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RANK SPECTRAL PROCESSES AND TESTS
FOR SERIAL DEPENDENCE!

By R. J. BERAN
University of California, Berkeley

Rank analogues of the integrated periodogram spectral process are in-
troduced and used to generate distribution-free tests for independence of a
set of random variables. Under simple autoregressive alternatives, the rank
spectral process with normal scores yields a test of Kolmogorov-Smirnov
type whose local asymptotic efficiency relative to the analogous test based
on the integrated periodogram is at least one. Moreover, the same rank
test has good local asymptotic efficiency relative to tests based on optimally
lagged rank serial correlation coefficients. :

1. Introduction. The basic statistical problem studied in this paper is that of
testing a set of observations for randomness against alternatives under which the
observations are serially dependent. Simple tests that have been proposed for
the problem include the classical serial correlation test and its rank analogues
(Wald and Wolfowitz [15], Aiyar [1]). While such tests can be effective against
alternatives of practical importance, their successful use requires knowledge of
the proper lag to be introduced into the serial correlation coefficient. In the
absence of such precise information, it is prudent to use tests which have reason-
able power over a larger set of alternatives. The development of spectral methods
in time series analysis has provided a means of constructing tests that satisfy this
requirement.

Let X,, X,, - - -, Xy be the observed random variables and let H, be the hy-
pothesis of randomness, under which the {X;} are independent identically dis-
tributed with common continuous distribution function F. Suppose in addition
that £, (X;) = p, Var, (X;) = ¢* and p, ¢* are known. Then, under H,, the
random variables {Z; = ¢7(X; — p), 1 < i < N}formasample from a stationary
random sequence with mean 0 and spectral distribution function G(4) = 4/ on
[0, z]. The integrated periodogram estimate of G(4) is (see Grenander and
Rosenblatt [7])

(1.1) Gy(A) = (aN)* 3 | D)o Ze i dp
=N 2 Dt 9 0(AZ; 2,
where
sin (4m)

(1.2) a(2) = S0 m=1
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Tests for H, versus serial dependence can therefore be based upon appropriate
functionals of the spectral process N[G (1) — 4/z]. Under mild conditions, such
tests are consistent against stationary alternatives with spectral distribution func-
tion differing from 2/x.

The weak convergence in C[0, z] of N}[G,(1) — G(4)] to a Gaussian process
has been studied under assumptions on the {Z;} more general than independence.
Grenander and Rosenblatt [7] treated the case of a linear process for which the
eighth moment exists. Ibragimov [10] considered stationary Gaussian processes
with square integrable spectral densities. Brillinger [3] proved weak convergence
in a topology finer than the uniform topology, assuming stationarity, a mixing
condition, and existence of all moments. These results are applicable to the
testing problem described above with #, ¢* known.

In practice, however, the moments y, ¢® are not known. One way of overcom-
ing this difficulty in testing for H, is to substitute the estimates X = N-' 1%, X,
st = N1 30, (X, — X)*for p, o in N*[G (2) — 2/z]. Together with a rescaling,
this step yields the spectral process

(1.3) Valh) = (V) BT e (DY — DX — D),

where

(1.4) e, (3) = Sin(md) m=1.
2trm

Another approach, the one studied in this paper, is to replace the observations
by their ranks (Ry,, Ry, - -+, Ryy) and form a rank analogue of V(2):

(1.5) Sy(2) = (Mgl Zji; € j-u(Dan(Ryjs Ry,) -

The scores {a,(+, +)} satisfy regularity conditions and ||¢||* is a normalizing con-
stant (see Section 2).

Tests for H, against serial dependence can be based upon functionals of the
spectral processes Sy(4) or V(2). The tests based upon Sy(4) have the advantage
of being distribution-free, making it practical to tabulate their exact critical
values for small sample sizes. In addition, our results in this paper suggest that
for testing H, versus autoregressive alternatives, the spectral process S, (4) with
normal scores is at least as efficient asymptotically as is V,(4). This dominance
is established formally for tests based on max, §,(4) over their counterparts based
on max, V,(2). Furthermore, it is shown that these particular rank tests fare
reasonably well in comparison with asymptotically most powerful rank tests, at
least for the low-order autoregressive alternatives of greatest practical interest.

The remainder of this paper is organized as follows. Section 2 describes the
principal formal results: the weak convergence, asymptotic power, and asymp-
totic efficiency theorems which justify the remarks above. Proofs of these results
are given in Sections 3 and 4. Section 3 deals with proofs under H, while
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Section 4 treats proofs under simple autoregressive alternatives. Similar methods
can be used to study signed-rank spectral processes and rank cross-spectral
processes.

2. Principal results. Before stating the main results of the paper, we introduce
some notation and assumptions. Let (-, ) and ||+|| denote, respectively, the
inner product and norm in L,[0, 1]. Let X;, X, - - - be a sequence of real-valued
random variables defined on the space and g-algebra (Q, %) and let R, denote
the rank of X; among (X,, X,, - - -, X). Under Hy, the hypothesis of randomness
for N observations, (X, X,, ---, X},) are assumed to be independent identically
distributed with common continuous distribution function F.

If U, = F(X;) for 1 <i < N, the random variables (U,, U,, ---, Uy) are in-
dependent and uniformly distributed on (0, 1) under'H,. Corresponding to each
¢ € L[0, 1], a sequence of rank scores {a,*(+, +)} may be deflned by

2.1)  ay(js k) = Ep [o(U)p(Us) | Ryy = ji Ry = K], l=j#k=N.

The rank spectral process S,¢(4) associated with these scores is
N

(2.2) Sy?(2) = (NYle|[H)™ Zqﬁ; € i—u(Dan*(Ryjs Ry) »
J

where the {c,,(2)} are defined as in (1.4). The sample paths of S,¢(4) belong to
C[0, =], the space of all continuous functions whose domain is the interval [0, z].
The Gaussian process Z(2) defined on [0, z], satisfying

(2.3) E[Z()] = 0

E[Z(2)Z(z1)] = min <% , %) - %‘ :

and having all its sample paths in C[0, =] is called the Brownian bridge on [0, z].

THEOREM 2.1. Suppose that ¢ € L,,,[0, 1] for some § > 0 and that (¢, 1) = 0.
Then, under Hy as N — oo, Sy?(2) convergesin distribution in C[0, r] to the Brownian
bridge.

Thus, if 4 is a continuous functional defined on C[0, =] and if the conditions
of Theorem 2.1 are satisfied, then the asymptotic distribution of A(S,#(4)) coin-
cides with the distribution of A(Z(2)). In particular, the statistics max; S,%(4),
max, |Sy#(2)| and 77 §; [Sy¢(4)]* d2 have the same limiting distributions under
H, as, respectively, the one-sided and two-sided Kolmogorov-Smirnov statistics
and the Cramér-von Mises statistic. Each of these three functionals of §,¢(4)
will provide a test for H, versus serial dependence. Another expression for the
statistic of Cramér-von Mises type is

(2.4) a7t 5 [Sy? (D dA = (4=~ 15 ry (0]
where

@.5) () = (Vllell) 2 ax( 6).
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In the class of score functions {a,¢(-, +): ¢ € L,[0, 1]}, two choices stand out.
Simplicity suggests taking ¢(x) = u — %, which yields

2. o(i, _ Jk+min(j, k) _ j+k 1

(2:6) ') (N+D(N+2) 2N+ D) 1

Another choice, ¢(z) = ®~*(u), where @ is the standardized normal distribution
function, is supported by the power considerations to which we turn now.

Let K, denote the following alternative to the hypothesis of randomness:
under K, the joint density of (X,, X,, ---, X) is T[¥, f(x; — 0 x,_,), where
r=1,0,=N1%,0+0,x,=x,=---=x_, =0, and fis the density of F,
which is now assumed absolutely continuous. In other words, the observations
are generated by a simple rth order autoregressive scheme. If f is absolutely
continuous, we may define on (0, 1) the function

. Foi)
2.7 )y = —L = "),
(2.7) @ (1) 7 F )
THEOREM 2.2. Suppose that f is absolutely continuous, that for some 6 > 0,
0, op F1e L, 40, 1], and that (p, 1) = 0. Let

(2.8) #(2) = [%@] (6, F)(61 6) -

Then under K, as N — oo, Sy%(2) — py(R) converges in distribution in C[0, x] to the
Brownian bridge.

Let / be a continuous functional on C[0, z] and let D(«) be a Borel set for
which P[h(Z(4)) € D(a)] = a. The test which rejects H if A(Sy?(1)) € D(a) has
asymptotic size « when Theorem 2.1 applies. The asymptotic power of this test
under K, is defined to be

(2.9) B(a, 8, f) = limy_, Pg [A(Sy?(2)) € D(a)] .
If the assumptions of Theorem 2.2 are satisfied,
(2.10) Ba, 0, f) = P[A(Z(2) + p4(4)) € D(a)] .

The evaluation of (2.10) is very complex in practice. A method described by
Hajek and Sidak [8] yields 8,/(a, 0, f), the derivative at § = 0 of the asymptotic
power of the test which rejects H, whenever max; S,%(4) = (—27"log a)}. Since
P[max; Z(2) = x] = exp (—2x?) for all x = 0, this test has asymptotic size a.
Higher derivatives and a Taylor expansion for the asymptotic power can be ob-
tained using results by Andél [2].

THEOREM 2.3. Suppose that f is absolutely continuous, that for some 6 > 0,
©, 0p F1e L, [0, 1], and that (p, 1) = 0. Let

(2.11) v = (¢, F7)os eo)llel™
and

(2.12) P(a, 1) = 20[(—27"log a)(1 — 20)[1(1 — )]} ] — 1.
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Then
(2.13) B/ (a, 0, f) = 2za(—log a)} {icos (zrt)¢(a, t) dt if r isodd
=0 if r iseven.

The vanishing of 8/(a, 0, ) when r is even reflects the fact that for such r,
the test with critical region {max; §,¢(2) = (—2"log a)}} has reasonable power
against alternatives # < 0 as well as # > 0. (This may be checked heuristically
by considering the spectral distribution function of a stationary rth order auto-
regressive process.) Thus, to characterize the local behavior of §,(«, 6, f) for
even r, it would be necessary to evaluate the second derivative at & = 0.

Suppose T',™, T, are two test statistics which generate one-sided tests for
H, versus K, with asymptotic powers g,(a, 0, f), By(a,.0, f) respectively. If both
B\ (a, 0, f) and B,/(a, O, f) are not zero, the local asymptotic efficiency of T,®
relative to T,® at size « is defined to be

. . (1), (2)) — M:r .

(2.14) e(a; Ty®, Ty®) [ﬁ;(a, o

This concept, introduced in [8], is compatible with the notion of Pitman efficiency
for one-sided tests in the following sense: if the limiting distributions of 7,®,
T,® are normal under H, and under K, then e(a; TV, T,*) equals the Pitman
efficiency for all « € (0, 1).

Theorem 2.3 gives a way of calculating the local asymptotic efficiency of the
test with critical region {max; Sy¥(1) = (—27" log )} relative to other tests for
H), versus K, provided r is odd. Two competitors of interest are the test with
critical region {max; V,(2) = (—27"log @)t} and the test with critical region
{(Wy = ® (1 — a)}, where

N
(2.15) Wy = (NHlegIFD kZ_FZ by (Ryjs Ryy)
and
(2.16)  by5(j k) = Ey[F(UDor(U) | Ry = js Ry = k], 1Zj#k=<N.

The latter rank test is asymptotically most powerful at level a for H, versus K
when 6 > 0.

Analogues for V,(4) of Theorems 2.1 through 2.3 may be obtained by replac-
ing ¢ with F~' in all assumptions and conclusions except (¢, 1) = 0, and by
noting that (¢,, F~') = 1. Thus, the asymptotic power B,(a, 0, f) of the test
with critical region {max, V(1) = (—27" log )} satisfies
(2.17) 8/ (a, 0, f) = 2a(—log a)t §; cos (nxrt)d(a, t) dt if r isodd

=0 if r iseven.

On the other hand, the asymptotic power of the test with critical region
Wy 2 @1 — )} is

(2.18) Buw(a, 0, f) =1 — O[@(1 — &) — O], ||F]]] -
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THEOREM 2.4. Suppose that f is absolutely continuous, that for some 6 > 0,
¢, 0p F1e L, [0, 1], that (¢, 1) = 0, and that r is odd. Then

(2.19) e(a; max; Sy¥(4), max; Vy(4)) = [(¢, ¢r)es F7)|lel| ]

and

(2.20)  min, e(e; max, Sy#(4), max, Vy(d)) = 1_901’2% if o) =u—}
— 1 if o) = DYu) .

The second value in (2.20) is attained only if F is normal. Moreover

(2.21) e(a; max; Sy?(2), Wy)
= 87p,2p,2a*(—log a) exp {[P (1 —a)]*} §? cos (xrt)d(a, t) dt ,

where
o1 = (@, F Ol TNET S 0a = (@5 el llerll™ -
Also
(2.22) lim,_, e(a; max; S,*(1), Wy) = (8/=*r*)o,’0; -
Let

N
Iy = (NH]g|]) kZ_:FZT; ay?(Ry; Ryi)

with a,?(+, +) defined by (2.1). The asymptotic efficiency of the test with critical
region {J, = ®}(1 — a)} relative to the analogous test based on Wy is p/p,".
Thus, the factor p%p;? in (2.22) represents the efficiency loss due to choice of
score function a,?(+, +). On the other hand, the factor 8/ in (2.22) is at-
tributable to using a test based on max, S,¢(2) in place of one based on J,. In
effect, this factor is the cost of not knowing the parameter r.

It appears likely that a rate of efficiency loss proportional to r=* will occur
also for tests based on other functionals of $,%(2) or ¥(4). (Equation (2.4) is
particularly suggestive in this respect.) The effect of this loss in practice may
not be severe, since serial dependence in empirical time series often can be fitted
with an autoregressive model that has some nonvanishing coefficients for low
order lags.

It is interesting to contrast asymptotic power under K, with that achieved
under contiguous regression alternatives. Let K’ be an alternative under which
X,, X,, - - -, Xy are independent random variables with joint density T[], f(x; —
Cyi), Where (Cyy, Cyas -+ -, Cyy) is @ vector of constants. Let ¢y = N7' 3L, ¢y,
If lim, . max,_;<y (Cy; — €x)* = 0, limy ., 1%, (cy; — ) = b* < oo, fisabso-
lutely continuous, ¢, ¢, € L,,[0, 1] for some § > 0, and (¢, 1) = 0, then under
K,' as N — oo, S,?(2) converges in distribution to the Brownian bridge. Con-
sequently, any test for H, based on §,%(1) has asymptotic power against K’
that equals the asymptotic size. If ¢ is replaced by F~'in the assumptions above,
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excluding (¢, 1) = 0, the same conclusion extends to Vy(4). This phenomenon
is just the reverse of the insensitivity that linear rank tests for H, versus K,’
display toward the contiguous autoregressive alternatives K,, when (F~',1) = 0
(see Aiyar [1]).

THEOREM 2.5. Suppose that ¢ € L [0, 1], (¢, 1) = 0, ay?(+, +) is defined as in
(2.1), and ay(+, +) is another score function which satisfies

(2.23) lim,._.. N-log (N) 3 57 ay(j, k) = 0
Gk

N
(2.24)  limy_o N7 (log (N))* 2 3. [ax(js k) — dy — ay*(j; )} = 0,
where
N
(2.25) ay = [N(N — )] ZMZ ay(j, k) .
J
Then Theorems 2.1 through 2.4 apply also to the spectral process
N
(2.26) Su(2) = (VHIgl)™ 5 5 €iyou@ay(Rys Rya) -
It may be noted that both (2.23) and (2.24) are implied by
(2.27) lim N~'(log (N))* ZNZ [ax(j, k) — ay?(j, k)P = 0.
i*k

This theorem can sometimes be used to replace the scores a,¢(+, «) by more
convenient ones. For example, if ¢(u) = u — , the scores

can be used in place of the corresponding {a,(+, )}, given in (2.6).

3. Asymptotics under H,. This section contains a number of ancillary results
as well as a proof of Theorem 2.1.

LemMA 3.1. The following inequalities hold for all 2, u € [0, «].
sin (A¢) sin (ut)

(3.1) R 0D — 41 min (2, ) — 24

3.2 Nty s sint Atk — )] =

3-2) ZE T k- =4

(3.3) |z, SR DY < 2 4 ), I<j<N.

(k=)
Proor. Equation (3.1) is well known (Bromwich [5]) and implies (3.2). Ine-
quality (3.3) is a consequence of the bound

(3.4) ‘Z:;lwiéwl,
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which holds for all integer n > 1, all 2¢ [0, z]. This bound can be established
by using the Fejér formula for Cesaro sums.
The next lemma is a variant of Lemma A1l in Jogdeo [11].

LemMma 3.2. (Jogdeo) Let the {by(+, +)} be any scores and let the {d;,} be con-
stants satisfying

N
(3.5) 2 2d <G
i#k
(3.6) (B dn) < Gy, T (D din) < Gy,

where C,, C,, C, are constants not depending on N. Let
- N
d=[NN— D" 2 d; "
i*k
Then there exists a constant C,, depending only on C,, C;, C;, such that
N - 2
(7)) B 5T @i — Dbs(Rap Rus) | = CEy bR Ri)]-

Proor. Because of (3.5), |d| < C;t. Itis easily verified that (3.5) and (3.6)
imply similar bounds in terms of the constants {d;, — d}, whereupon the result
follows from the first part of the proof of Lemma Al in [11].

LeMMA 3.3. Suppose ¢ € Lj[0,1], (¢, 1) = 0, and ay*(+, +) is defined as in (2.1).
Then

(3-8) EHN[aN?(RNl’ Ry)] =0,
(3.9) limy_., E,,[ay*(Ry1 Rys) — @(Un)e(Uy)]* = 0.

Proor. Let.%, C .o be the g-algebra generated by (Ry;, Ry, - - -5 Ryy) and
let &, C .7 be the smallest g-algebra containing |Jy., . Evidently
(3.10) ay*(Ryp Rys) = Eyp[o(Un)e(Us) [ F 0] s

so that (3.8) is immediate.

By V, T18 of Meyer [12], {ay*(Ry1, Rya)s & 3 N = 1} is a uniformly integrable
martingale. Moreover there exists an essentially unique &, measurable random
variable Y such that a,?(Ry;, Ry,) = E, [Y|.# ] and limy_. ay(Ry;;, Ry)) = Y
a.s. Since U,, U, may be represented as a.s. limits of ., measurable random
variables (see [8] page 157), it follows that

(3.11) limy_., ay?(Ry1, Rys) = o(U)e(U,) a.s.
By Jensen’s inequality
(3.12) [ax"(Ry1s Ri)[* < By [0*(UD)e*(Ua) |-F 4] s,

which implies uniform integrability of the random variables {[ay*(Ry. Rya)]}-
Hence (3.11) implies (3.9).
The next lemma is due to Whittle [16].
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LemMA 3.4. (Whittle) Ler Z,, Z,, - - ., Z,, be independent identically distributed
random variables, each assuming the values +1 with respective probabilities §. Then
for any set of constants {b;} and any s = 2,

(3.13) E|ZNYb6;Z < Cs) .67,
where

3.14 Cs) = 20T ( S+ 1Y
(3-14) () = 2rir(E20)

A useful bound on the moments of a quadratic form in independent identically
distributed random variables that has no diagonal terms is given by the following
lemma. It can be proved by simple modification of Whittle’s [16] argument for
his Theorem 2. :

LeEmMMA 3.5. Let Z,, Z,, - - -, Z be independent random variables, let the {d,,}

be constants, and let
N

A= 2d,Z,Z,.
J#k
Suppose that s = 2 and p,(s) = E|Z;]* < oo for 1 < j < N. Then

(3.15) El4 = E(A)} < 2C(9)| 5 2 diu " 0m0) |

We establish next a central limit theorem for quadratic forms of this type. A
related theorem for quadratic forms with nonvanishing diagonal terms was proved
by Whittle [17], using a different method. The absence of diagonal terms reduces
the moment conditions needed in the theorem.

THEOREM 3.1. Let Z,, Z,, - - - be a sequence of independent identically distributed
random variables defined on (Q, .-7"). Suppose that E(Z;) = 0, E(Z;*) = 1, and that
forsomed e (0,2], E|Z,|**° < co. Let the{d,} be constants satisfying 3 _,d,* < co.
Then the distribution of

(3.16) Ay =5 N dinZ;Z,

is asymptotically normal (0, Ny*) with

(3.17) =4 nnad,)
Proor. Let 2, C . be the g-algebra generated by (4,, 4,, - - -, 4;). It may
be verified, as in Varberg [14], that {4;, &; i = 1} is a martingale. Let
(3.18) Y,=4,=0,
Y= A, — A, =2Z, %;,d;_;Z;, i=2,

%9

and let y,> = >, E(Y;?). To establish the asymptotic normality of the martin-
gale {4,, i}, it is sufficient to show (see Heyde and Brown [9]) that for some
d€(0, 2],

(3.19) limy . 7y~ S, E|Y,| = 0
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and

(3.20) lim, . Elyy? S, Y2 — 12 =0,

i=1

For notational convenience, set s = 1 4 /2 in the remainder of the proof.
Since

(3.21) vt =4N 3 ¥-1d, (1 — m/N),
it follows from (3.17) that
(3.22) limy_, Ny¥fy,2=1.

Applying Lemma 3.5, we see that for each i > 1,

(3.23) E|Y|* < 2%C*2s)p*(28)[ X 5o=1 4, = K, -
Consequently,
(3.24) raTt DL EY " = KiNpy ™,

which yields (3.19) because of (3.22).
To prove (3.20), let (Vy, V3, - - -, Vy) be anindependent copy of (Y3, Y,, - - -, Y).
By a well-known symmetrization inequality (see Rosén [13]),
(3.25)  E|ZNL Y — E(ZL Y S EIZL (Y = V)l
= E|ZL (Y, = VoY, + V.

Let <&, ¢ % denote the g-algebra generated by (|Y; — Vy|, -+, |Yy — Vil
Y, + Vs, .-+, Yy - V). Since the conditional distribution of (Y, — V;, -,
Yy — Vy)given (Y, 4 V,, .-, Yy + V) is the same as that of (V, — Y7, - .-,
Vy — Yy) given (Y, 4 Vy, - -+, Yy 4 Vy), we may use Lemma 3.4 to justify the

second inequality below

E[|Z (Y — V)(Ys + V)| Zy]
(3:26) = {EIZS (Y = V(Yo + VI* |
= G DY — ViPIYs + VT

From (3.26) and the ¢, inequality, there follows

(3:27)  E|ZL (Y = V(Ys + V)" = CH2YE[ L Y — ViP'lYs + Vi['T”
< CH2s) LN E|Y2 — V2P

On the other hand, from (3.23)

(3.28) ElY? — Vi < 2K, =K,.

Combining (3.25), (3.27) and (3.28) shows that

(3.29) EXN, Y — EXXE, YY) < NK,.

From this and (3.22) follows (3.20) and hence the asymptotic normality. This
completes the proof.
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Proor oF THEOREM 2.1. We prove first the weak convergence of all finite-
dimensional distributions, then tightness. An arbitrary linear combination
i, a;Sy9(4;) may also be written as

N
(3.30) DiiagSy¥(4) = N7} Z§ dij_iay*(Ryjs Ryp)
J

with

; sin (m2;)
3.31 d, = yr, %sin(m)
( ) m Z'L—l 2"‘7‘[”1”@”2
The Cauchy-Schwarz inequality and (3.2) yield

N

(3.32) NS Ty < K,

. li—kl =
J#

while another simple argument using (3.3) gives

(3.33) N (B dn) =N i (B djn) S K5
Let T(2) be defined as
N
(3.34) Ty(2) = (Ml Z]I;&; ¢i—u(De(U)e(Uy)
so that
N
(3.35) niia;Ty(4) = N+ ijﬁ; di—e(Upe(Uy) -
Let T, be defined as
N -
(3.36) Ty = N} Zﬁ; (dj—e — d)p(Uj)e(U,)
where
- N
(3.37) d = [N(N — )] Z,;; di;_y -

If U denotes the order statistics of (U, U,, -- -, Uy), then (3.32), (3.33),
Lemma 3.2, and (3.8) imply

EHN[(Z?]:l a;Sy?(2;) — Ty | U = u®]
N - 2
(3.38) = EHN[N‘% Z*kz (d;r, — d)ay*(Ry;» Ryp) — So(u(RNj))SD(u(RNk))]:'
= KoEy[(an?(Ry1s Rys) — e(U)e(U,))* U = u'].
Hence (3.9) and (3.38) yield

(3.39) limy o Ey [ @, 8y%(4) — Ty]* = 0.
On the other hand, it follows from (3.3) that |d| < K(N — 1)~'. Therefore
(3.40) EyTwi — L1 a; Ty(2)F = (N = Dlg|l'd*

= KB(N - 1)_1 .
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From (3.39) and (3.40) we conclude that

(3.41) lim,_,, EHN[Z:Z):l a;Sy¥(4;) — D Ty(4)F =0.
Now (3.1) implies that

(3.42) Sieidy = Hle||) T B D asa[min (47, A;/n) — A,4;[7%] .

Therefore, by Theorem 3.1, F,a;Ty(4;) is asymptotically normal (0,
4|o||* Yo, d,?). From(3.42)and (3.41), we find that the asymptotic distribution
of ¥, @, Sy?(4;) coincides with the distribution of } ¥, a; Z(4;).

To prove tightness of the distributions of the {S,?(4)}, let &, c % denote
the o-algebra generated by (Ry;, Ry, - -+, Ryy). Since Sy#(2) = E, [Ty | F 4]
by (2.1), Jensen’s inequality on conditional expectations implies that for all
A, pnel0, x]

(3.43) EpyISxf(2) — Sy#(e)* = Epy|Tw(2) — Tu(e)™ 5
where s = 1 + /2. By Lemma 3.5 and (3.1),

Ey|Tu() = To(l* £ KN T T (e-®) — ()|

(3.44) = 2K Do (en(R) — ()T
—<_— K10|] - /‘[!8 *

Tightness follows from (3.43) and (3.44). This completes the proof (see
Billingsley [3]).

REMARK 3.1. Under H, and the assumption that for some 6 > 0, F'e
L,.,,[0, 1], the spectral process V(2) defined in (1.3) also converges in C[0, x]
to the Brownian bridge. To verify this, assume also without loss in generality,
that E(X;) = 0, Var (X;) = 1. Let

N

(3.45) Vi(2) = (Nisyh)? Z*; clj_k,(l)Xij
J

where

(3.46) sy = N DL, (X, — X

Since s,? — 1 a.s. under Hy, an argument like that for Theorem 2.1 establishes
the weak convergence of ¥,,(4) to the Brownian bridge.
On the other hand, if

(3.47) () = N4 330 X, X,

1T—ki=t
N - —
radt) = N 5 (X — D)X, = X),
then

(3.48) Epy[sup; [sy*(Vii(2) — V()]
< ()7 XIS T E (1) — rael?)] -
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Since

(3.49) T 1 log (N — 2)

and, by direct calculation,

(3'50) EHNITNl(t) — TNz(t)l < 6N°%,

the bound in (3.48) tends to zero as N — co. Therefore V() and V(1) have

the same limiting distribution in C[0, z].

4. Asymptotics under K. Under K,, the joint density of (X, X,, ---, X,,) is
assumed to be TJ[X,f(x; — 0yx;,_,), where r>=1, 6, = N0, 0 0, x,=
X;=-+=x_,=0, and f is the density of F. To prove Theorem 2.2 by
contiguity methods, it is necessary to study the asymptotic behavior under H,
of the log-likelihood ratio

(4'1) LN = Zf:l log [f(Xz - azv Xi—r)/f(Xi)] .
This in turn requires study of the statistics

(4.2) By =2 RL{LAX: — 0y X,_)IAX)])E — 1},
and

(4'3) CN = - Z?{:l ‘91v Xi—rfl(Xz‘)/f(Xi) .

Since Ly, B, C, are each sums of r-dependent random variables, it is advan-
tageous to introduce also

(4.4) Ly; = Xizjmoar+n 108 [fX; — 0y X;_,)[(X)] lsj=r+1
and analogously defined sums B,;, Cy;. The summands in L,; are mutually
independent under H, and

4.5) Ly, = >3t Ly;.

Similar expressions hold for B, C, in terms of the {B,;} and {C,;} respectively.
Let ¢, be defined as in (2.7). The next three lemmas obtain for the alterna-

tives K, the type of result already known for translation alternatives (see Hajek

and Sidak [8]). Aiyar [1] treated the case r = 1 under stronger assumptions.

LEMMA 4.1. Suppose that f is absolutely continuous and ¢, F~' € L,[0, 1]. Then
forl <j<r+41,

(4.6) limy o Eyy[By; — Cuj + (Hr + D)7PlleAPIIFT = 0.

Proor. Let w(x) = [f(x)]*. Under the assumptions of the lemma, w is abso-
lutely continuous,

w(x) = [4(0]Y (%), Za WO dx = 47 |4l »

4.7) i [W(X - "})l - W(x):r dx < 47|g[* < oo
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for all # #= 0, and

(4.8) lim,_, {*. [W(x —h) — w(x) _

h

w'(x)T dx=0.

Because the summands are independent,

VarHN By; — Cyj)

w(X; — 0, X,_, -1 (X)) T

(4.9) =4 B smonrsn By | 2 - ) 14270, x,_, —%T))}
= [4 ZiEi(modr+l) 01\/2] So—ooo yzf()’)

X S"_",,oI:w(x — 0;:; — W) _ w’(x)}2 dxdy .

By integrating separately over {|y| < ¢} and {|y| > ¢} and making use of (4.7),
(4.8) and the assumptions, we arrive at

(4.10) limy_,, Var, (By; — Cy;) = 0.
On the other hand, E(C,;) = 0 because (¢, 1) = 0, and

w(X, — 0, X,
Ey(By;) =2 iz jimodr+n EHN[ (X wXicr) 1]

w(X;)
(4'11) = [_' Z:zl'ij(mod r+1) 01\/2] So—ooo yzf(y)
o W= 0,) — ()T
% g_w[ ) ] dx dy .

From this a simple argument shows that
(4.12) limy_o, By (By;) = —(4(r + D)CIF7|Pllesl” -
The lemma is a consequence of (4.10) and (4.12).
LEMMA 4.2. Suppose that f is absolutely continuous and ¢, F~* € L,[0, 1]. Then
for any e > 0,
0= O | J-o.
J1X5)
Proor. Since f is absolutely continuous,
fX—0,X,,)
f(X)
= 17 f() sgn (Ony) §20 § |/ (x — 0)] drdx dy .

Applying first Fubini’s theorem to the inner pair of integrals and then the
Cauchy-Schwarz inequality yields

4.13)  limy.. maX,...y PHN[

(4.14) E,,

(4.15) E,,

S = ) 1| < N4 g 17
JOG = OuXie) _ 1] < N30 o, 11
f(x) F

The lemma follows.
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LEMMA 4.3. Suppose that f is absolutely continuous and ¢, F~* ¢ L,[0, 1]. Then

forany ¢ > 0,

(4.16) limy ., Py [|Ly — Cy + 272602 |@u| Y| FY|?| > €] = 0.

Moreover L, is asymptotically normal (—27'0%|¢|*||F~Y|[% 6%|@x||%|FY||*) under
Hy and the alternatives K, are contiguous to H,.

Proor. Let 82 = 0%||p,||*||F~"||*. Since C,; is a sum of independent identically
distributed random variables and E,, (C,;) = 0, Var, (Cy;) = (r + 1)7'8% the
distribution of C,; is asymptotically normal (0, (r 4+ 1)-'8%). Then, because of
Lemma 4.1, By; is asymptotically normal (—(4(r + 1))7'4%, (r 4+ 1)~8%. From
this fact, Lemma 4.2, and a slight extension of LeCam’s second lemma as given
in [8], we conclude that for any ¢ > 0,

(4.17)  limy o Py [|Ly; — By; + (4r+ 1)78 >e]=0, 1<j<r+1.
The assertions of the lemma follow from (4.17), Lemma4.1, LeCam’s first lemma,
and a central limit theorem for r-dependent random variables (see [6]).

Proor oF THEOREM 2.2. We prove first the weak convergence of all finite-
dimensional distributions, then tightness. Let D, be an arbitrary linear
combination

(4.18) Dy = 2 a;Sy(4) + apy, Ly

By (3.41) and (4.16), Dy + 27%a,,,0%|o.|’||F~||* has the same asymptotic dis-
tribution under H,, as

(4.19)  Ey = 35, a;Ty(4) + ap,,Cy

= N[5 5 s UDpU) + ) s FHU, Dint) |

where d,, is defined as in (3.31) and F-(U)) = F(U_,) = -.. = F"{(U,_,) = 0.
If
(4.20) = 3P, 2t aa[min (4,/n, A;/m) — 2, 2;/7%]

+ @ O F 7 Pllopll® + da,.,0d,(0, 0p) (@, F7),
an argument analogous to that used in proving Theorem 3.1 shows that E, is
asymptotically normal (0, ¢*) under H, and consequently, D, is asymptotically
normal (—2~"a,,,0"||¢p|[’||F~*|[’, ¢*) under H,. In particular, therefore, the joint
asymptotic distribution of (37, a;S,%(4;), Ly) under H, is bivariate normal
(¢, Z) with
(4.21) r= (0, =271 ||| F ]2
Z = (o)

where

o = 2o 2far asa[min (4w, A;/m) — 2;4;/7%]
(4.22) 9y = Ol@g| || F]?

01y = 20d,(0, )@ F71) = X0y a;p1y(4;) -
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It follows from LeCam’s third lemma (see [8]) that the asymptotic distribu-
tion of >7_, a,[Sy*(2;) — ps(4;)] under K, coincides with the distribution of
2P a;Z(4;). Thus, finite-dimensional distributions of §,¢(1) converge as as-
serted under K.

To establish tightness of the distributions under K, of the {S,¢(2)}, it is enough
to show (see [3]) that for every ¢ > 0, » > 0, there exist d € (0, r) and integer
N, such that

(4.23) PKN[SUP|1-,,|<5 [Sv(2) — SN(/J)l >e] =7 for N> N,.
The analogous statement under H, was implied by (3.43) and (3.44). Since K

is contiguous to H, according to Lemma 4.3, (4.23) follows. This completes
the proof of Theorem 2.2.

REMARK 4.1. An analogue of Theorem 2.2 for the process V() defined in
(1.3) is obtained by replacing ¢ with F~! in both assumptions and conclusions.
The result may be justified as follows. Suppose without loss of generality that
E, (X;) = 0and Var, (X;)=1. Then s5,> = N7' }} X, (X, — X)? converges in
probability to 1 under K, as well as under H, because of contiguity. Let V,(2)
be the process defined in (3.45) and let
240 sin (r)

Tr

(4.24) vy(R) =

The proof of Theorem 2.2, the observation above concerning s,%, and the fact
(¢ps F7Y) = 1 imply that under K,, V,, () — v,(4) converges in distribution in
C[0, =] to the Brownian bridge.

Moreover, for any ¢ > 0,

(4.25) limy_, Py [sup; [Vy(2) — Viu(A)] > ¢] =0,
because the corresponding result under H, was established in Remark 3.1 and

K, is contiguous to H, by Lemma 4.3. Hence V(1) — v,(2) and V,(2) — v,(4)
have the same asymptotic distribution on C[0, ] under K, .

Proor oF THEOREM 2.3. This follows from Theorems 2.1, 3.1, and 4.1 of
Andgél [2], applied to the result in Theorem 2.2 of this paper.

REMARK 4.2. Consider the statistic W, defined in (2.15). Under H, and the
assumption ¢ € L,[0, 1], it follows from Lemma 3.2, Lemma 3.3, and a central
limit theorem for r-dependent random variables (Diananda [6]) that the asymp-
totic distribution of W is N(0, 1). Under K, and the additional assumptions
that f is absolutely continuous, ¢,, F~' € L,[0, 1], the asymptotic distribution of
W, is normal (6||¢||||F~*|], 1). This is proved by contiguity arguments akin to
those used for Theorem 2.2. Consequently the asymptotic power of the test
which rejects H, whenever W, > @71 — a) is

(4.26) Bu(a, 0, f) =1 — @[O}(1 — a) — Of|pg|| [|F]] 5

as asserted in (2.18).
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On the other hand, Lemma 4.3 and LeCam’s third lemma imply that (4.26)
is also the asymptotic power of the size « likelihood ratio test, provided ¢ > 0.
Hence, W, generates an asymptotically most powerful test at level a for H,
versus K, when 6 > 0.

ProOF oF THEOREM 2.4. The validity of (2.17) is established by the argument
of Theorem 2.3 applied to the results concerning V,(4) noted in Remark 4.1.
Then the efficiency (2.19) is immediate from (2.13) and (2.17). The minimiza-
tion in (2.20) has been carried out in a different context by Aiyar [1]. For details
of a limit computation similar to (2.22), see Hajek and Sidak [8] page 272.

REMARK 4.3. Consider now the statistic
., .
(4.27) Iy = (Mlp|H)! kZI 2 ay?(Ryj, Ryy) -
et

An argument like that sketched in Remark 4.2 for W, shows that the asymptotic
power of the test which rejects H, whenever J, = ®7(1 — a) is
(4.28) i, 0, f) =1 — O[OY(1 — a) — (¢, ¢r)e> F)ll| 7] -
Comparison of (4.26) and (4.28) gives
(4.29) e(a; Iy, Wy) = plos
as stated in the remarks following Theorem 2.4.

Proor oF THEOREM 2.5. It is sufficient to show that
(4.30) lim,_, E, [sup, [Sy?(2) — Sx(A)|]] =0,
because contiguity of K, to H, then implies that for any ¢ > 0,
(4.31) lim, ., Py, [sup; [Sx?(2) — Sy(4)] > ] =0.
To prove (4.30), let

N

(4.32) Twa(t) = N7 kZ 2 ay*(Ryj» Ry,)
il o
N
Twit) = N7} ; Zt ay(Ry;> Ry) -
o
Since
(4.33) Sy(d) = (2a|le|")~" Lt 17 sin (A0)y (1)

and a similar expression is possible for S,¢(), we find
(4.34)  E[sup; [Sx°(2) — Sy(A)l]

= @hallel) Dl T E gy lr (D) — rad0)] -
Let

(4~35) Ta(t) = EHN[rI\H(t)] .
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Applying Lemma 3.2 with
(4.36) d;, = N°* if k—j=1

=0 otherwise

leads to the bound
(4'37) EHN[TN3(t) — rwit) + 78(DF

= K NN = D] 5 3 0% k) — ay(o k) + 2,7

By direct calculation,
N
(4.38) 70 = N3 Z 5 sl K|

The limit in (4.30) follows from (4.34), (4.37), (4.385, (3.49), the assumptions
of the theorem.
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