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EFFICIENT IMPORTANCE SAMPLING FOR
BINARY CONTINGENCY TABLES1
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Columbia University

Importance sampling has been reported to produce algorithms with ex-
cellent empirical performance in counting problems. However, the theoretical
support for its efficiency in these applications has been very limited. In this
paper, we propose a methodology that can be used to design efficient impor-
tance sampling algorithms for counting and test their efficiency rigorously.
We apply our techniques after transforming the problem into a rare-event sim-
ulation problem—thereby connecting complexity analysis of counting prob-
lems with efficiency in the context of rare-event simulation. As an illustration
of our approach, we consider the problem of counting the number of binary
tables with fixed column and row sums, cj ’s and ri ’s, respectively, and total

marginal sums d = ∑
j cj . Assuming that maxj cj = o(d1/2),

∑
c2
j = O(d)

and the rj ’s are bounded, we show that a suitable importance sampling algo-
rithm, proposed by Chen et al. [J. Amer. Statist. Assoc. 100 (2005) 109–120],
requires O(d3ε−2δ−1) operations to produce an estimate that has ε-relative
error with probability 1 − δ. In addition, if maxj cj = o(d1/4−δ0 ) for some

δ0 > 0, the same coverage can be guaranteed with O(d3ε−2 log(δ−1)) oper-
ations.

1. Introduction. We are interested in the complexity analysis of sequential
or state-dependent importance sampling algorithms (SIS) for counting problems.
The development of algorithms for approximate counting in polynomial time has
been a topic of great interest in theoretical computer science [see Valiant (1979)].
Successful techniques have been developed for efficient approximate counting
based on the Markov Chain Monte Carlo (MCMC) method [see the texts by
Sinclair (1993) and Jerrum (2003) for detailed information on these techniques].
A different class of randomized algorithms for approximate counting, based on
importance sampling, has received substantial attention recently [basic notions on
importance sampling are discussed in Section 2.2; for additional background on
importance sampling, see Asmussen and Glynn (2007) and Liu (2001)]. Chen et
al. (2005) proposed an algorithm based on importance sampling for counting the
number of bipartite graphs with a given degree sequence. They tested their algo-
rithm empirically and observed that it achieved excellent performance. Recently,
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Blitzstein and Diaconis (2008) have also used importance sampling algorithms for
approximately counting the number of acyclic and undirected graphs with a given
degree sequence. In addition, Rubinstein (2007) and Botev and Kroese (2008)
have applied adaptive importance sampling algorithms to a variety of combina-
torial problems, including counting and optimization. Although many of these
algorithms based on importance sampling seem to have excellent practical per-
formance, the theoretical framework to carry through a rigorous analysis of their
performance is still under development.

Our purpose is to illustrate a framework that can be used to design efficient
importance sampling algorithms for counting and provide a rigorous analysis of
their computational complexity. Our method provides a direct connection between
asymptotic approximations and efficient importance sampling, and we believe that
the principle underlying this connection can be applied in substantial generality.
In order to illustrate our proposed techniques, we shall consider the problem of
counting the number of 0–1 matrices with specified column and row sums—these
types of matrices are also called binary contingency tables in statistical applica-
tions. In the context of graph theory, this problem is equivalent to that of counting
the number of bipartite graphs with a given degree sequence.

Returning to the problem that we consider here, we mention that statistical
analysis of binary contingency tables is a problem that has been motivated by
several application domains, including some in biology as explained in Chen et
al. (2005). Our goal is to provide rigorous support for the observed experimental
efficiency of a class of SIS algorithms proposed by Chen et al. (2005) for counting
binary contingency tables. Formally, the problem consists in developing fast com-
putational algorithms for counting the number of solutions {xij : 1 ≤ i ≤ m,1 ≤
j ≤ n} to

n∑
j=1

xij = ri, i ∈ {1,2, . . . ,m},(1)

m∑
i=1

xij = cj , j ∈ {1,2, . . . , n},(2)

xij ∈ {0,1}.
Let us define d = ∑m

i=1 ri = ∑n
j=1 cj . Our complexity analysis is performed by

sending d ↗ ∞ (and n, m ↗ ∞ as well) in the context of sparse matrices un-
der regularity conditions. In particular, we assume that maxj≤n cj = o(d1/2),∑n

j=1 c2
j = O(d) and that the ri’s are bounded. We shall construct and analyze

a SIS-based estimator, that is, ε-close (in relative terms) to the total number of
solutions to (1)–(2) with coverage probability of at least 1 − δ and that requires
O(d3ε−2δ−1) operations as d ↗ ∞ and ε, δ ↘ 0 for its construction. Moreover,
by imposing an additional growth condition of the form maxi≤n cj = o(d1/4−δ0)
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for some δ0 > 0 as d ↗ ∞, we obtain that SIS yields a “fully polynomial ran-
domized approximation scheme” in the sense that O(d3ε−2 log(δ−1)) operations
are sufficient to produce an estimator that has ε-relative precision with probability
1 − δ.

The proposed strategy for constructing and designing SIS algorithms proceeds
as follows. The first step is to transform the counting problem into a so-called
rare-event estimation problem; that is, the problem of estimating the probability
of a rare event. Such probability is given by the ratio of the number of required
solutions (xij ’s) satisfying both (1) and (2) divided by the number of solutions sat-
isfying only the set of constraints (2) (i.e., there is no restriction on the row sums),
which can be easily computed. The second step is to recognize that such probabil-
ity can be characterized by a system of linear equations, which is obtained by con-
ditioning on the first increment of a suitably defined m-dimensional random walk.
The solution to this system of equations provides the means of constructing the
optimal importance sampling distribution, which is state-dependent. Such optimal
importance sampling distribution corresponds to the so-called Doob’s h-transform
which arises in the context of positive harmonic functions. The next step is to use
results developed by McKay (1984) [see also Greenhill, McKay and Wang (2006)
and Bekessy, Bekessy and Komlos (1972)] that approximate the number of so-
lutions satisfying constraints (1) and (2) in the context of large and sparse ma-
trices that we have adopted here. We then use these approximations (which we
have extended in Theorem 1 to cover our assumptions) to construct an importance
sampling distribution that mimics the behavior of the optimal importance sampler
(thus, the better the approximation the closer the importance sampler to the optimal
one).

It turns out that the importance sampling algorithm suggested by the previous
strategy coincides with one of the algorithms studied in Chen et al. (2005). Our
results imply that in the context of large and sparse matrices satisfying the assump-
tions indicated above, the variance of the estimator obtained by the procedure has
the best possible asymptotic performance. That is, the coefficient of variation of
the estimator (the ratio of the standard deviation to the probability of interest) re-
mains bounded as d ↗ ∞. In the context of rare-event simulation, an estimator that
has a bounded coefficient of variation is said to be strongly efficient (a notion that
will be reviewed in Section 4). Moreover, we show that if maxi≤n cj = o(d1/4−δ0)

then the proposed estimator is exponentially efficient, a concept that is introduced
in Section 4, and in particular implies strong efficiency. In particular, exponen-
tial efficiency allows to conclude that under our assumptions, the proposed SIS
estimator is ε-close in relative terms with coverage probability 1 − δ and has com-
plexity O(d3ε−2 log(δ−1)) as indicated above, in contrast to a complexity of order
O(d3ε−2δ−1) corresponding to strong efficiency.

A recent algorithm for counting binary tables developed by Bezáková, Bhatna-
gar and Vigoda (2006), based on MCMC techniques (simulated annealing), has
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been shown to have complexity of (roughly) O(d3(nm)2 maxi,j (ci, rj )) opera-
tions. However, it is important to note that the procedure proposed by Bezáková,
Bhatnagar and Vigoda (2006) works in complete generality (i.e., it does not require
the sparsity assumptions imposed here). Other algorithms based on MCMC have
been devised for counting binary contingency tables with certain regularity condi-
tions on the degree sequence (such as ours). For instance, Kim and Vu (2003) as-
sumed that max(ri, cj ) = o(d1/3) and proposed an algorithm that allows to gener-
ate an almost uniform bipartite graph (with given degree sequence) in time O(d3).
Kannan, Tetali and Vempala (1997) also study the problem of uniform generation
of bipartite graphs with given degrees.

In a recent paper [Bayati, Kim and Saberi (2007)] used ideas based on SIS to
construct an algorithm for generation of simple graphs with a given degree se-
quence (a slightly different problem than the one that we study here). Under reg-
ularity conditions (similar to those imposed here), they proved that their proposed
algorithm has excellent performance for asymptotically uniform generation, basi-
cally linear complexity, which makes the algorithm optimal in the sense that no
faster complexity rate is possible. Their methods seem completely different from
those developed here. In particular, we do not require the explicit use of concen-
tration inequalities but instead the application of bounds related to Lyapunov in-
equalities for Markov chains. In addition, our methods suggest a natural way to
develop efficient SIS in a variety of settings—basically if the optimal importance
sampling distribution is described by a Markov chain and there are asymptotic
approximations for the quantity of interest.

It is important to emphasize that although our complexity analysis of SIS sug-
gests very good performance [which is validated by the computer experiments
performed by Chen et al. (2005)], such performance can only be guaranteed un-
der certain regularity conditions. This has been noted by Bezáková et al. (2007)
who constructed a counterexample showing that a SIS related to the one presented
here [also proposed by Chen et al. (2005)] can have exponential time complex-
ity if the degree sequence is allowed to grow arbitrarily. Nevertheless, one of the
main points that we intend to communicate is that the general method outlined
here could be adapted to specific contexts in which the problem at hand seems
to have certain regularity properties that allow to develop approximations. The
strategy would be then to enhance the approximations by means of efficient com-
putational algorithms that can be shown to have desirable complexity properties in
an asymptotic regime related to the developed approximations.

The basic principles behind the design and analysis of the SIS algorithms dis-
cussed here can be applied more broadly. For instance, Blanchet and Glynn (2008)
apply these principles in the context of first-passage time probabilities with an
emphasis on one-dimensional random walk problems with general heavy-tailed
increments (which are of particular interest in insurance and queueing). Another
example is given in Blanchet and Liu (2008), which develops strongly efficient
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rare-event simulation algorithms for large deviation probabilities of regularly vary-
ing random walks. The analysis of SIS algorithms in rare-event simulation involves
constructing so-called Lyapunov functions, which are solutions to certain inequal-
ities that are used in stability analysis of Markov processes. The use of Lyapunov
inequalities in the context of counting problems as the one considered here is par-
ticularly interesting because the dimension of the state-variables of the underlying
Markov process (in our context m) is growing. As we shall discuss in Section 5, the
construction of a suitable Lyapunov function often requires a good understanding
of the local likelihood ratio obtained at each step of the simulation.

The rest of the paper is organized as follows. In Section 2, we relate the problem
of counting binary contingency tables to its rare-event simulation counterpart. Ba-
sic notions involving importance sampling and the optimal change-of-measure are
also discussed in Section 2. Section 3 develops asymptotic approximations that are
then used in the construction of the algorithm that we analyze. Section 4 introduces
efficiency notions that are applied in rare-event simulation and discusses connec-
tions to related ideas used in the context of approximate counting. The complexity
analysis of the counting algorithm, which leads to the proof of our main result,
namely Theorem 2, is given in Section 5.

2. Counting, rare-event simulation and importance sampling. A 0–1 table
with specified marginals is a binary array (0–1 elements) of dimensions m × n

such that the sum of the elements in the ith row equals ri (i ∈ {1, . . . ,m}) and the
corresponding sum over the j th column equals cj , j ∈ {1, . . . , n}.

Notational convention. Throughout the rest of the paper, we shall use the no-
tation c = (c1, . . . , cn), r = (r1, . . . , rm) and

∑n
j=1 cj = d = ∑m

i=1 ri . In addition,
we shall reserve the use of boldface letters to denote vectors or high-dimensional
objects. Random variables are denoted using capital letters and the use of lower
case is restricted to deterministic quantities (including specific realizations of ran-
dom objects). We also use the notation f (t) = O(g(t)) if there exists a constant
m1 ∈ (0,∞) such that |f (t)| ≤ m1g(t); if, in addition, |f (t)| ≥ m2g(t) for some
m2 ∈ (0,∞), then f (t) = �(g(t)). Finally, we say that f (t) = o(g(t)) as t ↗ ∞
if f (t)/g(t) −→ 0 as t ↗ ∞.

2.1. Counting binary tables via a random walk computation. We are inter-
ested in developing an importance sampling algorithm that allows to efficiently
count the number of such arrays, which we shall denote by μ(r, c). First, note that
the number of tables with m rows and given only column marginals c is

η(c,m) �
(

m

c1

)
· · ·

(
m

cn

)
.

So, the number of tables with given column and row marginals, c and r, respec-
tively, can be evaluated via

η(c,m) · P (
T(Y) = r

)
,
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where T(Y) ∈ R
m is the row marginals of a table Y sampled uniformly over the

space of tables with column marginals c [i.e., T(Y)i = ∑n
j=1 Yi,j for 1 ≤ i ≤ m].

As a consequence, the problem of counting the number of binary contingency
tables is equivalent to that of estimating P(T(Y) = r). We can see that efficient
estimation of this probability with good relative precision is not straightforward
because the probability in question may become arbitrarily small as the size of the
table increases. In other words, the event {T(Y) = r} would typically be rare.

We shall formulate the problem of estimating P(T(Y) = r) as a sequential rare-
event simulation problem involving a suitably defined random walk. Define an m-
dimensional random walk (rw) S = (Sk : 0 ≤ k ≤ n) as follows. Given vectors of
nonnegative integers c and r, set S0 = r and (for k ∈ {1, . . . , n}) define Sk = Sk−1−
Xk where Xk is a 0–1 entry vector (of dimension m) with uniform distribution
over the space of configurations (xk,1, . . . , xk,m) such that

∑m
j=1 xk,j = ck and (for

1 ≤ j ≤ m) xk,j ∈ {0,1}. The vector Xk represent the kth column of the table.
The random vectors (Xk : 1 ≤ k ≤ n) are assumed to be independent. Finally, let
us write Pr,c(·) for the probability law generated by the rw S subject to S0 = r and
Er,c(·) for the corresponding expectation operator. Note that Pr,c(·) is defined via
a time inhomogeneous Markov chain; this is because the distributions of the Xk’s
change in time according to c.

Observe that

u(r, c) � Pr,c(Sn = 0) = P
(
T(Y) = r

)
.

As we shall see, the function u(·) can be used to describe the conditional distribu-
tion of the rw S given that Sn = 0. In turn, such description is highly relevant for
the design of efficient importance sampling algorithms.

2.2. Basic notions on importance sampling. We shall briefly discuss basic
concepts related to importance sampling and then apply these concepts to the ran-
dom walk computation described in the previous section. For a more detailed dis-
cussion on importance sampling, see, for instance, Asmussen and Glynn (2007),
Glynn and Iglehart (1989) and Liu (2001).

Suppose that we want to estimate P(Z ∈ A) > 0, for a given random object
taking values on a space X with a σ -field B. Let us define the probability measure
FZ(dz) on (X,B) via FZ(dz) = P(Z ∈ dz), so that

P(Z ∈ A) =
∫
A

FZ(dz).

We say that a probability measure G(dz) on (X,B) is an admissible choice for
an importance sampler or change-of-measure if FZ(dz)IA(z) is absolutely con-
tinuous with respect to G(dz) [note that FZ(dz)IA(z) is not necessarily a prob-
ability measure]. In other words, if G(dz) is admissible then G(B) = 0 implies
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P(A ∩ B) = 0, so that the Radon–Nikodym derivative L(z) = IA(z)(dFZ/dG)(z)

is well defined. If G(dz) is admissible, then

P(Z ∈ A) = EGL(Z) =
∫

L(z)G(dz).(3)

Here, we are using EG(·) to denote an expectation that is computed under the prob-
ability measure G(·) [similarly, we will use VarG(·) for variances under G(·)]. The
random variable L, which is clearly an unbiased estimator of P(Z ∈ A), is an im-
portance sampling estimator. In some discussions on importance sampling, the
likelihood W(z) � (dFZ/dG)(z), when is well defined, is said to be the “impor-
tance sampling weight” [see, e.g., Liu (2001)]. When W(z) is well defined, then
one can write L(z) = W(z)IA(z).

The idea behind importance sampling is to take advantage of representation (3)
in order to estimate P(Z ∈ A). In particular, one can simulate k i.i.d. (independent
and identically distributed) copies of Z using the distribution G(·) and output the
estimator

W
(k)
IS = 1

k

k∑
j=1

L(Zj ).(4)

By the LLNs and identity (3), W
(k)
IS is a consistent estimator of P(Z ∈ A) as

k ↗ ∞. Note that importance sampling can in principle achieve zero variance.
Indeed, if one chooses as change-of-measure

G∗(dz) = P(Z ∈ dz|Z ∈ A) = P(Z ∈ dz)I (z ∈ A)

P (Z ∈ A)
,

we obtain, say if m = 1 and Z = z1,

WIS = L(z1) = P(Z ∈ dz1)

[
P(Z ∈ dz1)

P (Z ∈ A)

]−1

= P(Z ∈ A).

So, our estimate of P(Z ∈ A) is exact (in particular, it has zero variance). Obvi-
ously, such importance sampling estimator is not feasible to implement in practical
cases because it requires knowledge of P(Z ∈ A), which is the quantity of interest.
However, the form of the zero-variance importance sampler indicates that a good
change-of-measure should be similar to the conditional distribution of Z given that
Z ∈ A.

2.3. Zero-variance importance sampler for binary contingency tables. Note,
conditioning on X1, that u(r, c) satisfies

u(r, c) = Er,c(u(S1,ρ1)),
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where ρ1 = (c2, . . . , cn); note that the dimension of ρ1, which we shall denote by
size(ρ1), equals n − 1. More generally, at time 0 ≤ k ≤ n − 1

u(sk,ρk) = Esk,ρk
(u(Sk+1,ρk+1)),(5)

where ρk+1 = (ck+2, . . . , cn) and size(ρk) = n − k. If we denote the empty vector
by the symbol ∗, we must have that u(0,∗) = 1 and u(r,∗) = 0 for r �= 0.

Let us define a Markov kernel Q∗
ρk

(·) (for 0 ≤ k ≤ n) via

Q∗
ρk

(sk, sk+1) =
(

m

ck+1

)−1 u(sk+1,ρk+1)

u(sk,ρk)
.

Note that (5) guarantees that Q∗
ρk

is a well defined Markov kernel [i.e., the proba-
bilities Q∗

ρk
(sk, ·) is a probability mass function]. In order to simplify the notation

in what follows, we shall drop the explicit dependence on the subindex ρk . If one
could use P Q∗

(·) as importance sampler for simulation [i.e., simulate the process
(Sk : 0 ≤ k ≤ n) according to transitions generated by Q∗(·)], then our likelihood
ratio estimator would be (given S0 = r and ρ0 = c)

I (Sn = 0)

n−1∏
k=0

u(Sk,ρk)

u(Sk+1,ρk+1)
= u(S0,ρ0)

u(0,∗)
= u(r, c),

which has zero variance. Therefore, Q∗(·) corresponds to the zero-variance impor-
tance sampling distribution. The kernel Q∗(·) is the so-called Doob’s h-transform
and describes the conditional distribution of the process S given that Sn = 0; see
Doob (1957).

The efficient design of importance sampling algorithms should take advantage
of any available information about u(·). For instance, if we know that u(·) is in
some sense close to some computable function v(·), then given our previous dis-
cussion, it is natural to consider a transition kernel of the form

Q(sk, sk+1) =
(

m

ck+1

)−1 v(sk+1,ρk+1)

w(sk,ρk)
,

where w(sk,ρk) is the appropriate normalizing constant that makes Q(·) a well
defined Markov transition kernel. Once again, for notational simplicity, we sup-
press the explicit dependence of ρk in Q(·) but keep in mind that Q(·) is a time
inhomogeneous Markov kernel. This is the strategy that we shall pursue in the
next section in order to describe an importance sampling scheme that can be rig-
orously shown to be efficient in a context of sparse tables. An early reference that
explores the connection between h-transforms and importance sampling is Glynn
and Iglehart (1989) [see also Asmussen and Glynn (2007) and Juneja and Sha-
habuddin (2006) for more applications of this idea].
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3. Approximating the optimal change-of-measure and algorithm design.
In order to apply the strategy outlined at the end of the previous section, we need to
find a suitable approximation v(·) to u(·). Results from McKay (1984) and Green-
hill, McKay and Wang (2006) will allow us to obtain valuable information on u(·)
that we will exploit in order to design an efficient importance sampling algorithm.
In order to develop the required approximations, it is useful to introduce some
notation.

As we indicated at the beginning of the previous section, μ(r, c) represents the
number of tables with fixed column sums vector c and marginal row sums given
by r. Note that with this definition of μ(r, c) we have u(r, c) = μ(r, c)/η(c,m).
We shall assume that the cj ’s are ordered in a nonincreasing way so that c1 ≥
c2 ≥ · · · ≥ cn. Having the cj ’s ordered in this way does not affect the asymptotic
approximations that we are about to describe, but as we shall see, the ordering is
important for the good performance of SIS.

We now introduce some convenient notation as in Greenhill, McKay and
Wang (2006) that will be useful throughout the rest of the paper. Given a num-
ber s and an integer k ≥ 0, we define [s]k = s(s − 1) · · · (s − k + 1) and [s]0 = 1.
Given a vector s = (s1, . . . , sn0) of dimension n0, we set [s]0 = 1 and define, for
any integer k ≥ 1,

[s]k =
n0∑

j=1

[sj ]k, [sk]1 =
n0∑

j=1

sk
j

and also s! = s1!s2! · · · sn0 !.
Define

ϕ(r, c) = [c]1!
r!c! and α(r, c) = [c]2[r]2

2[c]2
1

.

We now are ready state the following result, the proof of which is given at the
end of the section. The next theorem is basically an adaptation of results from
McKay (1984) [see also Theorem 1.1 of Greenhill, McKay and Wang (2006)].

THEOREM 1. Assume that max([c2]1, [r2]1) = O(d) and maxj≤n,i≤m(cj ,

ri) = o(d1/2) as d ↗ ∞. Then

μ(r, c) ∼ ϕ(r, c) exp(−α(r, c))

as d ↗ ∞.

The previous result is slightly different from that of McKay (1984) who required
maxi≤m,j≤n{ri, cj } = o(d1/4) but did not assume max([c2]1, [r2]1) = O(d). Fur-
ther refinements have been given in Theorem 1.3 of Greenhill, McKay and
Wang (2006) who introduce additional correction terms by assuming maxi≤m ri ×
maxj≤n cj = O(d2/3).
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Continuing in the spirit of our discussion at the end of the previous section. We
are interested in proposing a function v(·) that mimics the behavior of u(·) in some
sense in order to construct our importance sampling algorithm. Theorem 1 suggest
using the approximation

v(r, c) � ϕ(r, c) exp(−α(r, c))
η(c,m)

.

Let us define v(0,∗) = 1 and v(s,ρ) = 0 if at least one component of s is nega-
tive. As we indicated at the end of last section, our discussion of the zero-variance
change-of-measure, Q∗, suggests designing the importance sampling distribution
via a Markov transition kernel of the form

Q(sk, sk+1) =
(

m

ck+1

)−1 v(sk+1,ρk+1)

w(sk,ρk)
,(6)

where ρk = (ck+1, . . . , cn) and

w(sk,ρk) = ∑
(sk,ρk)→(sk+1,ρk+1)

(
m

ck+1

)−1 ϕ(sk+1,ρk+1)

η(ρk+1,m)

is the normalizing constant that makes Q(·) a well defined Markov transi-
tion kernel. In the previous display and in the discussion that follows, we use
(sk,ρk) → (sk+1,ρk+1) to denote an admissible transition step [i.e., sk −sk+1 is an
m-dimensional 0–1 whose components add up to ck+1 and ρk+1 = (ck+2, . . . , cn)].

We shall mention how to simulate transitions under Q(·) right after the precise
description of the proposed algorithm below. We will use P

Q
r,c(·) to denote the

probability measure induced by the random walk S under the transition kernel
given that S0 = r and E

Q
r,c(·) to denote the corresponding expectation operator

associated to P
Q
r,c(·).

Note that under the change-of-measure P
Q
r,c(·) we may have P

Q
r,c(Sn �= 0) > 0.

Therefore, when running an importance sampling algorithm based on transitions
according to Q(·) we may obtain realizations for which {Sn �= 0}. A sufficient
condition that implies {Sn �= 0} and which can be easily checked at a time k < n is
that the number of strictly positive components of Sk is less than ck+1. So, the path
generation under P

Q
r,c(·) will be done sequentially according to the transition ker-

nel Q(·) until time n (in which case we have that the event {Sn = 0} has occurred)
or up to the first time k such that the number of strictly positive components of Sk

is less than ck+1 (in which case we have that {Sn �= 0}).
In order to explain this path generation scheme more formally, let us define

	(Sk) = card{j : Sk,j > 0}.
That is, 	(Sk) is the number of strictly positive components of Sk . Put cn+1 � 1
and define a stopping time τ via

τ = inf{0 ≤ k ≤ n :	(Sk) < ck+1}.
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Observe that when {τ < n} occurs one of the components of the vector Sn must be
negative and, therefore, {Sn �= 0}. On the other hand, if Sτ = 0, we must have that
τ = n because the ci ’s are strictly positive and

∑n
j=1 cj = d . Therefore, we have

that {Sn = 0} = {Sτ = 0}, and consequently

u(r, c) = Pr,c(Sτ = 0).

The path generation scheme that we described before under the measure P
Q
r,c(·)

will be done sequentially up to the stopping time τ . Note that the kth column,
namely Xk , is generated under P

Q
r,c(·) during the course of the path generation

only if τ > k − 1. In turn, Xk is a binary vector such that the sum of its compo-
nents equals ck and P

Q
r,c(·) avoids assigning negative components to the random

walk S and, therefore, generation of increments under P
Q
r,c(·) can be performed up

to time τ . If τ < n, then the τ th assignment under P
Q
r,c(·) cannot be done and the

estimator is just zero. If τ = n, then the table is constructed satisfying the row and
column sums. We then conclude that P

Q
r,c(·) is admissible in the sense that it does

not assign zero mass to outcomes that are possible under Pr,c(·) and for which
Sn = 0. In fact, it turns out that the sequential importance sampling algorithm gen-
erated by Q(·) coincides with one of the procedures studied by Chen et al. (2005).
In order to see this, note that

Q(sk, sk+1) =
(

m

ck+1

)−1 v(sk,ρk)

w(sk,ρk)

v(sk+1,ρk+1)

v(sk,ρk)

∝ v(sk+1,ρk+1)

v(sk,ρk)
= ϕ(sk+1,ρk+1)η(ρk,m)

ϕ(sk,ρk)η(ρk+1,m)

∝ ϕ(sk+1,ρk+1)

ϕ(sk,ρk)
∝ sk!

sk+1! exp
(
α(sk,ρk) − α(sk+1,ρk+1)

)
∝ ∏

j∈{j : sk+1,j �=sk,j }
(sk,j exp(2γksk,j )),

where γk = ∑n−k
j=2(ρ

2
k,j − ρk,j )/(2(d − ρk,1)) (note that card{j : sk+1,j �= sk,j } =

ρk,1). The proportionality relations are introduced to emphasize the dependence of
the transition kernel only on the k + 1th increment, namely sk+1 − sk . The last line
of the previous display coincides with the description given in page 112 of Chen et
al. (2005) [the complete details of the computation corresponding to the difference
α(sk,ρk) − α(sk+1,ρk+1) are given in Section 5; see (17)].

The precise form of the algorithm that we analyze, based on the transition ker-
nel Q(·) defined in (6), is given next.

ALGORITHM 1.

STEP 1. Order the ci’s so that c1 ≥ · · · ≥ cn and set s ←− r, ρ ←− c, L ←− 1
and l ←− 0.
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STEP 2. Let A = {i : si > 0} and define mA = card(A). Put c1 ←− ρ1, ρ ←−
(ρ2, . . . , ρsize(ρ)) and l ←− l + 1. If mA < c1, put L = 0 and GO TO Step 3.
Otherwise, if l < n, then evaluate

γ ←− [ρ]2/2[ρ]2
1

else, if l = n set γ = 0. Sample (Yi1, . . . , YimA
) according to the distribution

P(Yi1 = yi1, . . . , YimA
= yimA

) = 1

w′
mA∏
j=1

(sj exp(2γ sj ))
yij ,(7)

where
∑mA

j=1 yij = c1, yij ∈ {0,1} and

w′ = ∑
{(yi1 ,...,yimA

) : yi1+···+yimA
=c1}

mA∏
j=1

(sj exp(2γ sj ))
yij .

Then update

L ←− w′∏mA
j=1(sj exp(2γ sj ))

Yij

L

and for j ∈ A put sj ←− sj − Yj .

STEP 3. If L = 0 or n = 0 output L and STOP, otherwise, GO TO Step 2.

The output of Algorithm 1 is given by

L =
τ−1∏
k=0

w(Sk,ρk)

v(Sk+1,ρk+1)
I (Sτ = 0).

Equation (7) describes the distribution of Xj+1 given sj under Q(sj , ·). Sampling
according to such distribution can be done, adopting the terminology used by Chen
et al. (2005), using the so-called “drafting method” for Conditional-Poisson (CP)
distributions described by (7).

For completeness, we shall review the basic properties of the drafting procedure;
our discussion follows [Chen et al. (2005) and Chen, Dempster and Liu (1994)].
Given a distribution of the form

P(Z1 = z1, . . . ,Zm = zm) = 1

w̃

m∏
j=1

w
zj

j I

(
m∑

j=1

zj = c

)
,(8)

where wj > 0 and zj ∈ {0,1} for 1 ≤ j ≤ m, the drafting method allows to both,
sampling the Zi’s and efficiently computing the normalizing constant w̃. The draft-
ing method is a sequential procedure that allows to sample c units without replace-
ment from the set Am = {1,2, . . . ,m}; the ith unit has a probability proportional
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to wi . Let Ak , 0 ≤ k ≤ c be the set of selected units after k draws, so that A0 = �
and Ac is the final sample to be obtained. At the kth step (with 1 ≤ k ≤ c), a unit
j ∈ Ac

k−1 is selected into the sample with probability

p(j,Ac
k−1) = w̃(c − k,Ac

k−1 \ {j})wj

(c − k + 1)w̃(c − k + 1,Ac
k−1)

,

where

w̃(i,A) = ∑
C⊆A,card(C)=i

(∏
i∈C

wi

)
,

w̃(0,A) = 1 for all A ⊆ Am and w̃(i,A) = 0 for i > card(A). The computation of
the w̃(i,A)’s is performed using the recursion

w̃(i,A) = w̃(i,A \ {j}) + w̃(i − 1,A \ {j})wj .

For instance, to compute w̃(c,Am), we apply the recursion

w̃(i,Aj ) = w̃(i,Aj \ {j}) + w̃(i − 1,Aj \ {j})wj

for 1 ≤ i ≤ c and i ≤ j ≤ m. It follows that computing w̃(c,Am) takes O(cm)

operations. Evaluating p(j,Am) = p(j,Ac
0) then takes O(cm2) operations. Each

of the p(j,Ac
k)’s can be evaluated similarly, however, it is more convenient to use

Lemma 1 of Chen, Dempster and Liu (1994), which states that

p(j,Ac
k) = wikp(j,Ac

k−1) − wjp(j,Ac
k−1)

(c − k)(wik − wj)p(ik,A
c
k−1)

for 1 ≤ k ≤ c − 1 and j ∈ Ac
k , where ik is the element selected in the kth iteration

of the drafting procedure. Therefore, we conclude that it takes O(cm2) operations
to generate a sample from (8) using the drafting method. Chen and Liu (1997) dis-
cuss four additional sampling procedures for CP distributions with similar com-
plexity properties. The previous considerations imply that the computational cost
per replication of an importance sampling algorithm based on Q(·) is of order
O(m2d + n log(n)). The contribution of the term n log(n) corresponds to ordering
the cj ’s in Step 1 and computing γ in Step 2. Note that subsequent updates of γ

can be done recursively so there is no need to add an extra factor from the fact that
the algorithm goes through Step 2 n times. We summarize these observations in
the following lemma.

LEMMA 1. Algorithm 1 requires O(m2d + n log(n)) operations to be exe-
cuted.

Chen et al. (2005) also proposed a more refined importance sampling procedure
which can be explained as follows. Note that we constructed our importance sam-
pling transition kernel, Q(·), via a suitable approximation v(r, c) of u(r, c) that
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is valid as d ↗ ∞. Furthermore, we introduced additional information into v(·)
by defining v(s,ρ) = 0 if s contains at least one negative component. Intuitively,
we could have done even better by setting v(s,ρ) = 0 whenever u(s,ρ) = 0, this
is the idea behind the refinement proposed by Chen et al. (2005). One immedi-
ate difficulty here is the question of how to easily test the pairs (s,ρ) for which
u(s,ρ) = 0. This is achieved by making use of a characterization of so-called
graphical sequences (i.e., degree sequences that can give rise to a bipartite graph)
in terms of certain constraints that can be easily checked during the course of the
simulation. Introducing these types of constraints on the support of Q together
with asymptotic approximations may help produce efficient importance sampling
estimators (in terms of the discussion given in Section 4). However, in our current
context, the vanilla version of the importance sampling procedure, indicated in Al-
gorithm 1, will already be proved to be efficient in a precise mathematical sense to
be described in the next section.

PROOF OF THEOREM 1. We follow closely the steps in the proof of
Lemma 2.2 and Theorem 1.3 in Greenhill, McKay and Wang (2006) (GMW). First,
we introduce their counting model. We consider a set of d labeled points arranged
on m cells, say 
1, . . . , 
m. The cell 
i contains ri elements. Similarly, we con-
sider another set of d labeled points arranged in n cells denoted by �1, . . . ,�n

and assume that the j th cell, �j , contains cj elements. We then have 2d labeled
points in total. A partition of the 2d elements into d unordered pairs is called a
pairing. Each pair is denoted by e = (ρ, ξ) where ρ ∈ 
i for some 1 ≤ i ≤ m and
ξ ∈ �j for some 1 ≤ j ≤ n. We also write v(ρ) to denote the cell corresponding
to the point ρ and similarly v(ξ) to denote the cell corresponding to the point ξ .
A random pairing is a pairing that is chosen uniformly at random out of the d!
possible pairings. Two pairs are called parallel if they involve the same cells. An
error is an unordered set of two parallel pairs.

It follows easily that the probability of obtaining l ≥ 0 given pairs occurring
in a random pairing is 1/[d]l . Let pd be the probability that no errors occur in a
random pairing. As noted by GMW, we have

μ(r,d)r!c! = d!pd,

because (up to a permutation in the labels of the elements in each of the cells)
each contingency table corresponds to a pairing that has no errors. Therefore, it
suffices to estimate pd which is done, once again following GMW, using inclusion-
exclusion and Bonferroni’s inequalities. The inclusion–exclusion development is
applied as follows. First, given two different pairs e and e′ define B(e; e′) to be the
set of pairs that contain the particular error {e, e′}. Note that pd = 1 − pd , where
pd is the probability that at least one error occurs in a random pairing. In turn, pd is
less or equal to the total contribution corresponding to placements with one error,

which we denote by b
(1)

d . In particular, b
(1)

d = ∑
{e,e′} P(B(e, e′)). More generally,
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let us define b
(k)

d as the total contribution in the inclusion-exclusion development

corresponding to pairings that contain k errors or more. So, for instance, b
(2)

d =∑
{{e,e′},{ẽ,ẽ′}} P(B(e, e′),B(ẽ, ẽ′)), the sum runs over sets of two different errors.

We then have that for k ≥ 1

b
(1)

d − b
(2)

d + · · · + b
(2k−1)

d − b
(2k)

d ≤ pd ≤ b
(1)

d − b
(2)

d + · · · + b
(2k−1)

d .(9)

Note that b
(k)

d , k ≥ 2, can be divided in two parts, namely, one that contains errors
that do not have a pair in common, which we denote by β

(k)
d,0, and another part that

contains errors that have pairs in common, which we denote by β
(k)
d,1. We define

β
(1)
d,0 = b

(1)

d and note that

b
(1)

d = 1

d(d − 1)

(
n∑

i=1

ci(ci − 1)

m∑
j=1

rj (rj − 1)

)/
2 = α(r, c) + o(1)

as d ↗ ∞. We claim that for each k ≥ 2

β
(k)
d,0 = α(r, c)k

k! + o(1)(10)

as d ↗ ∞. To see this, let us first define N 0
k as the set of ordered 2k-tuples of

pairs (e1, e2, . . . , ek, e
′
1, . . . , e

′
k) [with ej = (ρj , ξj ) and e′

j = (ρ′
j , ξ

′
j )] satisfying

for each l ∈ {1, . . . , k}, il = i ′l and jl = j ′
l where

v(ρl) = il, v(ρ′
l) = i ′l ,

v(ξl) = jl, v(ξ ′
l ) = j ′

l

with il �= is and jl �= js if l �= s.
Note that

β
(k)
d,0 = |Nk|

2kk!
1

[d]2k

.

We claim that

|Nk+1| = |Nk|
((

n∑
i=1

[ci]2

m∑
j=1

[rj ]2

)
+ o(d2)

)
.(11)

To verify this claim let us pick an arbitrary element (e1, e2, . . . , ek, e
′
1, . . . , e

′
k) ∈

Nk . We obtain an element of Nk+1 by adding two parallel pairs (ek+1, e
′
k+1) so

that we obtain k + 1 errors that do not have pairs in common. This is achieved in(
n∑

i=1

[ci]2 −
k∑

l=1

[cil ]2

)(
m∑

j=1

[rj ]2 −
k∑

l=1

[rjl
]2

)
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many ways. Now, since maxj≤n cj = o(d1/2) we have that∑k
l=1[cil ]2

d
≤ O

(maxj≤n c2
j

d

)
−→ 0

as d ↗ ∞ (a completely analogous estimate also applied to the sum involving the
rjl

’s). This implies (11) and as a consequence (10). To study β
(k)
d,1, it suffices to

perform a very rough analysis. Indeed, note that

β
(k)
d,1 =

k∑
l=2

O

(∑n
i=1 cl+1

i

∑m
j=1 rl+1

j

dl+1

)
,

where the lth term in the previous sum corresponds to collections of k errors in
which all the pairs belong to l errors or less. Now, we have that∑n

i=1 cl+1
i

∑m
j=1 rl+1

j

dl+1 ≤ max
i≤n

ci

d1/2 × max
j≤m

rj

d1/2

n∑
i=1

m∑
j=1

cl
ir

l
j

dl
.

Since l ≥ 2 we have that
∑n

i=1
∑m

j=1 cl
ir

l
j /d

l = O(1) as d ↗ ∞ and we conclude

that β
(k)
d,1 = o(1) as d ↗ ∞. Therefore,

b
(k)

d = β
(k)
d,0 + β

(k)
d,1 = α(r, c)k

k! + o(1)

as d ↗ ∞. In order to complete the argument, recall that for each c ∈ (0,∞),

lim
k−→0

sup
0≤x≤c

∣∣∣∣∣exp(x)

k∑
j=0

(−1)j
xj

j ! − 1

∣∣∣∣∣ = 0.

Under our current assumptions, we have that α(r, c) = O(1), therefore, the previ-
ous estimate for the exponential function together with (9) yields the conclusion
of the result. �

4. Complexity notions in rare-event simulation. In these section, we shall
briefly discuss basic notions of efficiency that are helpful to calculate the computa-
tional cost (in terms of the number of replications) of estimating small probabilities
via simulation using an estimator of the form (4); for more on efficiency of rare-
event simulation estimators [see Asmussen and Glynn (2007), Bucklew (2004) and
Juneja and Shahabuddin (2006)].

Let β � P(Z ∈ A) and suppose that β ≈ 0. In order to be precise, we shall
introduce a parameter d such that βd � P(Zd ∈ A) −→ 0 as d ↗ ∞ and perform
our cost analysis under this asymptotic regime.

Our goal is to produce an estimator, β̂d,k , with the property that for given ε, δ ∈
(0,1), |β̂d,k − βd | ≤ βdε with probability (1 − δ). If β̂d,k has this property, we
say that β̂d,k has ε-relative precision with 1 − δ confidence. Here, we use the
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subindex k to denote the number of i.i.d. replications required to produce β̂d,k .
Let (Ld,j : j ≥ 1) be i.i.d. r.v.’s such that ELd,j = βd and consider the unbiased
estimator

β̂d,k = 1

k

k∑
j=1

Ld,j .

A standard way to measure the efficiency of the estimator β̂d,k in the rare-
event simulation literature relates to its variance measured in relative terms. This
approach gives rise to the notion of strong efficiency. More precisely, if σ 2

d =
Var(Ld) < ∞, then the Ld ’s are said to be strongly efficient if the corresponding
coefficient of variation, cvd � σd/βd , is uniformly bounded for d ≥ 0. In partic-
ular, in the context of importance sampling estimators discussed in Section 2.2,
see (4), Ld,j = Ld,j (Zd,j ) and σ 2

d = VarG(Ld). In other words, the variance must
be computed according to the underlying importance sampling distribution.

One often says that Ld is strongly efficient meaning that the family of Ld ’s is
strongly efficient. In order to motivate strong efficiency in terms of the computa-
tional cost (measured by the number of i.i.d. replications) required to produce an
estimator that has ε-relative precision with 1 − δ confidence, one can use Cheby-
shev’s inequality to obtain

P(|β̂d,k − βd | ≥ εβd) ≤ σ 2
d

kε2β2
d

.

Therefore, k ≥ ε−2δ−1(σd/βd)2 replications are sufficient to produce an estimator
that achieves ε relative precision with 1 − δ confidence. Consequently, if Ld is
strongly efficient, the number of replications required to obtain ε-relative precision
with 1 − δ confidence is bounded as βd −→ 0. Obviously, strong efficiency alone
is not a useful concept for measuring computational complexity because nothing
has been said about the computational cost attached to each replication.

When dealing with discrete structures, such as binary contingency tables, it
makes sense to measure the cost per replication in terms of the amount of in-
formation (number of bits) required to encode the family of problems at hand (i.e.,
the size of the problem). In the context of binary contingency tables, statistical ap-
plications such as those described by Chen et al. (2005), require estimating the
whole distribution of statistics that depend on all the entries in the table in order
to perform an hypothesis test. As a consequence, it makes sense to parameterize
the size of the problem, say d , in terms of the number of bits required to encode
a binary table, which can be taken to be the number of ones (or the number zeros,
but if the table is sparse, it is obviously cheaper to encode it in terms of the number
of ones).

The total complexity involves multiplying the number of replications, k, times
the cost attached to the generation of each replication which we shall denote
by κ(d) (the cost per replication is measured by the total number of operations such
as additions, multiplications and comparisons in terms of the size of the problem).



966 J. H. BLANCHET

Therefore, in the presence of strong efficiency, by setting the number of repli-
cations k = �(ε−2δ−1), we see that β̂d,k requires O(κ(d)ε−2δ−1) operations as
d ↗ ∞ and ε, δ ↘ 0 to achieve ε-relative precision with 1 − δ confidence.

The notions of efficiency discussed in the previous paragraph are related to
standard notions found in randomized algorithms and approximate counting, such
as that of fully polynomial randomized approximation schemes (FPRAS) [see,
Mitzenmacher (2005), page 254]. In particular, an algorithm that outputs and
estimator that has ε-relative precision with 1 − δ confidence in O(κ(d)ε−k1 ×
log(δ−1)k2) operations, for some k1, k2 > 0, as d ↗ ∞ and ε, δ ↘ 0 is a FPRAS
if κ(d) grows polynomially in the size of the problem, say, d . Because of the fac-
tor log(δ−1)k2 that appears in the definition of a FPRAS, which is much smaller
than the factor δ−1 that arises in the context of strong efficiently, we introduce
a stronger form of efficiency that we shall call exponential efficiency.

DEFINITION. We say that the family of estimators (Ld :d ≥ 1) is exponen-
tially efficient for estimating βd if there exists θ > 0 such that

ψ(θ) � sup
d≥1

logE exp(θLd/βd) < ∞.(12)

REMARK. In the context of importance sampling estimators introduced in
Section 2.2, the expectation in (12) is taken with respect to the underlying im-
portance sampling distribution.

The next lemma, which is a uniform version of Chernoff’s bound, will be useful
to relate an estimator of the form β̂d,k to a FPRAS.

LEMMA 2. Suppose that the family of estimators (Ld :d ≥ 1) is exponentially
efficient for estimating βd , then for ε > 0 we have

P(|β̂d,k − βd | ≥ εβd) ≤ 2 exp(−k min(I (ε), I (−ε)),(13)

where I (h) = supθ (θ(1 +h)−ψ(θ)). Moreover, I (ε), I (−ε) > 0 and I (h) ≥ ρh2

for some ρ > 0.

PROOF. Just as in the proof of Chernoff’s bound, (13) follows by an applica-
tion of Chebyshev’s inequality. Let ψd(θ) = logE exp(θLd/βd) we then obtain

P(β̂d,k − βd ≥ εβd) ≤ exp
(
−k sup

θ≥0

(
θ(1 + ε) − ψd(θ)

))

= exp
(
−k sup

θ

(
θ(1 + ε) − ψd(θ)

)) ≤ exp(−kI (ε)).

Similarly, one obtains

P(βd − β̂d,k ≥ εβd) ≤ exp(−kI (−ε)).

Inequality (13) is obtained by adding up the left- and right-hand sides of the pre-
vious displays after simple manipulations. The last part of the lemma follows
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from the convexity of ψ(·) (supremum of convex functions is convex) combined
with the fact that ψd(θ) − θ = cv2

dθ2/2 + O(θ3) as θ ↘ 0 uniformly over d

(which holds by Taylor’s theorem and exponential efficiency) and the bound
supd≥1 cv2

d < ∞ (which once again follows from exponential efficiency). �

One way to verify exponential efficiency is by showing that Ld is bounded
above by some deterministic constant, say c∗

d , such that c∗
d = O(βd) as d ↗ ∞.

An immediate consequence of the previous result is that if the family (Ld :d ≥ 1)

is exponentially efficient and κ(d) operations are required to generate a single
replication of Ld . Then by setting k = �(ε−2 log(δ−1)), we see that β̂d,k requires
O(κ(d)ε−2 log(δ−1)) operations to achieve ε-relative precision with 1 − δ confi-
dence. If κ(d) grows polynomially in the size of the problem d , then β̂d,k is the
output of a FPRAS.

In addition to considerations related to the way in which the coverage parame-
ter δ enters the complexity analysis [in the form δ−1 for strongly efficient estima-
tors and log(δ−1) in the context of exponential efficiency], exponential efficiency
guarantees robustness properties that are desirable in practice when constructing
confidence intervals via the central limit theorem [see the discussion in L’Ecuyer
et al. (2008)].

5. Complexity analysis. This section is dedicated to the proof of the follow-
ing theorem which is our main result.

THEOREM 2. Suppose that maxi≤m ri = O(1), maxj≤n cj = o(d1/2) and that
[c2]1 = O(d) as d ↗ ∞:

(i) Then the estimator L provided by Algorithm 1 is strongly efficient as
d ↗ ∞. Since according to Lemma 1, each replication of L requires O(d3) op-
erations, the computational complexity required to estimate u(r, c) with ε-relative
precision and (1 − δ) confidence is of order O(ε2δ−1d3) as d ↗ ∞ and ε, δ ↘ 0.

(ii) Moreover, if in addition we have that max cj = o(d1/4−δ0) for some δ0 > 0
as d ↗ ∞, then the estimator L provided by Algorithm 1 is exponentially efficient
as d ↗ ∞. Consequently, Lemma 1 implies that O(ε−2 log(δ−1)d3) operations
are required to estimate u(r, c) with ε relative precision and (1 − δ) confidence as
d ↗ ∞ and ε, δ ↘ 0.

The following basic result (whose proof is given at the end of this section) will
be very useful in the analysis of the likelihood ratio produced by our importance
sampler.

LEMMA 3. Let {xj : j ≥ 1} be a sequence of positive integers and let us write
{xi,n : 1 ≤ i ≤ n} to denote any nonincreasing arrangement of the set {xi : 1 ≤ i ≤
n} so that

x1,n ≥ x2,n ≥ · · · ≥ xn,n.
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Define y
(1)
k,n = ∑n

j=k+1 xj,n and y
(2)
k,n = ∑n

j=k+1 x2
j,n for 0 ≤ k ≤ n − 1. Then:

(i)
y

(2)
k+1,n

y
(1)
k+1,n

≤ y
(2)
k,n

y
(1)
k,n

≤ y
(2)
0,n

y
(1)
0,n

.

(ii) If y
(2)
0,n/y

(1)
0,n = O(1) as n ↗ ∞, then there exists a constant a > 0 (inde-

pendent of n and k) such that

y
(2)
k,n ≤ a(n − k)(14)

as n ↗ ∞. Moreover, if x1,n = o(nβ0−δ0) for 0 ≤ δ0 < β0 ≤ 1/2 then we also have
that

xj,n

y
(1)
j−1,n

≤ a1/2

1 + (n − j)1−β0+δ0
.(15)

(iii) Under the assumptions of part (ii), if δ0 > 0, then

sup
n≥1

n∑
j=1

x
1/β0
j,n

y2
j−1,n

< ∞.(16)

The previous result will be applied repeatedly to the sequence of ck’s which is
assumed to be ordered in a nonincreasing way, namely, c1 ≥ c2 ≥ · · · ≥ cn. So, for
instance, assuming that [c2] = O(d), then given ρ0 = c and

ρk = (
ρk,1, . . . , ρk,size(ρk)

) = (ck+1, . . . , cn)

for j ≤ n− 1, (15) implies that there exists n0 such that for all k ≤ n−n0 we have
that then ρk,1/[ρk]1 ≤ 1/2. Similar implications are immediate from Lemma 3 and
will be invoked in our future discussion.

We now proceed with the development behind Theorem 2, we first start with
part (ii). By running Algorithm 1, we obtain the estimator

L = Ld �
τ−1∏
k=0

w(Sk,ρk)

v(Sk+1,ρk+1)
I (Sτ = 0)

=
n−1∏
k=0

w(Sk,ρk)

v(Sk+1,ρk+1)
I (Sn = 0)

= v(r, c)
v(0,∗)

n−1∏
k=0

w(Sk,ρk)

v(Sk,ρk)
I (Sn = 0),

where (as indicated before) v(0,∗) is defined as 1. Recall that

v(r, c) ∼ u(r, c)
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as d ↗ ∞. Therefore, in order to show exponential or strong efficiency, we must
study the properties of Rd defined as

Rd((S0,ρ0), . . . , (Sn−1,ρn−1)) �
n−1∏
k=0

w(Sk,ρk)

v(Sk,ρk)
I (Sn = 0),

given S0 = r and ρ0 = c. The analysis of Rd involves studying the ratio
w(s0,ρ0)/v(s0,ρ0)

w(s0,ρ0)

v(s0,ρ0)
=

(
m

ρ0,1

)−1 ∑
(r,c)→(s,ρ)

v(s1,ρ1)

v(s0,ρ0)
.

Note that
v(s1,ρ1)

v(s0,ρ0)
= ϕ(s1,ρ1)η(ρ0,m)

ϕ(s0,ρ0)η(ρ1,m)

and (using the notation ρi,j to denote the j th component of the vector ρi for i ∈
{0,1} and recalling that ρ1,i = ρ0,i+1)

η(ρ0,m)

η(ρ1,m)
=

(
m

ρ0,1

)
· · ·

(
m

ρ0,n

)((
m

ρ0,2

)
· · ·

(
m

ρ0,n

))−1

=
(

m

ρ0,1

)
.

Next, observe that s1 is obtained by selecting a set � = {i1, . . . , iρ0,1} of (ordered)
subindices and by picking the ith component of the vector s1, namely s1,i , via
s1,i = s0,i − 1 (i ∈ �). Consequently, we have

ϕ(s1,ρ1)

ϕ(s0,ρ0)
=

(
d0

ρ0,1

)−1
(�i∈�s0,i) exp

(−(
α(s1,ρ1) − α(s0,ρ0)

))
,

where d0 = ∑m
j=1 s0,j = ∑n0

j=1 ρ0,j [with n0 = size(ρ0)]. Therefore,

w(s0,ρ0)

v(s0,ρ0)
=

(
d0

ρ0,1

)−1 ∑
(s0,ρ0)→(s1,ρ1)

(�i∈�s0,i) exp
(−(

α(s1,ρ1) − α(s0,ρ0)
))

.

Let us provide a more convenient expression for the previous ratio. First, we
write s0,�

= (si1, . . . , siρ0,1
) and define γ = [ρ1]2/(2[ρ1]2

1). Then (using 1 to denote
the vector of ones) we have

α(s1,ρ1) = γ [s1]2 = γ
([s0]2 − [2(s0,� − 1)]1

)
,

α(s0,ρ0) =
(
γ

(
1 − ρ0,1

[ρ0]1

)2

+ [ρ0,1]2

2[ρ0]2
1

)
[s0]2

=
(
γ − 2γρ0,1

[ρ0]1
+ γ

ρ2
0,1

[ρ0]2
1

+ [ρ0,1]2

2[ρ0]2
1

)
[s0]2

= γ [s0]2 − 2γρ0,1[s0]2

[ρ0]1
+ γρ2

0,1[s0]2

[ρ0]2
1

+ [ρ0,1]2[s0]2

2[ρ0]2
1

.
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Therefore, we have

α(s1,ρ1) − α(s0,ρ0)
(17)

= −γ [2(s0,� − 1)]1 + 2γρ0,1[s0]2

[ρ0]1
− γρ2

0,1[s0]2

[ρ0]2
1

− [ρ0,1]2[s0]2

2[ρ0]2
1

.

Define β(s0,ρ0) via

logβ(s0,ρ0) = −2γρ0,1[s0]2

[ρ0]1
+ γρ2

0,1[s0]2

[ρ0]2
1

+ [ρ0,1]2[s0]2

2[ρ0]2
1

and

h(s0,�, s0,1) = �
ρ0,1
j=1

(
s0,ij exp

(
2γ (s0,ij − 1)

))
.

We now are ready to provide an estimate for the ratio w(s0,ρ0)/v(s0,ρ0).

LEMMA 4. Assuming that maxi≤m ri = O(1) and that [c2]1 = O(d) as
d ↗ ∞ there exists a constant λ ∈ (0,∞) such that

w(s0,ρ0)

v(s0,ρ0)
≤ exp

(
λ
[ρ0,1]4

[ρ0]2
1

)
.

PROOF. Let us define ρ0,1 i.i.d. random variables J1, J2, . . . , Jρ0,1 with distri-
bution

P̃ (J1 = j) = exp(2γ s0,j )s0,j

w̃
,

where w̃ = ∑m
j=1 exp(2γ s0,j )s0,j and m = size(s0). In addition, we shall use Ẽ(·)

to denote the expectation operator associated with P̃ (·) and define the event A =
{Ji �= Jj : i �= j} (i.e., all the Ji ’s are different). We have( [s0]1

ρ0,1

)−1 ∑
�⊂{1,...,m}

h(s0,�, s0,1) =
( [s0]1

ρ0,1

)−1 w̃ρ0,1

ρ0,1! exp(−2γρ0,1)P̃ (A).

Let us first analyze w̃. Note that under our assumptions

w̃ =
m∑

j=1

s0,j

(
1 + 2γ s0,j + (2γ )2

s2
0,j

2! + · · ·
)

≤ [s0]1 exp
(

2γ [s2
0]1

[s0]1
+ O

(
γ 2[s3

0]1

[s0]1

))
.
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We then conclude that( [s0]1
ρ0,1

)−1 w̃ρ0,1

ρ0,1!

≤
( [s0]1

ρ0,1

)−1 [s0]ρ0,1
1

ρ0,1! × exp
(

2γρ0,1[s2
0]1

[s0]1
+ O

(
γ 2[s3

0]1

[s0]1

))
(18)

=
ρ0,1−1∏
k=1

(
1 − k

[s0]1

)−1

× exp
(

2γρ0,1[s2
0]1

[s0]1
+ O

(
γ 2[s3

0]1

[s0]1

))
.

Assuming ρ0,1/[s0]1 ≤ 1/2, we have

−
ρ0,1−1∑
k=1

log
(

1 − k

[s0]1

)
≤ [ρ0,1]2

2[s0]1
+ ρ0,1(ρ0,1 + 1)(2ρ0,1 + 1)

6[s0]2
1

and, therefore, we have

log
(( [s0]1

ρ0,1

)−1 w̃ρ0,1

ρ0,1!
)

≤ 2γρ0,1[s2
0]1

[s0]1
+ [ρ0,1]2

2[s0]1
+ ρ0,1(ρ0,1 + 1)(2ρ0,1 + 1)

6[s0]2
1

+ O

(
γ 2[s3

0]1ρ0,1

[s0]1

)
.

We now estimate P̃ (Ac) using the inclusion-exclusion principle and Bonfer-
roni’s inequalities. We have that

P̃ (Ac) ≤
(

ρ0,1
2

)
1

w̃2

m∑
j=1

s2
0,j exp(4γ s0,j ),

this corresponds to the union bound taking all possible ways in which {Ji1 = Ji2}
for i1 �= i2. Next, we obtain the following lower bound corresponding to the cases
in which {Ji1 = Ji2, Ji3 = Ji4},

P̃ (Ac) ≥
(

ρ0,1
2

)
1

w̃2

m∑
j=1

s2
0,j exp(4γ s0,j )

−
(

3
1

)(
ρ0,1

3

)
1

w̃3

m∑
j=1

s3
0,j exp(12γ s0,j )

−
(

4
2

)(
ρ0,1

4

)
1

w̃4

(
m∑

j=1

s2
0,j exp(4γ s0,j )

)2

.
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We then conclude

P̃ (A) ≤ 1 −
(

ρ0,1
2

)
1

w̃2

m∑
j=1

s2
0,j exp(4γ s0,j )

+
(

3
1

)(
ρ0,1

3

)
1

w̃3

m∑
j=1

s3
0,j exp(12γ s0,j )

+
(

4
2

)(
ρ0,1

4

)
1

w̃4

(
m∑

j=1

s2
0,j exp(4γ s0,j )

)2

.

Now, we have that(
ρ0,1

2

)
1

w̃2

m∑
j=1

s2
0,j exp(4γ s0,j )

=
(

ρ0,1
2

) [s2
0]1

[s0]1
× (1 + 4γ [s3

0]1/[s2
0]1 + (4γ )2[s4

0]1/(2![s2
0]1) + · · ·)

(1 + 2γ [s2
0]1/[s0]1 + (2γ )2[s3

0]1/(2![s0]1) + · · ·)

=
(

ρ0,1
2

) [s2
0]1

[s0]1

(
1 + 4γ

[s3
0]1

[s2
0]1

+ �

(
γ 2 [s4

0]1

[s2
0]1

))

×
(

1 − 2γ
[s2

0]1

[s0]1
+ �

(
γ 2 [s3

0]1

[s0]1

))

=
(

ρ0,1
2

) [s2
0]1

[s0]1

(
1 + 4γ

[s3
0]1

[s2
0]1

− 2γ
[s2

0]1

[s0]1
+ �

(
γ 2 [s4

0]1

[s0]1

))
.

Note that

2[s3
0]1

[s2
0]1

− [s2
0]1

[s0]1

= 2[s3
0]1[s0]1 − [s2

0]2
1

[s0]1[s2
0]1

= [s4
0]1

[s0]1[s2
0]1

+ 2

∑
i<j (s

3
0,is0,j + s0,is

3
0,j − s2

0,is
2
0,j )

[s0]1[s2
0]1

≥ [s4
0]1

[s0]1[s2
0]1

+ 2

∑
i<j s0,is0,j min(s2

0,j , s
2
0,i)

[s0]1[s2
0]1

≥ [s4
0]1

[s0]1[s2
0]1

+ [ρ0,1]2

[s0]1[s2
0]1

.
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As a consequence,(
ρ0,1

2

)
1

w̃2

m∑
j=1

s2
0,j exp(4γ s0,j )

≥
(

ρ0,1
2

) [s2
0]1

[s0]2
1

×
(

1 + 2γ [s4
0]1

[s0]1[s2
0]1

+ 2γ [ρ0,1]2

[s0]1[s2
0]1

+ O

(
γ 2 [s4

0]1

[s0]1

))2

≥
(

ρ0,1
2

) [s2
0]1

[s0]2
1

+ �

( [ρ0,1]2
2

[s0]4
1

+ [ρ0,1]2

[s0]3
1

)
.

Therefore,

P̃ (A) ≤ 1 −
(

ρ0,1
2

) [s2
0]1

[s0]2
1

+ 3
(

ρ0,1
3

) [s3
0]1

[s0]3
1

+
(

4
2

)(
ρ0,1

4

) [s2
0]2

1

[s0]4
1

(
1 + 4γ

[s3
0]1

[s2
0]1

)2

+
(

ρ0,1
2

) [s2
0]1

[s0]2
1

+ O

( [ρ0,1]2
2

[s0]4
1

+ [ρ0,1]2

[s0]3
1

)

= 1 −
(

ρ0,1
2

) [s2
0]1

[s0]2
1

+ O

( [ρ0,1]4

[s0]2
1

+ [ρ0,1]2
2

[s0]4
1

+ [ρ0,1]2

[s0]3
1

)

≤ exp
(
−

(
ρ0,1

2

) [s2
0]1

[s0]2
1

+ O

( [ρ0,1]4

[s0]2
1

))
.

We now group all of our terms together in a convenient way in order to estimate
the ratio w(s0,ρ0)/v(s0,ρ0). In order to do this we define the terms χ1, χ2 and χ3

as

χ1 = −2γρ0,1[s0]2

[ρ0]1
+ 2γρ0,1[s2

0]1

[s0]1
− 2γρ0,1,

χ2 = −
(

ρ0,1
2

) [s2
0]1

[s0]2
1

+ [ρ0,1]2[s0]2

2[ρ0]2
1

+ [ρ0,1]2

2[s0]1
,

χ3 = ρ0,1(ρ0,1 + 1)(2ρ0,1 + 1)

6[s0]2
1

+ γρ2
0,1[s0]2

[ρ0]2
1

+ O

( [ρ0,1]4

[s0]2
1

+ γ 2[s3
0]1ρ0,1

[s0]1

)
.

Note that χ3 = O([ρ0,1]4/[s0]2
1), consequently if ρ0,1/[ρ0]1 ≤ 1/2, then

log
(

w(s0,ρ0)

v(s0,ρ0)

)
= χ1 + χ2 + O

( [ρ0,1]4

[s0]2
1

)
.
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Finally, we compute χ1 and χ2; first, we have that

−2γρ0,1[s0]2

[ρ0]1
+ 2γρ0,1[s2

0]1

[s0]1
= 2γρ0,1

[s0]1
(−[s0]2 + [s2

0]1)

= 2γρ0,1

[s0]1
[s0]1 = 2γρ0,1.

Therefore, we have that χ1 = 0. A similar computation yields χ2 = 0, indeed

−
(

ρ0,1
2

) [s2
0]1

[s0]2
1

+ [ρ0,1]2[s0]2

2[ρ0]2
1

+ [ρ0,1]2

2[s0]1
= [ρ0,1]2

2[s0]2
1

(−[s2
0]1 + [s0]2) + [ρ0,1]2

2[s0]1

= −[ρ0,1]2

2[s0]2
1

[s0]1 + [ρ0,1]2

2[s0]1
= 0.

The result of the lemma then follows. �

A consequence of the previous result is the following corollary.

COROLLARY 3. Assuming that maxi≤m ri = O(1), [c2]1 = O(d) and
maxj≤n cj = o(d1/4−δ0) as d ↗ ∞, then there exists a constant λ∗ ∈ (0,∞) inde-
pendent of d such that

Rd((S0,ρ0), . . . , (Sn−1, ρn−1)) ≤ λ∗.

PROOF. Iterating the estimate obtained in Lemma 4, we obtain that

Rd((S0,ρ0), . . . , (Sn−1, ρn−1)) ≤ κ0 exp

(
λ

n−1∑
k=0

[ρk,1]4

[ρk]2
1

)
.

The result then follows as a consequence of (16) in Lemma 3. �

With Corollary 3 at hand, we have all what is needed to establish exponential
efficiency. However, before we put all the pieces together let us continue with the
basic elements behind the strong efficiency properties indicated in part (i) of The-
orem 2. We then will conclude with a summary of all our results and the complete
proof of Theorem 2.

In order to establish strong efficiency we must study the function

g(s0,ρ0) � EQ
s0,ρ0

(R2
d) = EQ

s0,ρ0

(
n−1∏
k=0

w2(Sk,ρk)

v2(Sk,ρk)
I (Sn = 0)

)
.

In particular, we must show that g(s0,ρ0) remains bounded as [s0]1 ↗ ∞. Our
strategy is to derive a linear inequality for g(·) and show that one can satisfy
this inequality with a convenient Lyapunov function f (·) that remains bounded
as d ↗ ∞. The next result provides sufficient conditions for the construction of an
appropriate Lyapunov function. The corresponding proof is given at the end of the
section.
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PROPOSITION 1. Assume f ≥ 1 is a function that satisfies

f (s0,ρ0) ≥ w2(s0,ρ0)

v2(s0,ρ0)
EQ

s0,ρ0
f (S1,ρ1)(19)

as long as [s0]1 ≥ d0 [for some d0 ∈ (0,∞) fixed]. Then

g(s0,ρ0) ≤ κd0f (s0,ρ0),

where κd0 = sup[s0]1≤d0
g(s0,ρ0) < ∞.

A function f (·) satisfying the hypothesis of Proposition 1 is typically called
a Lyapunov function in the context of stability of Markov chains [see Meyn and
Tweedie (1993)]. Our goal is to build a bounded Lyapunov function f (·). Similar
Lyapunov-type bounds have been studied in the rare-event simulation literature,
see for instance Blanchet and Glynn (2008)] for applications in the context of rare-
event estimation problems related to first passage time probabilities.

Constructing an appropriate Lyapunov function f (·) is typically not a simple
task. Nevertheless, such construction is often guided by a solid understanding of
the estimates involved in the ratio of w(s0,ρ0)/v(s0,ρ0). This is precisely the
strategy that we use to construction our Lyapunov function. In particular, we first
put for θ0 > 0

f0(ρ) = exp

(
θ0

size(ρ)∑
j=1

ρj

(
∑n

k=j ρk)
2

)
,

then set

f1(s,ρ) = exp(θ1α(s,ρ))

for some θ1 > 0 and finally define

f (s,ρ) = f0(ρ)f1(s,ρ).

The form of this function was obtained by inspecting carefully the analysis behind
Lemma 4. We first tried a Lyapunov function such as f1 and then after doing some
computations, recognized the need for a term such as f0 as the proof of the next
lemma indicates.

LEMMA 5. There exists θ1, θ2 > 0 such that f (·) satisfies the conditions of
Proposition 1.

PROOF. The proof proceeds along the same lines as that of Lemma 4.
Given (s0,ρ0) let us denote (s1,ρ1) an admissible transition step [so that
(s0,ρ0) → (s1,ρ1)]. In particular, we have that there exists a set of subindexes
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� = {i1, . . . , iρ0,1
} such that s1,j = s0,j − 1(j ∈ �). We write γ = [ρ1]2/(2[ρ1]1)

and introduce ρ0,1 i.i.d. random variables J1, . . . , Jρ0,1 with distribution

P̃ (J1 = k) = exp(2γ sk)sk

w̃
,

where

w̃ =
m∑

i=1

exp(2γ si)si .

We have that
f1(s1,ρ1)

f1(s0,ρ0)
= exp

(
θ1

(
α(s1,ρ1) − α(s0,ρ0)

))
= exp

(
θ1

2γρ0,1[s0]2

[ρ0]1
+ 2θ1γρ0,1 − θ1

γρ2
0,1[s0]2

[ρ0]2
1

)

× exp
(
−θ1

[ρ0,1]2[s0]2

2[ρ0]2
1

− 2θ1γ [s0,�]1

)
,

where s0,� = (s0,j1, . . . , s0,jρ0,1
). We need to show that there exists d0, θ1 and θ2

such that for [s]1 ≥ d0 we have

exp
(
θ2

ρ0,1

[ρ0]2
1

)

≥ w(s0,ρ0)
2

v(s0,ρ0)
2 EQ

s,ρ

(
f1(S1,ρ1)

f1(s0,ρ0)

)

= w(s0,ρ0)
2

v(s0,ρ0)
2

∑
(s0,ρ0)→(s1,ρ1)

(
m

ρ0,1

)−1 f1(s1,ρ1)

f1(s0,ρ0)

v(s1,ρ1)

w(s0,ρ0)

= w(s0,ρ0)

v(s0,ρ0)

∑
(s0,ρ0)→(s1,ρ1)

(
m

ρ0,1

)−1 f1(s1,ρ1)

f1(s0,ρ0)

v(s1,ρ1)

v(s0,ρ0)
.

As in Lemma 4, we have that∑
(s0,ρ0)→(s1,ρ1)

(
m

ρ0,1

)−1 f1(s1,ρ1)

f1(s0,ρ0)

v(s1,ρ1)

v(s0,ρ0)

=
( [s0]1

ρ0,1

)−1
w̃ρ0,1 exp

(
(θ1 − 1)

2γρ0,1[s0]2

[ρ0]1
+ 2(θ1 − 1)γρ0,1

)

× exp
(
−(θ1 − 1)

γρ2
0,1[s0]2

[ρ0]2
1

− (θ1 − 1)
[ρ0,1]2[s0]2

2[ρ0]2
1

)

× Ẽ

(
exp

(ρ0,1∑
i=1

−2θγ s0,Ji

)
;A

)
,
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where A is the event that consists that all the Ji ’s are distinct. During the proof of
Lemma 4, we obtained that if ρ0,1/[s0]1 ≤ 1/2 then

log
(( [s0]1

ρ0,1

)−1 w̃ρ0,1

ρ0,1!
)

≤ 2γρ0,1[s2
0]1

[s0]1
+ [ρ0,1]2

[s0]1
+ O

( [ρ0,1]4

[ρ0]2
1

)
.

Now, evidently we have that

Ẽ

(
exp

(ρ0,1∑
i=1

−2θ1γ s0,Ji

)
;A

)
≤ (Ẽ(exp(−2θ1γ s0,Ji

)))ρ0,1

≤ exp
(−2θ1γρ0,1Ẽs0,Ji

+ O(θ1ρ0,1γ
2)

)
.

Therefore, combining all these estimates together with Lemma 4 we have that there
exists a constant λ > 0 such that

w(s0,ρ0)
2

v(s0,ρ0)
2 EQ

s,ρ

(
f1(S1,ρ1)

f1(s0,ρ0)

)

≤ exp
(
λ

ρ4
0,1

[ρ0]2
1

+ 2γρ0,1[s2
0]1

[s0]1
+ [ρ0,1]2

[s0]1

)

× exp
(
(θ1 − 1)

2γρ0,1[s0]2

[ρ0]1
+ 2(θ1 − 1)γρ0,1

)
(20a)

× exp
(
−(θ1 − 1)

γρ2
0,1[s0]2

[ρ0]2
1

− (θ1 − 1)
[ρ0,1]2[s0]2

2[ρ0]2
1

)

× exp
(
−2θ1γρ0,1[s2

0]
[s0]1

+ O(θ1ρ0,1γ
2)

)
.

Note that in the last line of the previous display we have used the fact that

Ẽs2
J1

= [s2
0]

[s0]1
+ O(γ ).

Now we note (just as we did in Lemma 4) that

−2γρ0,1[s0]2

[ρ0]1
+ 2γρ0,1[s2

0]1

[s0]1
− 2γρ0,1 = 0,

which implies that the logarithm of the right-hand side of (20a) equals

λ
[ρ0,1]4

[ρ0]2
1

+ [ρ0,1]2

[s0]1
− (θ1 − 1)

γρ2
0,1[s0]2

[ρ0]2
1

− (θ1 − 1)
[ρ0,1]2[s0]2

2[ρ0]2
1

+ O(θ1ρ0,1γ
2).
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It is immediate from the previous expression that one can select first θ1 > 0
and then θ2 depending on θ1 so that the previous quantity is less or equal to
θ2ρ0,1/[ρ0]2

1 as long as [s0]1 ≥ d0 so that ρ0,1/[s0]1 ≤ 1/2. The conclusion of
the lemma then follows. �

It is time to summarize all the previous estimates and to complete the proof of
Theorem 2.

PROOF OF THEOREM 2. We first establish part (ii). By virtue of Theorem 1
and Corollary 3, we have that

Ld

u(r, c)
= v(r, c)

u(r, c)
Rd ≤ v(r, c)

u(r, c)
λ∗ = O(1)

as d ↗ ∞. Therefore, because of our observations in Section 4, Ld is expo-
nentially efficient and part (ii) follows. Part (i) is established similarly thanks to
Lemma 5. Note that

E
Q
r,cL

2
d

u(r, c)2 = v(r, c)2

u(r, c)2 g(r, c) ≤ v(r, c)2

u(r, c)2 f (r, c).

Theorem 1 guarantees that v(r, c)2/u(r, c)2 −→ 1 as d ↗ ∞. On the other hand,
Lemma 3 implies that f (r, c) = O(1) as d ↗ ∞. This concludes the proof of
Theorem 2. �

Finally, before providing the proof of the pending results, it is worth discussing
the practical implications of the previous bounds. The previous results imply a
bound on the coefficient of variation that involves an exponential function to a
power that depends on the maximum degree of the row sums. In practical situa-
tions, this bound can quickly become large, so the bounds given here, although
computable, may be far too pessimistic in practical applications. Improving these
bounds is particularly interesting given that empirically according to Chen et
al. (2005), the estimated coefficient of variation of the estimator given by Algo-
rithm 1 is consistently small (they report values that are even less than 1). The key
issue involves controlling the behavior of the row sums during the course of the
algorithm under Q(·). The techniques here can be adapted to deal with situations
when the row sums may grow and this will be illustrated elsewhere in the future.

PROOF OF LEMMA 3. We have that

y
(2)
k+1,n

y
(1)
k+1,n

− y
(2)
k,n

y
(1)
k,n

= y
(2)
k+1,ny

(1)
k,n − y

(2)
k,ny

(1)
k+1,n

y
(1)
k+1,ny

(1)
k,n

.

Now

y
(2)
k+1,ny

(1)
k,n − y

(2)
k,ny

(1)
k+1,n = (

y
(2)
k,n − x2

k+1,n

)
y

(1)
k,n − y

(2)
k,n

(
y

(1)
k,n − xk+1,n

)
= xk+1,n

(
y

(2)
k,n − xk+1,ny

(1)
k,n

)
.
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The result then follows from the fact that

y
(2)
k,n =

n∑
j=k+1

x2
j,n ≤ xk+1,n

n∑
j=k+1

xj,n = xk+1,ny
(1)
k,n.

For part (ii) we note that, by assumption there exists a > 0 such that y
(2)
0,n ≤

a1/2y
(1)
0,n. Using Cauchy–Schwarz inequality and part (i) it follows that

y
(2)
k,n ≤ a1/2y

(1)
k,n ≤ a1/2(

(n − k)y
(2)
k,n

)1/2
,

which implies y
(2)
k,n ≤ a(n− k). Finally, combining part (i) and the assumption that

y
(2)
0,n/y

(1)
0,n = O(1), we can write

xj,n

y
(1)
j−1,n

≤ a1/2 xj,n

y
(2)
j−1,n

= a1/2

xj,n + xj+1,n/xj,n + · · · + xn,n/xj,n

.

Now, it follows that

xj,n + xj+1,n/xj,n + · · · + xn,n/xj,n ≥ 1 + (n − j)/x1,n−j .

We conclude that
xj,n

y
(1)
j−1,n

≤ a1/2

1 + (n − j)1−β0+δ0
,

which yields (15).
For part (iii), we use (14) and (15). In particular, we have that

xj,n ≤ a1/2y
(1)
j−1,n

1 + (n − j)1−β0+δ0
≤ a(n − j)β0−δ0

and, therefore,
n∑

j=1

x
1/β0
j,n

(y
(1)
j−1,n)

2
= O

(
n−1∑
j=1

1

(n − j)1+δ0/β0

)
,

which yields (16). �

PROOF OF PROPOSITION 1. Define τd0 = inf{k ≥ 0 : Sk < d0} and let Fk =
σ(Sj : 0 ≤ j ≤ k) be the σ -field generated by the process S up to time k. As in
Section 3, we let τ be the first time k ≤ n for which the number of strictly positive
components of the vector Sk is less than ck+1 (and set cn+1 = 1). Note that (using
the notation a ∧ b for the minimum between a and b)

g(s0,ρ0) = EQ
s0,ρ0

(
n−1∏
k=0

w2(Sk,ρk)

v2(Sk,ρk)
I (Sn = 0)

)

= EQ
s0,ρ0

(τd0∧τ−1∏
k=0

w2(Sk,ρk)

v2(Sk,ρk)
g(Sτd∧τ , ρτd∧τ )

)
.
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Clearly, the dynamics of Q(·) imply

g(Sτd0∧τ , ρτd0∧τ )1(τd0 > τ) = 0,

therefore,

g(s0,ρ0) = EQ
s0,ρ0

(τd0−1∏
k=0

w2(Sk,ρk)

v2(Sk,ρk)
g(Sτd

, ρτd
); τd < τ

)
(21)

≤
(

sup
[s0]1≤d0

g(s0,ρ0)

)
EQ

s0,ρ0

(τd0−1∏
k=0

w2(Sk,ρk)

v2(Sk,ρk)

)
.

Now, define the stochastic process (Zk :k ≥ 0) via

Zk = f (Sk,ρk)

k−1∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )

and consider the stopped process Mk = Zk∧τd0
. Note that (Mk :k ≥ 0) is a nonneg-

ative supermartingale, that is,

EQ(Mk+1|Fk)

= E(Mk+1; τd0 > k|Fk) + E(Mk+1; τd0 ≤ k|Fk)

= 1(τd0 > k)

k∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )
E(f (Sk+1, ρk+1)|Sk)

+ 1(τd0 ≤ k)

τd0−1∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )
f (Sτd0

,ρk+1)

≤ 1(τd0 > k)

k−1∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )
f (Sk,ρk)

+ 1(τd0 ≤ k)

τd0−1∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )
f (Sτd0

,ρk+1)

= Mk.

Therefore,

f (s0,ρ0) ≥ EQ
s0,ρ0

(
f (Sτd0

, ρτd0
)

τd0−1∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )

)

≥ EQ
s0,ρ0

(τd0−1∏
j=0

w2(Sj ,ρj )

v2(Sj ,ρj )

)
.
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This estimate, together with (21), implies the conclusion of the proposition. �
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