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THE EMERGENCE OF RATIONAL BEHAVIOR IN THE PRESENCE
OF STOCHASTIC PERTURBATIONS

BY PANAYOTIS MERTIKOPOULOS1,2 AND ARIS L. MOUSTAKAS1

University of Athens

We study repeated games where players use an exponential learning
scheme in order to adapt to an ever-changing environment. If the game’s pay-
offs are subject to random perturbations, this scheme leads to a new stochastic
version of the replicator dynamics that is quite different from the “aggregate
shocks” approach of evolutionary game theory. Irrespective of the perturba-
tions’ magnitude, we find that strategies which are dominated (even itera-
tively) eventually become extinct and that the game’s strict Nash equilibria
are stochastically asymptotically stable. We complement our analysis by il-
lustrating these results in the case of congestion games.

1. Introduction. Ever since it was introduced in [19], the notion of a Nash
equilibrium and its refinements have remained among the most prominent solution
concepts of noncooperative game theory. In its turn, not only has noncooperative
game theory found applications in such diverse topics as economics, biology and
network design, but it has also become the standard language to actually describe
complex agent interactions in these fields.

Still, the issue of why and how players may arrive to equilibrial strategies in the
first place remains an actively debated question. After all, the complexity of most
games increases exponentially with the number of players and, hence, identifying a
game’s equilibria quickly becomes prohibitively difficult. Accordingly, as was first
pointed out by Aumann in [3], a player has no incentive to play his component of a
Nash equilibrium unless he is convinced that all other players will play theirs. And
if the game in question has multiple Nash equilibria, this argument gains additional
momentum: in that case, even players with unbounded deductive capabilities will
be hard-pressed to choose a strategy.

From this point of view, rational individuals would appear to be more in tune
with Aumann’s notion of a correlated equilibrium where subjective beliefs are also
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taken into account [3]. Nevertheless, the seminal work of Maynard Smith on ani-
mal conflicts [15] has cast Nash equilibria in a different light because it unearthed
a profound connection between evolution and rationality: roughly speaking, one
leads to the other. So, when different species contend for the limited resources
of their habitat, evolution and natural selection steer the ensuing conflict to an
equilibrial state which leaves no room for irrational behavior. As a consequence,
instinctive “fight or flight” responses that are deeply ingrained in a species can be
seen as a form of rational behavior, acquired over the species’ evolutionary course.

Of course, this evolutionary approach concerns large populations of different
species which are rarely encountered outside the realm of population biology.
However, the situation is not much different in the case of a finite number of play-
ers who try to learn the game by playing again and again and who strive to do
better with the help of some learning algorithm. Therein, evolution does not occur
as part of a birth/death process; rather, it is a byproduct of the players’ acquired
experience in playing the game—see [6] for a most comprehensive account.

It is also worth keeping in the back of our mind that in some applications of
game theory, “rationality” requirements precede evolution. For example, recent
applications to network design start from a set of performance aspirations (such as
robustness and efficiency) that the players (network devices) seek to attain in the
network’s equilibrial state. Thus, to meet these requirements, one has to literally
reverse-engineer the process by finding the appropriate game whose equilibria will
satisfy the players—the parallel with mechanism design being obvious.

In all these approaches, a fundamental selection mechanism is that of the repli-
cator dynamics put forth in [23] and [22] which reinforces a strategy proportion-
ately to the difference of its payoff from the mean (taken over the species or
the player’s strategies, depending on the approach). As was shown in the multi-
population setting of Samuelson and Zhang [21] (which is closer to learning than
the self-interacting single-population scenaria of [23] and [22]), these dynamics
are particularly conducive to rationality. Strategies that are suboptimal when paired
against any choice of one’s adversaries rapidly become extinct, and in the long run,
only rationally admissible strategies can survive. Even more to the point, the only
attracting states of the dynamics turn out to be precisely the (strict) Nash equilibria
of the game—see [11] for a masterful survey.

We thus see that Nash equilibria arise over time as natural attractors for rational
individuals, a fact which further justifies their prominence among noncooperative
solution concepts. Yet, this behavior is also conditional on the underlying game
remaining stationary throughout the time horizon that it takes players to adapt to
it—and unfortunately, this stationarity assumption is rarely met in practical appli-
cations. In biological models, for example, the reproductive fitness of an individual
may be affected by the ever-changing weather conditions; in networks, communi-
cation channels carry time-dependent noise and interference as well as signals; and
when players try to sample their strategies, they might have to deal with erroneous
or imprecise readings.
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It is thus logical to ask: does rational behavior still emerge in the presence of
stochastic perturbations that interfere with the underlying game?

In evolutionary games, these perturbations traditionally take the form of “ag-
gregate shocks” that are applied directly to the population of each phenotype. This
approach by Fudenberg and Harris [5] has spurred quite a bit of interest and there
is a number of features that differentiate it from the deterministic one. For exam-
ple, Cabrales showed in [4] that dominated strategies indeed become extinct, but
only if the variance of the shocks is low enough. More recently, the work of Imhof
and Hofbauer [8, 10] revealed that even equilibrial play arises over time but again,
conditionally on the variance of the shocks.

Be that as it may, if one looks at games with a finite number of players, it is
hardly relevant to consider shocks of this type because there are no longer any pop-
ulations to apply them to. Instead, the stochastic fluctuations should be reflected
directly on the stimuli that incite players to change their strategies: their payoffs.
This leads to a picture which is very different from the evolutionary one and is
precisely the approach that we will be taking.

Outline of results. In this paper, we analyze the evolution of players in stochas-
tically perturbed games of this sort. The particular stimulus-response model that
we consider is simple enough: players keep cumulative scores of their strategies’
performance and employ exponentially more often the one that scores better. After
a few preliminaries in Section 2, this approach is made precise in Section 3 where
we derive the stochastic replicator equation that governs the behavior of players
when their learning curves are subject to random perturbations.

The replicator equation that we get is different from the “aggregate shocks” ap-
proach of [4, 5, 8, 10] and, as a result, it exhibits markedly different rationality
properties as well. In stark contrast to the results of [4, 10], we show in Section 4
that dominated strategies become extinct irrespective of the noise level (Proposi-
tion 4.1) and provide an exponential bound for the rate of decay of these strategies
(Proposition 4.2). In fact, by induction on the rounds of elimination of dominated
strategies, we show that this is true even for iteratively dominated strategies: de-
spite the noise, only rationally admissible strategies can survive in the long run
(Theorem 4.3). Then, as an easy corollary of the above, we infer that players will
converge to a strict equilibrium (Corollary 4.4) whenever the underlying game is
dominance-solvable.

We continue with the issue of equilibrial play in Section 5 by making a sug-
gestive detour in the land of congestion games. If the noise is relatively mild with
respect to the rate with which players learn, we find that the game’s potential is
a Lyapunov function which ensures that strict equilibria are stochastically attract-
ing; and if the game is dyadic (i.e., players only have two choices), this tameness
assumption can be dropped altogether.

Encouraged by the results of Section 5, we attack the general case in Section 6.
As it turns out, strict equilibria are always asymptotically stochastically stable
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in the perturbed replicator dynamics that stem from exponential learning (The-
orem 6.1). This begs to be compared to the results of [8, 10] where it is the equi-
libria of a suitably modified game that are stable, and not necessarily those of the
actual game being played. Fortunately, exponential learning seems to give players
a clearer picture of the original game and there is no need for similar modifications
in our case.

Notational conventions. Given a finite set S = {s0, . . . , sn}, we will routinely
identify the set �(S) of probability measures on S with the standard n-dimensional
simplex of R

n+1 :�(S) ≡ {x ∈ R
n+1 :

∑
α xα = 1 and xα ≥ 0}. Under this identifi-

cation, we will also make no distinction between sα ∈ S and the vertex eα of �(S);
in fact, to avoid an overcluttering of indices, we will frequently use α to refer to
either sα or eα , writing, for example, “α ∈ S” or “u(α)” instead of “sα ∈ S” or
“u(eα),” respectively.

To streamline our presentation, we will consistently employ Latin indices for
players (i, j, k, . . .) and Greek for their strategies (α,β,μ, . . .), separating the two
by a comma when it would have been æsthetically unpleasant not to. In like man-
ner, when we have to discriminate between strategies, we will assume that indices
from the first half of the Greek alphabet start at 0 (α,β = 0,1,2, . . .) while those
taken from the second half start at 1 (μ,ν = 1,2, . . .).

Finally, if X(t) is some stochastic process in R
n starting at X(0) = x, its law

will be denoted by PX;x or simply by Px if there is no danger of confusion; and if
the context leaves no doubt as to which process we are referring to, we will employ
the term “almost surely” in place of the somewhat unwieldy “Px-almost surely.”

2. Preliminaries.

2.1. Basic facts and definitions from game theory. As is customary, our start-
ing point will be a (finite) set of N players, indexed by i ∈ N = {1, . . . ,N}.
The players’ possible actions are drawn from their strategy sets Si = {siα :α =
0, . . . , Si − 1} and they can combine them by choosing their αi th (pure) strategy
with probability piαi

. In that case, the players’ mixed strategies will be described
by the points pi = (pi,0,pi,1, . . .) ∈ �i := �(Si ) or, more succinctly, by the strat-
egy profile p = (p1, . . . , pN) ∈ � := ∏

i �i .
In particular, if eiα denotes the αth vertex of the ith component simplex

�i ↪→ �, the (pure) profile q = (e1,α1, . . . , eN,αN
) simply corresponds to player

i playing αi ∈ Si . On the other hand, if we wish to focus on the strategy of a par-
ticular player i ∈ N against that of his opponents N−i := N \ {i}, we will employ
the shorthand notation (p−i;qi) = (p1 · · ·qi · · ·pN) to denote the profile where i

plays qi ∈ �i against his opponents’ strategy p−i ∈ �−i := ∏
j �=i �j .

So, once players have made their strategic choices, let ui,α1,...,αN
be the reward

of player i in the profile (α1, . . . , αN) ∈ S = ∏
i Si , that is, the payoff that strategy
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αi ∈ Si yields to player i against the strategy α−i ∈ S−i = ∏
j �=i Sj of i’s oppo-

nents. Then, if players mix their strategies, their expected reward will be given by
the (multilinear) payoff functions ui :� → R:

ui(p) = ∑
α1∈S1

· · · ∑
αN∈SN

ui,α1···αN
p1,α1 · · ·pN,αN

.(2.1)

Under this light, the payoff that a player receives when playing a pure strategy
α ∈ Si deserves special mention and will be denoted by

uiα(p) := ui(p−i;α) ≡ ui(p1 · · ·α · · ·pN).(2.2)

This collection of players i ∈ N , their strategies αi ∈ Si and their payoffs ui will
be our working definition for a game in normal form, usually denoted by G—or
G(N , S, u) if we need to keep track of more data.

Needless to say, rational players who seek to maximize their individual payoffs
will avoid strategies that always lead to diminished payoffs against any play of
their opponents. We will thus say that the strategy qi ∈ �i is (strictly) dominated
by q ′

i ∈ �i and we will write qi ≺ q ′
i when

ui(p−i;qi) < ui(p−i;q ′
i )(2.3)

for all strategies p−i ∈ �−i of i’s opponents N−i .
With this in mind, dominated strategies can be effectively removed from the

analysis of a game because rational players will have no incentive to ever use them.
However, by deleting such a strategy, another strategy (perhaps of another player)
might become dominated and further deletions of iteratively dominated strategies
might be in order (see Section 4 for more details). Proceeding ad infinitum, we will
say that a strategy is rationally admissible if it survives every round of elimination
of dominated strategies. If the set of rationally admissible strategies is a singleton
(e.g., as in the Prisoner’s Dilemma), the game will be called dominance-solvable
and the sole surviving strategy will be the game’s rational solution.

Then again, not all games can be solved in this way and it is natural to look for
strategies which are stable at least under unilateral deviations. Hence, we will say
that a strategy profile p ∈ � is a Nash equilibrium of the game G when

ui(p) ≥ ui(p−i;q) for all q ∈ �i, i ∈ N .(2.4)

If the equilibrium profile p only contains pure strategies αi ∈ Si , we will refer to it
as a pure equilibrium; and if the inequality (2.4) is strict for all q �= pi ∈ �i, i ∈ N ,
the equilibrium p will carry instead the characterization strict.

Clearly, if two pure strategies α,β ∈ Si are present with positive probability in
an equilibrial strategy pi ∈ �i , then we must have uiα(p) = uiβ(p) as a result of
ui being linear in pi . Consequently, only pure profiles can satisfy the strict version
of (2.4) so that strict equilibria must also be pure. The converse implication is false
but only barely so: a pure equilibrium fails to be strict only if a player has more
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than one pure strategies that return the same rewards. Since this is almost always
true (in the sense that the degenerate case can be resolved by an arbitrarily small
perturbation of the payoff functions), we will relax our terminology somewhat and
use the two terms interchangeably.

To recover the connection of equilibrial play with strategic dominance, note
that if a game is solvable by iterated elimination of dominated strategies, the sin-
gle rationally admissible strategy that survives will be the game’s unique strict
equilibrium. But the significance of strict equilibria is not exhausted here: strict
equilibria are exactly the evolutionarily stable strategies of multi-population evo-
lutionary games—Proposition 5.1 in [11]. Moreover, as we shall see a bit later,
they are the only asymptotically stable states of the multi-population replicator
dynamics—again, see Chapter 5, pages 216 and 217 of [11].

Unfortunately, strict equilibria do not always exist, Rock-Paper-Scissors being
the typical counterexample. Nevertheless, pure equilibria do exist in many large
and interesting classes of games, even when we leave out dominance-solvable
ones. Perhaps the most noteworthy such class is that of congestion games.

DEFINITION 2.1. A game G ≡ G(N , S, u) will be called a congestion game
when:

1. all players i ∈ N share a common set of facilities F as their strategy set: Si = F
for all i ∈ N ;

2. the payoffs are functions of the number of players sharing a particular facility:
ui,α1···α···αN

≡ uα(Nα) where Nα is the number of players choosing the same
facility as i.

Amazingly enough, Monderer and Shapley made the remarkable discovery in
[18] that these games are actually equivalent to the class of potential games.

DEFINITION 2.2. A game G ≡ G(N , S, u) will be called a potential game if
there exists a function V :� → R such that

ui(p−i;qi) − ui(p−i;q ′
i ) = −(

V (p−i;qi) − V (p−i;q ′
i )

)
(2.5)

for all players i ∈ N and all strategies p−i ∈ �−i , qi, q
′
i ∈ �i .

This equivalence reveals that both classes of games possess equilibria in pure
strategies: it suffices to look at the vertices of the face of � where the (necessarily
multilinear) potential function V is minimized.

2.2. Learning, evolution and the replicator dynamics. As one would expect,
locating the Nash equilibria of a game is a rather complicated problem that requires
a great deal of global calculations, even in the case of potential games (where it re-
duces to minimizing a multilinear function over a convex polytope). Consequently,
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it is of interest to see whether there are simple and distributed learning schemes
that allow players to arrive at a reasonably stable solution.

One such scheme is based on an exponential learning behavior where players
play the game repeatedly and keep records of their strategies’ performance. In
more detail, at each instance of the game all players i ∈ N update the cumulative
scores Uiα of their strategies α ∈ Si as specified by the recursive formula

Uiα(t + 1) = Uiα(t) + uiα(p(t)),(2.6)

where p(t) ∈ � is the players’ strategy profile at the t th iteration of the game and,
in the absence of initial bias, we assume that Uiα(0) = 0 for all i ∈ N , α ∈ Si .
These scores reinforce the perceived success of each strategy as measured by the
average payoff it yields and hence, it stands to reason that players will lean towards
the strategy with the highest score. The precise way in which they do that is by
playing according to the namesake exponential law:

piα(t + 1) = eUiα(t+1)∑
β∈Si

eUiβ(t+1)
.(2.7)

For simplicity, we will only consider the case where players update their scores
in continuous time, that is, according to the coupled equations

dUiα(t) = uiα(x(t)) dt,(2.8a)

xiα(t) = eUiα(t)∑
β eUiβ(t)

.(2.8b)

Then, if we differentiate (2.8b) to decouple it from (2.8a), we obtain the standard
(multi-population) replicator dynamics

dxiα

dt
= xiα

(
uiα(x) − ∑

β

xiβuiβ(x)

)
= xiα

(
uiα(x) − ui(x)

)
.(2.9)

Alternatively, if players learn at different speeds as a result of varied stimulus-
response characteristics, their updating will take the form

xiα(t) = eλiUiα(t)∑
β eλiUiβ(t)

,(2.10)

where λi represents the learning rate of player i, that is, the “weight” which he
assigns to his perceived scores Uiα . In this way, the replicator equation evolves at
a different time scale for each player, leading to the rate-adjusted dynamics

dxiα

dt
= λixiα

(
uiα(x) − ui(x)

)
.(2.11)

Naturally, the uniform dynamics (2.9) are recovered when all players learn at the
“standard” rate λi = 1.
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If we view the exponential learning model (2.7) from a stimulus-response angle,
we see that that the payoff of a strategy simply represents an (exponential) propen-
sity of employing said strategy. It is thus closely related to the algorithm of logistic
fictitious play [6] where the strategy xi of (2.10) can be seen as the (unique) best re-
ply to the profile x−i in some suitably modified payoffs vi(x) = ui(x) + 1

λi
H(xi).

Interestingly enough, H(xi) turns out to be none other than the entropy of xi :

H(xi) = − ∑
β : xiβ>0

xiβ logxiβ.(2.12)

That being so, we deduce that the learning rates λi act the part of (player-specific)
inverse temperatures: in high temperatures (small λi), the players’ learning curves
are “soft” and the payoff differences between strategies are toned down; on the
contrary, if λi → ∞ the scheme “freezes” to a myopic best-reply process.

The replicator dynamics were first derived in [23] in the context of population
biology, first for different phenotypes within a single species (single-population
models), and then for different species altogether (multi-population models; [9]
and [11] provide excellent surveys). In both these cases, one begins with large
populations of individuals that are programmed to a particular behavior (e.g., fight
for “hawks” or flight for “doves”) and matches them randomly in a game whose
payoffs directly affect the reproductive fitness of the individual players.

More precisely, let ziα(t) be the population size of the phenotype (strategy) α ∈
Si of species (player) i ∈ N in some multi-population model where individuals are
matched to play a game G with payoff functions ui . Then, the relative frequency
(share) of α will be specified by the population state x = (x1, . . . , xN) ∈ � where
xiα = ziα/

∑
β ziβ . So, if N individuals are drawn randomly from the N species,

their expected payoffs will be given by ui(x), i ∈ N , and if these payoffs represent
a proportionate increase in the phenotype’s fitness (measured as the number of
offsprings in the unit of time), we will have

dziα(t) = ziα(t)uiα(x(t)) dt.(2.13)

As a result, the population state x(t) will evolve according to

dxiα

dt
= 1∑

β ziβ

dziα

dt
− ∑

γ

xiα∑
β ziβ

dziγ

dt
= xiα

(
uiα(x) − ui(x)

)
,(2.14)

which is exactly (2.9) viewed from an evolutionary perspective.
On the other hand, we should note here that in single-population models the re-

sulting equation is cubic and not quadratic because strategies are matched against
themselves. To wit, assume that individuals are randomly drawn from a large popu-
lation and are matched against one another in a (symmetric) 2-player game G with
strategy space S = {1, . . . , S} and payoff matrix u = {uαβ}. Then, if xα denotes the
population share of individuals that are programmed to the strategy α ∈ S , their ex-
pected payoff in a random match will be given by uα(x) := ∑

β uαβxβ ≡ u(α, x);
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similarly, the population average payoff will be u(x, x) = ∑
α xαuα(x). Hence,

by following the same procedure as above, we end up with the single-population
replicator dynamics

dxα

dt
= xα

(
uα(x) − u(x, x)

)
,(2.15)

which behave quite differently than their multi-population counterpart (2.14).
As far as rational behavior is concerned, the replicator dynamics have some far-

reaching ramifications. If we focus on multi-population models, Samuelson and
Zhang showed in [21] that the share xiα(t) of a strategy α ∈ Si which is strictly
dominated (even iteratively) converges to zero along any interior solution path
of (2.9); in other words, dominated strategies become extinct in the long run. Addi-
tionally, there is a remarkable equivalence between the game’s Nash equilibria and
the stationary points of the replicator dynamics: the asymptotically stable states of
(2.9) coincide precisely with the strict Nash equilibria of the underlying game [11].

2.3. Elements of stability analysis. A large part of our work will be focused on
examining whether the rationality properties of exponential learning (elimination
of dominated strategies and asymptotic stability of strict equilibria) remain true
in a stochastic setting. However, since asymptotic stability is (usually) too strin-
gent an expectation for stochastic dynamical systems, we must instead consider its
stochastic analogue.

That being the case, let W(t) = (W1(t), . . . ,Wn(t)) be a standard Wiener
process in R

n and consider the stochastic differential equation (SDE)

dXα(t) = bα(X(t)) dt + ∑
β

σαβ(X(t)) dWβ(t).(2.16)

Following [1, 7], the notion of asymptotic stability in this SDE is expressed by the
following.

DEFINITION 2.3. We will say that q ∈ R
n is stochastically asymptotically

stable when, for every neighborhood U of q and every ε > 0, there exists a neigh-
borhood V of q such that

Px

{
X(t) ∈ U for all t ≥ 0, lim

t→∞X(t) = q
}

≥ 1 − ε(2.17)

for all initial conditions X(0) = x ∈ V of the SDE (2.16).

Much the same as in the deterministic case, stochastic asymptotic stability is
often established by means of a Lyapunov function. In our context, this notion
hinges on the second order differential operator that is associated to (2.16), namely
the generator L of X(t):

L =
n∑

α=1

bα(x)
∂

∂xα

+ 1

2

n∑
α,β=1

(σ (x)σT (x))αβ

∂2

∂xα ∂xβ

.(2.18)
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The importance of this operator can be easily surmised from Itô’s lemma; indeed,
if f : Rn → R is sufficiently smooth, the generator L simply captures the drift of
the process Y(t) = f (X(t)):

dY (t) = Lf (X(t)) dt + ∑
α,β

∂f

∂xα

∣∣∣∣
X(t)

σαβ(X(t)) dWβ(t).(2.19)

In this way, L can be seen as the stochastic version of the time derivative d
dt

; this
analogy then leads to the following.

DEFINITION 2.4. Let q ∈ R
n and let U be an open neighborhood of q . We

will say that f is a (local) stochastic Lyapunov function for the SDE (2.16) if:

1. f (x) ≥ 0 for all x ∈ U , with equality iff x = q;
2. there exists a constant k > 0 such that Lf (x) ≤ −kf (x) for all x ∈ U .

Whenever such a Lyapunov function exists, it is known that the point q ∈ R
n

where f attains its minimum will be stochastically asymptotically stable—for ex-
ample, see Theorem 4 in pages 314 and 315 of [7].

A final point that should be mentioned here is that our analysis will be con-
strained on the compact polytope � = ∏

i �i instead of all of
∏

i R
Si . Accordingly,

the “neighborhoods” of Definitions 2.3 and 2.4 should be taken to mean “neigh-
borhoods in �,” that is, neighborhoods in the subspace topology of � ↪→ ∏

i R
Si .

This minor point should always be clear from the context and will only be raised
in cases of ambiguity.

3. Learning in the presence of noise. Of course, it could be argued that the
rationality properties of the exponential learning scheme are a direct consequence
of the players’ receiving accurate information about the game when they update
their scores. However, this is a requirement that cannot always be met: the in-
terference of nature in the game or imperfect readings of one’s utility invariably
introduce fluctuations in (2.8a), and in their turn, these lead to a perturbed version
of the replicator dynamics (2.9).

To account for these random perturbations, we will assume that the players’
scores are now governed instead by the stochastic differential equation

dUiα(t) = uiα(X(t)) dt + ηiα(X(t)) dWiα(t),(3.1)

where, as before, the strategy profile X(t) ∈ � is given by the logistic law

Xiα(t) = eUiα(t)∑
β eUiβ(t)

.(3.2)

In this last equation, W(t) is a standard Wiener process living in
∏

i R
Si and the

coefficients ηiα measure the impact of the noise on the players’ scoring systems.
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Of course, these coefficients need not be constant: after all, the effect of the noise
on the payoffs might depend on the state of the game in some typically continuous
way. For this reason, we will assume that the functions ηiα are continuous on �,
and we will only note en passant that our results still hold for essentially bounded
coefficients ηiα (we will only need to replace min and max with ess inf and ess sup,
respectively, in all expressions involving ηiα).

A very important instance of this dependence can be seen if ηiα(x−i;α) = 0 for
all i ∈ N , α ∈ Si , x−i ∈ �−i , in which case equation (3.1) becomes a convincing
model for the case of insufficient information. It states that when a player actually
uses a strategy, his payoff observations are accurate enough; but with regards to
strategies he rarely employs, his readings could be arbitrarily off the mark.

Now, to decouple (3.1) and (3.2), we may simply apply Itô’s lemma to the
process X(t). To that end, recall that W(t) has independent components across
players and strategies, so that dWjβ · dWkγ = δjkδβγ dt (the Kronecker symbols
δβγ being 0 for β �= γ and 1, otherwise). Then, Itô’s formula gives

dXiα = ∑
j

∑
β

∂Xiα

∂Ujβ

dUjβ

+ 1

2

∑
j,k

∑
β,γ

∂2Xiα

∂Ujβ ∂Ukγ

dUjβ · dUkγ

(3.3)

= ∑
β

(
uiβ(X)

∂Xiα

∂Uiβ

+ 1

2
η2

iβ(X)
∂2Xiα

∂U2
iβ

)
dt

+ ∑
β

ηiβ(X)
∂Xiα

∂Uiβ

dWiβ.

On the other hand, a simple differentiation of (3.2) yields

∂Xiα

∂Uiβ

= Xiα(δαβ − Xiβ),(3.4a)

∂2Xiα

∂U2
iβ

= Xiα(δαβ − Xiβ)(1 − 2Xiβ)(3.4b)

and by plugging these expressions back into (3.3), we get

dXiα = Xiα[uiα(X) − ui(X)]dt

+ Xiα

[
1

2
η2

iα(X)(1 − 2Xiα) − 1

2

∑
β

η2
iβ(X)Xiβ(1 − 2Xiβ)

]
dt(3.5)

+ Xiα

[
ηiα(X)dWiα − ∑

β

ηiβ(X)Xiβ dWiβ

]
.
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Alternatively, if players update their strategies with different learning rates λi , we
should instead apply Itô’s formula to (2.10). In so doing, we obtain

dXiα = λiXiα[uiα(X) − ui(X)]dt

+ λ2
i

2
Xiα

[
η2

iα(X)(1 − 2Xiα) − ∑
β

η2
iβ(X)Xiβ(1 − 2Xiβ)

]
dt

(3.5′)
+ λiXiα

[
ηiα(X)dWiα − ∑

ηiβ(X)Xiβ dWiβ

]
= biα(X)dt + ∑

β

σi,αβ(X)dWiβ,

where, in obvious notation, biα(x) and σi,αβ(x) are, respectively, the drift and
diffusion coefficients of the diffusion X(t). Obviously, when λi = 1, we recover
the uniform dynamics (3.5); equivalently (and this is an interpretation that is well
worth keeping in mind), the rates λi can simply be regarded as a commensurate in-
flation of the payoffs and noise coefficients of player i ∈ N in the uniform logistic
model (3.2).

Equation (3.5) and its rate-adjusted sibling (3.5′) will constitute our stochastic
version of the replicator dynamics and thus merit some discussion in and by them-
selves. First, note that these dynamics admit a (unique) strong solution for any
initial state X(0) = x ∈ �, even though they do not satisfy the linear growth con-
dition |b(x)|+|σ(x)| ≤ C(1+|x|) that is required for the existence and uniqueness
theorem for SDEs (e.g., Theorem 5.2.1 in [20]). Instead, an addition over α ∈ Si re-
veals that every simplex �i ⊆ � remains invariant under (3.5): if Xi(0) = xi ∈ �i ,
then d(

∑
α Xiα) = 0 and hence, Xi(t) will stay in �i for all t ≥ 0—actually, it is

not harder to see that every face of � is a trap for X(t).
So, if φ is a smooth bump function that is equal to 1 on some open neighborhood

of U ⊇ � and which vanishes outside some compact set K ⊇ U , the SDE

dXiα = φ(X)

(
biα(X)dt + ∑

β

σi,αβ(X)dWiβ

)
(3.6)

will have bounded diffusion and drift coefficients and will thus admit a unique
strong solution. But since this last equation agrees with (3.5) on � and any solution
of (3.5) always stays in �, we can easily conclude that our perturbed replicator
dynamics admit a unique strong solution for any initial X(0) = x ∈ �.

It is also important to compare the dynamics (3.5), (3.5′) to the “aggregate
shocks” approach of Fudenberg and Harris [5] that has become the principal in-
carnation of the replicator dynamics in a stochastic environment. So, let us first
recall how aggregate shocks enter the replicator dynamics in the first place. The
main idea is that the reproductive fitness of an individual is not only affected by
deterministic factors but is also subject to stochastic shocks due to the “weather”
and the interference of nature with the game. More precisely, if Ziα(t) denotes the
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population size of phenotype α ∈ Si of the species i ∈ N in some multi-population
evolutionary game G, its growth will be determined by

dZiα(t) = Ziα(t)
(
uiα(X(t)) dt + ηiα dWiα(t)

)
,(3.7)

where, as in (2.13), X(t) ∈ � denotes the population shares Xiα = Ziα/
∑

β Ziβ .
In this way, Itô’s lemma yields the replicator dynamics with aggregate shocks:

dXiα = Xiα

[(
uiα(X) − ui(X)

) −
(
η2

iαXiα − ∑
β

η2
iβX2

iβ

)]
dt

(3.8)
+ Xiα

[
ηiα dWiα − ∑

ηiβXiβ dWiβ

]
.

We thus see that the effects of noise propagate differently in the case of ex-
ponential learning and in the case of evolution. Indeed, if we compare equations
(3.5) and (3.8) term by term, we see that the drifts are not quite the same: even
though the payoff adjustment uiα − ui ties both equations back together in the
deterministic setting (η = 0), the two expressions differ by

Xiα

[
1

2
η2

iα − 1

2

∑
β

η2
iβXiβ

]
dt.(3.9)

Innocuous as this term might seem, it is actually crucial for the rationality prop-
erties of exponential learning in games with randomly perturbed payoffs. As we
shall see in the next sections, it leads to some miraculous cancellations that allow
rationality to emerge in all noise levels.

This difference further suggests that we can pass from (3.5) to (3.8) simply by
modifying the game’s payoffs to ũiα = uiα + 1

2η2
iα . Of course, this presumes that

the noise coefficients ηiα be constant—the general case would require us to allow
for games whose payoffs may not be multilinear. This apparent lack of generality
does not really change things but we prefer to keep things simple and for the time
being, it suffices to point out that this modified game was precisely the one that
came up in the analysis of [8, 10]. As a result, this modification appears to play a
pivotal role in setting apart learning and evolution in a stochastic setting: whereas
the modified game is deeply ingrained in the process of natural selection, expo-
nential learning seems to give players a clearer picture of the actual underlying
game.

4. Extinction of dominated strategies. Thereby armed with the stochastic
replicator equations (3.5), (3.5′) to model exponential learning in noisy environ-
ments, the logical next step is to see if the rationality properties of the deterministic
dynamics carry over to this stochastic setting. In this direction, we will first show
that dominated strategies always become extinct in the long run and that only the
rationally admissible ones survive.
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As in [4] (implicitly) and [10] (explicitly), the key ingredient of our approach
will be the cross entropy between two mixed strategies qi, xi ∈ �i of player i ∈ N :

H(qi, xi) := − ∑
α : qiα>0

qiα log(xiα) ≡ H(qi) + dKL(qi, xi),(4.1)

where H(qi) = −∑
α qiα logqiα is the entropy of qi and dKL is the intimately

related Kullback–Leibler divergence (or relative entropy):

dKL(qi, xi) := H(qi, xi) − H(qi) = ∑
α : qiα>0

qiα log
qiα

xiα

.(4.2)

This divergence function is central in the stability analysis of the (determinis-
tic) replicator dynamics because it serves as a distance measure in probability
space [11]. As it stands however, dKL is not a distance function per se: neither
is it symmetric, nor does it satisfy the triangle inequality. Still, it has the very use-
ful property that dKL(qi, xi) < ∞ iff xi employs with positive probability all pure
strategies α ∈ Si that are present in qi [i.e., iff supp(qi) ⊆ supp(xi) or iff qi is
absolutely continuous w.r.t. xi ]. Therefore, if dKL(qi, xi) = ∞ for all dominated
strategies qi of player i, it immediately follows that xi cannot be dominated itself.
In this vein, we have the following.

PROPOSITION 4.1. Let X(t) be a solution of the stochastic replicator dynam-
ics (3.5) for some interior initial condition X(0) = x ∈ Int(�). Then, if qi ∈ �i is
(strictly) dominated,

lim
t→∞dKL(qi,Xi(t)) = ∞ almost surely.(4.3)

In particular, if qi = α ∈ Si is pure, we will have limt→∞ Xiα(t) = 0 (a.s.): strictly
dominated strategies do not survive in the long run.

PROOF. Note first that X(0) = x ∈ Int(�) and hence, Xi(t) will almost surely
stay in Int(�i) for all t ≥ 0; this is a simple consequence of the uniqueness of
strong solutions and the invariance of the faces of �i under the dynamics (3.5).

Let us now consider the cross entropy Gqi
(t) between qi and Xi(t):

Gqi
(t) ≡ H(qi,Xi(t)) = −∑

α

qiα logXiα(t).(4.4)

As a result of Xi(t) being an interior path, Gqi
(t) will remain finite for all t ≥ 0

(a.s.). So, by applying Itô’s lemma we get

dGqi
= ∑

β

∂Gqi

∂Xiβ

dXiβ + 1

2

∑
β,γ

∂2Gqi

∂Xiγ ∂Xiβ

dXiβ · dXiγ

(4.5)

= −∑
β

qiβ

Xiβ

dXiβ + 1

2

∑
β

qiβ

X2
iβ

(dXiβ)2



RATIONALITY AND STOCHASTIC PERTURBATIONS 1373

and, after substituting dXiβ from the dynamics (3.5), this last equation becomes

dGqi
= ∑

β

qiβ

[
ui(X) − uiβ(X) + 1

2

∑
γ

η2
iγ (X)Xiγ (1 − Xiγ )

]
dt

(4.6)
+ ∑

β

qiβ

∑
γ

(Xiγ − δβγ )ηiγ (X)dWiγ .

Accordingly, if q ′
i ∈ �i is another mixed strategy of player i, we readily obtain

dGqi
− dGq ′

i
= (

ui(X−i;q ′
i ) − ui(X−i;qi)

)
dt

(4.7)
+ ∑

β

(q ′
iβ − qiβ)ηiβ(X)dWiβ

and, after integrating,

Gqi−q ′
i
(t) = H(qi − q ′

i , x) +
∫ t

0
ui

(
X−i(s);q ′

i − qi

)
ds

(4.8)

+ ∑
β

(q ′
iβ − qiβ)

∫ t

0
ηiβ(X(s)) dWiβ(s).

Suppose then that qi ≺ q ′
i and let vi = inf{ui(x−i;q ′

i − qi) :x−i ∈ �−i}. With �−i

compact, it easily follows that vi > 0 and the first term of (4.8) will be bounded
from below by vit .

However, since monotonicity fails for Itô integrals, the second term must be
handled with more care. To that end, let ξi(s) = ∑

β(q ′
iβ − qiβ)ηiβ(X(s)) and note

that the Cauchy–Schwarz inequality gives

ξ2
i (s) ≤ Si

∑
β

(q ′
iβ − qiβ)2η2

iβ(X(s))

(4.9)
≤ Siη

2
i

∑
β

(q ′
iβ − qiβ)2 ≤ 2Siη

2
i ,

where Si = |Si | is the number of pure strategies available to player i and ηi =
max{|ηiβ(x)| :x ∈ �,β ∈ Si}; recall also that qi, q

′
i ∈ �i for the last step. There-

fore, if ψi(t) = ∑
β(q ′

iβ − qiβ)
∫ t

0 ηiβ(X(s)) dWiβ(s) denotes the martingale part
of (4.7) and ρi(t) is its quadratic variation, the previous inequality yields

ρi(t) = [ψi,ψi](t) =
∫ t

0
ξ2
i (s) ds ≤ 2Siη

2
i t .(4.10)

Now, if limt→∞ ρi(t) = ∞, it follows from the time-change theorem for mar-
tingales (e.g., Theorem 3.4.6 in [12]) that there exists a Wiener process W̃i such
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that ψi(t) = W̃i(ρi(t)). Hence, by the law of the iterated logarithm we get

lim inf
t→∞ Gqi−q ′

i
(t)

≥ H(qi − q ′
i , x) + lim inf

t→∞
(
vit + W̃i(ρi(t))

)
≥ H(qi − q ′

i , x) + lim inf
t→∞

(
vit −

√
2ρi(t) log logρi(t)

)
(4.11)

≥ H(qi − q ′
i , x) + lim inf

t→∞
(
vit − 2ηi

√
Sit log log(2Siη

2
i t)

)
= ∞ (almost surely).

On the other hand, if limt→∞ ρi(t) < ∞, it is trivial to obtain Gqi−q ′
i
(t) → ∞

by letting t → ∞ in (4.8). Therefore, with Gqi
(t) ≥ Gqi

(t) − Gq ′
i
(t) → ∞, we

readily get limt→∞ dKL(qi,Xi(t)) = ∞ (a.s.); and since Gα(t) = − logXiα(t) for
all pure strategies α ∈ Si , our proof is complete. �

As in [10], we can now obtain the following estimate for the lifespan of pure
dominated strategies.

PROPOSITION 4.2. Let X(t) be a solution path of (3.5) with initial condition
X(0) = x ∈ Int(�) and let Px denote its law. Assume further that the strategy
α ∈ Si is dominated; then, for any M > 0 and for t large enough, we have

Px{Xiα(t) < e−M} ≥ 1

2
erfc

(
M − hi(xi) − vit

2ηi

√
Sit

)
,(4.12)

where Si = |Si | is the number of strategies available to player i, ηi =
max{|ηiβ(y)| :y ∈ �,β ∈ Si} and the constants vi > 0 and hi(xi) do not depend
on t .

PROOF. The proof is pretty straightforward and for the most part follows [10].
Surely enough, if α ≺ pi ∈ �i and we use the same notation as in the proof of
Proposition 4.1, we have

− logXiα(t) = Gα(t) ≥ Gα(t) − Gpi
(t)

≥ H(α,x) − H(pi, x) + vit + W̃i(ρi(t))(4.13)

= hi(xi) + vit + W̃i(ρi(t)),

where vi := minx−i
{ui(x−i;pi) − ui(x−i;α)} > 0 and hi(xi) := logxiα −∑

β piβ logxiβ . Then

Px

(
Xiα(t) < e−M) ≥ Px{W̃i(ρi(t)) > M − hi(xi) − vit}

(4.14)

= 1

2
erfc

(
M − hi(xi) − vit√

2ρi(t)

)
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and, since the quadratic variation ρi(t) is bounded above by 2Siη
2
i t (4.10), the

estimate (4.12) holds for all sufficiently large t [i.e., such that M < hi(xi) + vit].
�

Some remarks are now in order: first and foremost, our results should be con-
trasted to those of Cabrales [4] and Imhof [10] where dominated strategies die
out only if the noise coefficients (shocks) ηiα satisfy certain tameness conditions.
The origin of this notable difference is the form of the replicator equation (3.5)
and, in particular, the extra terms that are propagated there by exponential learn-
ing and which are absent from the aggregate shocks dynamics (3.8). As can be
seen from the derivations in Proposition 4.1, these terms are precisely the ones
that allow players to pick up on the true payoffs uiα instead of the modified ones
ũiα = uiα + 1

2η2
iα that come up in [8, 10] (and, indirectly, in [4] as well).

Secondly, it turns out that the way that the noise coefficients ηiβ depend on the
profile x ∈ � is not really crucial: as long as ηiβ(x) is continuous (or essentially
bounded), our arguments are not affected. The only way in which a specific depen-
dence influences the extinction of dominated strategies is seen in Proposition 4.2:
a sharper estimate of the quadratic variation of

∫ t
0 ηiβ(X(s)) ds could conceivably

yield a more accurate estimate for the cumulative distribution function of (4.12).
Finally, it is only natural to ask if Proposition 4.1 can be extended to strategies

that are only iteratively dominated. As it turns out, this is indeed the case.

THEOREM 4.3. Let X(t) be a solution path of (3.5) starting at X(0) = x ∈
Int(�). Then, if qi ∈ �i is iteratively dominated,

lim
t→∞dKL(qi,Xi(t)) = ∞ almost surely,(4.15)

that is, only rationally admissible strategies survive in the long run.

PROOF. As in the deterministic case [21], the main idea is that the solution
path X(t) gets progressively closer to the faces of � that are spanned by the pure
strategies which have not yet been eliminated. Following [4], we will prove this by
induction on the rounds of elimination of dominated strategies; Proposition 4.1 is
simply the case n = 1.

To wit, let Ai ⊆ �i , A−i ⊆ �−i and denote by Adm(Ai,A−i) the set of strate-
gies qi ∈ Ai that are admissible (i.e., not dominated) with respect to any strat-
egy q−i ∈ A−i . So, if we start with A0

i = �i and A0−i = ∏
j �=i A0

j , we may
define inductively the set of strategies that remain admissible after n elimina-
tion rounds by An

i := Adm(An−1
i , An−1

−i ) where An−1
i := ∏

j �=i An−1
j ; similarly,

the pure strategies that have survived after n such rounds will be denoted by
S n

i := Si ∩ An
i . Clearly, this sequence forms a descending chain A0

i ⊇ A1
i ⊇ · · ·

and the set A∞
i := ⋂∞

0 An
i will consist precisely of the strategies of player i that

are rationally admissible.
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Assume then that the cross entropy Gqi
(t) = H(qi,Xi(t)) = −∑

α qiα ×
logXiα(t) diverges as t → ∞ for all strategies qi /∈ Ak

i that die out within the
first k rounds; in particular, if α /∈ S k

i this implies that Xiα(t) → 0 as t → ∞. We
will show that the same is true if qi survives for k rounds but is eliminated in the
subsequent one.

Indeed, if qi ∈ Ak
i but qi /∈ Ak+1

i , there will exist some q ′
i ∈ Ak+1

i such that

ui(x−i;q ′
i ) > ui(x−i;qi) for all x−i ∈ Ak−i .(4.16)

Now, note that any x−i ∈ �−i can be decomposed as x−i = xadm−i + xdom−i

where xadm−i is the “admissible” part of x−i , that is, the projection of x−i on
the subspace spanned by the surviving vertices S k−i = ∏

j �=i S k
i . Hence, if vi =

min{ui(α−i;q ′
i ) − ui(α−i;qi) :α−i ∈ S k−i}, we will have vi > 0 and, by linearity,

ui(x
adm−i ;q ′

i ) − ui(x
adm−i ;qi) ≥ vi > 0 for all x−i ∈ �−i .(4.17)

Moreover, by the induction hypothesis, we also have Xdom−i (t) → 0 as t → ∞.
Thus, there exists some t0 such that

|ui(X
dom−i (t), q ′

i ) − ui(X
dom−i (t), qi)| < vi/2(4.18)

for all t ≥ t0 [recall that Xdom−i (t) is spanned by already eliminated strategies].
Therefore, as in the proof of Proposition 4.1, we obtain for t ≥ t0

Gqi
(t) − Gq ′

i
(t) ≥ M + 1

2
vit + ∑

β

(q ′
iβ − qiβ)

∫ t

0
ηiβ(X(s)) dWiβ(s),(4.19)

where M is a constant depending only on t0. In this way, the same reasoning as
before gives limt→∞ Gqi

(t) = ∞ and the theorem follows. �

As a result, if there exists only one rationally admissible strategy, we get the
following.

COROLLARY 4.4. Let X(t) be an interior solution path of the replicator
equation (3.5) for some dominance-solvable game G and let x0 ∈ S be the (unique)
strict equilibrium of G. Then

lim
t→∞X(t) = x0 almost surely,(4.20)

that is, players converge to the game’s strict equilibrium (a.s.).

In concluding this section, it is important to note that all our results on the
extinction of dominated strategies remain true in the adjusted dynamics (3.5′) as
well: this is just a matter of rescaling. The only difference in using different learn-
ing rates λi comes about in Proposition 4.2 where the estimate (4.12) becomes

Px{Xiα(t) < e−M} ≥ 1

2
erfc

(
M − hi(xi) − λivit

2λiηi

√
Sit

)
.(4.21)
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As it stands, this is not a significant difference in itself because the two estimates
are asymptotically equal for large times. Nonetheless, it is this very lack of contrast
that clashes with the deterministic setting where faster learning rates accelerate
the emergence of rationality. The reason for this gap is that an increased learning
rate λi also carries a commensurate increase in the noise coefficients ηi , and thus
deflates the benefits of accentuating payoff differences. In fact, as we shall see in
the next sections, the learning rates do not really allow players to learn any faster
as much as they help diminish their shortsightedness: by effectively being lazy, it
turns out that players are better able to average out the noise.

5. Congestion games: A suggestive digression. Having established that ir-
rational choices die out in the long run, we turn now to the question of whether
equilibrial play is stable in the stochastic replicator dynamics of exponential learn-
ing. However, before tackling this issue in complete generality, it will be quite
illustrative to pay a visit to the class of congestion games where the presence of
a potential simplifies things considerably. In this way, the results we obtain here
should be considered as a motivating precursor to the general case analyzed in
Section 6.

5.1. Congestion games. To begin with, it is easy to see that the potential V

of Definition 2.2 is a Lyapunov function for the deterministic replicator dynamics.
Indeed, assume that player i ∈ N is learning at a rate λi > 0 and let x(t) be a
solution path of the rate-adjusted dynamics (2.11). Then, a simple differentiation
of V (x(t)) gives

dV

dt
= ∑

i,α

∂V

∂xiα

dxiα

dt
= −∑

i,α

uiα(x)λixiα

(
uiα(x) − ui(x)

)
(5.1)

= −∑
i

λi

(∑
α

xiαu2
iα(x) − u2

i (x)

)
≤ 0,

the last step following from Jensen’s inequality—recall that ∂V
∂xiα

= −uiα(x) on
account of (2.5) and also that ui(x) = ∑

α xiαuiα(x). In particular, this implies
that the trajectories x(t) are attracted to the local minima of V , and since these
minima coincide with the strict equilibria of the game, we painlessly infer that
strict equilibrial play is asymptotically stable in (2.11)—as mentioned before, we
plead guilty to a slight abuse of terminology in assuming that all equilibria in pure
strategies are also strict.

It is therefore reasonable to ask whether similar conclusions can be drawn in
the noisy setting of (3.5′). Mirroring the deterministic case, a promising way to
go about this question is to consider again the potential function V of the game
and try to show that it is stochastically Lyapunov in the sense of Definition 2.4.
Indeed, if q0 = (e1,0, . . . , eN,0) ∈ � is a local minimum of V (and hence, a strict
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equilibrium of the underlying game), we may assume without loss of generality
that V (q0) = 0 so that V (x) > 0 in a neighborhood of q0. We are thus left to
examine the negativity condition of Definition 2.4, that is, whether there exists
some k > 0 such that LV (x) ≤ −kV (x) for all x sufficiently close to q0.

To that end, recall that ∂V
∂xiα

= −uiα and that ∂2V

∂x2
iα

= 0. Then, the generator L of

the rate-adjusted dynamics (3.5′) applied to V produces

LV (x) = −∑
i,α

λixiαuiα(x)
(
uiα(x) − ui(x)

)
(5.2)

− ∑
i,α

λ2
i

2
xiαuiα(x)

(
η2

iα(1 − 2xiα) − ∑
β

η2
iβxiβ(1 − 2xiβ)

)
,

where, for simplicity, we have assumed that the noise coefficients ηiα are constant.
We will study (5.2) term by term by considering the perturbed strategies xi =

(1 − εi)ei,0 + εiyi where yi belongs to the face of �i that lies opposite to ei,0 (i.e.,
yiμ ≥ 0, μ = 1,2, . . . and

∑
μ yiμ = 1) and εi > 0 measures the distance of player

i from ei,0. In this way, we get

ui(x) = ∑
α

xiαuiα(x) = (1 − εi)ui,0(x) + εi

∑
μ

yiμuiμ(x)

= ui,0(x) + εi

∑
μ

yiμ[uiμ(x) − ui,0(x)](5.3)

= ui,0(x) − εi

∑
μ

yiμ�uiμ + O(ε2
i ),

where �uiμ = ui,0(q0) − uiμ(q0) > 0. Then, by going back to (5.2), we obtain∑
α

xiαuiα(x)[uiα(x) − ui(x)]

= (1 − εi)ui,0(x)[ui,0(x) − ui(x)]
+ εi

∑
μ

yiμuiμ(x)[uiμ(x) − ui(x)]

= (1 − εi)ui,0(x) · εi

∑
μ

yiμ�uiμ(5.4)

− εi

∑
μ

yiμuiμ(q0)�uiμ + O(ε2
i )

= εi

∑
μ

yiμui,0(q0)�uiμ − εi

∑
μ

yiμuiμ(q0)�uiμ + O(ε2
i )

= εi

∑
μ

yiμ(�uiμ)2 + O(ε2
i ).
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As for the second term of (5.2), some easy algebra reveals that

η2
i,0(1 − 2xi,0) − ∑

β

η2
iβxiβ(1 − 2xiβ)

= −η2
i,0(1 − 2εi) − η2

i,0(1 − εi) − εi

∑
μ

η2
iμyiμ

(5.5)
+ 2(1 − εi)

2η2
i,0 + 2ε2

i

∑
μ

η2
iμy2

iμ

= −εi

(
η2

i,0 + ∑
μ

yiμη2
iμ

)
+ O(ε2

i )

and, after a (somewhat painful) series of calculations, we get

∑
α

xiαuiα(x)

(
η2

iα(1 − 2xiα) − ∑
β

η2
iβxiβ(1 − 2xiβ)

)

= (1 − εi)ui,0(x)

(
η2

i,0(1 − 2xi,0) − ∑
β

η2
iβxiβ(1 − 2xiβ)

)

+ εi

∑
μ

yiμ

(
η2

iμ(1 − 2xiμ) − ∑
β

η2
iβxiβ(1 − 2xiβ)

)
(5.6)

= −εiui,0(q0)

(
η2

i,0 + ∑
μ

yiμη2
iμ

)

+ εi

∑
μ

yiμuiμ(q0)(η
2
iμ + η2

i,0) + O(ε2
i )

= −εi

∑
μ

yiμ�uiμ(η2
iμ + η2

i,0) + O(ε2
i ).

Finally, if we assume without loss of generality that V (q0) = 0 and set ξ = x − q0
(i.e., ξi,0 = −εi and ξiμ = εiyiμ for all i ∈ N , μ ∈ Si \ {0}), we readily get

V (x) = ∑
i,α

∂V

∂xiα

ξiα + O(ξ2)

= −∑
i,α

∂ui

∂xiα

∣∣∣∣
q0

ξiα + O(ε2)

(5.7)
= −∑

i,α

uiα(q0)ξiα + O(ε2)

= ∑
i

εi

∑
μ

yiμ�uiμ + O(ε2),
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where ε2 = ∑
i ε

2
i . Therefore, by combining (5.4), (5.6) and (5.7), the negativity

condition LV (x) ≤ −kV (x) becomes

∑
i

λiεi

∑
μ

yiμ�uiμ

[
�uiμ − λi

2
(η2

iμ + η2
i,0)

]
(5.8)

≥ k
∑
i

εi

∑
μ

yiμ�uiμ + O(ε2).

Hence, if �uiμ > λi

2 (η2
iμ + η2

i,0) for all μ ∈ Si \ {0}, this last inequality will be
satisfied for some k > 0 whenever ε is small enough. Essentially, this proves the
following.

PROPOSITION 5.1. Let q = (α1, . . . , αN) be a strict equilibrium of a conges-
tion game G with potential function V and assume that V (q) = 0. Assume further
that the learning rates λi are sufficiently small so that, for all μ ∈ Si \ {αi} and all
i ∈ N ,

V (q−i ,μ) >
λi

2
(η2

iμ + η2
i,0).(5.9)

Then q is stochastically asymptotically stable in the rate-adjusted dynamics (3.5′).

We thus see that no matter how loud the noise ηi might be, stochastic stability
is always guaranteed if the players choose a learning rate that is slow enough as to
allow them to average out the noise (i.e., λi < �Vi/η

2
i ). Of course, it can be argued

here that it is highly unrealistic to expect players to be able to estimate the amount
of Nature’s interference and choose a suitably small rate λi . On top of that, the
very form of the condition (5.9) is strongly reminiscent of the “modified” game of
[8, 10], a similarity which seems to contradict our statement that exponential learn-
ing favors rational reactions in the original game. The catch here is that condition
(5.9) is only sufficient and Proposition 5.1 merely highlights the role of a potential
function in a stochastic environment. As we shall see in Section 6, nothing stands
in the way of choosing a different Lyapunov candidate and dropping requirement
(5.9) altogether.

5.2. The dyadic case. To gain some further intuition into why the condition
(5.9) is redundant, it will be particularly helpful to examine the case where players
compete for the resources of only two facilities (i.e., Si = {0,1} for all i ∈ N ) and
try to learn the game with the help of the uniform replicator equation (3.5). This is
the natural setting for the El Farol bar problem [2] and the ensuing minority game
[14] where players choose to “buy” or “sell” and are rewarded when they are in
the minority–buyers in a sellers’ market or sellers in an abundance of buyers.

As has been shown in [17], such games always possess strict equilibria, even
when players have distinct payoff functions. So, by relabeling indices if neces-



RATIONALITY AND STOCHASTIC PERTURBATIONS 1381

sary, let us assume that q0 = (e1,0, . . . , eN,0) is such a strict equilibrium and set
xi ≡ xi,0. Then, the generator of the replicator equation (3.5) takes the form

L = ∑
i

xi(1 − xi)

[
�ui(x) + 1

2
(1 − 2xi)η

2
i (x)

]
∂

∂xi

(5.10)

+ 1

2

∑
i

x2
i (1 − xi)

2η2
i (x)

∂2

∂x2
i

,

where now �ui ≡ ui,0 − ui,1 and η2
i = η2

i,0 + η2
i,1.

It thus appears particularly appealing to introduce a new set of variables yi such
that ∂

∂yi
= xi(1 − xi)

∂
∂xi

; this is just the “logit” transformation: yi = logitxi ≡
log xi

1−xi
. In these new variables, (5.10) assumes the astoundingly suggestive guise

L = ∑
i

(
�ui

∂

∂yi

+ 1

2
η2

i

∂2

∂y2
i

)
,(5.11)

which reveals that the noise coefficients can be effectively decoupled from the
payoffs. We can then take advantage of this by letting L act on the function f (y) =∑

i e
−aiyi (ai > 0):

Lf (y) = −∑
i

ai

(
�ui − 1

2
aiη

2
i

)
e−aiyi .(5.12)

Hence, if ai is chosen small enough so that �ui − 1
2aiη

2
i ≥ mi > 0 for all suffi-

ciently large yi [recall that �ui(q0) > 0 since q0 is a strict equilibrium], we get

Lf (y) ≤ −∑
i

aimie
−aiyi ≤ −kf (y),(5.13)

where k = mini{aimi} > 0. And since f is strictly positive for yi,0 > 0 and only
vanishes as y → ∞ (i.e., at the equilbrium q0), a trivial modification of the sto-
chastic Lyapunov method (see, e.g., pages 314 and 315 of [7]) yields the following.

PROPOSITION 5.2. The strict equilibria of minority games are stochastically
asymptotically stable in the uniform replicator equation (3.5).

REMARK 5.3. It is trivial to see that strict equilibria of minority games will
also be stable in the rate-adjusted dynamics (3.5′): in that case we simply need to
choose ai such that �ui − 1

2aiλiη
2
i ≥ mi > 0.

REMARK 5.4. A closer inspection of the calculations leading to Proposi-
tion 5.2 reveals that nothing hinges on the minority mechanism per se: it is (5.11)
that is crucial to our analysis and L takes this form whenever the underlying game
is a dyadic one (i.e., |Si | = 2 for all i ∈ N ). In other words, Proposition 5.2 also
holds for all games with 2 strategies and should thus be seen as a significant ex-
tension of Proposition 5.1.
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PROPOSITION 5.5. The strict equilibria of dyadic games are stochastically
asym ptotically stable in the replicator dynamics (3.5), (3.5′) of exponential learn-
ing.

6. Stability of equilibrial play. In deterministic environments, the “folk the-
orem” of evolutionary game theory provides some pretty strong ties between equi-
librial play and stability: strict equilibria are asymptotically stable in the multi-
population replicator dynamics (2.9) [11]. In our stochastic setting, we have al-
ready seen that this is always true in two important classes of games: those that
can be solved by iterated elimination of dominated strategies (Corollary 4.4) and
dyadic ones (Proposition 5.5).

Although interesting in themselves, these results clearly fall short of adding
up to a decent analogue of the folk theorem for stochastically perturbed games.
Nevertheless, they are quite strong omens in that direction and such expectations
are vindicated in the following.

THEOREM 6.1. The strict equilibria of a game G are stochastically asymp-
totically stable in the replicator dynamics (3.5), (3.5′) of exponential learning.

Before proving Theorem 6.1, we should first take a slight detour in order to
properly highlight some of the issues at hand. On that account, assume again that
the profile q0 = (e1,0, . . . , eN,0) is a strict equilibrium of G. Then, if q0 is to be
stochastically stable, say in the uniform dynamics (3.5), one would expect the
strategy scores Ui,0 of player i to grow much faster than the scores Uiμ,μ ∈ Si \
{0} of his other strategies. This is captured remarkably well by the “adjusted”
scores

Zi,0 = λiUi,0 − log
(∑

μ

eλiUiμ

)
,(6.1a)

Ziμ = λi(Uiμ − Ui,0),(6.1b)

where λi > 0 is a sensitivity parameter akin (but not identical) to the learning rates
of (3.5′) (the choice of common notation is fairly premeditated though).

Clearly, whenever Zi,0 is large, Ui,0 will be much greater than any other score
Uiμ and hence, the strategy 0 ∈ Si will be employed by player i far more often. To
see this in more detail, it is convenient to introduce the variables

Yi,0 := eZi,0 = eλiUi,0∑
ν eλiUiν

,(6.2a)

Yiμ := eZiμ∑
ν eZiν

= eλiUiμ∑
ν eλiUiν

,(6.2b)

where Yi,0 is a measure of how close Xi is to ei,0 ∈ �i and (Yi,1, Yi,2, . . .) ∈ �Si−1

is a direction indicator; the two sets of coordinates are then related by the trans-
formation Yiα = X

λi

iα/
∑

μ X
λi

iμ, α ∈ Si , μ ∈ Si \ {0}. Consequently, to show that
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the strict equilibrium q0 = (e1,0, . . . , eN,0) is stochastically asymptotically stable
in the replicator equation (3.5), it will suffice to show that Yi,0 diverges to infinity
as t → ∞ with arbitrarily high probability.

Our first step in this direction will be to derive an SDE for the evolution of the
Yiα processes. To that end, Itô’s lemma gives

dYiα = ∑
j,β

∂Yiα

∂Ujβ

dUjβ + 1

2

∑
j,k

∑
β,γ

∂2Yiα

∂Ujβ ∂Ukγ

dUjβ · dUkγ

(6.3)

= ∑
β

(
uiβ

∂Yiα

∂Uiβ

+ 1

2
η2

iβ

∂2Yiα

∂U2
iβ

)
dt + ∑

β

ηiβ

∂Yiα

∂Uiβ

dWiβ,

where, after a simple differentiation of (6.2a), we have

∂Yi,0

∂Ui,0
= λiYi,0,

∂2Yi,0

∂U2
i,0

= λ2
i Yi,0,

(6.4a)

∂Yi,0

∂Uiν

= −λiYi,0Yiν,
∂2Yi,0

∂U2
iν

= −λ2
i Yi,0Yiν(1 − 2Yiν)(6.4a′)

and, similarly, from (6.2b)

∂Yiμ

∂Ui,0
= 0,

∂2Yiμ

∂U2
i,0

= 0,
(6.4b)

∂Yiμ

∂Uiν

= λiYiμ(δμν − Yiν),

(6.4b′)
∂2Yiμ

∂U2
iν

= λ2
i Yiμ(δμν − Yiν)(1 − 2Yiν).

In this way, by plugging everything back into (6.3) we finally obtain

dYi,0 = λiYi,0

[
ui,0 − ∑

μ

Yiμuiμ + λi

2
η2

i,0 − λi

2

∑
μ

Yiμ(1 − 2Yiμ)η2
iμ

]
dt

(6.5a)

+ λiYi,0

[
ηi,0 dWi,0 − ∑

μ

ηiμYiμ dWiμ

]
,

dYiμ = λiYiμ[uiμ − ∑
ν

uiνYiν]dt

+ λ2
i

2
Yiμ

[
η2

iμ(1 − 2Yiμ) − ∑
ν

η2
iνYiν(1 − 2Yiν)

]
dt(6.5b)

+ λiYiμ

[
ηiμ dWiμ − ∑

ν

ηiνYiν dWiν

]
,
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where we have suppressed the arguments of ui and ηi in order to reduce notational
clutter.

This last SDE is particularly revealing: roughly speaking, we see that if λi is
chosen small enough, the deterministic term ui,0 − ∑

μ Yiμuiμ will dominate the
rest (cf. with the “soft” learning rates of Proposition 5.1). And, since we know that
strict equilibria are asymptotically stable in the deterministic case, it is plausible
to expect the SDE (6.5) to behave in a similar fashion.

PROOF OF THEOREM 6.1. Tying in with our previous discussion, we will
establish stochastic asymptotic stability of strict equilibria in the dynamics (3.5)
by looking at the processes Yi = (Yi,0, Yi,1, . . .) ∈ R × �Si−1 of (6.2). In these
coordinates, we just need to show that for every Mi > 0, i ∈ N and any ε > 0,
there exist Qi > Mi such that if Yi,0(0) > Qi , then, with probability greater than
1 − ε, limt→∞ Yi,0(t) = ∞ and Yi,0(t) > Mi for all t ≥ 0. In the spirit of the
previous section, we will accomplish this with the help of the stochastic Lyapunov
method.

Our first task will be to calculate the generator of the diffusion Y = (Y1, . . . ,

YN), that is, the second order differential operator

L = ∑
i∈N
α∈Si

biα(y)
∂

∂yiα

+ 1

2

∑
i∈N

α,β∈Si

(σi(y)σT
i (y))αβ

∂2

∂yiα ∂yiβ

,(6.6)

where bi and σi are the drift and diffusion coefficients of the SDE (6.5), respec-
tively. In particular, if we restrict our attention to sufficiently smooth functions of
the form f (y) = ∑

i∈N fi(yi,0), the application of L yields

Lf (y) = ∑
i∈N

λiyi,0

[
ui,0 + λi

2
η2

i,0

− ∑
μ

yiμ

(
uiμ − λi

2
(1 − 2yiμ)η2

iμ

)]
∂fi

∂yi,0
(6.7)

+ 1

2

∑
i∈N

λ2
i y

2
i,0

[
η2

i,0 + ∑
μ

η2
iμy2

iμ

]
∂2fi

∂2yi,0
.

Therefore, let us consider the function f (y) = ∑
i 1/yi,0 for yi,0 > 0. With

∂f
∂yi,0

= −1/y2
i,0 and ∂2f

∂y2
i,0

= 2/y3
i,0, (6.7) becomes

Lf (y) = − ∑
i∈N

λi

yi,0

[
ui,0 − ∑

μ

uiμyiμ − λi

2
η2

i,0

(6.8)

− λi

2

∑
μ

yiμ(1 − yiμ)η2
iμ

]
.
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However, since q0 = (e1,0, . . . , eN,0) has been assumed to be a strict Nash equi-
librium of G, we will have ui,0(q0) > uiμ(q0) for all μ ∈ Si \ {0}. Then, by
continuity, there exists some positive constant vi > 0 with ui,0 − ∑

μ uiμyiμ ≥
vi > 0 whenever yi,0 is large enough (recall that

∑
μ yiμ = 1). So, if we set

ηi = max{|ηiβ(x)| :x ∈ �,β ∈ Si} and pick positive λi with λi < vi/η
2
i , we get

Lf (y) ≤ − ∑
i∈N

λivi

2

1

yi,0
≤ −1

2
min

i
{λivi}f (y)(6.9)

for all sufficiently large yi,0. Moreover, f is strictly positive for yi,0 > 0 and van-
ishes only as yi,0 → ∞. Hence, as in the proof of Proposition 5.2, our claim fol-
lows on account of f being a (local) stochastic Lyapunov function.

Finally, in the case of the rate-adjusted replicator dynamics (3.5′), the proof is
similar and only entails a rescaling of the parameters λi . �

REMARK 6.2. If we trace our steps back to the coordinates Xiα , our Lyapunov
candidate takes the form f (x) = ∑

i (x
−λi

i,0
∑

μ x
λi

iμ). It thus begs to be compared to

the Lyapunov function
∑

μ xλ
μ employed by Imhof and Hofbauer in [8] to derive

a conditional version of Theorem 6.1 in the evolutionary setting. As it turns out,
the obvious extension f (x) = ∑

i

∑
μ x

λi

iμ works in our case as well, but the cal-
culations are much more cumbersome and they are also shorn of their ties to the
adjusted scores (6.1).

REMARK 6.3. We should not neglect to highlight the dual role that the learn-
ing rates λi play in our analysis. In the logistic learning model (2.10), they measure
the players’ convictions and how strongly they react to a given stimulus (the scores
Uiα); in this role, they are fixed at the outset of the game and form an intrinsic part
of the replicator dynamics (3.5′). On the other hand, they also make a virtual ap-
pearance as free temperature parameters in the adjusted scores (6.1), to be softened
until we get the desired result. For this reason, even though Theorem 6.1 remains
true for any choice of learning rates, the function f (x) = ∑

i x
−λi

i,0
∑

μ x
λi

iμ is Lya-
punov only if the sensitivity parameters λi are small enough. It might thus seem
unfortunate that we chose the same notation in both cases, but we feel that our
decision is justified by the intimate relation of the two parameters.

7. Discussion. Our aim in this last section will be to discuss a number of
important issues that we have not been able to address thoroughly in the rest of the
paper; truth be told, a good part of this discussion can be seen as a roadmap for
future research.

Ties with evolutionary game theory. In single-population evolutionary models,
an evolutionarily stable strategy (ESS) is a strategy which is robust against invasion
by mutant phenotypes [15]. Strategies of this kind can be considered as a stepping
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stone between mixed and strict equilibria and they are of such significance that it
makes one wonder why they have not been included in our analysis.

The reason for this omission is pretty simple: even the weakest evolutionary
criteria in multi-population models tend to reject all strategies which are not strict
Nash equilibria [11]. Therefore, since our learning model (2.9) corresponds exactly
to the multi-population environment (2.14), we lose nothing by concentrating our
analysis only on the strict equilibria of the game. If anything, this equivalence
between ESS and strict equilibria in multi-population settings further highlights
the importance of the latter.

However, this also brings out the gulf between the single-population setting and
our own, even when we restrict ourselves to 2-player games (which are the norm in
single-population models). Indeed, the single-population version of the dynamics
(3.8) is:

dXα = Xα

[(
uα(X) − u(X,X)

) −
(
η2

αXα − ∑
β

η2
βX2

β

)]
dt

(7.1)
+ Xα

[
ηα dWα − ∑

ηβXβ dWβ

]
.

As it turns out, if a game possesses an interior ESS and the shocks are mild
enough, the solution paths X(t) of the (single-population) replicator dynamics will
be recurrent (Theorem 2.1 in [10]). Theorem 6.1 rules out such behavior in the case
of strict equilibria (the multi-population analogue of ESS), but does not answer
the following question: if the underlying game only has mixed equilibria, will the
solution X(t) of the dynamics (3.5) be recurrent?

This question is equivalent to showing that a profile x is stochastically asymptot-
ically stable in the replicator equations (3.5), (3.5′) only if it is a strict equilibrium.
Since Theorem 6.1 provides the converse “if” part, an answer in the positive would
yield a strong equivalence between stochastically stable states and strict equilibria;
we leave this direction to be explored in future papers.

Itô vs. Stratonovich. For comparison purposes (but also for simplicity), let us
momentarily assume that the noise coefficients ηiα do not depend on the state X(t)

of the game. In that case, it is interesting (and very instructive) to note that the SDE
(3.1) remains unchanged if we use Stratonovich integrals instead of Itô ones:

dUiα(t) = uiα(X(t)) dt + ηiα ∂Wiα(t).(7.2)

Then, after a few calculations, the corresponding replicator equation reads

∂Xiα = Xiα

(
uiα(X) − ui(X)

)
dt + Xiα

(
ηiα ∂Wiα − ∑

ηiβXiβ ∂Wiβ

)
.(7.3)

The form of this last equation is remarkably suggestive. First, it highlights the
role of the modified game ũiα = uiα + 1

2η2
iα even more crisply than (3.5): the pay-

off terms are completely decoupled from the noise, in contrast to what one obtains
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by introducing Stratonovich perturbations in the evolutionary setting [8, 13]. Sec-
ondly, one can seemingly use this simpler equation to get a much more transparent
proof of Proposition 4.1: the estimates for the cross entropy terms Gqi−q ′

i
are re-

covered almost immediately from the Stratonovich dynamics. However, since (7.3)
takes this form only for constant coefficients ηiα (the general case is quite a bit
uglier), we chose the route of consistency and employed Itô integrals throughout
our paper.

Applications in network design. Before closing, it is worth pointing out the
applicability of the above approach to networks where the presence of noise or
uncertainty has two general sources. The first of these has to do with the time vari-
ability of the connections which may be due to the fluctuations of the link quality
because of mobility in the wireless case or because of external factors (e.g., load
conditions) in wireline networks. This variability is usually dependent on the state
of the network and was our original motivation in considering noise coefficients
ηiα that are functions of the players’ strategy profile; incidentally, it was also our
original motivation for considering randomly fluctuating payoffs in the first place:
travel times and delays in traffic models are not determined solely by the players’
choices, but also by the fickle interference of nature.

The second source stems from errors in the measurement of the payoffs them-
selves (e.g., the throughput obtained in a particular link) and also from the lack
of information on the payoff of strategies that were not employed. The variability
of the noise coefficients ηiα again allows for a reasonable approximation to this
problem. Indeed, if ηiα :� → R is continuous and satisfies ηiα(x−i;α) = 0 for all
i ∈ N , α ∈ Si , this means that there are only errors in estimating the payoffs of
strategies that were not employed (or small errors for pure strategies that are em-
ployed with high probability). Of course, this does not yet give the full picture [one
should consider the discrete-time dynamical system (2.6) instead where the play-
ers’ actual choices are considered], but we conjecture that our results will remain
essentially unaltered.
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