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ISING MODELS ON LOCALLY TREE-LIKE GRAPHS1

BY AMIR DEMBO AND ANDREA MONTANARI

Stanford University

We consider ferromagnetic Ising models on graphs that converge locally
to trees. Examples include random regular graphs with bounded degree and
uniformly random graphs with bounded average degree. We prove that the
“cavity” prediction for the limiting free energy per spin is correct for any
positive temperature and external field. Further, local marginals can be ap-
proximated by iterating a set of mean field (cavity) equations. Both results
are achieved by proving the local convergence of the Boltzmann distribution
on the original graph to the Boltzmann distribution on the appropriate infinite
random tree.

1. Introduction. A ferromagnetic Ising model on the finite graph G (with
vertex set V , and edge set E) is defined by the following Boltzmann distributions
over x = {xi : i ∈ V }, with xi ∈ {+1,−1}:

μ(x) = 1

Z(β,B)
exp

{
β

∑
(i,j)∈E

xixj + B
∑
i∈V

xi

}
.(1.1)

These distributions are parametrized by the “magnetic field” B and “inverse tem-
perature” β ≥ 0, where the partition function Z(β,B) is fixed by the normalization
condition

∑
x μ(x) = 1. Throughout the paper, we will be interested in sequences

of graphs2 Gn = (Vn ≡ [n],En) of diverging size n.
Nonrigorous statistical mechanics techniques, such as the “replica” and “cavity

methods,” allow to make a number of predictions on the model (1.1), when the
graph G “lacks any finite-dimensional structure.” The most basic quantity in this
context is the asymptotic free entropy density

φ(β,B) ≡ lim
n→∞

1

n
logZn(β,B)(1.2)

(this quantity is also sometimes called in the literature also free energy or pres-
sure). The limit free entropy density and the large deviation properties of Boltz-
mann distribution were characterized in great detail [9] in the case of a complete
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graph Gn = Kn (the inverse temperature must then be scaled by 1/n to get a non-
trivial limit). Statistical physics predictions exist, however, for a much wider class
of graphs, including most notably sparse random graphs with bounded average de-
gree; see, for instance, [8, 15, 18]. This is a direction of interest for at least two
reasons:

(i) Sparse graphical structures arise in a number of problems from combina-
torics and theoretical computer science. Examples include random satisfiability,
coloring of random graphs and graph partitioning [21]. In all of these cases, the
uniform measure over solutions can be regarded as the Boltzmann distribution for
a modified spin glass with multispin interactions. Such problems have been suc-
cessfully attacked using nonrigorous statistical mechanics techniques.

A mathematical foundation of this approach is still lacking, and would be ex-
tremely useful.

(ii) Sparse graphs allow to introduce a nontrivial notion of distance between
vertices, namely the length of the shortest path connecting them. This geometrical
structure allows for new characterizations of the measure (1.1) in terms of corre-
lation decay. This type of characterization is in turn related to the theory of Gibbs
measures on infinite trees [17].

The asymptotic free entropy density (1.2) was determined rigorously only in a
few cases for sparse graphs. In [11], this task was accomplished for random regular
graphs. De Sanctis and Guerra [7] developed interpolation techniques for random
graphs with independent edges (Erdös–Renyi type) but only determined the free
entropy density at high temperature and at zero temperature (in both cases with
vanishing magnetic field). The latter is in fact equivalent to counting the number
of connected components of a random graph. Interestingly, the partition function
Zn(β,B) can be approximated in polynomial time for β ≥ 0, using an appropriate
Markov chain Monte Carlo algorithm [14]. It is intriguing that no general approx-
imation algorithms exists in the case β < 0 (the “antiferromagnetic” Ising model).
Correspondingly, the statistical physics conjecture for the free entropy density [21]
becomes significantly more intricate (presenting the so-called “replica symmetry
breaking” phenomenon).

In this paper we generalize the previous results by rigorously verifying the va-
lidity of the Bethe free entropy prediction for the value of the limit in (1.2) for
generic graph sequences that converge locally to trees. Indeed, we control the free
entropy density by proving that the Boltzmann measure (1.1) converges locally to
the Boltzmann measure of a model on a tree. The philosophy is related to the local
weak convergence method of [2].

Finally, several of the proofs have an algorithmic interpretation, providing an
efficient procedure for approximating the local marginals of the Boltzmann mea-
sure. The essence of this procedure consists in solving by iteration certain mean
field (cavity) equations. Such an algorithm is known in artificial intelligence and
computer science under the name of belief propagation. Despite its success and
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wide applicability, only weak performance guarantees have been proved so far.
Typically, it is possible to prove its correctness in the high temperature regime, as
a consequence of a uniform decay of correlations holding there (spatial mixing)
[3, 23, 26]. The behavior of iterative inference algorithms on Ising models was
recently considered in [22, 24].

The emphasis of the present paper is on the low-temperature regime in which
uniform decorrelation does not hold. We are able to prove that belief propagation
converges exponentially fast on any graph, and that the resulting estimates are as-
ymptotically exact for large locally tree-like graphs. The main idea is to introduce
a magnetic field to break explicitly the +/− symmetry, and to carefully exploit the
monotonicity properties of the model.

A key step consists of estimating the correlation between the root spin of an
Ising model on a tree and positive boudary conditions. Ising models on trees are
interesting per se, and have been the object of significant mathematical work; see,
for instance, [10, 16, 20]. The question considered here appears, however, to be
novel.

The next section provides the basic technical definitions (in particular concern-
ing graphs and local convergence to trees), and the formal statement of our main
results. Notation and certain key tools are described in Section 3 with Section 4
devoted to proofs of the relevant properties of Ising models on trees (which are of
independent interest). The latter are used in Sections 5 and 6 to derive our main
results concerning models on tree-like graphs. A companion paper [5] deals with
the related challenging problem of spin glass models on sparse graphs.

2. Definitions and main results. The next subsections contain some basic
definitions on graph sequences and the notion of local convergence to random
trees. Sections 2.2 and 2.3 present our results on the free entropy density and the
algorithmic implications of our analysis.

2.1. Locally tree-like graphs. Let P = {Pk :k ≥ 0} a probability distribution
over the nonnegative integers, with finite, positive first moment, and denote by

ρk = kPk∑∞
l=1 lPl

,(2.1)

its size-biased version. For any t ≥ 0, we let T(P,ρ, t) denote the random rooted
tree generated as follows. First draw an integer k with distribution Pk , and con-
nect the root to k offspring. Then recursively, for each node in the last generation,
generate an integer k independently with distribution ρk , and connect the node to
k − 1 new nodes. This is repeated until the tree has t generations.

Sometimes it will be useful to consider the ensemble T(ρ, t) whereby the root
node has degree k − 1 with probability ρk . We will drop the degree distribution ar-
guments from T(P,ρ, t) or T(ρ, t) and write T(t) whenever clear from the context.
Notice that the infinite trees T(P,ρ,∞) and T(ρ,∞) are well defined.
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The average branching factor of trees will be denoted by ρ, and the average root
degree by P . In formulae

P ≡
∞∑

k=0

kPk, ρ ≡
∞∑

k=1

(k − 1)ρk.(2.2)

We denote by Gn = (Vn,En) a graph with vertex set Vn ≡ [n] = {1, . . . , n}.
The distance d(i, j) between i, j ∈ Vn is the length of the shortest path from i to
j in Gn. Given a vertex i ∈ Vn, we let Bi (t) be the set of vertices whose distance
from i is at most t . With a slight abuse of notation, Bi (t) will also denote the
subgraph induced by those vertices. For i ∈ Vn, we let ∂i denote the set of its
neighbors ∂i ≡ {j ∈ Vn : (i, j) ∈ En}, and |∂i| its size (i.e. the degree of i).

This paper is concerned by sequence of graphs {Gn}n∈N of diverging size, that
converge locally to trees. Consider two trees T1 and T2 with vertices labeled ar-
bitrarily. We shall write T1 � T2 if the two trees become identical when vertices
are relabeled from 1 to |T1| = |T2|, in a breadth first fashion, and following lexico-
graphic order among siblings.

DEFINITION 2.1. Considering a sequence of graphs {Gn}n∈N, let Pn denote
the law induced on the ball Bi (t) in Gn centered at a uniformly chosen random
vertex i ∈ [n]. We say that {Gn} converges locally to the random tree T(P,ρ,∞)

if, for any t , and any rooted tree T with t generations

lim
n→∞ Pn{Bi (t) � T } = P{T(P,ρ, t) � T }.(2.3)

DEFINITION 2.2. We say that a sequence of graphs {Gn}n∈N is uniformly
sparse if

lim
l→∞ lim sup

n→∞
1

n

∑
i∈Vn

|∂i|I(|∂i| ≥ l) = 0.(2.4)

2.2. Free entropy. According to the statistical physics derivation [18], the
model (1.1) has a line of first-order phase transitions for B = 0 and β > βc [i.e.,
where the continuous function B �→ φ(β,B) exhibits a discontinuous derivative].
The critical temperature depends on the graph only through the average branching
factor and is determined by the condition

ρ tanhβc = 1.(2.5)

Notice that βc � 1/ρ for large degrees.
The asymptotic free-entropy density is given in terms of the fixed point of a

distributional recursion. One characterization of this fixed point is as follows.
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LEMMA 2.3. Consider the sequence of random variables {h(t)} defined by
h(0) = 0 identically and, for t ≥ 0,

h(t+1) d= B +
K−1∑
i=1

ξ
(
β,h

(t)
i

)
,(2.6)

where K is an integer valued random variable of distribution ρ,

ξ(β,h) ≡ atanh[tanh(β) tanh(h)],(2.7)

and the h
(t)
i ’s are i.i.d. copies of h(t) that are independent of K . If B > 0 and ρ

has finite first moment, then the distributions of h(t) are stochastically monotone
and h(t) converges in distribution to the unique fixed point h∗ of the recursion (2.6)
that is supported on [0,∞).

Our next result confirms the statistical physics prediction for the free-entropy
density.

THEOREM 2.4. Let {Gn}n∈N be a sequence of uniformly sparse graphs that
converges locally to T(P,ρ,∞). If ρ has finite first moment (that is if P has finite
second moment), then for any B ∈ R and β ≥ 0 the following limit exists:

lim
n→∞

1

n
logZn(β,B) = φ(β,B).(2.8)

Moreover, for B > 0 the limit is given by

φ(β,B) ≡ P

2
log cosh(β) − P

2
E log[1 + tanh(β) tanh(h1) tanh(h2)]

+ E log

{
eB

L∏
i=1

[1 + tanh(β) tanh(hi)](2.9)

+ e−B
L∏

i=1

[1 − tanh(β) tanh(hi)]
}
,

where L has distribution Pl and is independent of the “cavity fields” hi that are
i.i.d. copies of the fixed point h∗ of Lemma 2.3. Also, φ(β,B) = φ(β,−B) and
φ(β,0) is the limit of φ(β,B) as B → 0.

The proof of Theorem 2.4 is based on two steps:

(a) Reduce the computation of φn(β,B) = 1
n

logZn(β,B) to computing ex-
pectations of local (in Gn) quantities with respect to the Boltzmann measure (1.1).
This is achieved by noticing that the derivative of φn(β,B) with respect to β is a
sum of such expectations.
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(b) Show that expectations of local quantities on Gn are well approximated
by the same expectations with respect to an Ising model on the associated tree
T(P,ρ, t) (for t and n large). This is proved by showing that, on such a tree, local
expectations are insensitive to boundary conditions that dominate stochastically
free boundaries. The theorem then follows by monotonicity arguments.

The key step is of course the last one. A stronger requirement would be that these
expectation values are insensitive to any boundary condition, which would co-
incide with uniqueness of the Gibbs measure on T(P,ρ,∞). Such a requirement
would allow for an elementary proof, but holds only at “high” temperature, β ≤ βc.

Indeed, insensitivity to positive boundary conditions is proved in Section 4 for
the following collection of trees of conditionally independent (and of bounded
average) offspring numbers.

DEFINITION 2.5. An infinite tree T rooted at the vertex ø is called condition-
ally independent if for each integer k ≥ 0, conditional on the subtree T(k) of the
first k generations of T, the number of offspring �j for j ∈ ∂T(k) are independent
of each other, where ∂T(k) denotes the set of vertices at generation k. We further
assume that the [conditional on T(k)] first moments of �j are uniformly bounded
by a given nonrandom finite constant �.

Beyond the random tree T(P,ρ,∞), these include deterministic trees with
bounded degrees and certain multi-type branching processes (such as random bi-
partite trees and percolation clusters on deterministic trees of bounded degree).
Consequently, Theorem 2.4 extends to any uniformly sparse graph sequence that
converge locally to a random tree T of the form of Definition 2.5 except that the
formula φ(β,B) is in general more involved than the one given in (2.9). For ex-
ample, such an extension allows one to handle uniformly random bipartite graphs
with different degree distributions Pk and Qk for the two types of vertices.

While we refrain from formalizing and proving such generalizations, we note
in passing that our derivation of the formula (2.9) implicitly uses the fact that
T(P,ρ,∞) possesses the involution invariance of [2]. As pointed out in [1], every
local limit of finite graphs must have the involution invariance property (which
clearly not every conditionally independent tree has).

2.3. Algorithmic implications. The free entropy density is not the only quan-
tity that can be characterized for Ising models on locally tree-like graphs. Indeed
local marginals can be efficiently computed with good accuracy. The basic idea is
to solve a set of mean field equations iteratively. These are known as Bethe–Peierls
or cavity equations and the corresponding algorithm is referred to as “belief prop-
agation” (BP).

More precisely, associate to each directed edge in the graph i → j , with (i, j) ∈
G, a distribution νi→j (xi) over xi ∈ {+1,−1}. In the computer science literature
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these distributions are referred to as “messages.” They are updated as follows:

ν
(t+1)
i→j (xi) = 1

z
(t)
i→j

eBxi
∏

l∈∂i\j

∑
xl

eβxixl ν
(t)
l→i(xl).(2.10)

The initial conditions ν
(0)
i→j (·) may be taken to be uniform or chosen according

to some heuristic. We will say that the initial condition is positive if ν
(0)
i→j (+1) ≥

ν
(0)
i→j (−1) for each of these messages.

Our next result concerns the uniform exponential convergence of the BP itera-
tion to the same fixed point of (2.10), irrespective of its positive initial condition.
Here and below, we denote by ‖p − q‖TV the total variation distance between
distributions p and q .

THEOREM 2.6. Assume β ≥ 0, B > 0 and G is a graph of finite maximal
degree �. Then, there exists A = A(β,B,�) finite, λ = λ(β,B,�) > 0 and a fixed
point {ν∗

i→j } of the BP iteration (2.10) such that for any positive initial condition

{ν(0)
l→k} and all t ≥ 0,

sup
(i,j)∈E

∥∥ν(t)
i→j − ν∗

i→j

∥∥
TV ≤ A exp(−λt).(2.11)

For i∗ ∈ V let U ≡ Bi∗(r) be the ball of radius r around i∗ in G, denoting by
EU its edge set, by ∂U its border (i.e., the set of its vertices at distance r from i∗),
and for each i ∈ ∂U let j (i) denote any one fixed neighbor of i in U .

Our next result shows that the probability distribution

νU(xU) = 1

zU

exp
{
β

∑
(i,j)∈EU

xixj + B
∑

i∈U\∂U

xi

} ∏
i∈∂U

ν∗
i→j (i)(xi),(2.12)

with {ν∗
i→j (·)} the fixed point of the BP iteration per Theorem 2.6, is a good ap-

proximation for the marginal μU(·) of variables xU ≡ {xi : i ∈ U} under the Ising
model (1.1).

THEOREM 2.7. Assume β ≥ 0, B > 0 and G is a graph of finite maximal
degree �. Then, there exist finite c = c(β,B,�) and λ = λ(β,B,�) > 0 such that
for any i∗ ∈ G and U = Bi∗(r), if Bi∗(t) is a tree then

‖μU − νU‖TV ≤ exp{cr+1 − λ(t − r)}.(2.13)

2.4. Examples. Many common random graph ensembles [13] naturally fit our
framework.
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Random regular graphs. Let Gn be a uniformly random graph with degree k.
As n → ∞, the sequence {Gn} is obviously uniformly sparse, and converges lo-
cally almost surely to the rooted infinite tree of degree k at every vertex. Therefore,
in this case Theorem 2.4 applies with Pk = 1 and Pi = 0 for i �= k. The distrib-
utional recursion (2.6) then evolves with a deterministic sequence h(t) recovering
the result of [11].

Erdös–Renyi graphs. Let Gn be a uniformly random graph with m = nγ edges
over n vertices. The sequence {Gn} converges locally almost surely to a Galton–
Watson tree with Poisson offspring distribution of mean 2γ . This corresponds to
taking Pk = (2γ )ke−2γ /k!. The same happens to classical variants of this ensem-
ble. For instance, one can add an edge independently for each pair (i, j) with
probability 2γ /n, or consider a multi-graph with Poisson(2γ /n) edges between
each pair (i, j).

The sequence {Gn} is with probability one uniformly sparse in each of these
cases. Thus, Theorem 2.4 extends the results of [7] to arbitrary nonzero tempera-
ture and magnetic field.

Arbitrary degree distribution. Let P be a distribution with finite second mo-
ment and Gn a uniformly random graph with degree distribution P (more pre-
cisely, we set the number of vertices of degree k ≥ 1 to 
nPk�, adding one for
k = 1 if needed for an even sum of degrees). Then, {Gn} is uniformly sparse and
with probability one it converges locally to T(P,ρ,∞). The same happens if Gn

is drawn according to the so-called configuration model (cf. [4]).

3. Preliminaries. We review here the notations and a couple of classical tools
we use throughout this paper. To this end, when proving our results it is useful to
allow for vertex-dependent magnetic fields Bi , that is, to replace the basic model
(1.1) by

μ(x) = 1

Z(β,B)
exp

{
β

∑
(i,j)∈E

xixj + ∑
i∈V

Bixi

}
.(3.1)

Given U ⊆ V , we denote by (+)U [respectively, (−)U ] the vector {xi = +1,
i ∈ U} [respectively, {xi = −1, i ∈ U}], dropping the subscript U whenever clear
from the context. Further, we use xU � x′

U when two real-valued vectors x and
x′ are such that xi ≤ x′

i for all i ∈ U and say that a distribution ρU(·) over R
U

is dominated by a distribution ρ′
U(·) over this set (denoted ρU � ρ′

U ), if the two
distributions can be coupled so that xU � x′

U for any pair (xU , x′
U) drawn from

this coupling. Finally, we use throughout the shorthand 〈ν,f 〉 = ∑
x f (x)ν(x) for

a distribution ν and function f on the same finite set, or 〈f 〉 when ν is clear from
the context.

The first classical result we need is Griffiths inequality (see [19], Theo-
rem IV.1.21).
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THEOREM 3.1. Consider two Ising models μ(·) and μ′(·) on graphs G =
(V ,E) and G′ = (V ,E′), inverse temperatures β and β ′, and magnetic fields {Bi}
and {B ′

i}, respectively. If E ⊆ E′, β ≤ β ′ and 0 ≤ Bi ≤ B ′
i for all i ∈ V , then

0 ≤ 〈μ,
∏

i∈U xi〉 ≤ 〈μ′,∏
i∈U xi〉 for any U ⊆ V .

The second classical result we use is the GHS inequality (see [12]) about the
effect of the magnetic field B on the local magnetizations at various vertices.

THEOREM 3.2 (Griffiths, Hurst, Sherman). Let β ≥ 0 and for B = {Bi : i ∈
V }, denote by mj(B) ≡ μ({x :xj = +1}) − μ({x :xj = −1}) the local magnetiza-
tion at vertex j in the Ising model (3.1). If Bi ≥ 0 for all i ∈ V , then for any three
vertices j, k, l ∈ V (not necessarily distinct),

∂2mj(B)

∂Bk ∂Bl

≤ 0.(3.2)

Finally, we need the following elementary inequality:

LEMMA 3.3. For any function f : X �→ [0, fmax] and distributions ν, ν′ on
the finite set X such that ν(f > 0) > 0 and ν′(f > 0) > 0,

∑
x

∣∣∣∣ν(x)f (x)

〈ν,f 〉 − ν′(x)f (x)

〈ν′, f 〉
∣∣∣∣ ≤ 3fmax

max(〈ν,f 〉, 〈ν′, f 〉)‖ν − ν′‖TV.(3.3)

In particular, if 0 < fmin ≤ f (x), then the right-hand side is bounded by
(3fmax/fmin)‖ν − ν′‖TV.

PROOF. Assuming without loss of generality that 〈ν′, f 〉 ≥ 〈ν,f 〉 > 0, the
left-hand side of (3.3) can be bounded as

1

〈ν,f 〉〈ν′, f 〉
∑
x

|ν(x)f (x)〈ν′, f 〉 − ν′(x)f (x)〈ν,f 〉|

≤ 1

〈ν′, f 〉 |〈ν,f 〉 − 〈ν′, f 〉| + 1

〈ν′, f 〉
∑
x

|ν(x)f (x) − ν′(x)f (x)|

≤ fmax

〈ν′, f 〉‖ν − ν′‖TV + 2fmax

〈ν′, f 〉‖ν − ν′‖TV.

This implies the lemma. �

4. Ising models on trees. We prove in this section certain facts about Ising
models on trees which are of independent interest and as a byproduct we deduce
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Lemma 2.3 and the theorems of Section 2.3. In doing so, recall that for each � ≥ 1
the Ising models on T(�) with free and plus boundary conditions are

μ�,0(x) ≡ 1

Z�,0 exp
{
β

∑
(ij)∈T(�)

xixj + ∑
i∈T(�)

Bixi

}
,(4.1)

μ�,+(x) ≡ 1

Z�,+ exp
{
β

∑
(ij)∈T(�)

xixj + ∑
i∈T(�)

Bixi

}
(4.2)

× I
(
x∂T(�) = (+)∂T(�)

)
.

Equivalently μ�,0 is the Ising model (3.1) on T(�) with magnetic fields {Bi} and
μ�,+ is the modified Ising model corresponding to the limit Bi ↑ +∞ for all i ∈
∂T(�). To simplify our notation we denote such limits hereafter simply by setting
Bi = +∞ and use μ� for statements that apply to both free and plus boundary
conditions.

We start with the following simple but useful observation.

LEMMA 4.1. For a subtree U of a finite tree T let ∂∗U denote the subset of
vertices of U connected by an edge to W ≡ T \ U and for each u ∈ ∂∗U let 〈xu〉W
denote the root magnetization of the Ising model on the maximal subtree Tu of
W ∪ {u} rooted at u. The marginal on U of the Ising measure on T , denoted μT

U

is then an Ising measure on U with magnetic field B ′
u = atanh(〈xu〉W) ≥ Bu for

u ∈ ∂∗U and B ′
u = Bu for u /∈ ∂∗U .

PROOF. Since U is a subtree of the tree T , the subtrees Tu for u ∈ ∂∗U are
disjoint. Therefore, with μ̂u(x) denoting the Ising model distribution for Tu we
have that

μT
U(xU) = 1

Ẑ
f (xU)

∏
u∈∂∗U

μ̂u(xu)(4.3)

for the Boltzmann weight

f (xU) = exp
{
β

∑
(uv)∈U

xuxv + ∑
u∈U\∂∗U

Buxu

}
.

Further, xu ∈ {+1,−1} so for each u ∈ ∂∗U and some constants cu,

μ̂u(xu) = 1
2(1 + xu〈xu〉W) = cu exp(atanh(〈xu〉W)xu).

Embedding the normalization constants cu within Ẑ we thus conclude that μT
U is

an Ising measure on U with the stated magnetic field B ′
u. Finally, comparing the

root magnetization for Tu with that for {u} we have by Griffiths inequality that
〈xu〉W ≥ tanh(Bu), as claimed. �
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THEOREM 4.2. Suppose T is a conditionally independent infinite tree of aver-
age offspring numbers bounded by �, as in Definition 2.5. For 0 < Bmin ≤ Bmax,
βmax and � finite, there exist M = M(βmax,Bmin,�) and C = C(βmax,Bmax) fi-
nite such that if Bi ≤ Bmax for all i ∈ T(r − 1) and Bi ≥ Bmin for all i ∈ T(�),
� > r , then

E‖μ�,+
U − μ

�,0
U ‖TV ≤ δ(� − r)E

{
C|T(r)|}(4.4)

for δ(t) = M/t , all U ⊆ T(r) and β ≤ βmax.

PROOF. Fixing � > r it suffices to consider U = T(r) [for which the left-hand
side of (4.4) is maximal]. For this U and T = T(�) we have that ∂∗U = ∂T(r)

and U \ ∂∗U = T(r − 1), where in this case the Boltzmann weight f (·) in
(4.3) is bounded above by fmax = c|T(r)| and below by fmin = 1/fmax for c =
exp(βmax + Bmax). Further, the plus and free boundary conditions then differ in
(4.3) by having the corresponding boundary conditions at generation �− r of each
subtree Tu, which we distinguish by using μ̂

+/0
u (xu) instead of μ̂u(xu). Since the

total variation distance between two product measures is at most the sum of the
distance between their marginals, upon applying Lemma 3.3 we deduce from (4.3)
that

∥∥μ�,+
T(r) − μ

�,0
T(r)

∥∥
TV ≤ 3

2
c2|T(r)| ∑

i∈∂T(r)

|μ̂+
i (xi = 1) − μ̂0

i (xi = 1)|.

By our assumptions, conditional on U = T(r), the subtrees Ti of T = T(�) de-
noted hereafter also by Ti are for i ∈ ∂T(r) independent of each other. Fur-
ther, 2μ̂

+/0
i (xi = 1) − 1 is precisely the magnetization of their root vertex un-

der plus/free boundary conditions at generation � − r . Thus, taking C = ec2

(and using the inequality y ≤ ey ), it suffices to show that the magnetizations
m�,+/0(B) = 〈μ�,+/0, xø〉 at the root of any such conditionally independent infi-
nite tree T satisfy E{m�,+(B) − m�,0(B)} ≤ M

�
, for some M = M(βmax,Bmin,�)

finite, all β ≤ βmax and � ≥ 1, where we have removed the absolute value since
m�,+(B) ≥ m�,0(B) by Griffiths inequality. For greater convenience of the reader,
this fact is proved in the next lemma. �

LEMMA 4.3. Suppose T is a conditionally independent infinite tree of average
offspring numbers bounded by �. For 0 < Bmin ≤ Bmax, βmax and � finite, there
exist M = M(βmax,Bmin,�) such that

E{m�,+(B) − m�,0(B)} ≤ M

�
,(4.5)

where m�,+/0(B) = 〈μ�,+/0, xø〉 are the root magnetizations under + and free
boundary condition on T.
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PROOF. Note that (4.5) trivially holds for β = 0 [in which case μ�,+(xø) =
μ�,0(xø)]. Assuming hereafter that β > 0 we proceed to prove (4.5) when each
vertex of T(� − 1) has a nonzero offspring number. To this end, for H = {Hi ∈
R : i ∈ ∂T(k)} let

μk,H (x) ≡ 1

Zk,0 exp
{
β

∑
(ij)∈T(k)

xixj + ∑
i∈T(k)

Bixi + ∑
i∈∂T(k)

Hixi

}

and denote by mk(B,H) the corresponding root magnetization. Writing H instead
of H for constant magnetic field on the leave nodes, that is, when Hi = H for each
i ∈ ∂T(k), we note that mk,+(B) = mk(B,∞) and mk,0(B) = mk(B,0). Further,
applying Lemma 4.1 for the subtree T(k − 1) of T(k) we represent mk(B,∞) as
the root magnetization mk−1(B ′,0) on T(k − 1) where B ′

i = Bi + β�i for i ∈
∂T(k − 1) and B ′

i = Bi for all other i. Consequently,

mk(B,∞) = mk−1(B, {β�i}).(4.6)

Recall that if ∂2g

∂2zi
≤ 0 for i = 1, . . . , s, then applying Jensen’s inequality one vari-

able at a time we have that Eg(Z1, . . . ,Zs) ≤ g(EZ1, . . . ,EZs) for any indepen-
dent random variables Z1, . . . ,Zs . By the GHS inequality, this is the case for
H �→ mk−1(B,H), hence with Ek denoting the conditional on T(k) expectation
over the independent offspring numbers �i for i ∈ ∂T(k), we deduce that

Ek−1m
k(B,∞) ≤ mk−1(B, {βEk−1�i}) ≤ mk−1(B,β�),(4.7)

where the last inequality is a consequence of Griffiths inequality and our assump-
tion that Et�i ≤ � for any i ∈ ∂T(t) and all t ≥ 0. Since each i ∈ ∂T(k − 1) has at
least one offspring whose magnetic field is at least Bmin, it follows by Griffiths in-
equality that mk,0(B) is bounded below by the magnetization at the root of the sub-
tree T of T(k) where �i = 1 for all i ∈ ∂T(k − 1) and Bi = Bmin for all i ∈ ∂T(k).
Applying Lemma 4.1 for T and U = T(k − 1), the root magnetization for the Ising
distribution on T turns out to be precisely mk−1(B, ξ) for ξ = ξ(β,Bmin) > 0 of
(2.7). Thus, one more application of Griffiths inequality yields that

mk(B,0) ≥ mk−1(B, ξ) ≥ mk−1(B,0).(4.8)

Next note that ξ(β,B) ≤ β ≤ β� and by GHS inequality H �→ mk−1(B,H) is
concave. Hence,

mk−1(B,β�) − mk−1(B,0) ≤ M[mk−1(B, ξ) − mk−1(B,0)](4.9)

for the finite constant

M ≡ sup
0<β≤βmax

β�

ξ(β,Bmin)
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and all β ≤ βmax. Combining (4.7), (4.8) and (4.9) we obtain that

Ek−1{mk,+(B) − mk,0(B)} ≤ mk−1(B,�β) − mk−1(B,0)

≤ M[mk−1(B, ξ) − mk−1(B,0)]
≤ M[mk(B,0) − mk−1(B,0)].

We have seen in (4.8) that k �→ mk,0(B) is nondecreasing whereas from (4.6) and
Griffiths inequality we have that k �→ mk,+(B) is nonincreasing. With magnetiza-
tion bounded above by one, we thus get upon summing the preceding inequalities
for k = 1, . . . , � that

�E�−1[m�,+(B) − m�,0(B)] ≤
�∑

k=1

Ek−1[mk,+(B) − mk,0(B)] ≤ M,

from which we deduce (4.5).
Considering now the general case where the infinite tree T has vertices (other

than the root) of degree one, let T∗(�) denote the “backbone” of T(�), that is, the
subtree induced by vertices along self-avoiding paths between ø and ∂T(�). Taking
U = T∗(�) as the subtree of T = T(�) in Lemma 4.1, note that for each u ∈ ∂∗U the
subtree Tu contains no vertex from ∂T(�). Consequently, the marginal measures
μ

�,+/0
U are Ising measures on U with the same magnetic fields B ′

i ≥ Bi ≥ Bmin

outside ∂T(�). Thus, with m
�,+/0∗ (B) denoting the corresponding magnetizations at

the root for T∗(�), we deduce that m�,+/0(B) = m
�,+/0∗ (B ′) where B ′

i ≥ Bi ≥ Bmin
for all i. By definition every vertex of T∗(� − 1) has a nonzero offspring number
and with B ′

i ≥ Bmin, the required bound

E{m�,+(B) − m�,0(B)} = E{m�,+∗ (B ′) − m�,0∗ (B ′)} ≤ M

�

follows by the preceding argument, since T∗(�) is a conditionally independent tree
whose offspring numbers �∗

i ≥ 1 do not exceed those of T(�). Indeed, for k =
0,1, . . . , � − 1, given T∗(k) the offspring numbers at i ∈ ∂T∗(k) are independent
of each other [with probability of {�∗

i = s} proportional to the sum over t ≥ 0 of
the product of the probability of {�i = s + t} and that of precisely s out of the
s + t offspring of i in T(�) having a line of descendants that survives additional
� − k − 1 generations, for s ≥ 1]. �

Simon’s inequality (see [25], Theorem 2.1) allows one to bound the (centered)
two point correlation functions in ferromagnetic Ising models with zero magnetic
field. We provide next its generalization to arbitrary magnetic field, in the case of
Ising models on trees.

LEMMA 4.4. If edge (i, j) is on the unique path from ø to k ∈ T(�), with j a
descendant of i ∈ ∂T(t), t ≥ 0, then

〈xø;xk〉(�)ø ≤ cosh2(2β + Bi)〈xø;xi〉(t)ø 〈xj ;xk〉(�)j ,(4.10)
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where 〈·〉(r)i denotes the expectation with respect to the Ising distribution μ̂i(·)
on the subtree Ti of i and all its descendants in T(r) and 〈x;y〉 ≡ 〈xy〉 − 〈x〉〈y〉
denotes the centered two point correlation function.

PROOF. It is not hard to check that if x, y, z are {+1,−1}-valued random
variables with x and z conditionally independent given y, then

〈x; z〉 = 〈x;y〉〈y; z〉
1 − 〈y〉2 .(4.11)

In particular, under μ�,0 the random variables xø and xk are conditionally indepen-
dent given y = xi with∣∣∣∣log

(
μ�,0(xi = +1)

μ�,0(xi = −1)

)∣∣∣∣ ≤ 2(|∂i|β + Bi).

Hence, if j is the unique descendant of i then |〈xi〉(�)ø | ≤ tanh(2β +Bi) and we get
from (4.11) that

〈xø;xk〉(�)ø ≤ c〈xø;xi〉(�)ø 〈xi;xk〉(�)ø

for c = cosh2(2β + Bi). Next note that 〈x;y〉 ≤ 1 − 〈y〉2 for any two {+1,−1}-
valued random variables, and since xi and xk are conditionally independent given
y = xj it follows from (4.11) that 〈xi;xk〉(�)ø ≤ 〈xj ;xk〉(�)ø . Further, if 〈·〉 is the
expectation with respect to an Ising measure for some (finite) graph G then for
any u, v ∈ G

∂〈xv〉
∂Bu

= 〈xvxu〉 − 〈xv〉〈xu〉 = 〈xv;xu〉.(4.12)

From Lemma 4.1 we know that computing the marginal of the Ising distribution
for T = T(�) on a smaller subtree U = Tj of interest has the effect of increas-
ing its magnetic field. Thus, combining the identity (4.12) with GHS inequality,
we see that reducing this field (i.e., restricting to U the original Ising distribu-
tion), increases the centered two point correlation function. That is, 〈xj ;xk〉(�)ø ≤
〈xj ;xk〉(�)j . Similarly, considering Lemma 4.1 for U = T(t) we also have that

〈xø;xi〉(�)ø ≤ 〈xø;xi〉(t)ø which completes our thesis in case j is the unique descen-
dant of i.

Turning to the general case, we compare the thesis of the lemma for T(�) and
the subtree U = T′(�) obtained upon deleting the subtrees rooted at descendants of
i (and the corresponding edges to i) except for Tj . While 〈xø;xi〉(t)ø and 〈xj ;xk〉(�)j

are unchanged by this modification of the underlying tree (as the relevant sub-
graphs are not modified), we have from Lemma 4.1 that μ

�,0
U (·) is an Ising measure

on U identical to the original but for an increase in the magnetic field at i. In view
of (4.12) and the GHS inequality, we thus deduce that the value of 〈xø;xk〉(�)ø is
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smaller for the Ising model on T(�) than for the one on T′(�) and since in T′(�) the
vertex j is the unique descendant of i, we are done. �

Equipped with the preceding lemma we next establish the exponential decay of
correlations and of the effect of boundary conditions in Theorem 4.2.

COROLLARY 4.5. There exist A finite and λ positive, depending only on βmax,
Bmin, Bmax and � such that

E

{ ∑
i∈∂T(r)

〈xø;xi〉(�)ø

}
≤ Ae−λr(4.13)

for any r ≤ � and if Bi ≤ Bmax for all i ∈ T(� − 1) then Theorem 4.2 holds for
δ(t) = A exp(−λt).

REMARK. Taking Bi ↑ +∞ for i ∈ ∂T(�), note that (4.13) applies when 〈·〉(�)
is with respect to μ�,+(·).

PROOF OF COROLLARY 4.5. Starting with the proof of (4.13) take � = r for
which the left-hand side is maximal (as we have seen while proving Lemma 4.4).
Then, denoting by 〈·〉Hr the expectation under the Ising measure on T(r) with a
magnetic field Hr added to B at all vertices i ∈ ∂T(r), it follows from (4.12) that

∑
i∈∂T(r)

〈xø;xi〉(r)ø = ∑
i∈∂T(r)

∂〈xø〉
∂Bi

= ∂〈xø〉Hr

∂Hr

∣∣∣∣
Hr=0

.

By GHS inequality the latter derivative is nonincreasing in Hr , whence

∑
i∈∂T(r)

〈xø;xi〉(r)ø ≤ 2

Bmin
[〈xø〉Hr=0 − 〈xø〉Hr=−Bmin/2].

Let B ′
i = Bi − Bmin/2 if i ∈ ∂T(r) and B ′

i = Bi otherwise, so 〈xø〉Hr=−Bmin/2 =
mr,0(B ′). Further, from Griffiths inequality also 〈xø〉Hr=0 ≤ 〈xø〉Hr=∞ = mr,+(B ′)
and it follows that


r ≡ E

{ ∑
i∈∂T(r)

〈xø;xi〉(r)ø

}
≤ 2

Bmin
E{mr,+(B ′) − mr,0(B ′)}.(4.14)

In particular, setting c = cosh2(2βmax + Bmax), in view of Lemma 4.3 we find that

d−1 ≤ 1/(ec�) for d = 1 + �2ec�M(βmax,Bmin/2,�)/Bmin�. Further, since T
is conditionally independent, the same proof shows that if t + d = r ′ ≤ r and Tj is
the subtree of T(r) of depth d − 1 rooted at j ∈ ∂T(t + 1) then

Et+1

{ ∑
k∈∂Tj

〈xj ;xk〉(r ′)
j

}
≤ 1

ec�
.
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Considering inequality (4.10) of Lemma 4.4 for t = r − d ≡ r1 and all k ∈ ∂T(r)

we find that


r ≤ cE

{ ∑
i∈∂T(t)

j∈∂T(t+1)∩∂i

〈xø;xi〉(t)ø Et+1

[ ∑
k∈∂Tj

〈xj ;xk〉(r)j

]}

≤ 1

e�
E

{ ∑
i∈∂T(t)

�i〈xø;xi〉(t)ø

}
≤ e−1
r1 .

Iterating the preceding bound at rs = r − sd , for s = 1, . . . , 
r/d� and noting that
by (4.14) we have the bound 
r ′ ≤ 2/Bmin at the last step, we get the uniform in
β ≤ βmax exponential decay of (4.13).

Next, recall that the rate δ(t) in Theorem 4.2 is merely the rate in the bound
(4.5). For k ≡ |∂T(�)| we choose uniformly and independently of everything else
a one to one mapping i : {1, . . . , k} �→ ∂T(�), and let B(s) for s ≥ 1 denote the
magnetic field configuration obtained when taking Bi(j) ↑ +∞ for all j ≤ s (with
B(0) = B). Since

m�,+(B) − m�,0(B) =
k−1∑
s=0

[
m�,0(

B(s+1)) − m�,0(
B(s))],

we get the rate δ(t) = A exp(−λt) from (4.13) as soon as we show that for i =
i(s + 1) and s = 0, . . . , k − 1,

m�,0(
B(s+1)) − m�,0(

B(s)) ≤ 〈xø;xi〉(�)ø .(4.15)

To this end, let 〈·〉s denote the expectation under μ�,0 with magnetic field B(s) so
m�,0(B(s)) = 〈xø〉s . Further, fixing i = i(s + 1)

m�,0(
B(s+1)) = 〈xøI(xi = 1)〉s

〈I(xi = 1)〉s = 〈xøxi〉s + 〈xø〉s
1 + 〈xi〉s

[since I(xi = 1) = (1 + xi)/2]. Since 〈xi〉s ≥ 0 by Griffiths inequality, it follows
that

m�,0(
B(s+1)) − m�,0(

B(s)) ≤ 〈xøxi〉s − 〈xø〉s〈xi〉s = ∂mø(B
(s))

∂Bi

,

which by GHS inequality is maximal at s = 0, yielding (4.15) and completing the
proof. �

As promised, Lemma 2.3 follows from the preceding results.

PROOF OF LEMMA 2.3. Consider the Galton–Watson tree T(ρ,∞) of Sec-
tion 2.1 and the corresponding Ising models μt,+/0(x) of constant magnetic field
Bi = B > 0 on the subtrees T(ρ, t). It is easy to check that the random variables



ISING MODELS ON LOCALLY TREE-LIKE GRAPHS 581

h(t) = atanh(mt,0(B)) satisfy the distributional recursion (2.6) starting at h(0) = 0.
By Griffiths inequality mt,0(B), hence h(t), is nondecreasing in t , and so converges
almost surely as t → ∞ to a limiting random variable h∗. Further, the bounds
0 = h(0) ≤ h(t) ≤ B + �ø hold for all t and hence also for h∗. We thus deduce that
the distributions Qt of h(t) as determined by (2.6) are stochastically monotone
(in t) and converge weakly to some law Q∗ of h∗ that is supported on [0,∞).

Next, recall that for any fixed k and F(·) continuous and bounded on R
k ,

the functional �F (Q) = ∫
F(h1, . . . , hk)dQ(h1) · · · dQ(hk) is continuous with

respect to weak convergence of probability measures on [0,∞) (e.g., see [6],
Lemma 7.3.12). Fixing g : R �→ [−C,C] continuous, clearly

gj (h1, . . . , hj ) = g

(
B +

j−1∑
i=1

ξ(β,hi)

)

are continuous and bounded. Further, it follows from (2.6) that for all t∣∣∣∣∣
∫

g dQt+1 −
k∑

j=1

P(K = j)�gj
(Qt)

∣∣∣∣∣ ≤ CP(K > k).

Taking t → ∞ followed by k → ∞, we deduce by the preceding arguments [and
the uniform boundedness |�gj

(Q∗)| ≤ C for all j ], that

∫
g dQ∗ =

∞∑
j=1

P(K = j)�gj
(Q∗).

As this applies for every bounded continuous function g(·), we conclude that h∗
and its law Q∗ are a fixed point of the distributional recursion (2.6).

Next note that the random variables h
(t)
+ = atanh[mt,+(B)] form a non-

increasing sequence that satisfies the same distributional recursion, but with the
initial condition h

(0)
+ = +∞. Consequently, by the same arguments we have used

before, the laws Qt,+ of h
(t)
+ converge weakly to some fixed point Q∗+ of (2.6) that

is also supported on [0,∞). Further, Qt � Q∗∗ � Qt,+ for t = 0 and any (other)
possible law Q∗∗ of a fixed point h∗∗ of (2.6) that is supported on [0,∞). Cou-
pling so as to have the same value of K , evidently the recursion (2.6) preserves this
stochastic order, which thus applies for all t . In the limit t → ∞ we thus deduce
that Q∗ � Q∗∗ � Q∗+. Since ρ has finite first moment, by (4.5) of Theorem 4.2,

E| tanh(h
(t)
+ ) − tanh(h(t))| → 0 as t → ∞. Thus, the expectation of the monotone

increasing continuous and bounded function tanh(h) is the same under both Q∗
and Q∗+. Necessarily this is also the expectation of tanh(h) under Q∗∗ and the
uniqueness of the nonnegative fixed point of (2.6) follows. �

We next control the dependence on β of the distribution of the fixed point h∗
from Lemma 2.3.
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LEMMA 4.6. Let ‖X − Y‖MK denote the Monge–Kantorovich–Wasserstein
distance between given laws of random variables X and Y (that is, the infimum
of E|X − Y | over all couplings of X and Y ). For any B > 0 and βmax finite there
exists a constant C = C(βmax,B) such that if h∗

β1
, h∗

β2
are the fixed points of the

recursion (2.6) for 0 ≤ β1, β2 ≤ βmax, then

‖ tanh(h∗
β2

) − tanh(h∗
β1

)‖MK ≤ C|β2 − β1|.(4.16)

PROOF. Fixing a random tree T = T(ρ,∞) of degree distribution ρ, recall
that while proving Lemma 2.3 we provided a coupling of the random variables
tanh(h∗

β) and the Ising root magnetizations mt,+/0(β,B) at β such that

mt,0(β,B) ≤ tanh(h∗
β) ≤ mt,+(β,B)

for each β and all t . By Griffiths inequality the magnetizations at the root are
nondecreasing in β so from the bound (4.5) we get that for M = M(βmax,B,ρ)

and any β1 ≤ β2 ≤ βmax,

E| tanh(h∗
β2

) − tanh(h∗
β1

)| ≤ Emt,0(β2,B) − Emt,0(β1,B) + M

t

≤ (β2 − β1) sup
β≤βmax

E

{
∂mt,0

∂β

}
+ M

t
,

where the expectations are over the random tree T(ρ,∞). Considering t → ∞ it
thus suffices to show that E[∂m�,0/∂β] is bounded, uniformly in � and β ≤ βmax.
To this end, a straightforward calculation yields

∂m�,0

∂β
(β,B) = ∑

(i,j)∈T(�)

(〈xøxixj 〉 − 〈xø〉〈xixj 〉),

with 〈·〉 denoting the expectation with respect to the Ising measure μ�,0. If i is on
the path in T(�) between the root and j , then under the measure μ�,0 the variables
xø and xj are conditionally independent given xi . Further, as xi ∈ {−1,1} it is easy
to check that in this case

〈xøxixj 〉 − 〈xø〉〈xixj 〉 = γ 〈xø;xi〉,
where γ is the arithmetic mean of the conditional expected value of xj for xi = −1
and the conditional expected value of xj for xi = 1. Thus, |γ | ≤ 1 and recalling
(4.12) that 〈xø;xi〉 is nonnegative by Griffiths inequality, we deduce that

∂m�,0

∂β
(β,B) ≤ ∑

i∈T(�−1)

�i〈xø;xi〉 =
�−1∑
r=0

Vr,�,

where �i denotes the offspring number at i ∈ T and by (4.12)

Vr,� ≡ ∑
i∈∂T(r)

�i〈xø;xi〉 = ∑
i∈∂T(r)

�i.∂Bi
m�(B,0)|B=B
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[with mk(B,H) the root magnetization for the measure μB,H of (4.6)]. In view of
Lemma 4.1 we have that mk(B,0) = mk−1(B,H) for some nonnegative vector H .
By GHS inequality we deduce that for any i ∈ T(k − 1)

∂Bi
mk(B,0) = ∂Bi

mk−1(B,H) ≤ ∂Bi
mk−1(B,0).

Consequently, Vr,� is nonincreasing in � and

E

[
∂m�,0

∂β

]
≤

�−1∑
r=0

EVr,� ≤
�−1∑
r=0

EVr,r ≤
∞∑

r=0

EVr,r .

Further, mr(B,0) is independent of the offspring numbers at ∂T(r) whose ex-
pectation with respect to the random tree T(ρ,∞) is ρ. Thus, applying (4.13) of
Corollary 4.5 for � = r , T = T(ρ,∞) and constant magnetic field, we find that for
some A finite, λ > 0, any r ≥ 0 and all β ≤ βmax

EVr,r = ρE

[ ∑
i∈∂T(r)

∂Bi
mr(B,0)|B=B

]
= ρE

[ ∑
i∈∂T(r)

〈xø;xi〉
]

≤ ρAe−λr .

Summing over r gives us the required uniform boundedness of E[∂m�,0/∂β] in �

and β ≤ βmax. �

5. Algorithms. The theorems stated in Section 2.3 are in fact consequences
of Corollary 4.5.

PROOF OF THEOREM 2.6. The proof is based on the well-known representa-
tion of the iteration (2.10) in terms of “computation tree” [26]. Namely, ν

(t)
i→j (·)

coincides with the marginal at the root of the Ising model (1.1) on a properly
constructed, deterministic tree Tc

i→j (t) of t generations. While we refer to the lit-
erature for the precise definition of Tc

i→j (t), here are some immediate properties:

(a) One can construct an infinite tree Tc
i→j (∞) such that, for any t , Tc

i→j (t) is
the subtree formed by the first t generations of Tc

i→j (∞).
(b) The maximal degree of Tc

i→j (∞) is bounded by the maximal degree of G

(and equal to the latter when G is connected).
(c) A positive initialization corresponds to adding Hl→k = atanh(ν

(0)
l→k(+1) −

ν
(0)
l→k(−1)) nonnegative to the field B on the t th generation vertices of Tc

i→j (t).

Denote by ν
+,(t)
i→j (·), ν

0,(t)
i→j (·) the messages obtained under initializations

ν
+,(0)
k→l (+1) = 1 and ν

0,(0)
k→l (+1) = ν

0,(0)
k→l (−1) = 1/2, respectively. By Griffiths in-

equality, ν
+,(t)
i→j (+1) is nonincreasing in t , ν

0,(t)
i→j (+1) is nondecreasing in t and any

positive initialization results with ν
(t)
i→j (·) such that

ν
+,(t)
i→j (+1) ≥ ν

(t)
i→j (+1) ≥ ν

0,(t)
i→j (+1).
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By Corollary 4.5 we have that ν
+,(t)
i→j (+1)−ν

0,(t)
i→j (+1) ≤ Ae−λt for all t ≥ 0. Since

A < ∞ and λ > 0 depend only on β , B and the maximal degree of G, this imme-
diately yields our thesis. �

PROOF OF THEOREM 2.7. We use an additional property of the computation
tree:

(d) If Bi (k) is a tree then Tc
i→j (k) is a tree rooted at i → j whose vertices

are the directed edges on the maximal subtree of Bi (k) rooted at i that does not
include j .

Without loss of generality we may and shall assume that t > r . For U = Bi∗(r)
consider the local marginal approximations ν+

U (·), ν0
U(·) defined as in (2.12) ex-

cept that the fixed point messages ν∗
i→j (i)(·) at i ∈ ∂Bi∗(r) are replaced by those

obtained after (t − r) iterations starting at ν
+,(0)
k→l (+1) = 1 and ν

0,(0)
k→l (+1) =

ν
0,(0)
k→l (−1) = 1/2, respectively. Since Bi∗(t) is a tree, here j (i) is necessarily the

neighbor of i on the path from i∗ to i ∈ ∂Bi∗(r) and from the preceding property (d)
we see that Tc

i→j (i)(t − r) corresponds to the subtree of i and its lines of descen-

dant in Bi∗(t). By property (c) we thus have that ν+
U (·) and ν0

U(·) are the marginals
on U of the Ising model ν+ on G with Bi = ∞ at all i /∈ Bi∗(t) and the Ising model
ν0 on the vertices of G and the edges within the tree Bi∗(t). Such reasoning also
shows that the probability measure νU of (2.12) is the marginal on U of the Ising
model ν on vertices of G and edges of Bi∗(t) with an additional nonnegative mag-
netic field Hl→k = atanh(ν∗

l→k(+1) − ν∗
l→k(−1)) at ∂Bi∗(t). Consequently, with

xF ≡ ∏
i∈F xi we have by Griffiths inequality that for any F ⊆ U

〈ν0, xF 〉 ≤ 〈ν, xF 〉 ≤ 〈ν+, xF 〉, 〈ν0, xF 〉 ≤ 〈μ,xF 〉 ≤ 〈ν+, xF 〉,
and we deduce that for any F ⊆ U ,

|〈μ,xF 〉 − 〈ν, xF 〉| ≤ 〈ν+, xF 〉 − 〈ν0, xF 〉 ≤ 2‖ν+
U − ν0

U‖TV.

Recall that since xi ∈ {−1,1}, for any possible value y = {yi, i ∈ U} of xU ,

I(xU = y) = 2−|U | ∏
i∈U

(1 + yixi) = 2−|U | ∑
F⊆U

yF xF ,

and with |yF | ≤ 1 it follows that

|μU(y) − νU(y)| = 2−|U |
∣∣∣∣ ∑
F⊆U

yF (〈μU,xF 〉 − 〈νU , xF 〉)
∣∣∣∣

≤ max
F⊆U

|〈μU,xF 〉 − 〈νU , xF 〉| ≤ 2‖ν+
U − ν0

U‖TV.

This applies for any of the 2|U | possible values of xU , so

‖μU(·) − νU(·)‖TV ≤ 2|U |‖ν+
U (·) − ν0

U(·)‖TV.
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Applying Corollary 4.5 for the deterministic tree Bi∗(t) rooted at i∗, we get the
bound (4.4) on the right side of the preceding inequality with δ(k) = A exp(−λk),
some finite A and λ > 0 that depend only on β , B and �. Thus, noting that |U | =
|Bi∗(r)| ≤ �r+1 + 1 we establish our thesis upon choosing c = c(A,C,�) large
enough. �

6. From trees to graphs. We start with the following technical lemma.

LEMMA 6.1. Consider a convex set K ⊆ R and symmetric twice differentiable
functions F� : K� → R with F0 constant, such that for some finite constant c,

sup
�

sup
K�

∣∣∣∣ ∂2F�

∂x1 ∂x2

∣∣∣∣ ≤ 2c.

Suppose i.i.d. X,Xi ∈ K are such that �−1
E|∂x1F�(x,X2, . . . ,X�)| is bounded

uniformly in � and x ∈ K and the independent, square-integrable, nonnegative
integer valued random variable L satisfies

E[L∂x1FL(x,X2, . . . ,XL)] = 0 ∀x ∈ K.(6.1)

Then, for any i.i.d. Y,Yi ∈ K also independent of L,

|E[FL(Y1, . . . , YL) − FL(X1, . . . ,XL)]|
(6.2)

≤ cE[L(L − 1)]‖X − Y‖2
MK.

PROOF. Our thesis trivially holds if either ‖X − Y‖MK = 0 or ‖X − Y‖MK =
∞, so without loss of generality, fixing γ > 1 we assume hereafter that (Xi, Yi)

are i.i.d. pairs, independent on L and coupled in such a way that E|Xi − Yi | ≤
γ ‖X − Y‖MK is finite. It is easy to check that almost surely,

F�(Y1, . . . , Y�) − F�(X1, . . . ,X�)
(6.3)

=
�∑

i=1

�iF� +
�∑

i �=j

f
(�)
ij (Yi − Xi)(Yj − Xj),

where �iF� = (Yi −Xi)
∫ 1

0 ∂xi
F�(X1, . . . , tYi + (1 − t)Xi, . . . ,X�)dt and each of

the terms

f
(�)
ij =

∫ 1

0

∫ t

0

∂2F�

∂xi ∂xj

(
sY1 + (1 − s)X1, . . . ,

tYi + (1 − t)Xi, . . . , sY� + (1 − s)X�

)
ds dt,

is bounded by c. For i.i.d. (Xi, Yi), by the symmetry of the functions F� with re-
spect to their arguments, the assumed boundedness of �−1

E|∂x1F�(x,X2, . . . ,X�)|
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implies integrability of �iF� with E�iF� independent of i and �−1
E|�iF�| uni-

formly bounded. This in turn implies the integrability of
∑L

i=1 �iFL for any L

square integrable and independent of (Xi, Yi), so by Fubini’s theorem and our as-
sumption (6.1),

E

[
L∑

i=1

�iFL

]

= E[L�1FL]
= E

[
(Y1 − X1)

×
∫ 1

0
E

[
L∂x1FL

(
tY1 + (1 − t)X1,X2, . . . ,XL

)|X1, Y1
]
dt

]
= 0.

Thus, considering the expectation of (6.3), by the uniform boundedness of f
(�)
ij

and the independence of L on the i.i.d. pairs (Xi, Yi), we deduce that

|E[FL(Y1, . . . , YL) − FL(X1, . . . ,XL)]| ≤ cE

L∑
i �=j

|Yi − Xi ||Yj − Xj |

≤ γ 2cE[L(L − 1)]‖X − Y‖2
MK.

Finally, taking γ ↓ 1 yields the bound (6.2). �

REMARK 6.2. It is not hard to adapt the proof of the lemma so as to re-
place F1 : K �→ R by 0.5F1(x, y) for a twice differentiable symmetric function
F1 : K2 �→ R. Taking P� = P(L = �) the contribution of L = 1 to the left-hand
side of (6.1) is then P1E[∂x1F1(x,X2)] and the bound (6.2) is modified to∣∣∣∣P1

2
E[F1(Y1, Y2) − F1(X1,X2)]

+ ∑
�≥2

P�E[F�(Y1, . . . , Y�) − F�(X1, . . . ,X�)]
∣∣∣∣(6.4)

≤ cE[L2]‖X − Y‖2
MK.

Consider the functional h �→ ϕh that, given a random variable h, evaluates the
right-hand side of Equation (2.9). It is not hard to check that ϕh is well defined and
finite for every random variable h. The following corollary of Lemma 6.1 plays an
important role in the proof of Theorem 2.4.

COROLLARY 6.3. There exist nondecreasing finite c(|β|) such that if ρ < ∞
and h∗ is a fixed point of the distributional identity (2.6) for some β,B ∈ R then

|ϕh(β,B) − ϕh∗(β,B)| ≤ c(|β|)Pρ‖ tanh(h) − tanh(h∗)‖2
MK.(6.5)
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PROOF. Setting u = tanh(β) so |u| < 1, we verify the conditions of
Lemma 6.1 when Xi are i.i.d. copies of X = tanh(h∗) and Yi i.i.d. copies of
Y = tanh(h), all of whom take values in K = [−1,1] and are independent of the
random variable L. We apply the lemma in this setting for the symmetric, twice
differentiable functions

F�(x1, . . . , x�) = − 1

(� − 1)

∑
1≤i<j≤�

log(1 + uxixj )

+ log

{
eB

�∏
i=1

(1 + uxi) + e−B
�∏

i=1

(1 − uxi)

}

for � ≥ 2, and as in Remark 6.2,

F1(x1, x2) = − log(1 + ux1x2) + log{eB(1 + ux1) + e−B(1 − ux1)}
+ log{eB(1 + ux2) + e−B(1 − ux2)}.

Indeed, setting ψ(x, y) = uy/(1 + uxy) and for each � ≥ 1

g�(x2, . . . , x�) = tanh

(
B +

�∑
j=2

atanh(uxj )

)
(6.6)

[so g1 = tanh(B)], it is not hard to verify that ∂x1F1(x1, x2) = ψ(x1, g1) −
ψ(x1, x2) while for � ≥ 2

∂x1F�(x1, . . . , x�) = ψ(x1, g�(x2, . . . , x�)) − 1

� − 1

�∑
j=2

ψ(x1, xj ).(6.7)

In particular, g�(·) are differentiable functions from K�−1 to K, such that ∂x2g�

are uniformly bounded [by a = |u|/(1 −u2)] and ∂yψ(x, y) is uniformly bounded
on K2 [by b = |u|/(1 − |u|)2]. Consequently, ∂x1F� and ∂2F�/∂x1 ∂x2 are also
uniformly bounded [by 2/(1 − |u|) and b(a + 1) = 2c(|β|), respectively]. Further,

h∗ is a fixed point of (2.6), hence X1
d= gK(X2, . . . ,XK). With Xi identically

distributed and Pρk = kPk we thus find as required in (6.1) that

P1E[∂x1F1(x,X2)] + ∑
k≥2

kPkE[∂x1Fk(x,X2, . . . ,Xk)]
(6.8)

= P

{ ∞∑
k=1

ρkE[ψ(x,gk(X2, . . . ,Xk))] − Eψ(x,X1)

}
= 0.

Noting that E[L2] = Pρ our thesis is merely the bound (6.4) upon confirming that

ϕh = F0 + P1

2
EF1(Y1, Y2) + ∑

�≥2

P�EF�(Y1, . . . , Y�),

ϕh∗ = F0 + P1

2
EF1(X1,X2) + ∑

�≥2

P�EF�(X1, . . . ,X�)
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for some constant F0 and that both series are absolutely summable. �

Let T(ρ,∞) denote the infinite random tree obtained by “gluing” two indepen-
dent trees from the ensemble T(ρ,∞) through an extra edge e between their roots
and considering e as the root of T(ρ,∞) denote by T(ρ, t) the subtree formed by
its first t generations [i.e., consisting of e and the corresponding two independent
copies from T(ρ, t)]. An alternative way to sample from T(ρ,∞) is to have inde-
pendent offspring number k − 1 with probability ρk at each end of the root edge e

and thereafter independently sample from this offspring distribution at each re-
vealed new node of the tree. Equipped with these notations we have the following
consequence of the local convergence of the graph sequence {Gn}.

LEMMA 6.4. Suppose a uniformly sparse graph sequence {Gn} converges
locally to the random tree T(P,ρ,∞). Fixing a nonnegative integer t , for each
(i, j) ∈ En denote the subgraph of Gn induced by vertices at distance at most t

from (i, j) by Bij (t). Let F(·) be a fixed, bounded function on the collection of all
possible subgraphs that may occur as Bij (t), such that F(T1) = F(T2) whenever
T1 � T2. Then,

lim
n→∞

1

n

∑
(i,j)∈En

F (Bij (t)) = P

2
E{F(T(ρ, t))}.(6.9)

PROOF. Denoting by E(ij)(·) the expectation with respect to a uniformly cho-
sen edge (i, j) in En, the left-hand side of (6.9) is merely (|En|/n)E(ij){F(Bij (t))}.
A uniformly chosen edge can be sampled by first selecting a vertex i with proba-
bility proportional to its degree |∂i| and then picking one of its neighbors j = j (i)

uniformly. Thus, denoting by En(·) the expectation with respect to a uniformly
chosen random vertex i ∈ [n], we have that

E(ij){F(Bij (t))} = En{|∂i|F(Bij (i)(t))}
En{|∂i|} .

Marking uniformly at random one offspring of ø in T(P,ρ, t + 1) [as correspond-
ing to j (i)], let T∗(t + 1) denote the subtree induced by vertices whose distance
from either ø or its marked offspring is at most t . Since Bij (i)(t) ⊆ Bi (t + 1) and
with probability qt,k → 1 as k → ∞ the random tree T(P,ρ, t + 1) belongs to the
finite collection of trees with t + 1 generations and maximal degree at most k, it
follows by dominated convergence and the local convergence of {Gn} that for any
fixed l,

lim
n→∞ En

[|∂i|I(|∂i| ≤ l)F
(
Bij (i)(t)

)]
= Eρ

{
�øI(�ø ≤ l)F

(
T∗(t + 1)

)}
,
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where Eρ(·) and �ø denote expectations and the degree of the root, respectively,
in T(P,ρ,∞). Similarly,

lim
n→∞ En{|∂i|I(|∂i| ≤ l)} = Eρ�øI(�ø ≤ l).

Further, by the uniform sparsity of {Gn},
lim sup
n→∞

∣∣En

[|∂i|I(|∂i| > l)F
(
Bij (i)(t)

)]∣∣
≤ ‖F‖∞ lim sup

n→∞
En[|∂i|I(|∂i| > l)]

goes to zero as l → ∞. Since P has a finite first moment, �ø is integrable, so by
the preceding, upon taking l → ∞ we deduce by dominated convergence that

lim
n→∞ E(ij){F(Bij (t))} = Eρ{�øF(T∗(t + 1))}

Eρ{�ø} .

To complete the proof note that the right-hand side of the last expression is pre-
cisely E{F(T(ρ, t))} and we have also shown that 2|En|/n = En{|∂i|} → Eρ�ø =
P . �

PROOF OF THEOREM 2.4. Since φn(β,B) ≡ 1
n

logZn(β,B) is invariant under
B → −B and is uniformly (in n) Lipschitz continuous in B with Lipschitz constant
one, it suffices to fix B > 0 and show that φn(β,B) converges as n → ∞ to the
predicted ϕh∗(β,B) of (2.9), whereby h∗ = h∗

β is the unique fixed point of the
recursion (2.6) that is supported on [0,∞) (see Lemma 2.3).

This is obviously true for β = 0 since φn(0,B) = log(2 coshB) = ϕh(0,B).
Next, denoting by 〈·〉n the expectation with respect to the Ising measure on Gn (at
parameters β and B), it is easy to see that

∂βφn(β,B) = 1

n

∑
(i,j)∈En

〈xixj 〉n.(6.10)

Clearly |∂βφn(β,B)| ≤ |En|/n is bounded by the uniform sparsity of {Gn} so it
is enough to show that the expression in (6.10) converges to the partial deriva-
tive of ϕh∗

β
(β,B) with respect to β . Turning to compute the latter derivative, by

Lemma 4.6 and Corollary 6.3 we can ignore the dependence of h∗
β on β . That

is, we simply compute the partial derivative in β of the expression (2.9) while
considering (the law of) hi to be fixed. Indeed, with notation u = tanh(β) and
Xi = tanh(hi) as in the derivation of Corollary 6.3, a direct computation leads by
the exchangeability of Xi to

∂βϕ(β,B) = P

2
u − P

2
(1 − u2)E[ψ(X1,X2)]

+ (1 − u2)E[Lψ(X1, gL(X2, . . . ,XL))]
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for ψ(x, y) = xy/(1 + uxy) and g�(x2, . . . , x�) of (6.6). Further, the fixed point
property (6.8) applies for any bounded measurable ψ(·), so we deduce that

E[Lψ(X1, gL(X2, . . . ,XL))] = PE[ψ(X1, gK(X2, . . . ,XK))]
= PE[ψ(X1,X2)].

Consequently, it is not hard to verify that

∂βϕ(β,B) = P

2
E

{
u + X1X2

1 + uX1X2

}
= P

2
E[〈xixj 〉T],(6.11)

where 〈·〉T denotes the expectation with respect to the Ising model

μT(xi, xj ) = 1

zij

exp{βxixj + Hixi + Hjxj }

on one edge (ij) and random magnetic fields Hi and Hj that are independent
copies of h∗

β .
In comparison, fixing a positive integer t , by Griffiths inequality the correlation

〈xixj 〉n lies between the correlations F0(Bij (t)) ≡ 〈xixj 〉0
Bij (t) and F+(Bij (t)) ≡

〈xixj 〉+Bij (t) for the Ising model on the subgraph Bij (t) with free and plus, respec-
tively, boundary conditions at ∂Bij (t). Thus, in view of (6.10)

1

n

∑
(i,j)∈En

F0(Bij (t)) ≤ ∂βφn(β,B) ≤ 1

n

∑
(i,j)∈En

F+(Bij (t)),

and taking n → ∞ we get by Lemma 6.4 that

P

2
E[F0(T(ρ, t))] ≤ lim inf

n→∞ ∂βφn(β,B)

≤ lim sup
n→∞

∂βφn(β,B) ≤ P

2
E[F+(T(ρ, t))].

To compute F0/+(T(ρ, t)) we first sum over the values of xk for k ∈ T(ρ, t) \
{i, j}. This has the effect of reducing F0/+(T(ρ, t)) to a form of 〈xixj 〉T. Fur-
ther, as shown in the proof of Lemma 2.3, we get F0/+(T(ρ, t)) by setting

for Hi and Hj two independent copies of the variables h(t) and h
(t)
+ , respec-

tively, which converge in law to h∗
β when t → ∞. We also saw there that the

functional �U(ν) = E[〈xixj 〉T] [for continuous and bounded U(Hi,Hj ) = (u +
tanh(Hi) tanh(Hj ))/(1 + u tanh(Hi) tanh(Hj ))], is continuous with respect to the
weak convergence of the law ν of Hi . Consequently, by (6.11)

lim
t→∞

P

2
E[F0/+(T(ρ, t))] = ∂βϕ(β,B),

which completes the proof of the theorem. �
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