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The aim of this paper is to introduce a new Monte Carlo method based on
importance sampling techniques for the simulation of stochastic differential
equations. The main idea is to combine random walk on squares or rectangles
methods with importance sampling techniques.

The first interest of this approach is that the weights can be easily com-
puted from the density of the one-dimensional Brownian motion. Compared
to the Euler scheme this method allows one to obtain a more accurate approxi-
mation of diffusions when one has to consider complex boundary conditions.
The method provides also an interesting alternative to performing variance
reduction techniques and simulating rare events.

1. Introduction. Monte Carlo methods are sometimes the unique alternative
used to solve numerically partially differential equations (PDE) involving an oper-
ator of the form

L = 1

2

d∑
i,j=1

ai,j (·) ∂2

∂xi ∂xj

+
d∑

i=1

bi(·) ∂

∂xi

.

The operator L is the infinitesimal generator associated with the solution of the
stochastic differential equation (SDE)

Xt = X0 +
∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds with σσ ∗ = a.(1)

It is well known that, for T > 0 fixed, the solution on the cylinder [0, T ] × D, of
the parabolic PDE,⎧⎪⎪⎨⎪⎪⎩

∂u(t, x)

∂t
+ Lu(t, x) = 0,

u(T , x) = g(x), for x ∈ D,
u(t, x) = φ(t, x), for (t, x) ∈ [0, T ] × ∂D,
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can be written as

u(t, x) = Et,x[g(XT );T ≤ τ ] + Et,x[φ(τ,Xτ ); τ < T ],
where τ stands for the first exit time of X from the domain D. Et,x means that
the process X is starting from x at time t . Thus an approximation of u(t, x) can
be obtained by averaging g(XT )1T ≤τ and φ(τ,Xτ )1τ<T over a large number of
realizations of paths of X. Elliptic PDE may be considered as well.

A large spectra of methods has been already proposed in order to simulate X

(see, e.g., the books of Kloeden and Platen [22] and of Milstein and Tretyakov
[29]). Most of these methods are extensions of the Euler scheme which provides a
very efficient way to simulate (1) in the whole space. This method becomes harder
to set up in a bounded domain, either with an absorbing or a reflecting boundary
condition. Nevertheless some refinements have been proposed (see, e.g., [5, 15, 16,
19, 32, 34]). To improve the quality of the simulation or to speed it up, variance
reduction techniques can be considered (see, e.g., [1–3, 17, 20, 21, 31, 38]). This
list is not intended to be exhaustive.

In the simplest situation, for a = Id and b = 0, the underlying diffusion process
is the Brownian motion. Muller proposed in 1956 a very simple scheme to solve
a Dirichlet boundary value problem. This method is called the random walk on
spheres method [30]. The idea is to simulate successively, for the Brownian mo-
tion, the first exit position from the largest sphere included in the domain and
centered in the starting point. This exit position becomes the new starting point,
and the procedure is iterated until the exit point is close enough to the boundary.
Nevertheless, simulating the exit time from a sphere is numerically costly. In [27],
Milstein and Rybkina proposed to use this scheme for solving (1) by freezing
locally the value of the coefficients. In a first approach, spheres (that become el-
lipsoids) were used. Later on [26] (see also [29]), Milstein and Tretyakov used
time–space parallelepipeds with a cubic space basis. For this last approach, it is
easier to keep track of the time but the involved random variables are costly to
simulate. In order to overcome these difficulties, one may think to use tabulated
values. This is memory consuming as the random variables to simulate depend on
one or two parameters. The method of random walk on squares was also indepen-
dently developed in the Ph.D. thesis of Faure [11]. For the Brownian motion, this
method is still a good alternative to the random walk on spheres (see [7] for an
application in geophysics).

In [8], we have proposed a scheme for simulating the exact exit time and posi-
tion from a rectangle for the Brownian motion starting from any point inside this
rectangle. Compared to the random walk on spheres method, this method has the
following advantages:

• It can be used whatever the dimension and, as for the random walk on squares,
a constant drift term may be added.



SIMULATION OF DIFFUSIONS 1391

• The rectangles can be chosen prior to any simulation, and not dynamically.
There is no need to consider smaller and smaller spheres or squares when the
particle is near the boundary.

• The method can be also adapted and used for the simulation of diffusion
processes killed on some part of the boundary.

The method we propose here is based on the idea to simulate the first exit time
and position from a parallelepiped by using an importance sampling technique
(see, e.g., [12, 14]). The exit time and position from a parallelepiped for a Brown-
ian motion with locally frozen coefficients is chosen arbitrarily, and a weight is
computed at each simulation. By repeating this procedure, we get the density on
the boundary or at a given time of the particles, by weighting the simulated paths.
As we will see, the weights are rather easily deduced from the density of the one-
dimensional Brownian motion killed when it exits from [−1,1]. All involved ex-
pressions are numerically easy to implement.

This new algorithm is slower than the Euler scheme for smooth coefficients,
but it is faster than the random walk on squares [7, 29] and the random walk on
rectangles [8]. It can be used to simulate the Brownian motion as well as solutions
of stochastic differential equations for specific complex situations as: (a) complex
geometries (the boundary conditions are correctly taken into account); (b) fast es-
timation of the exit time of a domain for the Brownian motion (only few rectangles
are needed); (c) variance reduction; (d) simulation of rare events.

This algorithm could be relevant for many domains: finance, physics, biology,
geophysics, etc. It may also be used locally (e.g., it can be mixed with the Euler
scheme and used when the particle is close to the boundary) or combined with
other algorithms, such as population Monte Carlo methods (see Section 4.5).

We conclude this article with numerical simulations illustrating various exam-
ples. It has to be noted that choosing “good” distributions for the exit time and
position from a rectangle is not an easy task in order to reduce the variance. We
then plan to study in the future how to construct algorithms that minimize the
variance, as in [1, 3]. We have to consider for this a high-dimension optimization
problem.

Outline. In Section 2, we present the importance sampling technique applied
to the exit time and position for a (drifted) Brownian motion from a rectangle. In
Section 3, we recall briefly some results about the density of the one-dimensional
Brownian motion with different boundary conditions. The explicit expressions are
given in the Appendix. In Section 4, we present our algorithm and compute its
weak error. Four test cases are presented in Section 5. We compare also our algo-
rithm with other methods in this last section.

2. Algorithm for the exit time and position from a right time–space par-
allelepiped by using an importance sampling method. The aim of this part is
to give a clear presentation of our method. In order to avoid ambiguous notation
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we consider in this section the situation of a two-dimensional space domain. The
results can be easily generalized to higher space dimension.

We are looking for an accurate approximation of the exit time and position
from a right time–space parallelepiped which is a geometric figure in the three-
dimensional space.

For L1,L2 > 0 given let R be the rectangle [−L1,L1]×[−L2,L2]. The rectan-
gle R is the space basis of the right time–space parallelepiped RT = [0, T ]×R for
a fixed T > 0. We can also consider R∞ = R+ × R, and set in this case T = +∞.

For T < +∞, the right time–space parallelepiped RT has six sides which are
denoted by

S0,1 = {T } × R,

S0,−1 = {0} × R,

S1,η = [0, T ] × [−L1,L1] × {ηL2} for η ∈ {−1,1},
S2,η = [0, T ] × {ηL1} × [−L2,L2] for η ∈ {−1,1}.

In other words, each side of RT is labeled by a couple (i, η) ∈ {0,1,2} × {−1,1}.
For i ∈ {1,2} the side Si,η is perpendicular to the unit vector in the ith direction.
For i = 0, the side S0,−1 corresponds to the rectangular initial basis while the side
S0,1 corresponds to the top of the time–space parallelepiped RT for T < +∞ (see
Figure 1).

From now on, we shall identify each side with the corresponding (i, η)-indices.
We consider a time-homogeneous diffusion process (Xt)t≥0 living in R. On

each side of R, the process X may be reflected or absorbed. Moreover, if T <

+∞, the process is stopped at time T . We can thus identify the sides of R with
the sides Si,η of RT for i ∈ {1,2} and η ∈ {−1,1}. We denote by R the subset

FIG. 1. Convention for the sides of RT = [0, T ] × R.
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of {1,2} × {−1,1} that contains the indices of the sides on which a Neumann
boundary condition holds (possibly, R = ∅). On this set the diffusion is reflected.
Let us denote by D the subset of {1,2} × {−1,1} that contains the indices of the
sides on which a Dirichlet boundary condition holds. On this set the diffusion is
killed. Finally let us set A = D if T = +∞ and A = {(0,1)}∪D if T < +∞. With
this notation the time–space process t �→ (t,Xt) is absorbed when hitting one of
the sides Si,η with (i, η) ∈ A.

Let B = (B1,B2) be a two-dimensional Brownian motion and μ = (μ1,μ2) a
vector of R

2. For i ∈ {1,2}, we set

γi,η =
{

1, if (i, η) ∈ R (reflection),
0, if (i, η) ∈ A (absorption).

We consider the two-dimensional diffusion process (X,Px)x∈R whose coordi-
nates are, for x = (x1, x2) ∈ R,

Xi
t = xi + Bi

t + μit + γi,1�
Li
t (Xi) − γi,−1�

−Li
t (Xi), Px-a.s.,(2)

where �
±Li
t (Xi) stands for the symmetric local time of Xi at ±Li , respectively.

We define τ0 = T , τi = inf{t > 0||Xi
t | > Li} for i ∈ {1,2} and

τ = min
i∈{0,1,2} τi.

In addition, we set J = arg mini∈{0,1,2} τi . With this notation, unless J 
= 0, the
J th component of X is the first to exit from the domain. For J ∈ {1,2}, let us define
ε = XJ

τJ
/LJ ∈ {−1,1}. For J = 0 we set ε = 1. In this case X has not reached the

sides of D before time T .
The couple (J, ε) labels the side in A of the parallelepiped RT = [0, T ] × R

that the diffusion X hits first. Note that with our convention, the sides on which
the process is reflected cannot be reached so that τi = +∞ if Xi is reflected both
at −Li and Li .

We are interested in computing Ex[f (τ,Xτ )] by a Monte Carlo method for a
bounded, measurable function f where τ is defined as above.

Instead of simulating (τ,Xτ ), we will simulate some random variables accord-
ing to the following procedure. The aim is to simulate (J, ε, τ,Xτ ) by using an
importance sampling technique. In order to do this we choose a probability P̂x

which is absolutely continuous with respect to Px , and we draw a realization of
(J, ε, τ,Xτ ). Let us set

αi,η = P̂x[(J, ε) = (i, η)]
for (i, η) ∈ A. For (i, η) ∈ A let ki,η denote the density under P̂x of (τ,Xτ ) given
{(τ,Xτ ) ∈ Si,η}.

In order to simplify notation let us consider an underlying probability space
(�, F ,Px) rich enough. Let Z be a random variable on this space, with distribu-
tion Px . Let A be a measurable event on this space. We suppose that, conditionally
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on A, Z has a density p(·|A) with respect to the Lebesgue measure. Let us intro-
duce the following convention:

Px[Z = z;A] = p(z|A)Px[A].
That is, for B a measurable event of (�, F ,Px),

Px[{Z ∈ B} ∩ A] =
∫
B

p(z|A)Px[A]dz =
∫
B

Px[Z = z;A]dz.

Consider now the following notation: let (i, η) ∈ A. For i ∈ {1,2} set j = 3 − i.
Then for any θ > 0 and z ∈ Si,η, we define

Mi,η(θ, z) = Px[τi = θ;Xi
τi

= ηLi]Px[Xj
θ = zj ; τj > θ ]

αi,ηki,η(θ, z)
,(3)

where ki,η is the {Xτ ∈ Si,η}-conditional density under P̂x of (τ,Xτ ).
If T < +∞, we define

M0,1(T , z) = 1

α0,1k0,1(T , z)

∏
j∈{1,2}

Px[Xj
T = zj ; τj > T ],(4)

where ki,η is the {Xτ ∈ Si,η}-conditional density under P̂x of (τ,Xτ ).
We call Mi,η weight.

PROPOSITION 1. The weights Mi,η defined in (3) and (4) satisfy

Ex[f (τ,Xτ )] = Êx[MJ,ε(τ,Xτ )f (τ,Xτ )]
for any measurable and bounded function f on ∂RT .

Before proving this proposition let us introduce the algorithm.
The algorithm is described as follows:

ALGORITHM 1. Let x be fixed in R.

(1) Draw a realization (J , ε) of (J, ε) ∈ A under P̂x .
(2) Draw a realization of the exit time and exit position (τ ,Xτ ) according to the

density kJ ,ε on SJ,ε .
(3) Compute the value of MJ,ε(τ ,Xτ ) by

Êx[MJ,ε(τ,Xτ )f (τ,Xτ )] = Ex[f (τ,Xτ )].
We call MJ,ε(τ ,Xτ ), weight.
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If {(J (i)
, ε(i), τ (i),X

(i)

τ ,w(i))}i=1,...,N are N independent realizations of the ran-
dom variables (J, ε, τ,Xτ ,MJ,ε(τ,Xτ )) constructed as above, by the law of large
numbers we have

Ex[f (τ,Xτ )] = lim
N→∞

1

N

N∑
i=1

w(i)f
(
τ (i),X

(i)

τ (i)

)
.

The main feature of our approach is that the weights MJ,ε(τ,Xτ ) can be easily
evaluated.

REMARK 1. In order to evaluate Mi,η with (3) and (4), there is no need to
know Px[(J, ε) = (i, η)]. It is important to notice that Mi,η depends only on the
one-dimensional distributions of the drifted Brownian motion.

PROOF OF THE PROPOSITION 1. We want to prove that

Ex[f (τ,Xτ )] = Êx[MJ,ε(τ,Xτ )f (τ,Xτ )]
for any measurable and bounded function f on ∂RT .

We remark first that if pi,η = Px[(J, ε) = (i, η)] for (i, η) in A, then

Ex[f (τ,Xτ )] = ∑
(i,η)∈A

pi,η

αi,η

Êx[Mi,η(τ,Xτ )f (τ,Xτ )|(J, ε) = (i, η)].(5)

Furthermore, for (i, η) ∈ D, if i = 2 set j = 1 and z = (z1, ηL2) else, if i = 1 set
j = 2 and z = (ηL1, z2).

Ex[f (τ,Xτ )|(J, ε) = (i, η)]
=

∫
[0,T ]×[−Lj ,Lj ]

f (θ, z)Px[(τi,X
j
τi
) = (θ, zj )|(J, ε) = (i, η)]dθ dzj ,

where Px[(τi,X
j
τi ) = (θ, zj )|(J, ε) = (i, η)] is the {(J, ε) = (i, η)}-conditional

density of (τi,X
j
τi ) with respect to dt dzj . Hence

Ex[f (τ,Xτ )|(J, ε) = (i, η)] = Êx[f (τ,Xτ )M
′
i,η(τ,Xτ )|(J, ε) = (i, η)],

where

M ′
i,η(θ, z) = Px[(τi,X

j
τi ) = (θ, zj )|(J, ε) = (i, η)]

ki,η(τ,Xτ )
.

Let us note that Mi,η(θ, z) = M ′
i,η(θ, z)pi,η/αi,η. With (5), we can deduce that

Ex[f (τ,Xτ )] = Êx[f (τ,Xτ )MJ,ε(τ,Xτ )].
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Indeed, it suffices to remark that for (i, η) ∈ D,

Mi,η(θ, z) = 1

αi,ηki,η(θ, z)
Px[(τi,X

j
τi
) = (θ, zj ); (J, ε) = (i, η)]

= 1

αi,ηki,η(θ, z)
Px[(τi,X

j
τi
) = (θ, zj );Xi

τi
= ηLi, τ

j > θ ].

The independence of the coordinates of X leads to the desired equality. If T <

+∞, similar computations imply that for z ∈ R,

M0,1(T , z) = 1

α0,1k0,1(T , z)
Px

[
XT = z; min

i∈{1,2} τi > T
]

and the conclusion also holds. �

Let us evaluate these probabilities.
For i ∈ {1,2}, let pi(t, x1, x2) be the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂pi(t, x1, x2)

∂t
= 1

2

∂2pi

∂x2
2

(t, x1, x2) + μi

∂pi

∂x2
(t, x1, x2),

for (t, x1, x2) ∈ R+ × (−Li,Li)
2,

pi(t, x1, x2)−→
t↘0

δx1(x2), for (x1, x2) ∈ (−Li,Li)
2,

(6)

with the following boundary conditions (b.c.):

pi(t, x1,−Li) = 0 (Dirichlet b.c.) if (i,−1) ∈ A,

∂pi

∂x2
(t, x1,−Li) = 0 (Neumann b.c.) if (i,−1) ∈ R,

pi(t, x1,Li) = 0 (Dirichlet b.c.) if (i,1) ∈ A,

∂pi

∂x2
(t, x1,Li) = 0 (Neumann b.c.) if (i,1) ∈ R.

Thus, pi denotes the density of the drifted Brownian motion Xi with possibly
some reflection at the endpoints of (−Li,Li), and killed when it exits from this
interval by an endpoint where no reflection holds. For f a bounded measurable
function from [−Li,Li] to R, we have

Ex1[f (Xi
t ); t < τi] =

∫ Li

−Li

pi(t, x1, x2)f (x2) dx2

for x1 ∈ [−Li,Li] where Px1 is the distribution of Xi with Xi
0 = x1 ∈ [−Li,Li].

Let us note that the distribution of the marginal Xi of X under P(x1,x2) depends
only on xi .
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We introduce the scale function �i,+ of Xi defined by

for x2 ∈ [−Li,Li], �i,+(x2) =

⎧⎪⎪⎨⎪⎪⎩
e2μiLi − e−2μix2

e2μiLi − e−2μiLi
, if μi 
= 0,

x2 + Li

2Li

, if μi = 0.

The function �i,+(x2) has been normalized such that �i,+(Li) = 1. Let us note
that �i,+(xi) = Pxi

[Xi
τi

= Li] if Dirichlet boundary conditions hold at both end-
points −Li and Li . We also set �i,−(x2) = 1 − �i,+(x2).

If Dirichlet boundary conditions hold both at −Li and Li , then we set for t > 0
and (x1, x2) ∈ [−Li,Li]2,

pi,±(t, x1, x2) = pi(t, x1, x2)
�i,±(x2)

�i,±(x1)
.

Via a Doob transform, for a bounded and measurable function f ,

Ex1[f (Xi
t ); t < τi |Xi

τi
= ±Li] =

∫ Li

−Li

pi,±(t, x1, x2)f (x2) dx2.

Let us set for x1 ∈ (−Li,Li),

qi(t, x1) = −
∫ Li

−Li

∂pi

∂t
(t, x1, x2)f (x2) dx2(7)

and

qi,±(t, x1) = −
∫ Li

−Li

∂pi,±

∂t
(t, x1, x2)f (x2) dx2.(8)

We can easily deduce that

Px1[τi ≤ t] =
∫ t

0
qi(s, x1) ds and Px1[τi ≤ t |Xi

τi
= ±Li] =

∫ t

0
qi,±(s, x1) ds.

In other words, qi(t, x1) [respectively, qi,±(t, x1)] is the density of the first exit
time from [−Li,Li] for Xi (respectively, the first exit time from [−Li,Li] for Xi

given {Xi
τi

= ±Li}).
Thanks to these expressions, M0,1(T , z) and Mi,η(θ, z) are easily computed

since

Pxi
[Xi

θ = zi; τi > T ] = pi(θ, xi, zi),

Pxi
[τi = θ;Xi

θ = ±Li] = qi,±(θ, xi)�
i,±(xi) if (i,−1) ∈ A and (i,1) ∈ A,

Pxi
[τi = θ;Xi

θ = Li] = qi(θ, xi) if (i,−1) ∈ R and (i,1) ∈ A,

Pxi
[τi = θ;Xi

θ = −Li] = qi(θ, xi) if (i,−1) ∈ A and (i,1) ∈ R.
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3. Analytical expressions for the densities. In order to compute pi(t, x1, x2),
together with qi(t, x1) and qi,±(t, x1) by (7) and (8), one has to solve equation (6).
By using a scaling principle, we may assume that Li = 1, as

pi(t, x1, x2) = 1

Li

p

(
t

L2
i

,
x1

Li

,
x2

Li

;Liμ

)
,

where p(t, x1, x2; δ) is solution to (6) with Li = 1 and a convective term μi equal
to δ.

There are basically two ways to obtain p(t, x1, x2; δ). The first one is based on
the spectral expansion of 1

2� + δ∇ since this operator may be reduced to a self-
adjoint one with respect to the scalar product induced by the measure exp(−2δx1).
The second one is the method of images when δ = 0.

If δ 
= 0, the case of a Dirichlet boundary condition at both endpoints may be
treated by using a simple transform that reduces the problem to δ = 0.

For the case of Neumann boundary condition at both endpoints, one can invert
term by term the Laplace transform of a series for the Green function.

In the case of a mixed boundary condition, the previous method gives rise to
a series that cannot be used in practice, so only the spectral expansion should be
used. In addition, the first eigenvalues have to be computed numerically.

As the formula are standard in most of the cases, we give the relevant expres-
sions in the Appendix.

4. General domain. As stated before, we aim to solve by a Monte Carlo
method a parabolic or an elliptic PDE. The idea is to represent the domain as
the union of time–space parallelepipeds and to simulate the successive exit times
and positions from these parallelepipeds. Attention has to be paid while doing this
decomposition in order to control the error at each simulation step.

4.1. From parallelepipeds to right parallelepipeds. Consider herein the nota-
tion of Section 2. Let us study first the parabolic PDE with constant coefficients λ,
c and μ = (μi)i=1,...,d on the rectangle RT ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v(t, x)

∂t
+ 1

2

d∑
i=1

∂2v(t, x)

∂x2
i

+
d∑

i=1

μi

∂v(t, x)

∂xi

+ cv(t, x) = λ, on RT ,

∂v(t, x)

∂xi

= 0, for x ∈ Si,η if (i, η) ∈ R,

v(t, x) = φ(t, x), for x ∈ Si,η if (i, η) ∈ A,
v(T , x) = g(x), if T < +∞.

(9)

We assume that a classical solution to this problem exists, which is, for example,
the case if φ and g are continuous and bounded. Let X be the diffusion process
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whose components are given by (2). Then it follows from the Itô formula applied
to X that, for t ∈ [0, T ],

v(t, x) = Ex

[
ec(τ−t)φ(τ − t,Xτ−t ); τ < T − t

]
+ Ex

[
ec(T −t)g(XT −t ); τ = T − t

] + Ex

[
λ

∫ τ−t

0
ec(τ−t−s) ds

]
,

where τ is as above the first exit time from RT .
Let us remark that if σ is an invertible d × d-matrix, then the function u(t, x) =

v(t, σ−1x) is solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ 1

2

d∑
i,j=1

[σσ ∗]i,j ∂2u(t, x)

∂xi ∂xj

+
d∑

i=1

[μσ ∗]i ∂u(t, x)

∂xi

+ cu(t, x) = λ,

on [0, T ] × σR,

σj,i

∂u(t, x)

∂xj

= 0, for x ∈ σSi,η if (i, η) ∈ R,

u(t, x) = φ(t, σ−1x), for x ∈ σSi,η if (i, η) ∈ A,

u(T , x) = g(σ−1x), if T < +∞.

(10)

If ni is the unit vector orthogonal to the side σSi,η, then ni = (σ ∗)−1ei , where ei

is the unit vector in the ith direction. It follows that σσ ∗ni = σei and thus

for x ∈ σSi,±1 [σσ ∗]ni · ∇u(t, x) = σj,i

∂u(t, x)

∂xj

,

which means that a Neumann boundary condition in the co-normal direction holds
in (10) on σSi,η if (i, η) ∈ R.

We can thus solve (10) by reducing the problem to (9) and use a Monte Carlo
method in order to compute the values of u(t, x).

4.2. The hypotheses. Let us consider a domain Q in R+ ×R
d . For the sake of

simplicity, we assume that Q is the cylinder [0, T ] × D (with possibly T = +∞),
where D is an open, bounded domain of R

d with piecewise smooth boundary. Let
us consider a function a with values in the space of d × d-symmetric matrices
which is continuous on D and everywhere positive definite, together with some
functions b :Q → R

d , c :Q → R and f :Q → R. For all (t, x) ∈ Q, we denote by
σ(t, x) a d × d-symmetric matrix such that σ(t, x)σ ∗(t, x) = a(t, x).

We set

L = 1

2

d∑
i,j=1

ai,j (t, x)
∂2

∂xi ∂xj

+
d∑

i=1

bi(t, x)
∂

∂xi

.
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Let us introduce the hypotheses needed to ensure the convergence of our algo-
rithm. To set up a Monte Carlo numerical scheme, one needs three inter-connected
ingredients:

(i) The existence and the uniqueness of a solution u to the following PDE⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ Lu(t, x)

+ c(t, x)u(t, x) + f (t, x) = 0, on [0, T ] × D,
u(T , x) = g(x), x ∈ D,
u(t, x) = φ(t, x), on �d ⊂ [0, T ) × ∂D,
∂nu(t, x) = 0, on �n ⊂ [0, T ) × ∂D,

(11)

where ∂n denotes the co-normal derivative along the lateral surface. �d (respec-
tively, �n) are subsets of [0, T )×∂D on which a Dirichlet (respectively, Neumann)
boundary condition holds.

(ii) The existence of a solution to the diffusion process associated with L. Note
that since the simulation involves distributions and not stochastic integrals, we do
not need strong existence for the associated SDE.

(iii) The solution u can be expressed in terms of the probabilistic representation

u(t, x) = Et,x

[
exp

(∫ τ

t
c(s,Xs) ds

)
φ(τ,Xτ )1τ<T

]

+ Et,x

[
exp

(∫ T

t
c(s,Xs) ds

)
g(XT )1τ>T

]
(12)

+ Et,x

[∫ τ∧T

t
exp

(∫ s

t
c(r,Xr) dr

)
f (s,Xs) ds

]
,

where τ is the first exit time from [0,+∞) × D by a point of �d.

NOTATION 1. We denote by P the set of time–space parallelepipeds P such
that there exist 0 ≤ s < t ≤ T , L1, . . . ,Ld and x ∈ R

d such that

P = [s, t] × (
x + σ̂ ([−L1,L1] × · · · × [−Ld,Ld ])),

where σ̂ is a d × d-matrix. Possibly t = +∞ (if T = +∞).

The assumptions that have to be done are the following:

(H1) There exists a subset PD of P such that Q = ⋃
P∈PD

P . Besides, if P =
[s, t] × U ∈ P for a parallelepiped U , then for all r ∈ [s, t), [r, t] × U ∈ P .
In other words, one can truncate the parallelepipeds in time.

(H2) There exist �n, �d contained in ∂Q = [0, T ] × ∂D and some subsets Pn,
Pd of I such that �n ⊂ ⋃

P∈Pn
∂P , �d ⊂ ⋃

P∈Pd
∂P . The closure of �n ∪ �d

is equal to [0, T ] × ∂D and �n ∩ �d = ∅. This means that the boundary
of [0, T ] × ∂D is split in two distinct parts, where either the Dirichlet or
the Neumann boundary conditions hold. More precisely a side of a paral-
lelepiped in PD contained in ∂Q is either from �n or from �d.
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(H3) The differential operator L is the generator of a continuous diffusion process
X that is reflected at �n and killed when hitting �d ∪ {T } × D. The prob-
abilistic representation of the solution given by (12) holds (see, e.g., [25]
for existence results of such reflected process and [36] if there are no reflec-
tions).

(H4) There exists an unique solution u of class C 1,2 on [0, T ) × D to (11) which
is continuous on [0, T ] × D.

(H5) For a right parallelepiped R and a matrix σ̂ let P = [s, t] × (x + σ̂R) ∈ PD .
We associate with P a vector b̂ ∈ R

d , two constants ĉ, f̂ and we construct
the differential operator

L̂ = 1

2

d∑
k,l=1

âk,�

∂2

∂xk ∂x�

+
d∑

k=1

b̂k

∂

∂xk

with â = σ̂ σ̂ ∗.
Fix δ > 0. We assume that the solution u to (11) satisfies, for any y in the

interior of x + σ̂R,

Es,y

∣∣∣∣∫ τ̃

s
eĉ(r−s)

(
∂u

∂t
+ L̂u + ĉu − f̂

)
(r, X̂r) dr

∣∣∣∣ ≤ δ,

where X̂ is the diffusion process generated by L̂, and τ̃ is its first exit time
from P .

REMARK 2. If T = +∞ and the coefficients are time-homogeneous and �d =
[0,∞) × γd, �n = [0,∞) × γn, then v(x) = u(0, x) is solution to the elliptic PDE⎧⎨⎩

Lv(x) + c(x)v(x) = f (x), on D,
v(x) = φ(x), on γd ⊂ ∂D,
∂nv(x) = 0, on γn ⊂ ∂D.

(13)

Thus, by solving the parabolic PDE (11), we may also solve the elliptic PDE (13).
We will thus focus only on (11).

REMARK 3. The result of the existence of a stochastic process reflected on
some part of the boundary of [0, T ) × D is deduced from the existence of a sto-
chastic process reflected on the lateral boundary [0, T ) × D which is killed when
it hits �n.

4.3. The algorithm and its weak error. In order to simplify the notation, if
T < +∞, we denote the final condition g of (11) by φ(T , x).

Given (t, x) ∈ Q, the solution u(t, x) of (11) is computed by the Feynman–Kac
formula. For this, we have to simulate the diffusion process X up to its first exit
time τ from Q. We suppose here that the particle cannot exit by a part of boundary
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where a Neumann boundary condition holds. Let u be the solution of (11). Let us
introduce the following notation:

for s ≥ t

⎧⎪⎪⎨⎪⎪⎩
Ys = 1 +

∫ s

t
c(r,Xr)Yr dr = exp

(∫ s

t
c(r,Xr) dr

)
,

Zs =
∫ s

t
f (r,Xr)Yr dr.

Then u(t, x) is given by

u(t, x) = Et,x[φ(τ,Xτ )Yτ + Zτ ].(14)

We construct now the algorithm that approximates (14) by a Monte Carlo method.

ALGORITHM 2. Assume that we start initially at the point (t, x) ∈ Q and fix
a number N of particles.

(1) For i = 1, . . . ,N do
(A) Set (θ0,�0, Y0,Z0,W0) = (t, x,1,0,1) and k = 0.
(B) Repeat:

(a) Choose an element P (k) ∈ PD of the form P (k) = [θk, s]×U , U ⊂ R
d

such that (θk,�k) belongs to the basis of P (s is possibly infinite if,
for example, T = +∞ and the coefficients are time-inhomogeneous).
On P (k), consider the differential operator L(k) as well c(k) and f (k)

which approximate L, c and f as in (H5).
(b) Draw a realization of a random variable (θk+1,�k+1) with values in

({s} × U) ∪ ((θk, s) × ∂U) and compute its associated weight wk as
shown in Sections 2 and 4.1 by considering the exit time and position
from the parallelepiped P (k).

(c) Compute Wk = Wk−1wk and

Yk+1 = Yk exp
(
c(k)(θk+1 − θk)

)
,

Zk+1 = Zk + f (k)
∫ θk+1

θk

exp
(
c(k)s

)
ds.

(d) If �k+1 ∈ �d or θk+1 = T , then exit from the loop.
(e) Increase k.

(C) Set (θ(i),�(i), Y (i),Z(i),W(i)) = (θk+1,�k+1, Yk+1,Zk+1,Wk).
(2) Return

û(t, x) = 1

N

N∑
i=1

(
W(i)φ

(
θ(i),�(i))Y (i) + W(i)Z(i)).(15)

We denote from now on by P̂x the distribution of the Markov chain �k =
(θk,�k), k ≥ 0. Note that (Yk,Zk,wk)k≥0 is obtained from (�k)k≥0.
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PROPOSITION 2. For any (t, x) ∈ [0, T ) × D,

|u(t, x) − Êx[û(t, x)]| ≤ δÊx[Wνν exp(Mθν)],(16)

where δ is defined in (H5), ν is the number of steps that (�k)k≥0 takes to reach the
boundary �d ∩ {T } × D and

M = sup
(s,y)∈[t,T )×D

c(s, y).

REMARK 4. Note that the weak error in (16) does not depend on the choice
of the importance sampling technique while the Monte Carlo error depends on this
choice. If the coefficients a, b, f and c are constant on the domain, one can choose
δ = 0 and the simulation becomes exact.

PROOF. To the Markov chain (�k)k≥0 is associated a random sequence of par-
allelepipeds (P (k))k=0,...,ν . Let us denote by τ (k) the successive times the diffusion
process X reaches the boundary of the P (k)’s.

Since Z0 = 0, Y0 = 1 and u = φ on the boundary of Q, we get

Êx[û(t, x)] = Êx[WνYνφ(θν,�ν) + WνZν]

= u(t, x) + Êx

[
Wν

ν−1∑
k=0

(
Zk+1 − Zk + Yk+1u(θk+1,�k+1)(17)

− Yku(θk,�k)
)]

.

Let (Gk)k≥0 be the filtration generated by the Markov chain (�k)k≥0. We remark
that Yk and Zk are measurable with respect to Gk while wk is measurable with
respect to Gk+1 (since it is obtained from θk , �k , θk+1 and �k+1).

By using the Markov property, after setting Wk+1,ν = Êx[wk+1 · · ·wν |Gk+1],
we get

Êx[Wν(Zk+1 − Zk)]
= Êx

[
Wk+1,νÊx[wk(Zk+1 − Zk)|Gk]Wk−1

]
,

Êx

[
Wν

(
Yk+1u(θk+1,�k+1) − Yku(θk,�k)

)]
= Êx

[
Wk+1,νÊx

[
wk

(
Yk+1u(θk+1,�k+1) − Yku(θk,�k)

)|Gk

]
Wk−1

]
.

Let us denote by (X(k),P
(k)
t,x) the process generated by the operator L(k) with

constant coefficients a(k) and b(k) on P (k). Define recursively (t(0), x(0)) = (t, x)

and (t(k+1), x(k+1)) = (τ (k),X
(k)

τ (k)) where τ (k) is, as above, the first exit time from

P (k) for the diffusion X(k). Let also f (k) and c(k) be the values that approach f and
c on P (k), and define also recursively y(0) = 1 and y(k) = y(k−1) exp(c(k)(t (k+1) −
t (k))).
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By using the properties of P̂x and the Itô formula we obtain

Êx

[
wk

(
Yk+1u(θk+1,�k+1) − Yku(θk,�k)

)|Gk

]
= y(k)

E
(k)

t(k),x(k)

[(
ec(k)(t(k+1)−t (k))u

(
t (k+1),X

(k+1)

t(k+1)

) − u
(
t (k), x(k)))]

= y(k)
E

(k)

t(k),x(k)

[∫ t (k+1)

t (k)
ec(k)(s−t (k))

(
∂

∂t
+ L(k) + c(k)

)
u
(
s,X(k)

s

)
ds

]
.

Also,

Êx[wk(Zk+1 − Zk)|Gk] = y(k)
E

(k)

t(k),x(k)

[
f (k)

∫ t (k+1)

t (k)
ec(k)s ds

]
.

Under the hypothesis on the coefficients and the parallelepiped P (k) we have∣∣Êx

[
wk

(
Yk+1u(θk+1,�k+1) − Yku(θk,�k) + Zk+1 − Zk

)|Gk

]∣∣
=

∣∣∣∣y(k)
E

(k)

t(k),x(k)

[∫ t (k+1)

t (k)
ec(k)(s−t (k))

×
((

∂

∂t
+ L(k) + c(k)

)
u
(
s,X(k)

s

) + f (k)

)
ds

]∣∣∣∣
≤ y(k)δ ≤ Êx[δwkYk|Gk],

since the Yk’s (and so the y(k)’s) are positive. Hence, from (17) and the Jensen
inequality applied to | · |, we obtain

|Êx[Yνφ(θν,�ν) + Zν] − Êx[û(t, x)]| ≤ δÊx

[
Wν

ν−1∑
k=0

Yk

]
.

As 0 < Yk ≤ eMθk for k = 0, . . . , ν, we deduce (16). �

4.4. The Monte Carlo error. In order to compute the solution u(t, x) of (11),
we have constructed the estimator û(t, x) given by (15) whose variance is

Var
P̂x

û(t, x) = 1

N
Var

P̂x

(
Wνφ(θν,�ν)Yν + WνZν

)
.

The Monte Carlo error depends on this variance s2 = Var
P̂x

û(t, x), since asymp-
totically for N → ∞ the true mean Êx[û(t, x)] lies in the interval [û(t, x) −
2s, û(t, x) + 2s] with a confidence of 95.4%.

We denote by P̂
n the distribution of (�k)k≥0 with respect to the real distribution

of the exit time and position of the rectangles. In this case the weights are equal
to 1. Any event � measurable with respect to (�k)k≥0 satisfies P̂

n[�] = P̂x[W�].
We get thus

Var
P̂x

(
Wνφ(θν,�ν)Yν + WνZν

) = � + Var
P̂n(û(t, x))
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with

� = Ê
n[

(Wν − 1)
(
φ(θν,�ν)Yν + Zν

)2]
.

This shows that a good choice for the density of the exit time and position from
the parallelepipeds is such that � ≤ 0 is as small as possible. By the way, reducing
the variance is a difficult task and requires some automatic selection/optimization
techniques, as explained in the Introduction.

In addition, the numerical experiments we performed up to now highlight an-
other difficulty. Wν may take large values, and this implies meaningless values for
û(t, x). That is why we suggest to keep track also of the empirical distribution, or
at least of the variance of Wν .

In order to illustrate this, let us assume that the diffusion process X has no drift
and that for the simulation, the right parallelepipeds we use are squares centered
on the particle, and consider the same density for the exit time and position. By
a scaling argument, the distribution of the weight wk at the kth step does not de-
pend on the size of the squares, so that the wk’s are independent and identically
distributed under P̂x .

Let us fix an integer n such that ν ≥ n a.s. (for example, the minimal number
of steps needed to reach an absorbing boundary). We set ξ i = log(wi), so that
Wn = exp(

∑n
i=1 ξ i). As the ξ i are independent and identically distributed, let us

note Sn = ∑n
i=1 ξ i , then Sn/

√
n converges to some normal random variable χ with

mean m and variance s2. For n large enough, the distribution of Wn is close to the
distribution of exp(

√
nχ). We obtain, with the expression of the Laplace transform

for the normal distribution, for j ∈ {1,2},

Êx[(Wn)
j ] ≈ Ex

[
exp

(
j
√

nχ
)] = exp

(
mj

√
n + n

j2s2

2

)
.

This leads us to the following approximation:

Var
P̂x

(Wn) ≈ exp
(
2m

√
n + 2ns2) − exp

(
m

√
n + n

2
s2

)
≈ exp(2ns2)

(
exp

(
m√
n

+ 1
)

− exp
(

m

2
√

n
− 3n

2
s2

))
∼

n→∞ exp(1 + 2ns2).

So, for large n, the variance of Wn explodes, while Êx[Wn] = 1 for any n ≥ 1.
In [13] (see also [14]), Glynn and Iglehart exhibit another argument that shows

that the simulation performs badly if too many steps are used.

4.5. Population Monte Carlo. In order to overcome the explosion of the vari-
ance due to the weights one can use a population Monte Carlo method. This kind
of method, also known as quantum Monte Carlo, sequential Monte Carlo, Green
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Monte Carlo, . . . has been used for a long time in physical simulations (see, e.g.,
[18] for a brief survey) but also in signal theory, statistics, . . . . A probabilistic point
of view is developed in the book [9] of Del Moral.

In our case, instead of simulating the particles one after another, the idea is to
keep track of the whole population of N particles (y(i))i∈{1,...,N} with time and
space coordinates (t(i), x(i)) and a weight w(i) according to the algorithm given
below. Each particle has two possible states: still running or stopped. A particle is
stopped either at the first time it reaches an absorbing boundary, or if its time is
equal to the finite final time T . Otherwise, the particle is still running.

ALGORITHM 3. This algorithm computes an approximation of the quantity
Ex[f (T ∧ τ,XT ∧τ )] when X0 = 0 by using a population of N particles.

1. Set n = 0; n is the number of steps.
2. For i from 1 to N set

(a) (w
(i)
0 , t

(i)
0 , x

(i)
0 ) = (0,0, x).

3. Set S = ∅ and Rn = {(w(i)
0 , t

(i)
0 , x

(i)
0 )}i=1,...,N .

4. While the set Rn of still running particles at step n is nonempty do:
(a) Set Rn+1 = ∅.
(b) Do #Rn times the following operations:

(i) Pick a still running particle of index j at random according to a family
of discrete probability distribution

pj = w
(j)
n∑

k index of particles in Rn
w

(k)
n

,

where w
(j)
n is the weight of the particle after n iterations.

(ii) The particle is moved in time and space according to the exit time and
position from a time–space parallelepiped that contains (t

(j)
n , x

(j)
n ). Its

new position is denoted (t
(j)
n+1, x

(j)
n+1) and its associated weight w

(j)
n+1.

(iii) If t
(j)
n+1 = T or if x

(j)
n+1 belongs to an absorbing boundary, then

(w
(j)
n+1, t

(j)
n+1, x

(j)
n+1) is added to the set S of stopped particles. Oth-

erwise, it is added to Rn+1.
(c) Increment n by 1.

5. Return

1∑N ′
i=1 w(i)

N ′∑
i=1

w(i)f
(
t (i), x(i)),

when S = {(w(i), t (i), x(i))}i=1,...,N ′ .

As we need to keep track of the positions of all the particles, this algorithm is
memory consuming. On the other hand, it avoids the multiplication of the weights.
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In addition, this algorithm can be modified in the following way: instead of using
#Rn particles at step n, it is possible to use N particles, and in this case, one has to
keep track of the number of still running particles and to multiply the weights by
the proportion of still running particles. The algorithm stops when the proportion
of still running particles is smaller than a given threshold. This approach can be
used, for example, for long time simulation, or to estimate rare events, as, for
example, in [6, 9, 10, 23].

4.6. Estimation of the number of steps. Let us consider now the estimation of
the number of steps. In order to do this we will use the techniques employed in
[26, 28, 29].

In Algorithm 2, we have constructed the Markov chain (�k)k≥0 which is ab-
sorbed when reaching �k = �d ∩ {T } × D.

For a function u on D, we set

Pu(t, x) = Ê
n[u(�1)|�0 = (t, x)] and A = Pu(t, x) − u(t, x).

The operator A is the generator of a Markov chain.

LEMMA 1. If T < +∞ and

Ê
n[θ1|(θ0,�0) = (t, x)] − t ≥ γ,

then

Ê
n[ν|(θ0,�0) = (t, x)] ≤ 1 + T − t

γ
.

PROOF. Consider the problem{
Av(t, x) = −g(t, x), on Q,
u(t, x) = 0, on [0, T ] × �,

whose solution is

u(t, x) = Ê
n

[
ν−1∑
k=0

g(�k)

]
.

We remark that if u and g are well chosen this equality gives a good estimate of
Ê

n[ν].
Let V (t, x) be the function V (t, x) = (T − t)1(t,x)∈Q. For (t, x) in Q, we have

AV (t, x) = Ê
n[V (θ1,�1)|(θ0,�0) = (t, x)] − (T − t) ≤ −γ.

Hence T − t ≥ Ê
n[∑ν−1

k=0 γ |(θ0,�0) = (t, x)] and the result follows easily. �
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LEMMA 2. With the previous notation, for every L > 0 fixed, we have

sup
x∈Q

P̂
n[ν ≥ L|(θ0,�0) = (t, x)] ≤ (1 + T − t) exp

(−cγL/(1 + T − t)
)
,

where c is a constant depending on γ ; more precisely c converges to 1 as γ de-
creases to 0.

PROOF. The proof follows from the one of Theorem 7.2 in [28]. �

LEMMA 3. If T = +∞, Q is bounded and

Ê
n[|x + �1 + c|2] ≥ γ > 0,

where c is such that minx∈Q |x + c| ≥ C > 0. Then

Ê
n[ν] ≤ B2 − C2

B2 − γ

with B > max{γ, supx∈Q |x + c|}.

PROOF. Let us proceed as in [26]. Choose a vector c such that minx∈Q |x +
c| ≥ C > 0, and set

V (t, x) =
{

B2 − |x + c|2, if (t, x) ∈ R+ × Q,
0, otherwise.

Thus for B2 > γ ,

AV (t, x) ≤ |x + c|2 − Ê
n[|x + �1 + c|2|(θ0,�0) = (t, x)] ≤ B2 − γ

and the result follows. �

5. Numerical examples. We present in this section some numerical examples
in order to test our algorithm.

5.1. Speeding up the random walk on squares algorithm. In [28] (see also
[29]), Milstein and Tretyakov propose a method to simulate Brownian motions
and solutions of SDEs by using the first exit time and position from a hyper-cube
or a time–space parallelepiped with cubic space basis. A similar method has been
previously proposed by Faure in his Ph.D. thesis [11]. This method is a variation of
the random walk on spheres method. Some authors already used random walk on
squares and rectangles by using the explicit expression of the Green function but
without simulating the exit time (see, e.g., [35]). One of the main features of our
approach is the simulation of the couple of nonindependent random variables (exit
time, exit position) by means of real valued random variables. We have explained
in [8] how to extend this approach to rectangles and the starting point everywhere
in the rectangle. This approach is still using only one-dimensional distributions.
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However, by using symmetry properties, we can notice that it is simpler to deal
with squares centered on the current position of the particle than with a rectangle.

Nevertheless, the computation may be time consuming. We are looking now to
speed up the computations by using a simple density for the exit position.

Let us consider here the d-dimensional hypercube C = [−1,1]d , and a fixed
time T > 0 (possibly T = +∞). Let B be a d-dimensional Brownian motion. We
set τB = inf{t > 0|Bt /∈ C}. Let W be a one-dimensional Brownian motion. We set
τW[−1,1] = inf{t > 0|Wt /∈ [−1,1]}, R(t) = P0[τW[−1,1] < t], r the density of τW[−1,1],
S(t, y) = P0[Wt < y|t < τW[−1,1]] and s(t, y) = ∂yS(t, y) the density of Wt given

{t < τW[−1,1]}.
Let us note that we can easily switch from C = [−1,1]d to any hypercube

[−L,L]d after a scaling argument in space and time. Thus, from a numerical point
of view, we need only to implement the required functions r , s, R and S on [−1,1].
Analytical expressions for these distribution functions are easily deduced from the
series presented in the Appendix.

To simulate the exit time and position from [0, T ] × C, we proceed in the fol-
lowing steps:

• Compute the probability β = 1 − (1 − R(T ))d that τB < T .
• With probability β , decide if {τB < T } happens or not.
• If {τB < T } happens:

– For a realization U of a uniform random variable U on [0,1), set

τB = R−1(
1 − (1 − Uβ)1/d)

,

which is a realization of τB given {τB < T }.
– Choose with probability 1/2d an exit side (J, ε), and set ξJ = ε.
– For each i = 1, . . . , d , i 
= J , set χi = √

Ui , where the Ui’s are d − 1 inde-
pendent realizations of uniform random variables on [0,1). With probability
1/2, set ξi = χi − 1 and with probability 1/2, set ξi = 1 − χi .

– Compute the weight

w = 1

1 − R(τB)

∏
i=1,...,d,i 
=J

s(τB, ξi)

χi

.

• If {τB ≥ T } happens, then:
– Set τB = T .
– For i = 1, . . . , d , set χi = √

Ui , where the Ui’s are d − 1 independent re-
alizations of uniform random variables on [0,1). With probability 1/2, set
ξi = χi − 1 and with probability 1/2, set ξi = 1 − χi .

– Compute the weight

w = 1

1 − β

∏
i=1,...,d

s(T , ξi)

χi

.
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(τB, ξ1, . . . , ξd) represent the first exit time and position from [0, T ] × C, and w

is the associated weight.
For the random walk on squares we can also use the idea proposed in [28] and

in [11]. This leads to the following algorithm:

• Compute the probability β = 1 − (1 − R(T ))d that τB < T .
• With probability β , decide if {τB < T } happens or not.
• If {τB < T } happens:

– For a realization U of a uniform random variable U on [0,1), set

τB = R−1(
1 − (1 − Uβ)1/d)

,

which is a realization of τB given {τB < T }.
– Choose with probability 1/2d an exit side (J, ε), and set ξJ = ε.
– For each i = 1, . . . , d , i 
= J , draw ξi according to the distribution of Bi

τB

given τBi
> τB , where τBi = inf{t > 0|Bi /∈ [−1,1]}.

• If {τB ≥ T } happens, then:
– Set τB = T .
– For i = 1, . . . , d , draw ξi according to the distribution of Bi

τB given τBi
> τB .

In both cases, we use tabulated values for R and R−1. In order to simulate Bi
t

given τBi
> t , we use the rejection method proposed by Faure in [11] for t ∈

[0.25,2]. Otherwise, we draw Bi
t by using the fact that it is equal to S−1(t,U) for

some random variable U with uniform distribution on [0,1). This is the method
proposed by Milstein and Tretyakov in [28]. For t > 2, the latter method is more
efficient than the previous one. For t < 0.2, the rejection method may give wrong
results. For t close to 0.2, the rejection method can be up to 6 times faster than the
inversion method, while for t close to 2, they are comparable in the computation
time.

If the Brownian motion reaches the side labeled by (1,−1) first at time τB ,
then in order to simulate Bi

t for i = 2, . . . , d we use a random variable with den-
sity φ(x) = 1 + x if x ∈ (−1,0] and φ(x) = 1 − x if x ∈ [0,−1). In this case, the
weights w are close to 1 as we see in Table 1, and the execution time is usually
divided by 10. For T = 0.1, the variance of w is too high and leads to some insta-
bilities. In this case, it is preferable to simulate the exact distributions of BT given
{T ≤ τB}.

5.2. Solving a bi-harmonic problem. To test the validity of our approach with
respect to other algorithms, we consider first an example borrowed in [28] (see
also [29], page 332). Let D = [−1,1]2, and consider the bi-harmonic equation⎧⎪⎨⎪⎩

1
2�2u(x) = 1, x ∈ D,
u(x) = φ(x), on ∂D,
1
2�u(x) = ψ(x), on ∂D,

(18)
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TABLE 1
Speeding up the random walk on squares: experiments with 1,000,000 samples are used

Method T Mean of w Variance of w Time (s)

Walk on squares 0.1 – – 94
Imp. sampling 0.1 1.0005 0.28 3.2
Walk on squares 0.2 – – 82
Imp. sampling 0.1 0.9997 0.014 1.8
Walk on squares 0.5 – – 10
Imp. sampling 0.5 0.9999 0.021 1.2
Walk on squares 1.0 – – 10
Imp. sampling 1.0 0.9994 0.017 1
Walk on squares +∞ – – 10
Imp. sampling +∞ 0.9998 0.015 0.98

with

φ(x1,±1) = 1 + x4
1

12
, φ(±1, x2) = 1 + x4

2

12
,(19)

ψ(x1,±1) = 1 + x2
1

2
, ψ(±1, x2) = 1 + x2

2

2
.(20)

After setting v(x) = 1
2�u(x), (18) may be transformed into the system{ 1

2�v(x) = 1 on D, with u(x) = ψ(x) on ∂D,
1
2�u(x) − v(x) = 0 on D, with u(x) = φ(x) on ∂D,

whose exact solution is

u(x) = x4
1 + x4

2

12
, v(x) = x2

1 + x2
2

2
.

By Itô’s formula, it is easy to show that

u(x) = E[φ(x + BτB )] − E[τBψ(x + BτB )] + 1
2E[(τB)2],

v(x) = E[ψ(x + BτB )] − E[τB],
where B is a two-dimensional Brownian motion, and τB is, as above, its first exit
time from D.

Here, in contrast with the values presented in [28], we only need to use one
square, since we are not forced to start from its center. We compare the results
given by our algorithm (first lines) with the one given by the random walk on
rectangles (second line). Each side is chosen uniformly with probability 1/4. The
time is drawn by using an exponential random variable of parameter 1/(1 − εxi) if
(i, ε) is the exit side. The position is drawn uniformly on the exit side. This strategy
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corresponds in some sense to a “naive” and simple way to choose the exit time and
position.

As we evaluate quantities of the form E[f (τB,BτB )], we report the quan-
tities μn ± 2σn/

√
n, where μn is the empirical mean of f (τB,BτB ) with n

samples, and σn is the corresponding empirical standard deviation. The inter-
val [μn − 2σn/

√
n,μn + 2σn/

√
n] represents the 95.5% confidence interval for

E[f (τB,BτB )]. The estimations u(x) and v(x) of u and v for three points are
given in Table 2.

Although a small numerical bias seems to appear, our algorithm provides results
comparable with the random walk on rectangles method. The execution time is
much smaller than the one given by this method (also the one given by the random
walk on squares, for which the simulation of one step takes less time, but where
more steps are needed).

5.3. Estimation of rare events: Computing hitting probabilities. Let us con-
sider the following problem: what is the probability p(x) that starting from a point
x in a domain D a Brownian motion reaches a part S of the boundary ∂D? It is
well known that p is the solution of the Dirichlet problem

1
2�p(x) = 0 on D and p(x) =

{
1, if x ∈ S,
0, if x ∈ ∂D \ S.

(21)

TABLE 2
Solution of the bi-harmonic equation: the first line of each row contains the results for our

algorithm, and the second line contains the results for the random walk on rectangles

x n u(x) u(x) v(x) v(x) Time (s)

(0.3,0.5) 104 0.00588 0.0047 ± 0.0037 0.17000 0.1638 ± 0.0081 0.03
0.0064 ± 0.0039 0.1684 ± 0.0081 3.8

– 105 – 0.0061 ± 0.0012 – 0.1669 ± 0.0026 0.23
0.0062 ± 0.0012 0.1679 ± 0.0026 38

– 106 – 0.0059 ± 0.0004 – 0.1698 ± 0.0008 2.2
0.0059 ± 0.0004 0.1696 ± 0.0008 381

(0.7,0.8) 104 0.05414 0.0480 ± 0.0017 0.56500 0.5297 ± 0.0064 0.02
0.0553 ± 0.0020 0.5707 ± 0.0061 7

– 105 – 0.0526 ± 0.0005 – 0.5593 ± 0.0019 0.2
0.0543 ± 0.0006 0.5652 ± 0.0019 73

– 106 – 0.0536 ± 0.0002 – 0.5654 ± 0.0006 2.5
0.0542 ± 0.0002 0.5650 ± 0.0006 726

(0.9,0.9) 104 0.10935 0.1103 ± 0.0009 0.81000 0.8186 ± 0.0034 0.01
0.1109 ± 0.0020 0.8105 ± 0.0038 11

– 105 – 0.1131 ± 0.0002 – 0.8390 ± 0.0006 0.2
0.1095 ± 0.0003 0.8107 ± 0.0011 112

– 106 – 0.1087 ± 0.0001 – 0.8097 ± 0.0003 2
0.1093 ± 0.0001 0.8100 ± 0.0003 1100
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FIG. 2. A simple domain D.

We illustrate our method on the simple two-dimensional domain D drawn in
Figure 2 and we compute the value of p at the five points marked, respectively, by
(a), (b), (c), (d) and (e) on Figure 2.

To set up our algorithm, we use two rectangles as in Figure 3. The numbers
marked on each side are the probabilities to reach each one of these sides.

In order to obtain the simulated exit time we draw an exponential random vari-
able with parameter α where α is given by α = 1/(

√
Li/2). The Li notes the length

of the rectangle in the direction perpendicular to the boundary that the particle hits.
We perform 100,000 samples; each computation takes around 1 s on our com-

puter (a MacBook 12′′, 2 GHz with a code written in C). The values for p are given
in Table 3. We perform a comparison with the value given by MATLAB/PDEtool
where (21) is solved by using a finite element method, and with the method of
random walk on rectangles [8] which is exact (up to the Monte Carlo error), for
such a domain. In this case, with a sample of size n, the variance of the empirical
mean is p(x)(1 − p(x))/n.

We notice that the results given by our method are close to the one given by
the finite element method. As one can expect, the random walk on rectangles (and
any other methods that do not rely on importance sampling or variance reduction
techniques) is not efficient to estimate the values of p(x) when they are of the
same order as the standard deviation of the empirical mean.

In order to test the validity of our method for the simulation of rare events, we
use the domain D′ as in Figure 4.

FIG. 3. Decomposition of D into rectangles.
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TABLE 3
Computation of p(x) at given points of D

Point Import. sampling Finite element Walk on rect.

(a) 3.32 · 10−6 3.39 · 10−6 0.00
(b) 2.31 · 10−5 2.23 · 10−5 1.00 · 10−5

(c) 1.70 · 10−4 1.77 · 10−4 1.90 · 10−4

(d) 4.43 · 10−5 4.64 · 10−5 3.00 · 10−5

(e) 2.79 · 10−3 2.81 · 10−3 2.36 · 10−3

The numerical results are reported in Table 4. pn is the empirical mean with
n = 100,000 samples, and s50(pn) is the empirical standard deviation computed
over 50 realizations of pn. We obtain really good results even while computing
small probabilities of order of magnitude 10−10.

5.4. Simulation of SDEs: Approximation close to the boundary. Let us con-
sider the two-dimensional SDE

Xt = x +
∫ t

0
σ(Xs) dBs with σ(x) =

[
1 1

2 sin(x1 + x2)

0 1

]
,

which is driven by a two-dimensional Brownian motion B . The process X is killed
when it exits from the domain D which is represented in Figure 5.

In order to simulate X, we use either an Euler scheme with a time step of 0.0025
or a (possibly modified) random walk on squares. The squares sides lengths are
smaller than 2L with L = 0.05 (note that the time step of the Euler scheme corre-
sponds to 0.052 which is close to the average exit time of the square [0.1,0.1]2).
As the diffusion moves in a bounded domain, we use to deal with the boundary
condition and apply the technique proposed in [7]: if the distance between the po-
sition of the particle and the boundary is smaller than 2L, we choose the square
such that one of its sides is included in the boundary when it is possible to do so.

Unless the coefficients of the SDE are constant, one needs to simulate many
couples of exit times and positions from small squares, and the computational time
becomes very large and is not competitive with respect to the Euler scheme. In

FIG. 4. A simple domain D′.
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TABLE 4
Computation of p(x) at given points of D′

Point pn s50(pn) Finite element

(a) 1.00 · 10−10 2.3 · 10−11 1.15 · 10−10

(b) 7.67 · 10−10 1.6 · 10−10 8.13 · 10−10

(c) 5.19 · 10−9 1.0 · 10−9 6.61 · 10−9

(d) 1.31 · 10−9 2.8 · 10−10 1.73 · 10−9

(e) 2.27 · 10−7 4.9 · 10−8 2.29 · 10−7

addition, when the random walk on squares is coupled with importance sampling,
the weights grow quickly (see Section 4.4).

When the Euler scheme is used, we simply stop the algorithm when the particle
leaves the domain D. This is a crude way to proceed, and some refinements can be
done (see, e.g., [15]). Note that the exit time is then overestimated.

The idea is to mix the two methods and to use the Euler scheme inside the
domain, and a random walk on squares when the particle is close to the boundary.
We improve thus the simulation as in this case the behavior of the particle is taken
into account. In addition, it is possible by making a change of measure, to increase
or to decrease the probability that the particle hits the boundary.

Our aim is here to increase the number of particles which are not killed before
a given time T . When one side of the square is set on the boundary, we use a
probability p that the particle reaches the side of the square that is opposite to the
boundary, and q = (1 −p)/3 for any other side. We have thus a “repulsing” effect.

We use P1 = {p = 0.7, q = 0.1} and P2 = {p = 0.91, q = 0.03}.
In order to avoid the explosion of the variance of the weight, we have used a

limitation Nmax for the number of times this procedure is used. The variance of the
weight for each time this procedure is used is 0.04 for the set P1 and 0.34 for the
set P2.

FIG. 5. Domain D with the label of the sides and the starting point.
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TABLE 5
Simulations of the proportions (in %) of the particles reaching a given part of the boundary as well
as the surviving particles at time T . We write “unstable” in the column for the variance of weights

when the mean of the global weights is rather far from 1

T Type Side 1 Side 2 Side 3 Side 4 Side 5 Final time Var. weights Nmax Time

Test with set of probabilities P1 on the boundary

1 Est. 31.55 12.39 4.16 0.44 51.27 0.17 9.3 5 73
Sim. 31.91 12.97 5.07 0.65 48.96 0.41

1 Est. 30.81 13.19 4.06 0.32 51.43 0.17 29.9 10 83
Sim. 31.93 13.08 5.42 0.75 48.10 0.66

1 Est. 31.05 13.83 4.37 0.42 50.14 0.17 30.0 20 93
Sim. 32.01 13.40 5.57 0.91 47.10 0.96

1 Est. 30.96 13.54 4.08 0.36 50.84 0.19 56.55 100 99
Sim. 31.78 13.27 5.57 0.98 46.83 1.36

Test with set of probabilities P2 on the boundary

1 Est. 29.45 12.11 3.49 0.58 54.19 0.14 426 5 90
Sim. 32.13 13.07 5.71 0.81 47.61 0.95

1 Est. 33.76 11.78 5.71 0.37 48.16 0.19 65.5 (unstable) 10 117
Sim. 32.03 13.50 6.70 1.13 45.21 1.48

1 Est. 31.28 14.19 3.75 0.44 50.10 0.21 51.08 (unstable) 20 162
Sim. 31.18 13.48 7.64 1.62 42.44 3.62

1 Est. 29.87 13.73 2.83 0.30 53.03 0.23 312.5 (unstable) 100 223
Sim. 28.13 12.21 7.50 1.58 36.36 14.23

All the simulations are done with 100,000 particles. The results are summarized
in Table 5. For T = 1, the proportion of particles still alive is of order 0.19% (using
the Euler scheme without specific treatment on the boundary, we get an estimation
of 0.33%, yet for a quicker simulation of 7 s). With a population Monte Carlo
method, we obtain an estimate of 0.17%, using the set P1 and a running time of
126 s. We see that our scheme allows one to get much more alive particles.

APPENDIX: HOW TO GET DENSITIES FOR DIFFERENT SITUATIONS?

We present in this section analytical expressions for the density in different
cases.

Except for the case of a drifted Brownian motion with Dirichlet boundary con-
dition at one endpoint of [−1,1] and a Neumann boundary condition at the other
endpoint of [−1,1], we obtain two expressions, one which follows from the im-
ages method and the other one from the spectral decomposition. From a numerical
point of view, the spectral decomposition gives rise to series that converge very
quickly for large times. It is worth using the expressions given by the method of
images for small times.
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A.1. Brownian motion without drift. We are interested in this section in
writing down some useful formulas for the calculations. Let us consider first the
case of the standard one-dimensional Brownian motion starting from x ∈ [−1,1]
which is killed or reflected when hitting the boundaries −1 or 1. We shall write
D for Dirichlet condition on the boundary and N for Neumann condition, which
of course correspond to killing and, respectively, reflection. Furthermore we shall
note, for example, pDN(t, x1, x2) the density of the Brownian motion on [−1,1]
killed when hitting −1 and reflected on 1 more precisely the order in the indices
indicates the boundary condition in −1 and 1, respectively.

A.1.1. Reflected Brownian motion on [−1,1]. Let pNN(t, x1, x2) denote the
probability density function of a Brownian motion at time t , starting from x1 and
reflected at −1 and 1. By using the method of images we get the following formula
for the transition density:

pNN(t, x1, x2) = 1√
2πt

∞∑
n=−∞

[
e−(x1−x2+4n)2/(2t) + e−(x1+x2+4n+2)2/(2t)].

The spectral representation of this density writes

pNN(t, x1, x2) = 1

2
+

∞∑
n=1

e−n2π2/8t cos
(

nπ

2
(x1 + 1)

)
cos

(
nπ

2
(x2 + 1)

)
.

These expressions may be found, for example, in [4].

A.1.2. Killed Brownian motion on [−1,1]. Let pDD(t, x1, x2) denote the
probability density function of a Brownian motion at time t , starting from x1 and
killed when it exits from the interval [−1,1]. That is,

pDD(t, x1, x2) dx2 = Px1[Bt ∈ dx2; t < τDD],
where τDD = inf{t ≥ 0;Bt /∈ [−1,1]}. Then, by the images’ method we have

pDD(t, x1, x2) = 1√
2πt

∞∑
n=−∞

[
e−(x1−x2+4n)2/(2t) − e−(x1+x2+4n+2)2/(2t)].

For the law of the exit time we get

Px1[τDD ∈ dt] = 1√
2πt3

∞∑
n=−∞

(−1)n(x1 + 2n + 1)e−(x1+2n+1)2/(2t) dt.

The spectral representation can be also written and yields

pDD(t, x1, x2) =
∞∑

n=1

e−n2π2/8t sin
(

nπ

2
(x1 + 1)

)
sin

(
nπ

2
(x2 + 1)

)
.
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The law of the exit time is given by

Px1[τDD ∈ dt] = π

2

∞∑
n=0

(−1)n(2n + 1)e−(2n+1)2π2/8t cos
((

n + 1

2

)
πx1

)
dt.

These expressions may be found, for example, in [4] or in [28].

A.1.3. Mixed boundary conditions for the Brownian motion on [−1,1]. We
give here explicit solutions for the Brownian motion killed on −1 and reflected
on 1. Let pDN(t, x1, x2) denote the probability density function of a Brownian
motion at time t , starting from x1 and killed when it hits −1 and reflected on 1.
Then, by the images’ method, one gets

pDN(t, x1, x2) = 1√
2πt

∞∑
n=−∞

(−1)n
[
e−(x1−x2+4n)2/(2t) − e−(x1+x2+4n+2)2/(2t)].

Let us denote also by τDN the killing time for the Brownian motion on [−1,1)

killed on −1 and reflected on 1. Hence

Px1[τDN ∈ dt] = 1√
2πt3

∞∑
n=−∞

(−1)n(x1 + 4n + 1)e−(x1+4n+1)2/(2t) dt.

The spectral representation can be also written and yields

pDN(t, x1, x2) =
∞∑

n=0

e−(2n+1)2π2/32t sin
(

(2n + 1)π

4
(x1 + 1)

)

× sin
(

(2n + 1)π

4
(x2 + 1)

)
.

Then we get from the spectral representation the law of this exit time,

Px1[τDN ∈ dt] = π

8

∞∑
n=0

(2n + 1)e−(2n+1)2π2/32t sin
(

(2n + 1)π

4
(x1 + 1)

)
dt.

The dual situation (reflection on −1 and absorption on 1) can be obtained easily
by the transformation

pND(t, x1, x2) = pDN(t,−x1, x2).

These expressions may be found, for example, in [4].

A.2. Brownian motion with drift μ. As in the previous part of the Appendix
we consider here the case of the Brownian motion with drift on the interval [−1,1]
which is killed or reflected on −1 and 1. If we note by p

L,μ·· (t, x1, x2) the law of
the process with drift μ and living on [−L,L] and p

μ·· (t, x1, x2) the corresponding
law on [−1,1], then by the properties of the Brownian motion we have

pL,μ·· (t, x1, x2) = 1

L
pμL··

(
t

L2 ,
x1

L
,
x2

L

)
,
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where the dots in the indices can take the value D for a Dirichlet condition or N

for a Neumann condition, as previously noted.

A.2.1. Brownian motion with drift μ reflected on [−1,1]. We keep the same
notation as before. The use of the images’ method gives the following representa-
tion of the density:

p
μ
NN(t, x1, x2) = 2μe2μx2

e2μ − e−2μ
+ 1√

2πt

∞∑
n=−∞

e4μne−(x1−x2+μt+4n)2/(2t)

+ 1√
2πt

∞∑
n=−∞

e−2μx1e−μ(4n+2)e−(x1+x2−μt+4n+2)2/(2t)

− μe2μx2

∞∑
n=−∞

eμ(4n+2) erfc
(

x1 + x2 + μt + 4n + 2√
2t

)
.

This formula can be obtained also from the results in Veestraeten [37].
By the spectral method (see, e.g., [24]), we have, after some calculations,

p
μ
NN(t, x1, x2) = 2μe2μx2

e2μ − e−2μ

+ eμ(x2−x1)−μ2/2t

×
∞∑

n=1

e−n2π2/8t

μ2 + n2π2/4

[
πn

2
cos

(
πn

2
(x1 + 1)

)

+ μ sin
(

πn

2
(x1 + 1)

)]
×

[
πn

2
cos

(
πn

2
(x2 + 1)

)
+ μ sin

(
πn

2
(x2 + 1)

)]
.

A.2.2. Brownian motion with drift μ on [−1,1] killed at the boundary. We
keep the same notation as before. By using classical properties of the Brownian
motion and the results from Milstein and Tretyakov [28] we have the following
transformation:

p
μ
DD(t, x1, x2) = eμ(x2−x1)−μ2t/2pDD(t, x1, x2).

Then, by the images’ method,

p
μ
DD(t, x1, x2) = eμ(x2−x1)−μ2t/2 1√

2πt

×
∞∑

n=−∞

[
e−(x1−x2+4n)2/(2t) − e−(x1+x2+4n+2)2/(2t)].
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We write down both distribution and density for the exit time. The distribution
writes

Px1[τμ
DD < t] = 1 − 1

2

∞∑
n=−∞

e4μn

[
erfc

(
x1 + μt + 4n − 1√

2t

)

− erfc
(

x1 + μt + 4n + 1√
2t

)]

+ 1

2

∞∑
n=−∞

e−(2μx1+μ(4n+2))

[
erfc

(
x1 − μt + 4n + 1√

2t

)

− erfc
(

x1 − μt + 4n + 3√
2t

)]
,

while for the density we obtain

Px1[τμ
DD ∈ dt] = e−μx1−μ2t/2

√
2πt3

∞∑
n=−∞

[
e−μ(x1 + 4n + 1)e−(x1+4n+1)2/(2t)

− eμ(x1 + 4n − 1)e−(x1+4n−1)2/(2t)].
The spectral representation can be also written and yields

p
μ
DD(t, x1, x2) = eμ(x2−x1)−μ2t/2

×
∞∑

n=1

e−n2π2/8t sin
(

nπ

2
(x1 + 1)

)
sin

(
nπ

2
(x2 + 1)

)
.

The distribution of the exit time is given by

Px1[τμ
DD < t]

= 1 − e−μx1−μ2t/2
∞∑

n=1

(
e−μ − (−1)neμ) 2nπ

4μ2 + n2π2 e−n2π2/8t

× sin
(

nπ

2
(x1 + 1)

)

= 1 − e−μx1−μ2t/2(e−μ − eμ)

∞∑
n=1

(−1)n
nπ

μ2 + n2π2 e−n2π2/2t sin(nπx1)

− e−μx1−μ2t/2(e−μ + eμ)

∞∑
n=0

(−1)n
2(2n + 1)π

4μ2 + (2n + 1)2π2

× e−(2n+1)2π2/8t cos
(

(2n + 1)π

2
x1

)
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and

Px1[τμ
DD ∈ dt] = e−μx1−μ2t/2

×
∞∑

n=1

nπ

4

(
e−μ − (−1)neμ)

e−n2π2/8t

× sin
(

nπ

2
(x1 + 1)

)
dt.

In a more detailed expression we can write this on the form

Px1[τμ
DD ∈ dt] = e−μx1−μ2t/2(e−μ − eμ)

×
∞∑

n=1

(−1)n
nπ

2
e−n2π2/2t sin(nπx1)

+ e−μx1−μ2t/2(e−μ + eμ)

×
∞∑

n=0

(−1)n
(2n + 1)π

4
e−(2n+1)2π2/8t

× cos
(

(2n + 1)π

2
x1

)
dt.

These expressions may be found, for example, in [4] or in [28].

A.2.3. Mixed boundary condition for the Brownian motion on [−1,1] with
drift μ. The aim is to express some explicit solutions for the Brownian motion
killed on −1 and reflected on 1. We solve now the following eigenvalue problem:⎧⎨⎩

1
2ϕ′′(x1) + μϕ′(x1) = λϕ(x1),

ϕ(−1) = 0,

ϕ′(1) = 0.

We can remark first that if ϕλ is an eigenfunction for the eigenvalue λ for the
preceding PDE, then λ is negative.

We associate with this problem the corresponding second degree equation and
note � = μ2 + 2λ. After a detailed calculus with respect to the sign of � we
can express the countable set of eigenfunctions and eigenvalues with respect to
the possible values of μ. There are three different situations, expressed in Table 6
(see, e.g., [33]). The density pDN(t, x1, x2) is obtained by using the spectral ex-
pansion pDN(t, x1, x2) = ∑

k≥0 expλktϕλk
(x1)ϕλk

(x2), where · · · ≤ λ2 ≤ λ1 < λ0.
The density qDN(t, x1) of the exit time is also expressed by

Px1[τDN ∈ dt]/dt = − ∑
k≥0

λke
λktφλk

(x1)

∫ 1

−1
φλk

(x2) dx2.
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TABLE 6
Eigenvalues and eigenfunctions for the Dirichlet/Neumann problem

with a constant transport term μ

μ λ ϕλ

μ < 1
2 λ ≤ −μ2

2 , e−μx1√
2(1−(cos2(2

√−μ2−2λ))/(2μ))
sin(

√
−μ2 − 2λ(x1 + 1))

tan(2
√

−μ2 − 2λ) =
√−μ2−2λ

μ

μ = 1
2 − 1

8

√
3

4 e−x1/2(x1 + 1)

λ < − 1
8 , e−x1/2√

2| sin(2
√

1/4+2λ)| sin(
√

1
4 + 2λ(1 + x1))

tan(2
√

( 1
4 + 2λ)) = 2

√
( 1

4 + 2λ)

μ > 1
2 λ ≥ −μ2

2 , e−μx1√
2 cosh2(2

√
μ2+2λ)/μ−1

sinh(

√
μ2 + 2λ(x1 + 1))

tanh(2
√

μ2 + 2λ) =
√

μ2+2λ
μ

e−μx1√
2(1−cos2(2

√−μ2−2λ)/(2μ))
sin(

√
−μ2 − 2λ(x1 + 1))

λ ≤ −μ2

2 ,

tan(2
√

−μ2 − 2λ) =
√−μ2−2λ

μ
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