(y), y=v. Then F,, n=1,2, ..., s absolutely continuous on

[0, v), continuous from the right on [v, co), since F is, F,(0) = 0, F,(o0) = 1.
Thus, F, is a sequence of distribution functions, F,(y) — F(y), y € (— o0, o),

as n— oo.
By the Helly-Bray Theorem (Loéve (1963))

(3.8) PI[K =k|F,]= ., b dF,(x;) — (o, T dF(x;)
:P[K:le], n—»oo,k=1,2,---.
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Letp,(k) = P[K = k|F,J,n=1,2,-++,k = 1,2,...,and p(k) = P[K = k|F],

k=1,2,.... By Rao ((1968), page 106) and (3.8)

(3.9) S [ Palk) — p(k) =0, n— oo
Now, note that

(3.10) EI(X; | [u, v)) Z[T[u] as., u>0
and

(3.11) n(y) <[Th] as., y>0

where [x] denotes the largest integer less than or equal to x.
Thus, since u > 0 and (3.9) holds

|Ep, (LIS (X | [, ) — Ep(ZISH (X | [1, 0))]
=L S oy DS (x| [0, V) TT5-0 dF (%)
— D Vo IS (x| [, 0)) TT5-0 dF (%)
= [T/u] Ziea | palk) — pk)| — 0, as n— oo .
Also, .
§un(y)dy = (v —un(u) < (v — u)[T/u]
by (3.11). Hence,

(3.12) Ep (IS (X | [u, v) — Ex( NS (X | [4, )
and
(3.13) Ep (§un(y)dy) — Ex(§un(y) dy) .

However, from (3.11) it follows that

E, (LI X [1,9) _
Ep (Sun(y)dy)

Taking limits, and using (3.12) and (3.13) gives (3.6).

rn(y) —S— (7)) a.s.

Case 2.
0:u<?)<‘8.

Result (3.6) follows easily using the results of Case 1.
Also it is straightforward to use the results of Case 1 to prove (3.6) for

Case 3.
BT, B=v<T.

We now give the convergence theorem for the estimate 7,(x) of r(x), 0 < x < T.
THEOREM 3.3. Let F be IFR on [0, T with failure rate r on [0, T'). Then,
r(x,") < liminf 7,(x,) < lim sup 7,(x,) < r(x,*) a.s.

for each x,e (0, T).
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PRrROOF.
Case 1.
I, =¢.

In this case 7,(x) = Oa.s. for0 < x < T. Since r(x) = 0,0 < x > T, the result
follows.

Case 2.

Iy = [a, B].

Let Z,(x,) = maX, ;4 {Z; ] Z; < x,}. We will show the right-hand inequality
first.

If < Tand g < x, <T, then r(x,*) = oo, since F(8) = 1. Hence, assume
0< x,<BZT. Choose v, x, < v, < B. Then

(3.14) Fo(Xo) = inf%s,, SUPy <z, (ap Mau(s V)
é Supu<Zn(xo) Mn(”’ vo) *

Let
Mia, by — BEEE 1K (2 5)
E(§z m(y) dy)
Since 0 < x, < v,, we may apply Theorem 3.1 (ii) and conclude that, as n — oo,
M, (u, v,) converges uniformly a.s. for 0 < u < x,. Thus for arbitrary ¢ > 0
and n = N(e), say,

Fu(X0) = SUPy<z o (M(, ¥) + €) .
Since u < 8 we may apply Theorem 3.2 and conclude that lim sup 7, (x,) <
r(v,) + e. This gives lim sup 7,(x,) < r(x,*) a.s. since x, < v, and the right-hand
limits exist.
We will now show the left-hand inequality.

Case 2(a).
0<a and x, € (0, a] .

Since r(x,”) = 0 the left-hand inequality holds.

Case 2(b).
B<LT and B x<T.

If F takes a jump at 8 then with probability one Z,(x,) = g for n < N, N suf-
ficiently large. But this implies that 7,(x) = 7,(f) = co forn = N, f < x < T.
Thus, lim inf 7,(x,) = oo and, hence, lim inf 7,(x,) = r(x,”)-

If F does not take a jump at 8 then r(8~) = co and therefore as n — co,
Z,(x,) — B a.s. Choose u,, 0 < uy < co. Then for N sufficiently large, u, <
Z,(x,) < Ba.s., for n = N, and, thus,

Po(x) = inf,osv SUP, <z, (s Mault; V)
infxoév Mn(ul)’ ’U)
inf%s,, M, (u,, v) for u, <v,<B.

v v
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Apply Theorem 3.1 (i) and conclude that for arbitrary ¢ > 0, N(e¢) sufficiently

large,
Fu(%) = inf, o, (M(uy, v) — ¢) a.s. n= Me).
By Theorem 3.2, 7,(x)) = r(4) — ¢ a.s., n = N(¢). This gives lim inf 7,(x,) =
r(u,) a.s. for all u, < B. Letting u, — B~ gives lim inf 7,(x,) = oo a.s. Since
F.(%,") = oo for x, = B, we have the desired result for Case 2(b).
Case 2(c).
a<l x<BET.

Choose uy, @ < uy < X,. Then for N-large enough so that u, < Z,(x,) < x,,

?n(xo) = infxosv Supu<Z,,L(x0) Mn(”’ 1))
> inf, ., M,(x,, v) .

Tp=Sv
Applying Theorems 3.1 and 3.2 in the usual manner gives lim inf 7,(x,) = r(u,)
a.s. for all @ < u, < x,. The result follows.

This completes the proof.

The main result of this section is

THEOREM 3.4. Let F be IFR on [0, T] with failure rate r on [0, T). Then

F,(t) — F(t) uniformly a.s. in t ¢ [0, T), where
Fy(t) =1 — exp(=§i7(y) dy) .

Proor. Let I, be the support of F on [0, T]. If I, = ¢ the conclusion is
clearly true. Note, also, that F,(0) = 0 a.s. Suppose then that I, = [a, f].
By Theorem 3.3 7,(f) — r(t), t€[0, B) except possibly on a set of Lebesgue
measure zero. Let te[0, B) and let ¢, €[, 8) be a continuity point of r. For
arbitrary ¢ > 0 and N = N(1, ¢) sufficiently large, 7,(x) < 7,(¢,) < r(f,) + ¢ for
xe[0, ], n = N. Thus, by the Lebesgue Dominated Convergence theorem
(3.15) SeF(2)dz — \ir(z)dz  a.s.

Since

F(r) = 1 — exp(—{;7(2) d2),, te[0, f),
(3.15) implies that
(3.16) F, (1) > F(1) as. re0, p).

Case 1. F is continuous on [0, T).

Since Testing Plan A and all related random variables are unaffected by the
behavior of F on [T, o), we may assume without any loss of generality that F
is continuous on [0, T'].

Case 1a.
FT)=1, B=T.

Extend F, to (— oo, oo) by defining F,(x) = 0, x < 0, F,(x) = 1, x = T. Then,
by (3.16) as n — oo
(3.17) E()—>F@) as. te(—oo, ).
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Note that F, is a distribution function. Since F is continuous on (—oo, oo0),
F(1) — F(t) uniformly a.s. e (— oo, o), as n — oo by Pélya’s theorem (Eisen,
(1969)).
Case 1b.
FT)y<1, B=T.

Since 1 — F(T~) > 0, there exists a.s. some m = 1,2, ..., such that K, =1.
This implies that either d(n) = 0, or p(n) > 1 and diny = 1,for n > m. In any
case, 7,(x) < co a.s. x€[0, T), for n = m. Therefore, F,(x) < 1, x ¢ [0, T), and
hence, F, may be extended to [0, T] in a continuous manner, for n > m. Since
F is continuous, F,(T) — F(T).

Since F,(f) and F(r) are both non-decreasing for r € [0, T') and F(f) is continuous
and bounded for 7€ [0, T), we can apply Polya’s theorem to show that F(t) >
F(r) uniformly a.s. for r ¢ [0, 7).
Case 1c.
B<LT.

Let 8 < x < T and ¢ > 0 be given. By the continuity of F there exists a 0 <
z < B such that 1 — F(z) < ¢, and by (3.17) there existsa N = N(z, ¢) such that
F(z) —e < F,(2), n= N. Hence, for n= N, 1 — 2 < F(z) —e £ F,(2) <
F,(x) £ 1. Therefore, lim, _, F,(x) — F(x) = 1 a.s. for x = p. Using (3.16) we
have F,(x) — F(x) a.s. for x € [0, T). Using Pélya’s theorem again we may con-
clude that F,(x) — F(x) uniformly a.s. for x € [0, T), as n — oo.

Case 2. F takes a jump on [0, T').

Since F takes a jump on [0, T') at B, it follows that with probability one
K, =1, for some m = 1,2, .... Thus, F,(f) = 00, B <t < T, n = m, which
implies that F,(r) = 1, 8 <t < T, n = m. Since F(f) = 1, r = B, we have

(3.18) F,(1) — F(1) uniformly a.s. for te[B, T), as n— co.

We will now show that the convergence is uniform on [0, T). Fornz=m,F,
is a sequence of non-decreasing, bounded, continuous functions. Hence, they
may be extended to [0, 4] in a fashion which will preserve continuity. Similarly,
we may extend F to [0, 8] in a continuous manner.

Applying Pdlya’s theorem and using (3.16) we can show that F.(t) — F(1)
uniformly a.s. for r ¢ [0, 8), The result follows.
We now give two useful corollaries of Theorems 3.3 and 3.4.

CoROLLARY 3.5. Let S = [u, v] be a closed interval of continuity of r, 0 < u <
v < T. Then, 7,(x) — r(x) uniformly a.s. on S as n — co.

Proor. By Theorem 3.3
(3.19) F(x)—>r(x) as. on § as n— oo .

Since S is closed and bounded, the result follows.
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COROLLARY 3.6. Let S = [u, v] be a closed interval of continuity of r, 0 < u <
v < T. Then,

fu(x) > f(x) uniformly a.s. on S as n— oo

where f,(x) = 7,(x) exp(— § F.(y) ).
Proor. The proof follows directly from Theorem 3.4 and Corollary 3.5.
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