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SUBCRITICAL REGIMES IN SOME MODELS OF
CONTINUUM PERCOLATION

BY JEAN-BAPTISTE GOUÉRÉ

Université d’Orléans

We consider some continuum percolation models. We are mainly inter-
ested in giving some sufficient conditions for the absence of percolation. We
give some general conditions and then focus on two examples. The first one
is a multiscale percolation model based on the Boolean model. It was intro-
duced by Meester and Roy and subsequently studied by Menshikov, Popov
and Vachkovskaia. The second one is based on the stable marriage of Poisson
and Lebesgue introduced by Hoffman, Holroyd and Peres and whose perco-
lation properties have been studied by Freire, Popov and Vachkovskaia.

1. Introduction and statement of the main results.

1.1. Introduction. In this paper, we study some continuum percolation mod-
els. We are mainly interested in giving some sufficient conditions for the absence
of percolation. We give some general conditions and then apply them to two ex-
amples: multiscale percolation and the stable marriage of Poisson and Lebesgue.
The aim of Section 1.1 is to give a quick description of these two examples. We
begin by recalling the Boolean model.

The Boolean model. We center a ball of random radius at each point of a ho-
mogeneous Poisson point process of the Euclidean space R

d , d ≥ 2. We assume
that the radii of the balls are independent copies of a given positive random vari-
able R. We also assume that the radii are independent of the point process. We
denote by λ the density of the Poisson point process. We denote by �(λ) the union
of the balls, by S(λ) the connected component of �(λ) that contains the origin and
by D(λ) the Euclidean diameter of S(λ).

When R is bounded, there exists a sharp phase transition (see, e.g., [10], Sec-
tion 12.10 in [4] when R = 1 or the papers [11, 14, 17] and [18]): if the den-
sity λ of the point process is below a critical value λc > 0, then S(λ) is almost
surely bounded and its diameter D(λ) admits exponential moments; whereas if λ

is above λc then S(λ) is unbounded with positive probability.
The case where R is unbounded was studied by Hall in [5] (see also the books

[6] and [10]). Hall proved that if E(R2d−1) is finite, then the set S(λ) is almost
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surely bounded for small enough λ. If E(Rd) is infinite, then such behavior does
not happen: whatever the value of the density λ, the set �(λ) is almost surely the
whole space. The latter result still holds when the underlying point process is only
assumed to be an almost surely nonempty and stationary point process (see [10],
Proposition 7.3). In [3], we proved that the set S(λ) is almost surely bounded for
small enough λ if and only if E(Rd) is finite. We also proved that, for any s > 0,
E(D(λ)s) is finite for small enough λ if and only if E(Rd+s) is finite. We refer
to [3] for further bibliographical information. The idea developed in [3] for the
Boolean model can be developed further to investigate the following models.

A multiscale percolation model. We refer to Section 1.5 for details. We keep
the objects defined in the previous paragraph. Let (�n(λ))n≥0 be a sequence of
independent copies of �(λ). Let a > 1 be a scale factor. We define a new random
set �̃(λ, a) by

�̃(λ, a) = ⋃
n

a−n�n(λ).

We are interested in properties of the connected components of �̃(λ, a). We say
that the model is subcritical if the connected components can be small (see Sec-
tion 1.5 for precise statements).

This model was introduced by Meester and Roy in [10]. They considered the
case where the radius R = 1 and the dimension d = 2. They proved that �̃(λ, a)

is in a subcritical phase as soon as one of the following conditions holds:

1. the density λ is small enough;
2. the density λ is such that �(λ) is in the subcritical phase and a is large enough.

In [12], Menshikov, Popov and Vachkovskaia considered the case where the
dimension d is arbitrary. They proved that if �(λ) is in the subcritical phase then,
for large enough a, �̃(λ, a) is also in a subcritical phase.

In [13], Menshikov, Popov and Vachkovskaia studied the case where R is ran-
dom. Let us emphasize that they did not assume R to be bounded. They considered
the following condition:

P
(
D(λ) ≥ r

)
rd → 0 as r → ∞.(1)

[Let us recall that D(λ) denotes the Euclidean diameter of the connected compo-
nent of �(λ) containing 0.] Under some further technical conditions, they proved
that, if (1) holds, then for large enough a, �̃(λ, a) is in a subcritical phase. This is a
generalization of the previous result. Indeed, when R is bounded, (1) holds as soon
as �(λ) is in the subcritical phase. When R is unbounded, one can make the fol-
lowing remarks about the conditions under which there exists λ > 0 such that (1)
holds. Let ε > 0. Condition (1) holds as soon as E(D(λ)d+ε) is finite. Therefore,
by the result of [3] previously cited, there exists λ > 0 such that (1) holds as soon
as E(R2d+ε) is finite. On the other hand, if (1) holds then E(D(λ)d−ε) is finite
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and therefore E(R2d−ε) is finite. Therefore, the existence of λ > 0 such that (1)
holds is roughly equivalent to the finiteness of E(R2d).

In this paper, we prove the following result in which a > 1 is fixed: �̃(λ, a) is in
a subcritical phase for small enough λ if and only if E(Rd max(ln(R),0)) is finite.
This is a corollary of Theorem 1.1, which is one of our main abstract results.

Stable marriage of Poisson and Lebesgue. We refer to Section 1.6 for details.
The following model was introduced by Hoffman, Holroyd and Peres in [7]. Let
α > 0 be a parameter called appetite. Let χ be a homogeneous Poisson point
process with density 1 on R

d . In [7], the authors showed that there was essentially
a unique way to give in a stable way to points of χ disjoint territories of R

d of
volume at most α. We defer the definition of stability to Section 1.6. Very roughly,
it means that the distances between points of χ and points of their territories are
minimal.

In this paper, we are interested in percolation properties of the union T (α) of
all the territories. Let S(α) denote the connected component of T (α) that con-
tains the origin. In [1], Freire, Popov and Vachkovskaia proved, among other
things, that S(α) was almost surely bounded for small enough λ. In this paper,
we prove the following stronger result, in which D(α) denotes the Euclidean di-
ameter of S(α). For small enough λ, for all n ≥ 0, E(D(α)n) is finite.

To prove this result, we first show that T (α) is dominated by a dependent per-
colation process. This was already the first step in the proof of [1]. We then apply
to this dependent percolation process Theorem 1.3, which is the main abstract the-
orem of our paper.

1.2. Some notation. For the whole of the paper, we fix an integer d ≥ 1. Let | · |
be the Lebesgue measure on R

d . We denote by ‖ · ‖ the Euclidean norm on R
d ,

by B(x, r) the open Euclidean ball centered at x ∈ R
d with radius r ≥ 0 and by

B(x, r) the closed Euclidean ball centered at x ∈ R
d with radius r ≥ 0.

When a point process ξ on R
d×]0,+∞[ is given we define the following ob-

jects. We let

� = ⋃
(c,r)∈ξ

B(c, r).

(When we write (c, r) ∈ ξ we implicitly assume that c belongs to R
d and that r

belongs to ]0,+∞[.) We denote by S the connected component of � which con-
tains 0. (We let S = ∅ if 0 does not belong to �.) We define a random variable M

as follows:

M = sup
x∈S

‖x‖.(2)

(We let M = 0 if S is empty.) We say that percolation occurs if S is unbounded:

{percolation} = {S is unbounded}.
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1.3. Boolean model induced by Poisson point processes. Let λ > 0 and let μ

be a locally finite measure on ]0,+∞[. Let ξ be a Poisson point process on
R

d×]0,+∞[ whose intensity measure is the product of λ| · | and μ. We denote
by Pλ,μ, Eλ,μ the associated probability measure and expectation, respectively. As
distinct points of ξ have distinct coordinates on R

d , we can write

ξ = {(c, r(c)), c ∈ χ},
where χ denotes the projection of ξ on R

d . If the measure μ is a probability
measure then χ is a Poisson point process on R

d whose intensity is λ| · |. Moreover,
under this assumption, if we condition on χ then the r(c), c ∈ ξ are i.i.d. with
common distribution μ. (We shall not use this result.) We refer to [9, 15, 16] for
background on point processes and to [6, 10] for Boolean models.

We prove the following results:

THEOREM 1.1. Assume d ≥ 2. There exists λ0 > 0 such that Pλ,μ(perco-
lation) = 0 for all λ ∈]0, λ0[ if and only if the following assertions hold:

A1. The supremum supr>0 rdμ([r,+∞[) is finite.
A2. The integral

∫
[1,+∞[ βdμ(dβ) is finite.

If d = 1, then assumptions A1 and A2 together are sufficient conditions; as-
sumption A2 is a necessary condition.

REMARKS.

1. For all ρ > 1, assumption A1 is equivalent to the following one:

sup
r>0

rdμ([r, ρr]) < ∞

(see Lemma 3.2). Notice that the probability of 0 belonging to a ball of the
process with radius in [r, ρr] is

Pλ,μ

(
0 ∈ ⋃

(c,β)∈ξ : β∈[r,ρr]
B(c,β)

)
= 1 − exp

(
−λ

∫
[r,ρr]

μ(dβ)|B(0, β)|
)
.

Assumption A1 therefore means that those probabilities are bounded away
from 1.

2. Assume in this remark that μ is a finite measure. Then, the integral
∫
]0,1[ βd ×

μ(dβ) is finite. Therefore, assumption A2 holds if and only if the integral∫
]0,+∞[

βdμ(dβ)(3)

is finite. Moreover, as assumption A1 holds as soon as the integral (3) is finite,
the assumptions A1 and A2 together are also equivalent to the finiteness of the
integral (3).
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THEOREM 1.2. Let s > 0 be a positive real. Assume d ≥ 2. There exists
λ0 > 0 such that Eλ,μ(Ms) is finite for all λ ∈]0, λ0[ if and only if the follow-
ing assertions hold:

A1. The supremum supr>0 rdμ([r,+∞[) is finite.
A3. The integral

∫
[1,+∞[ βd+sμ(dβ) is finite.

If d = 1, then assumptions A1 and A3 together are sufficient conditions; as-
sumption A3 is a necessary condition.

REMARK. If μ is a finite measure, then assumptions A1 and A3 together are
equivalent to the finiteness of the integral

∫
]0,+∞[ βd+sμ(dβ).

Theorems 1.1 and 1.2 are essentially consequences of Theorem 1.3 stated in
the next subsection. Theorems 1.1 and 1.2 are generalizations of the main results
of [3] in which μ is assumed to be a finite measure.

The proofs are given in Section 3.

1.4. Boolean model induced by more general point processes. Let ξ be a point
process on R

d×]0,+∞[. We assume that the law of ξ is invariant under the action
of the translations of R

d : for all t ∈ R
d , the point processes {x−(t,0), x ∈ ξ} and ξ

have the same law. We also assume that the intensity measure of ξ is locally finite.
Therefore, the intensity measure of ξ is the product of the Lebesgue measure on R

d

by a locally finite measure on ]0,+∞[ that we denote by μ.
The main result of this paper is the following theorem.

THEOREM 1.3. Let C > 0. There exists D > 0, that depends only on d and C,
such that the following hold.

If the following properties are fulfilled:

B0. for all r > 0 and all x ∈ R
d \ B(0,Cr) the point processes

ξ ∩ B(0, r)×]0, r] and ξ ∩ B(x, r)×]0, r]
are independent;

B1. supr>0 rdμ([r,+∞[) ≤ D;
B2. the integral

∫
[1,+∞[ βdμ(dβ) is finite,

then the set S is almost surely bounded. Let s be a positive real. If, moreover,
B3.

∫
[1,+∞[ βd+sμ(dβ) < ∞,

then E(Ms) is finite.

REMARKS.

1. The independence assumption B0 is fulfilled if ξ is a Poisson point process and
C ≥ 2.

2. We give a strenghtened version of Theorem 1.3 in Section 2.3 (see Theo-
rems 2.7, 2.8 and 2.9). In those theorems, the independence assumption is
weakened and the conclusions are strenghtened.
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The proof is given in Section 2. We give some ideas of the proof in Section 2.2
after the statement of key Proposition 2.1.

1.5. Multiscale percolation model. Let λ > 0 and ν be a probability measure
on ]0,+∞[. We make the following assumption:∫

]0,+∞[
rdν(dr) < ∞.(4)

Let (ξn)n≥0 be a sequence of independent Poisson point processes on R
d×]0,

+∞[ whose intensity is the product of λ| · | by ν. Let a > 1. We define a new point
process by:

ξ = ⋃
n≥0

a−nξn.

LEMMA 1.4. The point process ξ is a Poisson point process whose intensity
is the product of λ| · | by the locally finite measure μ on ]0,+∞[ defined by:

μ(B) = ∑
n≥0

andν(anB).(5)

As in Section 1.2 we associate with ξ two random sets � and S. We denote
by P a

λ,ν the associated probability measure. We also denote by �n the random sets
associated with the processes a−nξn.

REMARKS.

1. For all integer n ≥ 1, �n is an independent copy of a−n�0.
2. If (4) is not fulfilled then, for all λ > 0, percolation occurs with positive prob-

ability in �0 (by Theorem 1.1) and then in �. Actually, by Lemma 3.1, if (4)
is not fulfilled then, for all λ > 0, �0 = R

d almost surely. Therefore, assump-
tion (4) is not a restriction.

3. One can easily check that 0 belongs almost surely to �. Therefore, the
Lebesgue measure of the complement of � is almost surely 0. We will nev-
ertheless see that the connected components of � can be bounded.

This model was introduced by Meester and Roy in a two-dimensional setting
in [10]. Let us denote by δ1 the Dirac mass at 1. Let us say that the event {left–right
crossing} occurs if [0,1]2 \ � contains a connected component which intersects
left- and right-hand sides of [0,1]2. Let us denote by λc the critical density for the
Boolean model when all radii equal 1. (Thus, if λ < λc, the connected components
of the �n are almost surely bounded; whereas if λ > λc, this is not the case.)
Meester and Roy proved the following result, in which the radii of the unscaled
process �0 equal 1.

THEOREM 1.5 ([10]). Assume d = 2.

1. Let a > 1. If λ > 0 is small enough, then P a
λ,δ1

(left–right crossing) is positive.
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2. Let λ < λc. If a is large enough, then P a
λ,δ1

(left–right crossing) is positive.

In [12], Menshikov, Popov and Vachkovskaia considered the case where the
dimension d is arbitrary and the radii of the unscaled process �0 equal 1. They
proved the following result.

THEOREM 1.6 ([12]). Assume d ≥ 2. If λ < λc then, for all a large enough,

P a
λ,δ1

(S is bounded) = 1.

The ideas of their proof are the following. (Those ideas are used in their paper
through a discretization of space; we describe them in a slightly more geometric
way.) Assume that C is a connected component of �n ∪ �n+1 whose diameter is
at least αa−n for a given α > 0. Then, C is included in the union of the following
kind of sets:

1. connected components of �n+1 whose diameter is at least αa−n;
2. balls of �n enlarged by the factor 1 + α [same centers but the radii are (1 +

α)a−n instead of a−n].

Then, they show that the union of all those sets is stochastically dominated by a
Boolean model where all radii equals (1 + α)a−n (1 + α times those of �n) and
where the density of the set of centers is (1 + α′)and for a suitable α′ > 0 (1 + α′
times the corresponding density for �n). The proof of this fact relies partly on the
exponential decay of the size of the components in the subcritical phase. In some
sense, one can therefore control percolation in the union of two models by percola-
tion in one model. Iterating the argument with some care in the constants α and α′,
one sees that one can control percolation in the multiscale model by percolation in
a subcritical model. This yields the result.

In [13] the same authors considered the case where the radii are random and
unbounded. Let us define � by

� = {λ > 0 :Pλ,ν(D0 > n)nd → 0 as n → ∞},
where D0 denotes here the diameter of the connected component of �0 contain-
ing 0. Let λ̃c denote the supremum of �. They proved the following generalization
of Theorem 1.6.

THEOREM 1.7 ([13]). Assume d ≥ 2 and the following:

1. the set � is nonempty (and thus λ̃c is positive);
2. the measure ν satisfies

lim
a→∞ sup

r≥1/2

adν([ar,+∞[)
ν([r,+∞[) = 0

with the convention 0/0 = 0.

Then, for all λ < λ̃c, for all large enough a, P a
λ,ν(S is bounded) = 1.
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REMARKS.

1. When R = 1, Pλ,δ1(D0 > n) decays exponentially as soon as λ < λc. Therefore
λ̃c = λc, in that case. Theorem 1.7 is thus a generalization of Theorem 1.6.

2. The assumption λ < λ̃c is used where, in the proof of Theorem 1.6, the expo-
nential decay of the size of the connected components in the subcritical phase
were used.

3. As explained in the Introduction (see Section 1.1), the first assumption means
roughly that the integral

∫
r2dν(dr) is finite.

By Theorem 1.1, we easily get the following result.

THEOREM 1.8. There exists λ0 > 0 such that P a
λ,ν(S is bounded) = 1 for all

λ ∈]0, λ0[ if and only if the integral∫
[1,+∞[

βd ln(β)ν(dβ)

is finite.

The proof is given in Section 4.

REMARK. We can get a similar result about the finiteness of moments of the
diameter of S by Theorem 1.2.

1.6. Stable marriage of Poisson and Lebesgue. The following model was in-
troduced in [7] by Hoffman, Holroyd and Peres. Let χ be a locally finite sub-
set of R

d . We call the elements of R
d sites and the elements of χ centers. Let

α ∈]0,∞[ be a parameter called the appetite. An allocation of R
d to χ with ap-

petite α is a measurable function

ψ : Rd → χ ∪ {∞,�}
such that |ψ−1(�)| = 0, and |ψ−1(a)| ≤ α for all a ∈ χ . We call ψ−1(a) the
territory of the center a. A center a ∈ χ is sated if |ψ−1(a)| = α and unsated
otherwise. A site x ∈ R

d is claimed if ψ(x) ∈ χ and unclaimed if ψ(x) = ∞. The
allocation is undefined at x if ψ(x) = �.

The following definition, given in [7], is an adaptation of that introduced by
Gale and Shapley [2]. Let a be a center and let x be a site with ψ(x) /∈ {a,�}. We
say that x desires a if

‖x − a‖ < ‖x − ψ(x)‖ or x is unclaimed.

We say that a covets x if

‖x − a‖ < ‖x′ − a‖ for some x′ ∈ ψ−1(a), or a is unsated.

We say that a site-center pair (x, a) is unstable for the allocation ψ if x desires a

and a covets x. An allocation is stable if there are no unstable pairs.
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We now assume that χ is a translation invariant Poisson point process on R
d .

We assume that its intensity measure is the Lebesgue measure. (We can see by
scaling arguments that there is no loss of generality in this assumption.) In [7] it
was proved, among other things, that for any such process there exists a.s. a | · |-
a.e. unique stable allocation ψ from R

d to χ . Furthermore we have the following
phase transition phenomenon:

1. If α < 1 (subcritical) then a.s. all centers are sated but there is an infinite volume
of unclaimed sites.

2. If α = 1 (critical) then a.s. all centers are sated and | · |-a.a. sites are claimed.
3. If α > 1 (supercritical) then a.s. not all centers are sated but | · |-a.a. sites are

claimed.

Let C be the closure of the union of all territories

C = ψ−1(χ).

In [1], Freire, Popov and Vachkovskaia proved, among other things, the following
result:

THEOREM 1.9 ([1]). If α is small enough, then a.s. there is no percolation
in C.

Let D be the diameter of the connected component of C that contains the origin.
In this paper we give the following consequence of Theorem 1.3:

THEOREM 1.10. If α is small enough, then for all s > 0, E(Ds) is finite.

REMARK. We must admit that we have not checked out the measurability
of D. Actually, we prove that, for small enough α, Ds is bounded above by an
integrable random variable.

In order to prove Theorem 1.9, we first define a process that dominates the
previous one. This relies on an idea that appeared in [8] [see the proof of Proposi-
tion 11(ii)] and that is used with the same purpose as ours in [1] (see Lemma 2.1).
For all a ∈ χ we define R(a,χ) by

R(a,χ) = inf
{
r ≥ 0 :α card

(
χ ∩ B(a,2r)

) ≤ |B(a, r)|}.
We let R(a,χ) = ∞ if there is no such r . We assume henceforth that α is strictly
smaller than 2−d . This ensures that, almost surely, all the R(a,χ) are finite (see
Lemma 5.1 for a stronger statement). We can also check that all the R(a,χ) are
positive. We then define a point process ξ on R

d×]0,+∞[ by

ξ = {(a,2R(a,χ)), a ∈ χ}.
As in Section 1.2, we associate with this process a random set �. We have:
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LEMMA 1.11. For all α ∈]0,2−d [, the set C is almost surely contained in the
set �.

It is therefore sufficient to study the percolation properties of �. Theorem 1.10
follows from an application of Theorem 1.3 to the process ξ . A full proof is given
in Section 5.

2. Proof of Theorem 1.3 (models induced by general processes).

2.1. Some further notation. For the whole of the section, we fix a point
process ξ . We assume that ξ satisfies the properties given above Theorem 1.3.

For all α ≥ 0, β > 0 we define a random set �(α,β) by

�(α,β) = ⋃
(c,r)∈ξ : r∈[α,β]

B(c, r).

Notice that this set is empty if β is strictly smaller than α. If x belongs to R
d , we

define an event G(x,α,β) by

G(x,α,β) =
{

the connected component of �(α,β) ∪ B(x,β)

containing x is not contained in B(x,2β)

}
.

In other words, G(x,α,β) occurs if one can go from B(x,β) to the complement
of B(x,2β) using balls of the percolation process whose radii belong to [α,β]. By
stationarity of ξ , the probability of G(x,α,β) does not depend on x. We denote it
by π(α,β)

π(α,β) = P(G(0, α,β)).

Similarly, for all β > 0, we define an event G̃(β) by

G̃(β) =
{

the connected component of � ∪ B(0, β)

containing 0 is not contained in B(0,2β)

}
.

We denote its probability by π̃(β)

π̃(β) = P(G̃(β)).

In order to state some relations between percolation and the various events we
have already introduced, we shall need the following two events. For all β > 0 and
ρ > 1 we define H̃ (β) and H(ρ,β) by

H̃ (β) = {∃(c, r) ∈ ξ :B(c, r) ∩ B(0,2β) �= ∅ and r > β}
and

H(ρ,β) = {∃(c, r) ∈ ξ : c ∈ B(0,3ρβ) and r ∈ [β,ρβ]}.
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We will give a strenghtened version of Theorem 1.3 in which we relax the inde-
pendence assumption. To state this result, we shall need the following definition,
in which ρ is strictly larger that 1 and α,β are as above, that is, α ≥ 0 and β > 0.

I (ρ,α,β)

= sup
x∈Rd\B(0,ρβ)

[
P

(
G(0, α,β) ∩ G(x,α,β)

) − P(G(0, α,β))P (G(x,α,β))
]
.

Note that, under assumption B0 of Theorem 1.3, I (ρ,α,β) = 0 for large enough ρ

(see the beginning of the proof of Theorem 1.3). We also let

I+(ρ,α,β) = max(I (ρ,α,β),0).

2.2. Proof of key inequalities. Let us recall that μ is defined above the state-
ment of Theorem 1.3 and that M is defined in Section 1.2. The aim of this subsec-
tion is to prove the following result.

PROPOSITION 2.1. Let ρ ≥ 2. There exists a constant D̃ > 0, that depends
only on the dimension d and on ρ, such that the following assertion holds for all
α ≥ 0 and all β > 0:

π(α,ρβ) ≤ D̃π(α,β)2 + D̃

∫
[β,ρβ]

rdμ(dr) + D̃I+(ρ,α,β).(6)

Moreover, for all β > 0, we have

π(0, β) = lim
α→0

π(α,β)(7)

and

P(M > 2β) ≤ π̃(β) ≤ π(0, β) + D̃

∫
[β,+∞[

rdμ(dr).(8)

REMARK. With (6), we relate percolation probabilities at different scales. Our
strategy is therefore related to multiscale strategies developed for example in [12]
and [13] (which use some stochastic domination properties) or in [1] (from which
our approach is closer).

Ideas of the proof of the first part of Theorem 1.3 using Proposition 2.1. The
aim is to prove that P(M ≥ β) tends to 0 when β tends to infinity. By (8) we get,
under assumption B2, that it is sufficient to prove that π(0, β) tends to 0. By (7)
we get that it is sufficient to prove that π(α,β) tends to 0 uniformly in α. But
by (6), π(α,ρβ) is bounded above by D̃π(α,β)2 up to error terms which satisfy
the following properties:

1. They are bounded above, by assumption B1;
2. They tend to 0 when β tends to infinity, by assumptions B0 and B2.
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As π(α,β) = 0 for small enough β (this is why the parameter α has been intro-
duced) and as the bound given by assumption B1 on error terms is small enough,
we first deduce that π(α,β) remains small for all values of β (see the first item of
Lemma 2.10). Then, as the error terms tend to 0, we get that π(α,β) tends to 0
as β tends to infinity (see the second item of Lemma 2.10).

The key lemma in the proof of Proposition 2.1 is the following one.

LEMMA 2.2. Let ρ ≥ 2. There exists a positive constant D1 that depends only
on the dimension d and on ρ such that, for all α ≥ 0 and all β > 0, the following
holds:

π(α,ρβ) ≤ D1π(α,β)2 + D1I (ρ,α,β) + P(H(ρ,β)).

PROOF. For all r ≥ 0 we denote by Sr the Euclidean sphere centered at the
origin with radius r :

Sr = {x ∈ R
d :‖x‖ = r}.

We fix K and L, two finite subsets of R
d such that the following properties hold:

K ⊂ Sρ ⊂ K + B(0,1) and L ⊂ S2ρ ⊂ L + B(0,1).

We define D1 as the product of the cardinalities of the sets K and L.
Let α ≥ 0 and β > 0. In this step, we prove the following inclusion:

G(0, α,ρβ) \ H(ρ,β) ⊂
( ⋃

k∈K

G(βk,α,β)

)
∩

(⋃
l∈L

G(βl,α,β)

)
.(9)

We assume that the event G(0, α,ρβ) occurs but that the event H(ρ,β) does
not occur. As G(0, α,ρβ) occurs, one can go from Sρβ to S2ρβ using only balls of
the percolation process whose radii belong to [α,ρβ]. One can furthermore assume
that the center of each such ball belongs to B(0, ρ3β).

We refer to Figure 1 where the doted circles stand for some of the previous balls.
One of these balls touches Sρβ . This ball then touches B(βk,β) for some k ∈ K .
We then see that one can go from B(βk,β) to the complement of B(βk,2β) using
only balls whose radii belong to [α,ρβ] and whose centers belong to B(0,3ρβ).

But, as H(ρ,β) does not occur, the radius of each such ball B(c, r) is
less than β . Therefore, G(βk,α,β) occurs. We have proved that the event⋃

k∈K G(βk,α,β) occurs. We can prove in a similar way that the event
⋃

l∈L G(βl,

α,β) occurs. Therefore the inclusion (9) is proved.
We then get from (9)

π(α,ρβ) ≤ P(H(ρ,β)) + ∑
k∈K,l∈L

P
(
G(βk,α,β) ∩ G(βl,α,β)

)
.
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FIG. 1. Proof of (9).

For all k ∈ K and all l ∈ L, we have ‖βk − βl‖ ≥ βρ. By stationarity and by
definition of I (ρ,α,β) and of D1, we then get

π(α,ρβ) ≤ P(H(ρ,β)) + D1
(
π(α,β)2 + I (ρ,α,β)

)
.

This ends the proof. �

LEMMA 2.3. For all β > 0, the following holds:

π(0, β) = lim
α→0

π(α,β).

PROOF. Let β > 0. As α �→ �(α,β) is nonincreasing, α �→ G(0, α,β) is non-
increasing. Consequently,

lim
α→0

π(α,β) = P

( ⋃
α>0

G(0, α,β)

)
.

Therefore, it is sufficient to prove the following equality:⋃
α>0

G(0, α,β) = G(0,0, β).

If the event G(0,0, β) occurs, then one can go from B(0, β) to the complement of
B(0,2β) using balls of the percolation process whose radii belongs to ]0, β]. By a
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compactness argument, we get the existence of a real α > 0 such that one can go
from B(0, β) to the complement of B(0,2β) using balls of the percolation process
whose radii belongs to [α,β]. In other words, G(0, α,β) occurs. This proves one
of the required inclusions. The other inclusion is straightforward. �

LEMMA 2.4. For all β > 0, the following inclusion holds:

{M > 2β} ⊂ G̃(β) ⊂ G(0,0, β) ∪ H̃ (β).

PROOF. Let β > 0. If G(0,0, β) does not occur, then one cannot go from
B(0, β) to the complement of B(0,2β) using balls of the percolation process
whose radii belongs to ]0, β]. If moreover H̃ (β) does not occur, then balls of
the percolation process whose radii do not belong to ]0, β] will not help to con-
nect B(0, β) to the complement of B(0,2β). Therefore G̃(β) does not occur. This
proves one inclusion. The other one is straightforward. �

LEMMA 2.5. There exists a positive constant D2, that depends only on the
dimension d , such that for all β > 0, the following inequality holds:

P(H̃ (β)) ≤ D2

∫
[β,+∞[

rdμ(dr).

PROOF. We have

H̃ (β) = {ξ ∩ V (β) �= ∅},
where

V (β) = {(c, r) ∈ R
d×]0,+∞[ :B(c, r) ∩ B(0,2β) �= ∅ and r > β}.

We therefore have

P(H̃ (β)) = P
(
ξ ∩ V (β) �= ∅

)
≤ E

(
card

(
ξ ∩ V (β)

))
=

∫
Rd

dc

∫
]0,+∞[

μ(dr)1V (β)(c, r).

As

V (β) = {(c, r) ∈ R
d×]0,+∞[ :‖c‖ < r + 2β and r > β}

we get

P(H̃ (β)) ≤
∫
]β,+∞[

|B(0, r + 2β)|μ(dr)

≤
∫
]β,+∞[

|B(0,3r)|μ(dr).

The inequality stated in the lemma is therefore fulfilled with D2 = |B(0,3)|. �
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LEMMA 2.6. Let ρ ≥ 2. There exists a positive constant D3, that depends
only on the dimension d and on ρ, such that for all β > 0, the following inequality
holds:

P(H(ρ,β)) ≤ D3

∫
[β,ρβ]

rdμ(dr).

PROOF. We have

P(H(ρ,β)) ≤ E
(
card

({(c, r) ∈ ξ : c ∈ B(0,3ρβ) and r ∈ [β,ρβ]}))
= |B(0,3ρβ)|μ([β,ρβ])
= |B(0,3ρ)|βdμ([β,ρβ]).

The inequality stated in the lemma is therefore fulfilled with D3 = |B(0,3ρ)|. �

PROOF OF PROPOSITION 2.1. This is a consequence of the previous lemmas.
Let us denote by D1, D2 and D3 the constants given by Lemmas 2.2, 2.5 and 2.6.
Set D̃ = max(1,D1,D2,D3). By Lemma 2.2 we have, for all α ≥ 0 and β > 0

π(α,ρβ) ≤ D̃π(α,β)2 + D̃I+(ρ,α,β) + P(H(ρ,β)).

By Lemma 2.6 we then get (6). By Lemma 2.4 we have, for all β > 0

P(M > 2β) ≤ π̃(β) ≤ π(0, β) + P(H̃ (β)).

By Lemma 2.5 we then get (8). Finally, (7) is given by Lemma 2.3. �

2.3. Proof of Theorem 1.3. We first state three theorems which, together, give
a strenghtened version of Theorem 1.3. Notice that the conclusion of each of the
first two theorems is one of the assumptions of the following one.

THEOREM 2.7. For all ρ ≥ 2 and D > 0, consider the following hypothesis
H(ρ,D).

There exist sequences (αn)n∈N and (βn)n∈N of real numbers such that the fol-
lowing conditions hold:

1. For all n ∈ N, αn ≥ 0, and αn tends to 0 when n tends to infinity.
2. For all n ∈ N, βn > 0, and (βn)n∈N is bounded.
3. For all n ∈ N and all β ≥ βn, I+(ρ,αn,β) ≤ D and βdμ([β,+∞[) ≤ D.
4. For all n ∈ N and all β ∈ [βn,ρβn], π(αn,β) ≤ D.

Then, for all ρ ≥ 2 and D′ > 0, there exists D > 0, that depends only on d , ρ

and D′, such that H(ρ,D) implies that the probability π(0, β) is smaller than D′
for large enough β .

REMARKS.

1. Note that, in the first assumption, one allows the sequence to be constant equal
to 0.
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2. If β belongs to ]0, αn[ then �(αn,β) is empty and therefore G(0, αn,β) cannot
occur. The probability π(αn,β) then equals 0. Therefore, the fourth assumption
of H(ρ,D) is always satisfied when βn is strictly smaller than αnρ

−1. This is
the reason why we introduced the parameter α in the definition of G and π .

THEOREM 2.8. For all ρ ≥ 2 and D′ > 0, consider the following hypothesis
H ′(ρ,D′):
1. The probability π(0, β) is smaller than D′ for large enough β .
2. I+(ρ,0, β) tends to 0 as β tends to infinity.
3. The integral

∫
[1,+∞[ βdμ(dβ) is finite.

Let ρ ≥ 2. There exists D′ > 0, that depends only on d and ρ, such that H ′(ρ,D′)
implies that the probability π̃(β) tends to 0 as β tends to infinity and, therefore,
implies that there is almost surely no percolation.

THEOREM 2.9. Let ρ ≥ 2 and s > 0. Assume the following:

1. The probability π̃(β) tends to 0 as β tend to infinity.
2.

∫
[1,+∞[ βs−1I+(ρ,0, β) dβ < ∞.

3.
∫
[1,+∞[ βd+sμ(dβ) < ∞.

Then, the integral ∫ +∞
0

βs−1π̃(β) dβ

is finite. Therefore, the moment E(Ms) is finite.

The proof of the previous theorems relies on Proposition 2.1 and on the follow-
ing elementary lemma. There are three items in the lemma. Each of them corre-
sponds to one of the previous theorems.

LEMMA 2.10. Let f and g be two measurable functions from ]0,+∞[ to
[0,+∞[. Let ρ > 1. We assume that, for all β > 0, the following inequality holds:

f (ρβ) ≤ f (β)2 + g(β).(10)

Then:

1. Let ε ∈]0,1]. If there exists β0 > 0 such that f (β) ≤ ε/2 for all β ∈ [β0, ρβ0]
and g(β) ≤ ε/4 for all β ≥ β0 then, for all β ≥ β0, we have f (β) ≤ ε/2.

2. If, for all large enough β > 0, the inequality f (β) ≤ 1/2 holds and if g(β)

converges to 0 as β tends to infinity then, f (β) converges to 0 as β tends to
infinity.

3. Let s > −1 be a real number. If f is bounded, if f (β) converges to 0 as β

tends to infinity and if the integral
∫ +∞

1 βsg(β)dβ is finite then, the integral∫ +∞
0 βsf (β)dβ is finite.
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PROOF. Proof of item 1. If β > 0 is such that f (β) ≤ ε/2 and g(β) ≤ ε/4,
then

f (ρβ) ≤ ε2/4 + ε/4 ≤ ε/2.

The result follows.
Proof of item 2. By (10) we get

lim sup
β→∞

f (β) ≤
[
lim sup
β→∞

f (β)
]2 + lim sup

β→∞
g(β).

By assumption,

lim sup
β→∞

f (β) ≤ 1/2 and lim sup
β→∞

g(β) = 0.

As f is nonnegative, we get that f (β) converges to 0 as β tends to infinity.
Proof of item 3. Let s > −1. As f tends to 0, there exists a real A ≥ ρ such

that

∀β ≥ Aρ−1 :f (β) ≤ ρ−s−1/2.(11)

For all real r ≥ A, we get, by (10) and (11)∫ r

A
f (β)βs dβ

≤
∫ r

A
f (βρ−1)2βs dβ +

∫ r

A
g(βρ−1)βs dβ

≤ ρs+1
∫ rρ−1

Aρ−1
f (β)2βs dβ + ρs+1

∫ +∞
Aρ−1

g(β)βs dβ

≤ 1/2
∫ rρ−1

Aρ−1
f (β)βs dβ + ρs+1

∫ +∞
Aρ−1

g(β)βs dβ

≤ 1/2
∫ r

A
f (β)βs dβ + 1/2

∫ A

Aρ−1
f (β)βs dβ + ρs+1

∫ +∞
Aρ−1

g(β)βs dβ.

As f is bounded, the integral
∫ r
A f (β)βs dβ is finite. We therefore get∫ r

A
f (β)βs dβ ≤

∫ A

Aρ−1
f (β)βs dβ + 2ρs+1

∫ +∞
Aρ−1

g(β)βs dβ

and then ∫ +∞
A

f (β)βs dβ ≤
∫ A

Aρ−1
f (β)βs dβ + 2ρs+1

∫ +∞
1

g(β)βs dβ.

As f is bounded, the lemma follows. �
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PROOFS OF THEOREMS 2.7, 2.8 AND 2.9. Let D̃ be the positive constant
given by Proposition 2.1. For all α ≥ 0 we define a function fα : ]0,+∞[→
[0,+∞[ by

fα(β) = D̃π(α,β)

and a function gα : ]0,+∞[→ [0,+∞[ by

gα(β) = D̃2I+(ρ,α,β) + D̃2
∫
[β,ρβ]

rdμ(dr).

By (6) we get, for all α ≥ 0 and all β > 0

fα(ρβ) ≤ fα(β)2 + gα(β).(12)

Proof of Theorem 2.7. Let

ε = min
(1

2 ,2D′D̃
)
> 0

and

D = min
(

ε

8ρ2D̃2
,

ε

2D̃

)
> 0.

Let us prove that D satisfies the required properties of Theorem 2.7. Let (αn)n
and (βn)n be as in the statement of the theorem. Let β∗ be the supremum of the
bounded sequence (βn)n.

Let n ∈ N. By the third assumption of hypothesis H(ρ,D) we get, for all
β ≥ βn,

gαn(β) ≤ D̃2ρdβdμ([β,+∞[) + D̃2I+(ρ,αn,β)

≤ 2D̃2ρdD

≤ ε/4.

By the fourth assumption of hypothesis H(ρ,D) we get, for all β ∈ [βn,ρβn],
fαn(β) ≤ D̃D ≤ ε/2.

By the first item of Lemma 2.10, we then get the inequality fαn(β) ≤ ε/2 for all
β ≥ βn. Therefore, for all β ≥ β∗, we have

π(αn,β) ≤ D′.

The theorem follows thanks to Lemma 2.3.
Proof of Theorem 2.8. Let

D′ = 1

2D̃
> 0.

Let us check that D′ satisfies the required properties of Theorem 2.8. By the first
assumption of the theorem, we know that the inequality π(0, β) ≤ D′ holds for
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large enough β . Therefore, we have f0(β) ≤ 1/2 for large enough β . By the sec-
ond and the third assumptions, we get that g0(β) converges to 0 as β tends to
infinity. By the second item of Lemma 2.10, we then get that f0(β) also converges
to 0. Therefore, π(0, β) converges to 0. The theorem follows thanks to the third
assumption and to (8).

Proof of theorem 2.9. For all β > 0, we have π(0, β) ≤ π̃(β). By the first as-
sumption of the theorem, we then have the convergence of π(0, β) to 0. Therefore,
f0(β) converges to 0. Let us notice the following:∫ +∞

1
dβ βs−1

∫
[β,+∞[

μ(dr)rd =
∫
[1,∞[

μ(dr)rd
∫ r

1
dβ βs−1

≤
∫
[1,∞[

μ(dr)s−1rd+s(13)

< ∞
by the third assumption. Using also the second assumption, we then get that the
integral

∫ +∞
1 βs−1g0(β) dβ is finite. By the third item of Lemma 2.10, we then get

that the integral
∫ +∞

0 βs−1f0(β) dβ is finite. The integral∫ +∞
0

βs−1π(0, β) dβ(14)

is therefore also finite. But by (8) we have, for all β > 0

π̃ (β) ≤ π(0, β) + D̃

∫
[β,+∞[

rdμ(dr).

By (13) and (14), we thus get that the integral
∫ +∞

1 βs−1π̃ (β) dβ and then the
integral

∫ +∞
0 βs−1π̃(β) dβ is finite. The theorem follows by the first inequality

of (8). �

PROOF OF THEOREM 1.3. Let ρ = max(4C,2). Let D′ be the constant given
by Theorem 2.8. Let D be the constant given by Theorem 2.7. Let us check that D

satisfies the required properties.
Let α ≥ 0 and β > 0. Let us notice that, for all x ∈ R

d , the event G(x,α,β)

only depends on ξ ∩ B(x,3β)×]0, β]. Therefore, the event G(x,α,β) only de-
pends on ξ ∩ B(x,3β)×]0,3β]. By assumption B0 we then get that G(0, α,β)

and G(x,α,β) are independent as soon as ‖x‖ ≥ 3βC. By definition of ρ, we thus
get

I (ρ,α,β) = 0.(15)

Let n be a positive integer. We let αn = n−1 and βn = αn(2ρ)−1. For all
β ∈ [βn,ρβn], β belongs to ]0, αn[. Therefore the set �(αn,β) is empty and con-
sequently the event G(0, αn,β) does not occur. As a consequence, the fourth as-
sumption of hypothesis H(ρ,D) holds.
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The third assumption of hypothesis H(ρ,D) holds because of (15) and as-
sumption B1 of Theorem 1.3. By Theorem 2.7, we then get that π(0, β) is smaller
than D′ for large enough β . In other words, the first assumption of Theorem 2.8
holds. The second assumption of this theorem holds because of (15). The third
one holds because of assumption B2 of Theorem 1.3. We then get that S is almost
surely bounded and that the first assumption of Theorem 2.9 holds. By (15), the
second assumption of Theorem 2.9 holds. If assumption B3 holds, we then get, by
Theorem 2.9, that E(Ms) is finite. �

3. Proofs of Theorems 1.1 and 1.2 (models induced by Poisson processes).
We work with the objects defined in Section 1.3. In particular, ξ is a Poisson point
process on R

d×]0,+∞[ and we have

ξ = {(c, r(c)), c ∈ χ},
where χ denotes the projection of ξ on R

d .
The following elementary lemma is stated and proven in [3] for a probability

measure μ. The proof is the same for a locally finite measure.

LEMMA 3.1. Let μ be a locally finite measure on ]0,+∞[. If
∫
[1,+∞[ βd ×

μ(dβ) is infinite then, for all λ > 0, we have Pλ,μ-almost surely � = R
d . If s > 0

is such that
∫
[1,+∞[ βd+sμ(dβ) is infinite then, for all λ > 0, Eλ,μ(Ms) is infinite.

PROOF. Let μ be a locally finite measure on ]0,+∞[ and λ > 0.
We first prove that, for all r > 0, the following inequality holds:

Pλ,μ

(∃c ∈ χ :B(0, r) ⊂ B(c, r(c))
)

(16)

≥ 1 − exp
(
−λ2−d |B(0,1)|

∫
[2r,+∞[

βdμ(dβ)

)
.

Let r > 0. We have

Pλ,μ

(∃c ∈ χ :B(0, r) ⊂ B(c, r(c))
) = P(ξ ∩ A �= ∅),

where

A = {(c, β) ∈ ξ :β ≥ ‖c‖ + r}.
Therefore

Pλ,μ

(∃c ∈ χ :B(0, r) ⊂ B(c, r(c))
) = 1 − exp

(
−λ

∫
Rd

μ([‖c‖ + r,+∞[) dc

)

= 1 − exp
(
−λ

∫
[r,+∞[

|B(0, β − r)|μ(dβ)

)

≥ 1 − exp
(
−λ

∫
[2r,+∞[

[B(0, β − r)|μ(dβ)

)

≥ 1 − exp
(
−λ

∫
[2r,+∞[

|B(0, β/2)|μ(dβ)

)
.
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The relation (16) is proved.
If

∫
[1,+∞[ βdμ(dβ) is infinite then, by (16), we get, for all r > 0

Pλ,μ

(∃c ∈ χ :B(0, r) ⊂ B(c, r(c))
) = 1.

Therefore, almost surely, we have � = R
d .

Let s > 0. We assume now that
∫
[1,+∞[ βd+sμ(dβ) is infinite. If

∫
[1,+∞[ βd ×

μ(dβ) is infinite, the desired result is a consequence of what we have proved in
the previous step. We assume henceforth that

∫
[1,+∞[ βdμ(dβ) is finite. Let C be

defined by

C = λ2−d |B(0,1)|
∫
[1,+∞[

βdμ(dβ).

This constant is finite. By (16) we get, for all r > 1/2, the following inequality:

Pλ,μ

(∃c ∈ χ :B(0, r) ⊂ B(c, r(c))
)

≥ C−1(
1 − exp(−C)

)
λ2−d |B(0,1)|

∫
[2r,+∞[

βdμ(dβ)

and then

P(M ≥ r) ≥ C−1(
1 − exp(−C)

)
λ2−d |B(0,1)|

∫
[2r,+∞[

βdμ(dβ).(17)

As
∫
[1,+∞[ βd+sμ(dβ) is infinite, the integral∫ +∞

1/2

(
rs−1

∫
[2r,+∞[

βdμ(dβ)

)
dr

is infinite. Therefore, by (17), the integral
∫ +∞

0 rs−1Pλ,μ(M ≥ r) dr is infinite.
The moment Eλ,μ(Ms) is then infinite. �

LEMMA 3.2. Let μ be a locally finite measure on ]0,+∞[. Let ρ > 1. We
have

sup
r>0

rdμ([r, ρr]) ≤ sup
r>0

rdμ([r,+∞[) ≤ 1

1 − ρ−d
sup
r>0

rdμ([r, ρr]).

PROOF. The first inequality is straightforward. Let us prove the other one. Let
r > 0. We have

rdμ([r,+∞[) = ∑
n≥0

ρ−nd(rρn)dμ([rρn, rρn+1[)

≤ ∑
n≥0

ρ−nd sup
s>0

sdμ([s, sρ[)

≤ 1

1 − ρ−d
sup
s>0

sdμ([s, sρ[).
The lemma follows. �
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LEMMA 3.3. Assume d ≥ 2. Let μ be a locally finite measure on ]0,+∞[. If

sup
r>0

rdμ([r,+∞[)
is infinite, then for all λ > 0, we have Pλ,μ(percolation) > 0.

PROOF. Let μ be a locally finite measure on ]0,+∞[ and λ > 0. Let λc > 0
be the critical value for the classical Boolean model when all radii equal 1 (see,
e.g., [10] or Section 12.10 in [4]). In other words, when μ = δ1, S is almost surely
bounded when λ < λc and S is unbounded with positive probability when λ > λc.

Let ρ = 2. By assumption and by Lemma 3.2, there exists r0 > 0 such that

λrd
0 μ([r0, r0ρ]) > λc.

We define a new Poisson point process as follows:

ξ̃ = {(c, r0) : c ∈ χ such that r(c) ∈ [r0, r0ρ]}.
The intensity measure of this point process is the product of the measure
λμ([r0, r0ρ])| · | by the probability measure δr0 . Let �̃ be associated with ξ̃ as
in Section 1.2. Let us notice that �̃ is a subset of �. It is therefore sufficient to
prove that �̃ is in the supercritical phase. The random set r−1

0 �̃ is associated with
the following Poisson point process

r−1
0 ξ̃ = {(cr−1

0 ,1) : c ∈ χ such that r(c) ∈ [r0, r0ρ]}
whose intensity measure is the product of rd

0 λμ([r0, r0ρ])| · | by the probability
measure δ1. By our choice of r0 and by definition of λc we get that r−1

0 �̃, and
therefore �̃, is in the supercritical phase. This ends the proof. �

PROOFS OF THEOREMS 1.1 AND 1.2.
Proof of sufficient conditions. Let C = 2. Let D > 0 be the constant given by

Theorem 1.3. Assumption B0 of Theorem 1.3 is satisfied because of independence
properties of Poisson point processes. Since, under Pλ,μ, the intensity measure of
ξ is the product of the Lebesgue measure and of the measure λμ, the required
results follow from Theorem 1.3.

Proof of necessary conditions. This is a consequence of Lemmas 3.3 and 3.1.
�

4. Proofs of Lemma 1.4 and Theorem 1.8 (multiscale percolation).

PROOF OF LEMMA 1.4. Let us first notice that, for each n ≥ 0, a−nξn is
a Poisson point process whose intensity measure is the product of λ| · | by the
measure νn defined by νn(B) = andν(anB). Let us recall that the measure μ was
defined in (5) by

μ(B) = ∑
n≥0

andν(anB).
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We then have μ = ∑
n νn.

It remains to check that the measure μ is locally finite. Let k ∈ Z. It is sufficient
to prove that μ([ak, ak+1[) is finite. We have

μ([ak, ak+1[) = ∑
n≥0

andν([ak+n, ak+n+1[)

≤
∫
[ak,+∞[

xda−kdν(dx).

As
∫
]0,+∞[ xdν(dx) is finite, the result follows. �

PROOF OF THEOREM 1.8. Let μ be the measure defined by (5). Thanks to
Theorem 1.1 is it sufficient to check the following:

1. Condition A1 holds.
2. Condition A2 holds if and only if

∫
[1,+∞[ βd ln(β)ν(dβ) is finite.

Let us notice that, for all f : ]0,+∞[→ R measurable and nonnegative, we have∫
]0,+∞[

f (β)μ(dβ) = ∑
n≥0

and
∫
]0,+∞[

f (a−nβ)ν(dβ).

Let us check the first item. Let r > 0. We have∫
[r,ra]

βdμ(dβ) = ∑
n≥0

and
∫
]0,+∞[

1[r,ra](βa−n)(βa−n)dν(dβ)

=
∫
]0,+∞[

∑
n≥0

1[r,ra](βa−n)βdν(dβ)

≤
∫
]0,+∞[

2βdν(dβ).

The first item then follows from Lemma 3.2 by (4).
Let us check the second item. As above, we get∫

[1,+∞[
βdμ(dβ) = ∑

n≥0

and
∫
]0,+∞[

1[1,+∞[(βa−n)(βa−n)dν(dβ)

=
∫
]0,+∞[

∑
n≥0

1[1,+∞[(βa−n)βdν(dβ)

=
∫
[1,+∞[

(�ln(β) ln(a)−1� + 1
)
βdν(dβ).

The second item follows. This concludes the proof. �
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5. Proofs of Lemma 1.11 and Theorem 1.10 (marriage). Let us recall the
definition of ξ . We assume that χ is a Poisson point process on R

d whose intensity
measure is the Lebesgue measure. For all a ∈ χ we define R(a,χ) by

R(a,χ) = inf
{
r ≥ 0 :α card

(
χ ∩ B(a,2r)

) ≤ |B(a, r)|}.
[We let R(a,χ) = ∞ if there is no such r .] Using some elementary properties of
the map defined by r �→ α card(χ ∩ B(a,2r)) − |B(a, r)|, we get that R(a,χ) is
always positive and that

R(a,χ) = min
{
r ≥ 0 : |B(0, r)| ∈ αN and α card

(
χ ∩ B(a,2r)

) = |B(a, r)|}.
(With the same convention as before if there is no such r .) Among other things,
this remark enables us to easily solve some measurability issues. We define a point
process ξ on R

d×]0,+∞] by

ξ = {(a,2R(a,χ)), a ∈ χ}.
Let us notice that the law of ξ is invariant under the action of the translations
of R

d and that the intensity measure of ξ is locally finite. The intensity measure is
therefore the product of the Lebesgue measure on R

d by a locally finite measure
on ]0,+∞]. We denote this measure on ]0,+∞] by μ. Let us notice that μ is a
probability measure.

LEMMA 5.1. There exists an absolute constant K > 0 and a function
F : ]0,2−d [→]0,+∞[ that depends only on the dimension d such that:

1. limα→0 F(α) = +∞.
2. For all α ∈]0,2−d [ and all r > 0, we have: μ(]r,+∞]) ≤ K exp(−F(α)rd).

PROOF. Assume α ∈]0,2−d[. Let r > 0. By definition of μ and ξ we have

μ(]r,+∞]) = E
(
card(ξ ∩ [0,1]d×]r,+∞]))

= E

( ∑
a∈χ∩[0,1]d

12R(a,χ)>r

)

= E

( ∑
a∈χ∩[0,1]d

12R(0,χ−a)>r

)
.

As the Palm measure of the Poisson point process χ is the law of χ ∪{0} (see, e.g.,
[15]), we get

μ(]r,+∞]) = P
(
2R(0, χ ∪ {0}) > r

)
.

By definition of R(0, χ ∪ {0}), we then get

μ(]r,+∞]) ≤ P
(
α card

(
(χ ∪ {0}) ∩ B(0, r)

)
> |B(0, r/2)|)

= P
(
α

(
N(r) + 1

)
> ωdrd2−d)

= P
(
N(r) > α−1ωdrd2−d − 1

)
,
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where N(r) = card(χ ∩ B(0, r)) and ωd = |B(0,1)|.
If

1 < α−1ωdrd2−d(
1 −

√
α2d

)
(18)

we have

μ(]r,+∞]) ≤ P
(
N(r) > ωdrd

√
α2d

−1)
.

As N(r) is a Poisson random variable with mean wdrd we then get, using Cher-
noff’s bound

μ(]r,+∞]) ≤ exp
(−wdrdg

(√
α2d

))
,

where g : ]0,1[→ R is defined by

g(x) = (
x − 1 − ln(x)

)
/x.

The previous inequality holds as soon as (18) holds. It therefore holds as soon as
ωdrd > α2d(1 − √

α2d)−1.
Now, if ωdrd ≤ α2d(1 − √

α2d)−1 then, as g is nonnegative

ωdrdg
(√

α2d
) ≤ h

(√
α2s

)
,

where h : ]0,1[→ R is defined by

h(x) = x2(1 − x)−1g(x).

As μ(]r,+∞]) is at most 1 we have, in this case

μ(]r,+∞]) ≤ exp
(
h
(√

α2d
))

exp
(−wdrdg

(√
α2d

))
.(19)

As h is nonnegative, we finally get that (19) holds for all r > 0. As h is bounded
and as limx→0 g(x) = +∞, the lemma follows. �

We assume henceforth that α is strictly smaller than 2−d . By the previous
lemma, we can therefore consider that ξ is a point process on R

d×]0,+∞[ and
that μ is a probability measure on ]0,+∞[. We are therefore in the same frame-
work as in Section 1.4. We associate with ξ a random set � and a random vari-
able M .

PROOF OF LEMMA 1.11. We work on a full event on which there exists an a.e.
unique stable allocation and denote by ψ one of those allocations. Let a ∈ χ . Let
us recall that R(a,χ) is finite. To simplify notation, we write R instead of R(a,χ).
To prove the lemma, it suffices to check that ψ−1(a) is a subset of B(a,R). We
have

α card
(
χ ∩ B(a,2R)

) = |B(a,R)|.
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Let ε > 0 be such that there is no point of χ in the shell B(a,2R + 2ε) \B(a,2R).
We then have

α card
(
χ ∩ B(a,2R + 2ε)

)
< |B(a,R + ε)|.

Therefore ∣∣ψ−1(
χ ∩ B(a,2R + 2ε)

)∣∣ < |B(a,R + ε)|.
As a consequence, there exists x in B(a,R+ε) such that ψ(x) belongs to χ ∪{∞}
and does not belong to B(a,2R + 2ε). If ψ(x) ∈ χ , we have

‖x − ψ(x)‖ > R + ε and ‖x − a‖ ≤ R + ε.

In particular, x desires a. Otherwise, that is, if ψ(x) = ∞, then x also desires a.
As ψ is stable, we therefore get that a does not covet x. As a consequence, ψ−1(a)

is contained in B(a,‖x − a‖) and therefore in B(a,R + ε). As this result holds
for arbitrary small ε > 0, we get that ψ−1(a) is contained in B(a,R). The lemma
follows. �

PROOF OF THEOREM 1.10. Thanks to Lemma 1.11, it suffices to check that ξ

satisfies the assumptions of Theorem 1.3.

B0. We show that the assumption is fulfiled with C = 7. Let r > 0. For all a ∈ χ

we let

R̃(a,χ) = inf
{
s ∈ [0, r] :α card

(
χ ∩ B(a,2s)

) ≤ |B(a, s)|}.
[We let R̃(a,χ) = r if there exists no such s.] Let us notice that, for all a ∈ χ ,
we have R̃(a,χ) = R(a,χ) as soon as R(a,χ) < r or R̃(a,χ) < r . There-
fore, for all x ∈ R

d ,

ξ ∩ R
d × [0, r[= ξ̃ ∩ R

d × [0, r[,
where ξ̃ is defined by

ξ̃ = {(a,2R̃(a,χ)), a ∈ χ}.
As a consequence, we see that ξ ∩ B(x, r) × [0, r[ only depends on χ ∩
B(x,3r). By the independence property of Poisson point processes, we then
get that, if x belongs to R

d \B(0,6r), the point processes ξ ∩B(0, r)×[0, r[
and ξ ∩ B(x, r) × [0, r[ are independent. The required result follows.

B1. By Lemma 5.1, we have

sup
r>0

rdμ([r,+∞[) ≤ sup
r>0

rdμ(]r/2,+∞[)

≤ sup
r>0

rdK exp(−F(α)rd2−d)

= K2dF (α)−1 sup
x>0

x exp(−x).

As F(α) tends to infinity when α tends to 0, assumption B1 is fulfiled for
small enough α.
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B2 and B3. By Lemma 5.1, we get that
∫
]0,+∞[ rd+sμ(dr) is finite for all s ≥ 0.

When α is small enough, we can thus use Theorem 1.3. We get that E(Ms) is finite
for all s > 0. By Lemma 1.11 we then get that E(Ds) is finite for all s > 0. �
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