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STATIONARY SYSTEMS OF GAUSSIAN PROCESSES

BY ZAKHAR KABLUCHKO

Georg-August-Universität Göttingen

We describe all countable particle systems on R which have the follow-
ing three properties: independence, Gaussianity and stationarity. More pre-
cisely, we consider particles on the real line starting at the points of a Poisson
point process with intensity measure m and moving independently of each
other according to the law of some Gaussian process ξ . We classify all pairs
(m, ξ) generating a stationary particle system, obtaining three families of ex-
amples. In the first, trivial family, the measure m is arbitrary, whereas the
process ξ is stationary. In the second family, the measure m is a multiple of
the Lebesgue measure, and ξ is essentially a Gaussian stationary increment
process with linear drift. In the third, most interesting family, the measure m

has a density of the form αe−λx , where α > 0, λ ∈ R, whereas the process ξ

is of the form ξ(t) = W(t)−λσ 2(t)/2+c, where W is a zero-mean Gaussian
process with stationary increments, σ 2(t) = VarW(t), and c ∈ R.

1. Introduction.

1.1. Statement of the problem. Stationary systems of particles evolving inde-
pendently of each other according to the law of a Markov process have been ex-
tensively studied by many authors (see, e.g., the monographs [5], Chapter 1, [11],
Chapter 1, [18], as well as the papers [3, 4, 7, 8, 13, 14], to cite only a few ref-
erences). The aim of the present paper is to study systems of particles evolving
independently of each other in a Gaussian rather than Markovian way. Our main
result provides a classification of all those Gaussian particle systems which are
stationary.

We are interested in at most countable systems of particles moving randomly on
the real line in such a way that the following three requirements are satisfied:

(A1) The particles are independent of each other.
(A2) The law describing the motion of each particle is Gaussian and the same for

all particles.
(A3) The particles are in an equilibrium.

The independence stated in requirement (A1) implies that the starting positions
of particles should be scattered independently over R, which, in more rigorous
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terms, means that they should form a not necessarily homogeneous Poisson point
process on R. Requirement (A2) means that the stochastic processes describing the
deviations of the particles from their starting positions should be Gaussian, having
the same law for all particles, and, by requirement (A1), independent of each other.

In view of this, the meaning of the first two requirements may be described
in rigorous terms as follows. Let {Ui, i ∈ N} be a Poisson point process on R

with intensity measure m. We will always assume that m satisfies the following
integrability condition:∫

R

e−εx2
m(dx) < ∞ for every ε > 0.(1)

In most cases of interest, the measure m will be infinite, and so let us agree to use
N as an index set for the points Ui , even though the case where m is finite (and,
hence, a.s. only finitely many points Ui exist) is not formally excluded.

Let ξi, i ∈ N, be independent copies of a Gaussian process {ξ(t), t ∈ R
d}. We

define Vi(t), the position of ith particle at time t ∈ R
d (which we allow to be

multidimensional), by

Vi(t) = Ui + ξi(t).(2)

DEFINITION 1.1. The random collection of functions P = {Vi, i ∈ N} will
be called the independent Gaussian particle system (or simply Gaussian system)
generated by the pair (m, ξ). We use the notation GS(m, ξ).

REMARK 1.1. It should be stressed that we do not assume the process ξ to
have zero mean, which means that we allow for a deterministic component in the
random motion of particles. In general, it also may happen that ξ(0) �= 0, in which
case the particles make nonzero jumps immediately after starting at Ui .

Let us turn to requirement (A3). Given t1, . . . , tn ∈ R
d , we define a point process

Pt1,...,tn on R
n by recording the positions of particles at times t1, . . . , tn. That is,

we set

Pt1,...,tn = {(Vi(t1), . . . , Vi(tn)), i ∈ N}.(3)

The family {Pt1,...,tn :n ∈ N, t1, . . . , tn ∈ R
d} may be viewed as the family of

“finite-dimensional distributions” of P.

DEFINITION 1.2. A Gaussian system P is called stationary if for every n ∈ N,
every t1, . . . , tn ∈ R

d , and every h ∈ R
d , we have the following equality of laws of

point processes on R
n:

Pt1+h,...,tn+h
d= Pt1,...,tn .(4)
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The purpose of this paper is to provide a description of all stationary Gaussian
systems. Let us stress that for Markovian particle systems, the corresponding ques-
tion has a rather simple solution. Let the initial positions of the particles be chosen
to form a Poisson point process with σ -finite intensity measure m on some mea-
surable space (�, A), and let the particles move independently of each other ac-
cording to the law of some Markov process on � with transition kernel P(x, dy).
Then by a result of [3], the particle system is stationary if and only if the measure
m is P -invariant (see also [9], page 404, and [7], Theorem 2, for weaker results).

1.2. Statement of the main result. First we introduce some notation. For λ ∈ R,
we denote by eλ a measure on R with a density of the form e−λx with respect to
the Lebesgue measure. That is,

eλ(dx) = e−λx dx.(5)

In particular, e0 is the Lebesgue measure itself.
A function f : Rd → R is called additive if f (t1 + t2) = f (t1)+f (t2) for every

t1, t2 ∈ R
d . Under minor additional assumptions, say, measurability, an additive

function must be of the form f (t) = 〈c, t〉 for some c ∈ R
d .

CONVENTION 1.1. All stationary processes and processes with stationary in-
crements are always supposed to have zero mean.

The next theorem is our main result.

THEOREM 1.1. Let S be the set of all pairs (m, ξ), where m is a measure
satisfying (1) and {ξ(t), t ∈ R

d} is a Gaussian process, with the property that the
particle system GS(m, ξ) is stationary. Then

S = S1 ∪ S2 ∪ S3,(6)

where the sets S1, S2, S3 are defined as follows:

1. The set S1 consists of all pairs (m, ξ), where m is an arbitrary measure on R

satisfying (1), and

{ξ(t), t ∈ R
d} d= {W(t) + c, t ∈ R

d}
for some stationary Gaussian process {W(t), t ∈ R

d} and some c ∈ R.
2. The set S2 consists of all pairs (m, ξ), where

m = αe0 and {ξ(t), t ∈ R
d} d= {W(t) + f (t) + c, t ∈ R

d}
for some α > 0, c ∈ R, a Gaussian process {W(t), t ∈ R

d} with stationary in-
crements, and an additive function f : Rd → R.



2298 Z. KABLUCHKO

3. The set S3 consists of all pairs (m, ξ), where

m = αeλ and {ξ(t), t ∈ R
d} d= {W(t) − λσ 2(t)/2 + c, t ∈ R

d}
for some α > 0, λ �= 0, c ∈ R, and some Gaussian process {W(t), t ∈ R

d} with
stationary increments and variance σ 2(t).

The stationarity of Gaussian systems of type S1 is a rather trivial fact and is due
to the stationarity of the driving process ξ . Somewhat less trivial, but still rather
appealing, is the fact that Gaussian systems of type S2 are stationary. An example
of a Gaussian system of type S2 can be obtained by taking m to be the Lebesgue
measure on R and ξ to be a (fractional) Brownian motion with a linear drift.

Surprisingly, the class of stationary Gaussian systems is not exhausted by the
two “trivial” families S1 and S2: there is one more, nontrivial, family S3. An ex-
ample of a Gaussian system of type S3 can be obtained by taking

m = e1 and {ξ(t), t ∈ R} d= {Wκ(t) − |t |κ , t ∈ R},
where {Wκ(t), t ∈ R} is a fractional Brownian motion with index κ ∈ (0,2], that
is, a stationary increment Gaussian process with

Cov(Wκ(t1),Wκ(t2)) = |t1|κ + |t2|κ − |t1 − t2|κ , t1, t2 ∈ R.

For κ = 1, this Gaussian system appeared in [2] in connection with maxima of
independent Ornstein–Uhlenbeck processes. For general κ ∈ (0,2], the driving
process Wκ(t)−|t |κ appeared in [16], also in connection with maxima of Gaussian
processes. In a similar way, particle systems of type S2 appeared in [15] in connec-
tion with minima (in the absolute value sense) of independent Gaussian processes.
The results of [2] were generalized in [10]. In particular, it was shown in The-
orem 2 of [10] that Gaussian systems of type S3 with an additional requirement
α = 1, λ = 1, c = 0 were stationary. Gaussian systems of type S3 have some vague
similarity with the “competing particle systems” studied in [19] (see also [1, 20]).
Note that in contrast to our setting, the particles in [19] evolve by increments which
are independent in time.

At a first sight, it may look that the family S2 can be included into the family
S3 by allowing the parameter λ in the definition of S3 to be 0. However, this is not
the case: the family S2 has an additional “degree of freedom” represented by the
additive function f .

In view of particle systems interpretation of Theorem 1.1, of special interest are
stationary Gaussian systems driven by a process ξ satisfying ξ(0) = 0. In the next
corollary we provide a classification of such systems, excluding for convenience
the noninteresting case in which ξ is a version of the zero process.

COROLLARY 1.1. Let m be a measure satisfying (1), and let {ξ(t), t ∈ R
d}

be a Gaussian process with ξ(0) = 0. Assume that for some t0, ξ(t0) is not a.s. 0.
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Then the particle system GS(m, ξ) is stationary iff m = αeλ for some α > 0 and
λ ∈ R, and

{ξ(t), t ∈ R
d} d=

{
{W(t) + f (t), t ∈ R

d}, if λ = 0,
{W(t) − λσ 2(t)/2, t ∈ R

d}, if λ �= 0,

for some Gaussian process {W(t), t ∈ R
d} with stationary increments, variance

σ 2(t), W(0) = 0 and, eventually, an additive function f : R
d → R.

1.3. Organization of the paper. Our main result, Theorem 1.1, will be proved
in Section 2. Although Theorem 1.1 classifies all pairs (m, ξ) generating a sta-
tionary Gaussian system, it does not tell how to decide whether two given pairs
(m′, ξ ′), (m′′, ξ ′′) generate equal in law Gaussian systems or not. This gap will be
filled in Section 3.

2. Proof of the main result.

2.1. Idea of the proof. In this section we prove Theorem 1.1. The “easy” part
of Theorem 1.1 stating that Gaussian systems generated by the pairs (m, ξ) ∈
S1 ∪ S2 ∪ S3 are stationary will be established in Proposition 2.1. The proof of
the converse statement is much more difficult. The first step will be done in Propo-
sition 2.2, where it is shown that a pair (m, ξ) generating a stationary Gaussian
system must belong to S1 ∪ S2 ∪ S3 provided that the measure m is a linear com-
bination of the Lebesgue measure e0 and a measure of the form eλ. Such linear
combinations are well behaved under convolutions with Gaussian measures, which
makes it possible to do explicit calculations with one- and two-dimensional distri-
butions of GS(m, ξ). The second step, carried out in Section 2.7, is to show that
this additional assumption on the measure m is satisfied for most (but not all!)
pairs (m, ξ) generating a stationary Gaussian system. Essentially, this is done by
applying a result of Deny [6] and several related lemmas collected in Section 2.6 to
the one-dimensional distributions of GS(m, ξ). The pairs for which the additional
assumption on m is not satisfied are shown to belong to the family S1.

2.2. Notation. We start by introducing the notation. We always assume that m

is a measure on R satisfying the integrability condition (1), and that {ξ(t), t ∈ R
d}

is a Gaussian process. The law of the process ξ is uniquely determined by its mean
and covariance for which we use the notation

μ(t) = Eξ(t), r(t1, t2) = Cov(ξ(t1), ξ(t2)).(7)

Further, we define the variance and the incremental variance of ξ by

σ 2(t) = Var ξ(t), γ (t1, t2) = Var[ξ(t1) − ξ(t2)].(8)

We will often use the identity

r(t1, t2) = 1
2

(
σ 2(t1) + σ 2(t2) − γ (t1, t2)

)
.(9)
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Given t1, . . . , tn ∈ R
d , the law of the random vector (ξ(t1), . . . , ξ(tn)) is denoted

by nt1,...,tn .
Let B(Rn) be the Borel σ -algebra of R

n. For a set B ⊂ R
n and x ∈ R, it will be

convenient to define

B − x = B − (x, . . . , x).

So, B − x is obtained by shifting the set B “diagonally” in the direction of the
vector (1, . . . ,1).

Define Pt1,...,tn , the finite-dimensional distributions of P, as in (3). The trans-
formation theory of Poisson point processes (see, e.g., Proposition 3.8 in [17]) tells
that Pt1,...,tn is a Poisson point process on R

n with intensity measure mt1,...,tn that
is defined by

mt1,...,tn(B) =
∫

R

P[(ξ(t1), . . . , ξ(tn)) ∈ B − x]m(dx), B ∈ B(Rn).(10)

In particular, we will often use that mt = m ∗ nt for every t ∈ R
d , where ∗ denotes

the convolution of measures. Note that condition (1) ensures that mt1,...,tn(B) is
finite for every bounded B ∈ B(Rn).

We can restate Definition 1.2 as follows: A Gaussian system P is stationary if
for every n ∈ N, every t1, . . . , tn, h ∈ R

d , and every B ∈ B(Rn),

mt1,...,tn(B) = mt1+h,...,tn+h(B).(11)

We denote the one-dimensional Gaussian measure with expectation μ0 and vari-
ance σ 2

0 by N(μ0, σ
2
0 ). For future reference, let us recall the following formula for

the Laplace transform of a Gaussian distribution:

if N ∼ N(μ0, σ
2
0 ), then EeyN = eμ0y+σ 2

0 y2/2.(12)

2.3. Proof of the easy part of Theorem 1.1. In the next proposition we prove
that Gaussian systems of types S1, S2, S3 are indeed stationary.

PROPOSITION 2.1. Let P = GS(m, ξ), where (m, ξ) ∈ S1 ∪ S2 ∪ S3. Then P

is stationary.

PROOF. Suppose that (m, ξ) ∈ S1. By definition of S1, we have the following
equality of laws, valid for all n ∈ N, t1, . . . , tn, h ∈ R

d :

(ξ(ti))
n
i=1

d= (
ξ(ti + h)

)n
i=1.

Let B ⊂ R
n be any Borel set. By (10), we have

mt1,...,tn(B) =
∫

R

P[(ξ(t1), . . . , ξ(tn)) ∈ B − z]m(dz)

=
∫

R

P
[(

ξ(t1 + h), . . . , ξ(tn + h)
) ∈ B − z

]
m(dz)

= mt1+h,...,tn+h(B).
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Hence, equation (11) holds and P is stationary.
Suppose that (m, ξ) ∈ S2. By definition of S2, we have m = αe0 for some α > 0,

and (
ξ(ti) − ξ(t1)

)n
i=1

d= (
ξ(ti + h) − ξ(t1 + h)

)n
i=1(13)

for all n ∈ N, t1, . . . , tn, h ∈ R
d . Let B ⊂ R

n be any Borel set. Using (10) and (13),
we obtain

mt1,...,tn(B)

= α

∫
R

∫
Rn

1B−x(y1, . . . , yn)nt1,...,tn(dy1, . . . , dyn) dx

= α

∫
R

∫
Rn

1B−(x+y1)(0, y2 − y1, . . . , yn − y1)nt1,...,tn(dy1, . . . , dyn) dx

= α

∫
R

∫
Rn

1B−z(0, y2 − y1, . . . , yn − y1)nt1,...,tn(dy1, . . . , dyn) dz(14)

= α

∫
R

P
[(

ξ(ti) − ξ(t1)
)n
i=1 ∈ B − z

]
dz

= α

∫
R

P
[(

ξ(ti + h) − ξ(t1 + h)
)n
i=1 ∈ B − z

]
dz

= mt1+h,...,tn+h(B).

Thus, equation (11) holds, and P is stationary.
Suppose that (m, ξ) ∈ S3. In the particular case α = 1, λ = 1 and c = 0, the

stationarity of P was proved in Theorem 2 of [10]. The general case follows by a
straightforward application of affine transformations. �

2.4. Two lemmas. The next two lemmas are standard. We include their proofs
only for completeness.

LEMMA 2.1. The process W(t) := ξ(t) − μ(t) has stationary increments iff
for all t1, t2, h ∈ R

d ,

γ (t1, t2) = γ (t1 + h, t2 + h).(15)

PROOF. We prove only sufficiency since the necessity is evident. So, assume
that (15) holds. Let Wh(t) = W(t + h) − W(h). We have

Cov(Wh(t1),Wh(t2))

= r(t1 + h, t2 + h) + r(h,h) − r(h, t1 + h) − r(h, t2 + h)

= −(
γ (t1 + h, t2 + h) − γ (h, t1 + h) − γ (h, t2 + h)

)
/2

= −(
γ (t1, t2) − γ (0, t1) − γ (0, t2)

)
/2,
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where the second equality follows from (9) and γ (h,h) = 0, and the last equality
is a consequence of (15). Hence, the law of the process {Wh(t), t ∈ R

d} is inde-
pendent of h, which proves the lemma. �

LEMMA 2.2. Let g : Rd → R be a function satisfying

g(t2 + h) − g(t1 + h) = g(t2) − g(t1)(16)

for all t1, t2, h ∈ R
d . Then the following statements hold:

1. The function f (t) := g(t) − g(0) is additive.
2. Either g ≡ const or the set of values of g is dense in R.

PROOF. Inserting t2 := s1, h := s2, t1 := 0 into (16) yields f (s1 + s2) =
f (s1) + f (s2) and proves the first part of the lemma. To prove the second part,
assume that g is not constant, which means that there is t with f (t) �= 0. A stan-
dard inductive argument using the additivity of f gives f (qt) = qf (t) for every
rational number q . This implies that the set of values of the function f , and hence
also the set of values of g, is dense in R. �

2.5. Proof of Theorem 1.1: Identifying the driving process ξ . In Section 2.3
we have shown that S1 ∪ S2 ∪ S3 ⊂ S . Here we prove the more difficult converse
inclusion under an additional assumption on the measure m. This is stated in the
following proposition.

PROPOSITION 2.2. Let m be a measure of the form m = αeλ + βe0 for some
α ≥ 0, β ≥ 0, λ �= 0, and let {ξ(t), t ∈ R

d} be a Gaussian process. Assume that
P = GS(m, ξ) is stationary. Then (m, ξ) ∈ S1 ∪ S2 ∪ S3, where S1, S2, S3 are as
in Theorem 1.1.

We will need some technical lemmas on measures which are obtained by taking
mixtures of diagonally shifted and exponentially weighted bivariate normal laws.

LEMMA 2.3. Let n be the law of a bivariate Gaussian vector (X1,X2) with
EXi = μi , VarXi = σ 2

i for i = 1,2 and Var(X1 − X2) = γ . Let l be a measure on
R

2 defined for some κ ∈ R by

l(B) =
∫

R

e−κzn(B − z) dz, B ∈ B(R2).(17)

Then there is a measure l(κ) concentrated on the line {(x1, x2) ∈ R
2 :x1 = 0} such

that the following representation holds:

l(B) =
∫

R

e−κzl(κ)(B − z) dz, B ∈ B(R2).(18)
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The Laplace transform of l(κ), defined as ψ(κ)(u) = ∫
R2 eux2 l(κ)(dx1, dx2), is given

by

ψ(κ)(u) = exp
{
(κ − u)

(
μ1 + 1

2κσ 2
1
) + u

(
μ2 + 1

2κσ 2
2
) + 1

2u(u − κ)γ
}
.(19)

REMARK 2.1. Equation (19) shows that the measure l(κ) is a multiple of a
two-dimensional Gaussian measure.

REMARK 2.2. If the Gaussian measure n has a density, then it is possible
to compute the density of l directly from its definition, equation (17). However,
since n (and also l) may fail to have a density, we use a somewhat more com-
plicated representation of l as an exponentially weighted shift of the essentially
one-dimensional measure l(κ) given in (18).

PROOF OF LEMMA 2.3. Define

l(κ)(B) =
∫

R2
eκx11B(0, x2 − x1)n(dx1, dx2), B ∈ B(R2).(20)

By construction, the measure l(κ) is concentrated on the line {(x1, x2) ∈ R
2 :x1 =

0}. Using transformations similar to those in [10] (see the proof of Proposition 6
therein), we obtain

l(B) =
∫

R

∫
R2

e−κz1B−z(x1, x2)n(dx1, dx2) dz

=
∫

R

∫
R2

e−κ(z+x1)eκx11B−(z+x1)(0, x2 − x1)n(dx1, dx2) dz(21)

=
∫

R

∫
R2

e−κweκx11B−w(0, x2 − x1)n(dx1, dx2) dw.

Applying (20) to the right-hand side of the above equation, we obtain (18).
Now we compute ψ(κ)(u), the Laplace transform of l(κ). The Laplace transform

of n is defined as

ψ(u1, u2) =
∫

R2
eu1x1+u2x2n(dx1, dx2).

By a two-dimensional analogue of (12), ψ(u1, u2) is given by

ψ(u1, u2) = exp
{
μ1u1 + μ2u2 + 1

2(σ 2
1 u2

1 + 2ru1u2 + σ 2
2 u2

2)
}
,(22)

where r = Cov(X1,X2) = (σ 2
1 + σ 2

2 − γ )/2. It follows from (20) that

ψ(κ)(u) =
∫

R2
eκx1eu(x2−x1)n(dx1, dx2) = ψ(κ − u,u).

The above equation and (22) yield (19) after an elementary calculation. �
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LEMMA 2.4. Fix κ �= 0. Let l be a Radon measure on R
2 admitting a decom-

position

l(B) =
∫

R

e−κzl(κ)(B − z) dz +
∫

R

l(0)(B − z) dz, B ∈ B(R2),(23)

where l(κ) and l(0) are measures concentrated on the line {(x1, x2) ∈ R
2 : x1 = 0}.

Then the measures l(κ) and l(0) are determined uniquely.

PROOF. Fix some bounded Borel set A ⊂ {0} × R. For x > 0, let Bx be a
subset of R

2 defined by Bx = ⋃
y∈[0,x](A + y). Then (23) implies that

l(Bx) =
(∫ x

0
e−κz dz

)
l(κ)(A) + xl(0)(A).

The above is valid for every x > 0, and so, l(κ)(A) and l(0)(A) are determined
uniquely. �

PROOF OF PROPOSITION 2.2. We start by proving three claims about the ex-
pectation μ(·), the variance σ 2(·) and the incremental variance γ (·, ·) under vari-
ous assumptions on α,β,λ.

CLAIM 2.1. Assume that α > 0. Then for all t1, t2 ∈ R
d ,

μ(t2) − μ(t1) = −λ

2

(
σ 2(t2) − σ 2(t1)

)
.(24)

PROOF. The measure mt = m ∗ nt has a density given by the convolution for-
mula

mt (dx)

dx
=

∫
R

(
αe−λ(x−y) + β

)
nt (dy) = αe−λx

∫
R

eλynt (dy) + β.

Applying (12) to the first term on right-hand side, we obtain

mt (dx)

dx
= αe−λx exp

{
μ(t)λ + 1

2
σ 2(t)λ2

}
+ β.(25)

By stationarity of P, we must have mt1 = mt2 for every t1, t2 ∈ R
d . This leads

to (24). �

Let us turn to the “two-dimensional distributions” of P. Take t1, t2 ∈ R
d and re-

call that Pt1,t2 = {(Vi(t1),Vi(t2)), i ∈ N} is a Poisson point process on R
2. By (10),

its intensity measure mt1,t2 is given for B ∈ B(R2) by

mt1,t2(B) =
∫

R

(αe−λx + β)nt1,t2(B − x)dx

(26)
= α

∫
R

e−λxnt1,t2(B − x)dx + β

∫
R

nt1,t2(B − x)dx.
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Applying Lemma 2.3 twice with κ = λ, n = nt1,t2 and κ = 0, n = nt1,t2 , we obtain
two measures on R

2, called m
(λ)
t1,t2

and m
(0)
t1,t2

, which are concentrated on the line
{(x1, x2) ∈ R

2 :x1 = 0} and have the property that for each Borel set B ⊂ R
2,

mt1,t2(B) = α

∫
R

e−λxm
(λ)
t1,t2

(B − x)dx + β

∫
R

m
(0)
t1,t2

(B − x)dx.(27)

CLAIM 2.2. Assume that α > 0. Then for all t1, t2, h ∈ R
d ,

γ (t1, t2) = γ (t1 + h, t2 + h).(28)

PROOF. By stationarity, mt1,t2 = mt1+h,t2+h for all t1, t2, h ∈ R
d . Applying

Lemma 2.4 to the decomposition (27), we obtain

m
(λ)
t1,t2

= m
(λ)
t1+h,t2+h.

Recall that the measures m
(λ)
t1,t2

and m
(λ)
t1+h,t2+h were constructed by means of

Lemma 2.3 and thus have Laplace transforms given by the right-hand side of (19).
So, we obtain that the expression (considered as a polynomial in u)

(λ − u)

(
μ(t1) + λ

2
σ 2(t1)

)
+ u

(
μ(t2) + λ

2
σ 2(t2)

)
+ 1

2
u(u − λ)γ (t1, t2)

does not change if we replace t1, t2 by t1 + h, t2 + h. Taking into account that by
Claim 2.1,

μ(ti) + λ

2
σ 2(ti) = μ(ti + h) + λ

2
σ 2(ti + h), i = 1,2,

we arrive at (28). �

CLAIM 2.3. Assume that β > 0. Then for all t1, t2, h ∈ R
d ,

μ(t2) − μ(t1) = μ(t2 + h) − μ(t1 + h)(29)

and

γ (t1, t2) = γ (t1 + h, t2 + h).(30)

PROOF. It follows from the decomposition (27) and Lemma 2.4 that

m
(0)
t1,t2

= m
(0)
t1+h,t2+h.

Using the formula for the Laplace transform of m
(0)
t1,t2

and m
(0)
t1+h,t2+h given in (19),

we obtain that the expression (considered as a quadratic polynomial in u)

u
(
μ(t2) − μ(t1)

) + 1
2γ (t1, t2)u

2

remains unchanged if we replace t1, t2 by t1 + h, t2 + h. This yields (29) and (30).
�

Now we are ready to complete the proof of Proposition 2.2. We distinguish three
cases.
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CASE 1. Assume that α > 0 and β > 0. We show that in this case, (m, ξ) ∈ S1.
Combining Claims 2.1 and 2.3, we obtain

σ 2(t2) − σ 2(t1) = σ 2(t2 + h) − σ 2(t1 + h).

Since σ 2(t) ≥ 0, it follows from part 2 of Lemma 2.2 that σ 2(t) is a constant
function. By Claim 2.1, μ(t) is constant as well. Finally, by (9) and Claim 2.2,

r(t1 + h, t2 + h) = 1
2

(
σ 2(t1 + h) + σ 2(t2 + h) − γ (t1 + h, t2 + h)

)
= 1

2

(
2σ 2(0) − γ (t1, t2)

)
= r(t1, t2).

This implies that the Gaussian process W(t) := ξ(t) − μ(t) is stationary. Hence,
(m, ξ) ∈ S1.

CASE 2. Assume that α = 0 and β > 0. We show that in this case, (m, ξ) ∈ S2.
First of all, note that in this case, m is a multiple of e0. By equation (30) of
Claim 2.3 and Lemma 2.1, the process W(t) := ξ(t) − μ(t) has stationary in-
crements. Further, the function f (t) := μ(t) − μ(0) is additive by equation (29)
of Claim 2.3 and part 1 of Lemma 2.2. So, we obtain a decomposition ξ(t) =
W(t) + f (t) + μ(0) implying that (m, ξ) ∈ S2.

CASE 3. Assume that α > 0 and β = 0. We show that in this case, (m, ξ) ∈ S3.
First, we have m = αeλ. Second, Claim 2.2 and Lemma 2.1 show that the process
W(t) := ξ(t) − μ(t) has stationary increments. It follows from Claim 2.1 that

μ(t) = −λσ 2(t)/2 + μ(0) + λσ 2(0)/2 = −λσ 2(t)/2 + c,

where c = μ(0) + λσ 2(0)/2. Hence, (m, ξ) ∈ S3.

The proof of Proposition 2.2 is complete. �

2.6. Lemmas on convolution equations. In this section we collect several aux-
iliary lemmas on solutions of convolution equations. These equations will arise in
Section 2.7 when dealing with one-dimensional distributions of Gaussian systems.
The proofs are based on explicit calculations with Laplace transforms and on the
result of Deny [6].

LEMMA 2.5. Let n0 = N(μ0, σ
2
0 ) be a Gaussian measure on R. Let m1,m2

be two measures satisfying (1) such that

m1 ∗ n0 = m2 ∗ n0.(31)

Then m1 = m2.
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PROOF. We assume that σ 2
0 > 0, since otherwise, the statement of the lemma

is trivial. The density of the measure mi ∗ n0, i = 1,2, is given by the convolution
formula

(mi ∗ n0)(dx)

dx
= 1√

2πσ0

∫
R

e−(x−y−μ0)
2/(2σ 2

0 )mi (dy)

= 1√
2πσ0

e−x2/(2σ 2
0 )exμ0/σ

2
0(32)

×
∫

R

exy/σ 2
0 e−(y+μ0)

2/(2σ 2
0 )mi(dy).

Define new measures m′
1 and m′

2 by

m′
i (dy)

mi (dy)
= e−(y+μ0)

2/(2σ 2
0 ), i = 1,2.(33)

Let ϕm′
i
(x) = ∫

R
exym′

i (dy), i = 1,2, be the Laplace transforms of m′
1 and m′

2.
Note that by (1), ϕm′

1
(x) and ϕm′

2
(x) are finite for all x ∈ R. We may rewrite (32)

as follows:

(mi ∗ n0)(dx)

dx
= 1√

2πσ0
e−x2/(2σ 2

0 )exμ0/σ
2
0

∫
R

exy/σ 2
0 m′

i (dy)

(34)

= 1√
2πσ0

e−x2/(2σ 2
0 )exμ0/σ

2
0 ϕm′

i

(
x

σ 2
0

)
.

By (31), the densities of the measures m1 ∗ n0 and m2 ∗ n0 must be equal. Taking
into account (34), this yields

ϕm′
1
(x) = ϕm′

2
(x) ∀x ∈ R.

By the uniqueness of the Laplace transform, m′
1 = m′

2. Recalling (33) yields that
m1 = m2. This proves the lemma. �

LEMMA 2.6. Let n1 = N(μ1, σ
2
1 ) and n2 = N(μ2, σ

2
2 ) be two Gaussian mea-

sures on R such that σ 2
1 ≤ σ 2

2 . Let m1 and m2 be two measures satisfying (1) such
that

m1 ∗ n1 = m2 ∗ n2.(35)

Then m1 = m2 ∗ N(μ2 − μ1, σ
2
2 − σ 2

1 ).

PROOF. We may rewrite (35) as

m1 ∗ n1 = (
m2 ∗ N(μ2 − μ1, σ

2
2 − σ 2

1 )
) ∗ n1.

The proof is completed by applying Lemma 2.5. �
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LEMMA 2.7. Let m be a measure satisfying (1), and let n0 = N(μ0, σ
2
0 ) be a

Gaussian measure such that for some α ≥ 0, β ≥ 0, λ �= 0,

m ∗ n0 = αeλ + βe0.(36)

Then m = αe−λ2σ 2
0 /2e−λμ0eλ + βe0.

PROOF. Define a measure m1 = αe−λ2σ 2
0 /2e−λμ0eλ +βe0. Then the density of

the measure m1 ∗ n0 can be computed by means of the convolution formula:

(m1 ∗ n0)(dx)

dx
=

∫
R

(
αe−λ2σ 2

0 /2e−λμ0e−λ(x−y) + β
)
n0(dy) = αe−λx + β,

where the second equality follows from (12). Hence,

m ∗ n0 = m1 ∗ n0.

By Lemma 2.5, we have m = m1. The proof is complete. �

LEMMA 2.8. Let n1 = N(μ1, σ
2
1 ) and n2 = N(μ2, σ

2
2 ) be two Gaussian mea-

sures on R such that σ 2
1 �= σ 2

2 . Let m be a measure satisfying (1) such that

m ∗ n1 = m ∗ n2.(37)

Then m = αeλ + βe0 for some α ≥ 0, β ≥ 0 and λ �= 0.

PROOF. By symmetry, we may assume that σ 2
1 < σ 2

2 . Then Lemma 2.5 im-
plies that

m = m ∗ n0,(38)

where n0 = N(μ2 − μ1, σ
2
2 − σ 2

1 ). By Theorem 3′ of [6], every solution m of (38)
can be represented as a mixture of exponentials; that is, we may write

m(dy)

dy
=

∫
E

e−λyρ(dλ),

where ρ is a finite Borel measure on the set E = {λ ∈ R :
∫
R

eλxn0(dx) = 1}. Now,
in our case the measure n0 is Gaussian, and so (12) shows that E consists of at most
two points. One of them is always 0, and the second is denoted by λ (if E = {0}, let
λ �= 0 be arbitrary). Taking α = ρ({λ}) and β = ρ({0}), we obtain m = αeλ + βe0.
This completes the proof. �
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2.7. Proof of Theorem 1.1: Identifying the measure m. In this section we com-
plete the proof of the inclusion S ⊂ S1 ∪ S2 ∪ S3. Let (m, ξ) be a pair generating
a stationary Gaussian system P = GS(m, ξ). Our goal is to show that

(m, ξ) ∈ S1 ∪ S2 ∪ S3.(39)

The idea of the proof is to show, whenever possible, that the measure m is of the
form αeλ +βe0 and then to apply Proposition 2.2. In all other cases, we will prove
that (m, ξ) ∈ S1.

Assume for a moment that ξ(0) = 0 and Var ξ(t0) > 0 for some t0 ∈ R
d . Under

this restriction, the proof takes the following particularly simple form. By sta-
tionarity, we have m0 = mt0 . Using ξ(0) = 0, this can be written as m = m ∗ nt0 .
Applying to this convolution equation the result of Deny [6] as in the proof of
Lemma 2.8, we conclude that m must be of the form αeλ + βe0. Hence, Proposi-
tion 2.2 is applicable and (39) is proved.

Let us now consider Theorem 1.1 in its full generality. We will distinguish be-
tween different cases.

CASE 1. Assume that the function σ 2 is not constant. So, there are t1, t2 ∈ R
d

such that

σ 2(t1) �= σ 2(t2).(40)

By stationarity of P, we must have mt1 = mt2 and hence,

m ∗ N(μ(t1), σ
2(t1)) = m ∗ N(μ(t2), σ

2(t2)).

Then Lemma 2.8, which is applicable in view of (40), implies that m = αeλ + βe0
for some α ≥ 0, β ≥ 0, λ �= 0. An application of Proposition 2.2 shows that (39)
holds.

CASE 2. Assume that σ 2(t) = σ 2 ≥ 0 is constant. Take some t1, t2 ∈ R
d and

fix some ϑ ∈ [0,1]. Consider P̃t1,t2 , a point process on R defined by

P̃t1,t2 = {Ui + ϑξi(t1) + (1 − ϑ)ξi(t2), i ∈ N},(41)

where the Ui’s and the ξi ’s are as in Section 1.1. Recalling from (2) that Vi(t) =
Ui + ξi(t), we may rewrite (41) as

P̃t1,t2 = {ϑVi(t1) + (1 − ϑ)Vi(t2), i ∈ N}.(42)

By Proposition 3.8 of [17], P̃t1,t2 is a Poisson point process whose intensity mea-
sure m̃t1,t2 is given by the formula

m̃t1,t2 = m ∗ N(μ̃(t1, t2), σ̃
2(t1, t2)),

where

μ̃(t1, t2) = ϑμ(t1) + (1 − ϑ)μ(t2)(43)
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and

σ̃ 2(t1, t2) = (
ϑ2 + (1 − ϑ)2)

σ 2 + 2ϑ(1 − ϑ)r(t1, t2).(44)

The stationarity of the particle system P together with representation (42) implies
that for every t1, t2, h ∈ R

d , the point processes P̃t1,t2 and P̃t1+h,t2+h must have
the same law. Hence, m̃t1,t2 = m̃t1+h,t2+h and consequently,

m∗N(μ̃(t1, t2), σ̃
2(t1, t2)) = m∗N

(
μ̃(t1 +h, t2 +h), σ̃ 2(t1 +h, t2 +h)

)
.(45)

The proof will be completed after we have considered two subcases.

SUBCASE 2A. Assume that for some t1, t2, h ∈ R
d ,

r(t1, t2) �= r(t1 + h, t2 + h).(46)

Take ϑ = 1/2 in the definition of the point process P̃t1,t2 . Then (44) and (46) imply
that

σ̃ 2(t1, t2) �= σ̃ 2(t1 + h, t2 + h).

By Lemma 2.8, applied to (45), the measure m is of the form αeλ + βe0 for some
α ≥ 0, β ≥ 0, λ �= 0. An application of Proposition 2.2 shows that (39) holds.

SUBCASE 2B. Assume that for all t1, t2, h ∈ R
d ,

r(t1, t2) = r(t1 + h, t2 + h).(47)

This implies that the process W(t) := ξ(t) − μ(t) is stationary.
If the function μ is constant, then (m, ξ) ∈ S1. Therefore, let us assume that μ

is not constant. We will show that this implies that m is a multiple of the Lebesgue
measure. Let

G = {g ∈ R :m ∗ δg = m}
be the set of “periods” of m, where δg is the Dirac measure concentrated at g.
Clearly, G is an additive subgroup of R.

By stationarity of P, we have mt1 = mt2 for every t1, t2 ∈ R
d . Equivalently,

m ∗ N(μ(t1), σ
2) = m ∗ N(μ(t2), σ

2).

By Lemma 2.6, this implies that

μ(t1) − μ(t2) ∈ G ∀t1, t2 ∈ R
d .(48)

Since μ is assumed to be nonconstant, equation (48) implies that G �= {0},
which means that m has a nontrivial period. Of course, this is not sufficient to
conclude that m is a multiple of the Lebesgue measure, and so, let us use the sta-
tionarity of the two-dimensional distributions of P. Recalling (44) and taking into
account (47), we obtain that for every t1, t2, h ∈ R

d ,

σ̃ 2(t1, t2) = σ̃ 2(t1 + h, t2 + h).
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Applying Lemma 2.6 to (45), we obtain

μ̃(t1, t2) − μ̃(t1 + h, t2 + h) ∈ G ∀t1, t2, h ∈ R
d .

Recalling a formula for μ̃ given in (43), we arrive at

ϑ · (
μ(t1) − μ(t2) − μ(t1 + h) + μ(t2 + h)

) + (
μ(t2) − μ(t2 + h)

) ∈ G.

Note that this is valid for every ϑ ∈ [0,1]. Assume that in the above expression, ϑ

appears with a nonzero coefficient for some t1, t2, h. Then G contains a nontrivial
interval, and so, we must have G = R. In other words, the measure m is translation
invariant. Since by (1), m is finite on bounded intervals, this implies that m is a
multiple of the Lebesgue measure.

So, let us assume that for every t1, t2, h ∈ R
d ,

μ(t1) − μ(t2) = μ(t1 + h) − μ(t2 + h).(49)

Recall also that we assume that μ is nonconstant. Hence, by part 2 of Lemma 2.2,
the set of values of the function μ is dense in R. By (48), the group G must be
dense in R.

We claim that in fact, G = R. To prove this, we need to show that G is closed.
First of all, the measure m is atomless, since if it would have an atom, then the
invariance under G would imply that m has a dense set of atoms of equal mass,
which would contradict (1). Now, let g1, g2, . . . be a sequence in G converging to
some g ∈ R. We claim that g ∈ G. Indeed, for every interval [a, b] ⊂ R, we have

m([a − g, b − g]) = lim
i→∞m([a − gi, b − gi]) = lim

i→∞m([a, b]) = m([a, b]),
where the first equality holds since m is atomless, and the second equality follows
from gi ∈ G. This proves that g ∈ G. Therefore, the group G, being dense and
closed, must be equal to R.

The fact that G = R means that the measure m is translation invariant and thus,
must be a multiple of the Lebesgue measure. Therefore, we can apply Proposi-
tion 2.2 which shows that (39) holds.

The proof of Theorem 1.1 is complete.

3. Pairs generating equal in law Gaussian systems. In this section we give
an answer to the following question: Given two pairs (m′, ξ ′) and (m′′, ξ ′′) in S ,
determine whether GS(m′, ξ ′) has the same law as GS(m′′, ξ ′′). The next proposi-
tion is a first step in this direction.

PROPOSITION 3.1. The decomposition S = S ∗
1 ∪ S2 ∪ S3, where S ∗

1 =
S1\(S2 ∪ S3), is disjoint. Pairs belonging to different sets in this decomposition
generate different in law Gaussian systems.



2312 Z. KABLUCHKO

PROOF. We will show that Gaussian systems generated by pairs belonging
to different sets in the decomposition S = S ∗

1 ∪ S2 ∪ S3 differ by their one-
dimensional distributions. If (m, ξ) ∈ S2, then m = αe0 for some α > 0, and conse-
quently, mt = m∗nt = αe0 for every t ∈ R

d . If (m, ξ) ∈ S3, then m = αeλ for some
α > 0 and λ �= 0. Hence, in this case, mt = m∗nt = α̃eλ for some α̃ > 0. Finally, if
(m, ξ) ∈ S ∗

1 , then mt is not a multiple of eλ, λ ∈ R. Otherwise, Lemma 2.7 would
imply that the same is true for m, which contradicts the assumption (m, ξ) ∈ S ∗

1 .
�

In the sequel, we concentrate on pairs belonging to the same set in the decompo-
sition S = S ∗

1 ∪ S2 ∪ S3. Let us call a pair (m, ξ) belonging to S2 or S3 canonical
if ξ(0) = 0. A classification of such pairs was given in Corollary 1.1.

PROPOSITION 3.2. For every (m, ξ) ∈ S2 there is a unique canonical pair
(m̃, ξ̃ ) ∈ S2 generating the same Gaussian system as (m, ξ).

PROOF. To show the existence, set m̃ = m and ξ̃ (t) = ξ(t) − ξ(0). Apply-
ing (14) two times, we obtain that for every B ∈ B(Rn),

mt1,...,tn(B) = α

∫
R

P
[(

ξ(ti) − ξ(t1)
)n
i=1 ∈ B − z

]
dz

= α

∫
R

P
[(

ξ̃ (ti) − ξ̃ (t1)
)n
i=1 ∈ B − z

]
dz

= m̃t1,...,tn(B),

where m̃t1,...,tn are the finite-dimensional intensities of GS(m̃, ξ̃ ) [cf. (10)]. Hence,
(m, ξ) and (m̃, ξ̃ ) generate equal in law Gaussian systems.

We prove the uniqueness part. Let (m, ξ) be a canonical pair. Then m = αe0 and
ξ(t) = W(t) + f (t) (see Theorem 1.1). We will show that the triple (α,W,f ) is
uniquely determined by the finite-dimensional distributions of P = GS(m, ξ).

First, we have mt = m ∗ nt = αe0 for every t ∈ R
d , and so, α is uniquely deter-

mined. Let us turn to the two-dimensional distributions of P. By (10), we have

m0,t (B) = α

∫
R

n0,t (B − z) dz.

By Lemma 2.3, there is a representation

m0,t (B) = α

∫
R

m
(0)
0,t (B − z) dz

for some measure m
(0)
0,t concentrated on the line {(x1, x2) ∈ R

2 :x1 = 0} and having
the Laplace transform exp{f (t)u + 1/2γ (0, t)u2}. By Lemma 2.4, this shows that
the two-dimensional distributions of P determine f (t) and γ (0, t) uniquely. To
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see that γ (0, t) determines the law of W uniquely, recall that W(0) = 0 and hence,
we may write the covariance function of W in the form

r(t1, t2) = 1
2

(
γ (0, t1) + γ (0, t2) − γ (0, t1 − t2)

)
.

This completes the proof of the uniqueness part. �

PROPOSITION 3.3. For every (m, ξ) ∈ S3 there is a unique canonical pair
(m̃, ξ̃ ) ∈ S3 generating the same Gaussian system as (m, ξ).

PROOF. All necessary ingredients are contained in [10]. Take ξ̃ (t) = ξ(t) −
ξ(0) and m̃ = m ∗ δc, where c is as in Theorem 1.1. The fact that (m̃, ξ̃ ) and
(m, ξ) generate equal Gaussian systems was essentially shown in Proposition 11
of [10]. The uniqueness part follows under the additional assumption λ = 1 from
Remark 24 of [10]. The general case is analogous. �

The next proposition gives a necessary and sufficient condition on two pairs
belonging to S ∗

1 to generate equal in law Gaussian systems.

PROPOSITION 3.4. Let (m′, ξ ′) and (m′′, ξ ′′) be two pairs, both belonging to
S ∗

1 and generating Gaussian systems P′ and P′′. Then

P′ d= P′′(50)

iff the following holds: There is a Gaussian variable N0 whose distribution on R

is denoted by n0 and which is independent of ξ ′, ξ ′′, such that

m′ = m′′ ∗ n0 and {ξ ′′(t), t ∈ R
d} d= {ξ ′(t) + N0, t ∈ R

d},(51)

or

m′′ = m′ ∗ n0 and {ξ ′(t), t ∈ R
d} d= {ξ ′′(t) + N0, t ∈ R

d}.(52)

PROOF. Introduce the notation μ′, r ′, μ′′, r ′′, etc. as in Section 2.2. By defin-
ition of the family S ∗

1 , the functions μ′, σ ′2, μ′′, σ ′′2 are constant. Therefore, we
write, say, μ′ instead of μ′(t). We may rewrite (9) as follows:

γ ′(t1, t2) = 2
(
σ ′2 − r ′(t1, t2)

)
and γ ′′(t1, t2) = 2

(
σ ′′2 − r ′′(t1, t2)

)
.(53)

We start by proving the “if” part of the proposition. Assume for concreteness
that (51) holds. Then, by (10),

m′′
t1,...,tn

(B) =
∫

R

P[(ξ ′′(t1), . . . , ξ ′′(tn)) ∈ B − z]m′′(dz)

=
∫

R

P
[(

ξ ′(t1) + N0, . . . , ξ
′(tn) + N0

) ∈ B − z
]
m′′(dz)

=
∫

R

∫
R

P[(ξ ′(t1), . . . , ξ ′(tn)) ∈ B − (z + y)]m′′(dz)n0(dy).
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For every nonnegative function f : Rd → R the following formula holds:∫
R

∫
R

f (z + y)m′′(dz)n0(dy) =
∫

R

f (x)(m′′ ∗ n0)(dx).

Hence,

m′′
t1,...,tn

(B) =
∫

R

P[(ξ ′(t1), . . . , ξ ′(tn)) ∈ B − x](m′′ ∗ n0)(dx)

=
∫

R

P[(ξ ′(t1), . . . , ξ ′(tn)) ∈ B − x]m′(dx)

= m′
t1,...,tn

(B).

This proves (50).
Now we prove the “only if” part of the proposition. Assume that (50) holds.

Without loss of generality we assume that σ ′2 ≤ σ ′′2. Define

n0 = N(μ′′ − μ′, σ ′′2 − σ ′2),

and let N0 ∼ n0 be a Gaussian variable independent of ξ ′ and ξ ′′. We will show
that (51) holds.

We start by proving the first equality in (51). It follows from (50) that m′
t = m′′

t

for all t ∈ R
d . Equivalently,

m′ ∗ N(μ′, σ ′2) = m′′ ∗ N(μ′′, σ ′′2).

Then, by Lemma 2.6, m′ = m′′ ∗ n0. This proves the first equality in (51).
We claim that the second equality in (51) follows from the following statement:

for all t1, t2 ∈ R
d ,

γ ′(t1, t2) = γ ′′(t1, t2).(54)

To see this, set for a moment ξ̃ ′(t) = ξ ′(t) + N0. Then

Eξ̃ ′(t) = μ′ + (μ′′ − μ′) = μ′′ = Eξ ′′(t).

Elementary transformations using (53) and (54) yield

Cov(ξ̃ ′(t1), ξ̃ ′(t2)) = r ′(t1, t2) + (σ ′′2 − σ ′2) = r ′′(t1, t2) = Cov(ξ ′′(t1), ξ ′′(t2)).

From now on, we are proving (54). We need to consider two cases.

CASE 1. Assume that m′ = α′eλ + βe0 for some α′ > 0, β > 0, λ �= 0. It
follows from m′

t = m′′
t that

m′ ∗ N(μ′, σ ′2) = m′′ ∗ N(μ′′, σ ′′2).

The left-hand side of the above equation is of the form αeλ + βe0 for some α > 0.
Hence, using Lemma 2.7, we conclude that m′′ = α′′eλ + βe0 for some α′′ > 0.
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Let us consider the two-dimensional distributions of P′. By (10),

m′
t1,t2

(B) = α′
∫

R

e−λzn′
t1,t2

(B − z) dz + β

∫
R

n′
t1,t2

(B − z) dz, B ∈ B(R2).

Applying Lemma 2.3 twice, we get two measures m
′(λ)
t1,t2

and m
′(0)
t1,t2

concentrated on
{(x1, x2) ∈ R

2 :x1 = 0} such that the following decomposition is valid:

m′
t1,t2

(B) = α′
∫

R

e−λzm
′(λ)
t1,t2

(B − z) dz + β

∫
R

m
′(0)
t1,t2

(B − z) dz, B ∈ B(R2).

Furthermore, ψ ′
t1,t2

(u), the Laplace transform of m
′(0)
t1,t2

, is given by

ψ ′
t1,t2

(u) = eγ ′(t1,t2)u2/2.(55)

Similar calculations can be done for m′′
t1,t2

. By (50), we must have m′
t1,t2

=
m′′

t1,t2
. By Lemma 2.4, this implies

m
′(0)
t1,t2

= m
′′(0)
t1,t2

.

Comparing the Laplace transforms, we obtain (54).

CASE 2. Assume that the condition of Case 1 is not satisfied. We define a
point process P̃′

t1,t2
as in (41) and (42) with ϑ = 1/2: we set

P̃′
t1,t2

= {U ′
i + ξ ′

i (t1)/2 + ξ ′
i (t2)/2, i ∈ N},

where {U ′
i , i ∈ N} and ξ ′

i , i ∈ N, are the starting points and the driving processes
of the Gaussian system P′. Then P̃′

t1,t2
is a Poisson point process on R whose

intensity measure m̃′
t1,t2

is given by the formula

m̃′
t1,t2

= m′ ∗ N
(
μ′, 1

2σ ′2 + 1
2r ′(t1, t2)

)
.(56)

A simple calculation using (53) shows that

m′
t1

= m̃′
t1,t2

∗ N
(
0, 1

4γ ′(t1, t2)
)
.

Similar calculations can be done for the pair (m′′, ξ ′′). By (50), we must have
m̃′

t1,t2
= m̃′′

t1,t2
. Denoting these equal measures for a moment by m̃t1,t2 , we obtain

m̃t1,t2 ∗ N
(
0, 1

4γ ′(t1, t2)
) = m̃t1,t2 ∗ N

(
0, 1

4γ ′′(t1, t2)
)
.

Now assume that (54) does not hold for some t1, t2 ∈ R
d . Then Lemma 2.8

implies that m̃t1,t2 is of the form α̃eλ + β̃e0 for some α̃ ≥ 0, β̃ ≥ 0 and λ �= 0. Fur-
ther, Lemma 2.7 applied to (56) yields that m′ is of the form α′eλ + β ′e0 for some
α′ ≥ 0, β ′ ≥ 0 and λ �= 0. In fact, the assumption (m′, ξ ′) ∈ S ∗

1 implies that even
α′ > 0, β ′ > 0. Hence, we are in the situation of Case 1, which is a contradiction.

The proof of Proposition 3.4 is complete. �
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4. Open questions. We have considered only particles moving on the one-
dimensional real line (although we allowed for a multidimensional time). An in-
teresting question is whether it is possible to obtain an analogue of Theorem 1.1
for particles moving in a multidimensional Euclidean space.

Another problem is to classify all stationary systems of particles driven by inde-
pendent Gaussian processes and starting at the points of an arbitrary point process
(rather than a Poisson point process). It seems that to gain information from the
stationarity of the one-dimensional distributions of such particle systems, the re-
sults of [12] should be used instead of that of [6].

Acknowledgment. The author is grateful to Martin Schlather for several use-
ful remarks.
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