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A KHASMINSKII TYPE AVERAGING PRINCIPLE FOR
STOCHASTIC REACTION–DIFFUSION EQUATIONS

BY SANDRA CERRAI

Università di Firenze

We prove that an averaging principle holds for a general class of sto-
chastic reaction–diffusion systems, having unbounded multiplicative noise,
in any space dimension. We show that the classical Khasminskii approach
for systems with a finite number of degrees of freedom can be extended to
infinite-dimensional systems.

1. Introduction. Consider the deterministic system with a finite number of
degrees of freedom⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dX̂ε

dt
(t) = εb(X̂ε(t), Ŷε(t)), X̂ε(0) = x ∈ Rn,

dŶε

dt
(t) = g(X̂ε(t), Ŷε(t)), Ŷε(0) = y ∈ Rk

(1.1)

for some parameter 0 < ε � 1 and some mappings b : Rn × Rk → Rn and
g : Rn × Rk → Rk . Under reasonable conditions on b and g, it is clear that as the
parameter ε goes to zero, the first component X̂ε(t) of the perturbed system (1.1)
converges to the constant first component x of the unperturbed system, uniformly
with respect to t in any bounded interval [0, T ], with T > 0.

But in applications that is more interesting is the behavior of X̂ε(t) for t in
intervals of order ε−1 or even larger. Actually, it is indeed on those time scales
that the most significant changes happen, such as exit from the neighborhood of an
equilibrium point or of a periodic trajectory. With the natural time scaling t �→ t/ε,
if we set Xε(t) := X̂ε(t/ε) and Yε(t) := Ŷε(t/ε), (1.1) can be rewritten as⎧⎪⎪⎨

⎪⎪⎩
dXε

dt
(t) = b(Xε(t), Yε(t)), Xε(0) = x ∈ Rn,

dYε

dt
(t) = 1

ε
g(Xε(t), Yε(t)), Yε(0) = y ∈ Rk

(1.2)

and with this time scale the variable Xε is always referred as the slow component
and Yε as the fast component. In particular, the study of system (1.1) in time inter-
vals of order ε−1 is equivalent to the study of system (1.2) on finite time intervals.
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Now, assume that for any x ∈ Rn there exists the limit

b̄(x) = lim
T →∞

1

T

∫ T

0
b(x,Y x(t)) dt,(1.3)

where Yx(t) is the fast motion with frozen slow component x ∈ Rn

dY x

dt
(t) = g(x,Y x(t)), Y x(0) = y.

Such a limit exists, for example, in the case the function Yx(t) is periodic. More-
over, assume that the mapping b̄ : Rn → Rn satisfies some reasonable assumption,
for example, it is Lipschitz continuous. In this setting, the averaging principle says
that the trajectory of Xε can be approximated by the solution X̄ of the so-called
averaged equation

dX̄

dt
(t) = b̄(X̄(t)), X̄(0) = x,

uniformly in t ∈ [0, T ], for any fixed T > 0. This means that by averaging prin-
ciple a good approximation of the slow motion can be obtained by averaging its
parameters in the fast variables.

The theory of averaging, originated by Laplace and Lagrange, has been ap-
plied in its long history in many fields as, for example, celestial mechanics, os-
cillation theory and radiophysics, and for a long period it has been used without
a rigorous mathematical justification. The first rigorous results are due to Bogoli-
ubov (cfr. [3]) and concern both the case of uncoupled systems and the case of
g(x, y) = g(x). Further developments of the theory, for more general systems,
were obtained by Volosov, Anosov and Neishtadt (to this purpose, we refer to [23]
and [28]) and a good understanding of the involved phenomena was obtained by
Arnold et al. (cfr. [1]).

A further development in the theory of averaging, which is of great interest in
applications, concerns the case of random perturbations of dynamical systems. For
example, in system (1.1), the coefficient g may be assumed to depend also on a pa-
rameter ω ∈ �, for some probability space (�,F ,P), so that the fast variable is
a random process, or even the perturbing coefficient b may be taken random. Of
course, in these cases, one has to reinterpret condition (1.3) and the type of con-
vergence of the stochastic process Xε to X̄. One possible way is to require (1.3)
with probability 1, but in most cases this assumption turns out to be too restrictive.
More reasonable is to have (1.3) either in probability or in the mean, and in this
case one expects to have convergence in probability of Xε to X̄. As far as aver-
aging for randomly perturbed systems is concerned, it is worthwhile to quote the
important work of Brin, Freidlin and Wentcell (see [4, 12–14]) and also the work
of Kifer and Veretennikov (see, e.g., [2, 17–19] and [27]).
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An important contribution in this direction has been given by Khasminskii with
his paper [16] which appeared in 1968. In this paper, he has considered the follow-
ing system of stochastic differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXε(t) = A(Xε(t), Y ε(t)) dt +
l∑

r=1

σ r(Xε
i (t), Y

ε(t)) dwr(t),

Xε(0) = x0,

dY ε(t) = 1

ε
B(Xε(t), Y ε(t)) dt + 1√

ε

l∑
r=1

ϕr(Xε(t), Y ε(t)) dwr(t),

Y ε(0) = y0

(1.4)

for some l-dimensional Brownian motion w(t) = (w1(t), . . . ,wl(t)). In this case,
the perturbation in the slow motion is given by the sum of a deterministic part and
a stochastic part

εb(x, y) dt = εA(x, y) dt + √
εσ(x, y) dw(t)

and the fast motion is described by a stochastic differential equation.
In [16], the coefficients A : Rl1 × Rl2 → Rl1 and σ : Rl1 × Rl2 → M(l × l1) in

the slow motion equation are assumed to be Lipschitz continuous and uniformly
bounded in y ∈ Rl2 . The coefficients B : Rl1 × Rl2 → Rl2 and ϕ : Rl1 × Rl2 →
M(l × l2) in the fast motion equation are assumed to be Lipschitz continuous, so
that in particular the fast equation with frozen slow component x,

dY x,y(t) = B(x,Y x,y(t)) dt +
l∑

r=1

ϕr(x,Y x,y(t)) dwr(t), Y x,y(0) = y,

admits a unique solution Yx,y , for any x ∈ Rl1 and y ∈ Rl2 . Moreover, it is assumed
that there exist two mappings Ā : Rl1 → Rl1 and {aij } : Rl1 → M(l × l1) such that∣∣∣∣ 1

T

∫ T

0
EA(x,Y x,y(t)) dt − Ā(x)

∣∣∣∣ ≤ α(T )(1 + |x|2)(1.5)

and for any i = 1, . . . , l1 and j = 1, . . . , l2,∣∣∣∣∣ 1

T

∫ T

0
E

l∑
r=1

σ r
i σ r

j (x, Y x,y(t)) dt − aij (x)

∣∣∣∣∣ ≤ α(T )(1 + |x|2)

for some function α(T ) vanishing as T goes to infinity.
In his paper, Khasminskii shows that an averaging principle holds for sys-

tem (1.4). Namely, the slow motion Xε(t) converges in weak sense, as ε goes
to zero, to the solution X̄ of the averaged equation

dX(t) = Ā(X(t)) dt + σ̄ (X(t)) dw(t), X(0) = x0,

where σ̄ is the square root of the matrix {aij }.
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The behavior of solutions of infinite-dimensional systems on time intervals of
order ε−1 is at present not very well understood, even if applied mathematicians
do believe that the averaging principle holds and usually approximate the slow mo-
tion by the averaged motion, also with n = ∞. As far as we know, the literature on
averaging for systems with an infinite number of degrees of freedom is extremely
poor (to this purpose it is worth mentioning the papers [25] by Seidler–Vrkoč and
[21] by Maslowskii–Seidler–Vrkoč, concerning with averaging for Hilbert-space
valued solutions of stochastic evolution equations depending on a small parame-
ter, and the paper [20] by Kuksin and Piatnitski concerning with averaging for a
randomly perturbed KdV equation) and almost all has still to be done.

In the present paper, we are trying to extend the Khasminskii argument to a
system with an infinite number of degrees of freedom. We are dealing with the
following system of stochastic reaction–diffusion equations on a bounded domain
D ⊂ Rd , with d ≥ 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε

∂t
(t, ξ) = A1uε(t, ξ) + b1(ξ, uε(t, ξ), vε(t, ξ))

+ g1(ξ, uε(t, ξ), vε(t, ξ))
∂wQ1

∂t
(t, ξ),

∂vε

∂t
(t, ξ) = 1

ε
[A2vε(t, ξ) + b2(ξ, uε(t, ξ), vε(t, ξ))]

+ 1√
ε
g2(ξ, uε(t, ξ), vε(t, ξ))

∂wQ2

∂t
(t, ξ),

uε(0, ξ) = x(ξ), vε(0, ξ) = y(ξ), ξ ∈ D,

N1uε(t, ξ) = N2vε(t, ξ) = 0, t ≥ 0, ξ ∈ ∂D

(1.6)

for a positive parameter ε � 1. The stochastic perturbations are given by Gaussian
noises which are white in time and colored in space, in the case of space dimension
d > 1, with covariances operators Q1 and Q2. The operators A1 and A2 are sec-
ond order uniformly elliptic operators, having continuous coefficients on D, and
the boundary operators N1 and N2 can be either the identity operator (Dirichlet
boundary condition) or a first order operator satisfying a uniform nontangentiality
condition.

In our previous paper [8], written in collaboration with Mark Freidlin, we have
considered the simpler case of g1 ≡ 0 and g2 ≡ 1, and we have proved that an
averaging principle is satisfied by using a completely different approach based on
Kolmogorov equations and martingale solutions of stochastic equations, which is
more in the spirit of the general method introduced by Papanicolaou, Strook and
Varadhan in their paper [24] of 1977. Here, we are considering the case of general
reaction coefficients b1 and b2 and diffusion coefficients g1 and g2, and the method
based on the martingale approach seems to be very complicated to be applied.

We would like to stress that both here and in our previous paper [8] we are
considering averaging for randomly perturbed reaction–diffusion systems, which
are of interest in the description of diffusive phenomena in reactive media, such
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as combustion, epidemic propagation and diffusive transport of chemical species
through cells and dynamics of populations. However, the arguments we are using
adapt easily to more general models of semilinear stochastic partial differential
equations.

Together with system (1.6), for any x, y ∈ H := L2(D), we introduce the fast
motion equation⎧⎨
⎩

∂v

∂t
(t, ξ) = [A2v(t, ξ) + b2(ξ, x(ξ), v(t, ξ))] + g2(ξ, x(ξ), v(t, ξ))

∂wQ2

∂t
(t, ξ),

v(0, ξ) = y(ξ), ξ ∈ D, N2v(t, ξ) = 0, t ≥ 0, ξ ∈ ∂D

with initial datum y and frozen slow component x, whose solution is denoted by
vx,y(t). The previous equation has been widely studied, as far as existence and
uniqueness of solutions are concerned. In Section 3, we introduce the transition
semigroup P x

t associated with it and, by using methods and results from our pre-
vious paper [7], we study its asymptotic properties and its dependence on the pa-
rameters x and y (cfr. also [5] and [6]).

Under this respect, in addition to suitable conditions on the operators Ai and Qi

and on the coefficients bi and gi , for i = 1,2 (see Section 2 for all hypothe-
ses), in the spirit of Khasminskii’s work, we assume that there exist a mapping
α(T ), which vanishes as T goes to infinity, and two Lipschitz-continuous map-
pings B̄1 :H → H and Ḡ :H → L(L∞(D),H) such that for any choice of T > 0,
t ≥ 0 and x, y ∈ H

E

∣∣∣∣ 1

T

∫ t+T

t
〈B1(x, vx,y(s)), h〉H ds − 〈B̄1(x), h〉H

∣∣∣∣
(1.7)

≤ α(T )(1 + |x|H + |y|H )|h|H
for any h ∈ H , and∣∣∣∣ 1

T

∫ t+T

t
E〈G1(x, vx,y(s))h,G1(x, vx,y(s))k〉H ds − 〈Ḡ(x)h, Ḡ(x)k〉H

∣∣∣∣
(1.8)

≤ α(T )(1 + |x|2H + |y|2H)|h|L∞(D)|k|L∞(D)

for any h, k ∈ L∞(D). Here, B1 and G1 are the Nemytskii operators associated
with b1 and g1, respectively. Notice that unlike B1 and G1 which are local opera-
tors, the coefficients B̄ and Ḡ are not local. Actually, they are defined as general
mappings on H, and also in applications, there is no reason why they should be
composition operators.

In Section 3, we describe some remarkable situations in which conditions (1.7)
and (1.8) are fulfilled: for example, when the fast motion admits a strongly mixing
invariant measure μx , for any fixed frozen slow component x ∈ H , and the diffu-
sion coefficient g1 of the slow motion equation is bounded and nondegenerate.
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Our purpose is showing that under the above conditions the slow motion uε

converges weakly to the solution ū of the averaged equation⎧⎨
⎩

∂u

∂t
(t, ξ) = A1u(t, ξ) + B̄(u)(t, ξ) + Ḡ(u)(t, ξ)

∂wQ1

∂t
(t, ξ),

u(0, ξ) = x(ξ), ξ ∈ D, N1u(t, ξ) = 0, t ≥ 0, ξ ∈ ∂D.

(1.9)

More precisely, we prove that for any T > 0

L(uε) ⇀ L(ū) in C([0, T ];H) as ε → 0(1.10)

(see Theorem 6.2). Moreover, in the case the diffusion coefficient g1 in the slow
equation does not depend on the fast oscillating variable vε , we show that the
convergence of uε to ū is in probability, that is, for any η > 0

lim
ε→0

P
(|uε − ū|C([0,T ];H) > η

) = 0(1.11)

(see Theorem 6.4).
In order to prove (1.10), we have to proceed in several steps. First of all, we show

that the family {L(uε)}ε∈(0,1] is tight in P (C([0, T ];H)) and this is obtained by a
priori bounds for processes uε in a suitable Hölder norm with respect to time and
in a suitable Sobolev norm with respect to space. We would like to stress that as
we are only assuming (1.7) and (1.8) and not a law of large numbers, we also need
to prove a priori bounds for the conditioned momenta of uε .

Once we have the tightness of the family {L(uε)}ε∈(0,1], we have the weak
convergence of the sequence {L(uεn)}n∈N, for some εn ↓ 0, to some probability
measure Q on Cx([0, T ] :H). The next steps consist in identifying Q with L(ū)

and proving that limit (1.10) holds. To this purpose, we introduce the martingale
problem with parameters (x,A1, B̄, Ḡ,Q1) and we show that Q is a solution to
such martingale problem. As the coefficients B̄ and Q̄ are Lipschitz-continuous,
we have uniqueness, and hence we can conclude that Q = L(ū). This in particular
implies that for any εn ↓ 0 the sequence {L(uεn)}n∈N converges weakly to L(ū),

and hence (1.10) holds. Moreover, in the case g1 does not depend on vε , by a
uniqueness argument, this implies convergence in probability.

In the general case, the key point in the identification of Q with the solution of
the martingale problem associated with the averaged (1.9) is the following limit

lim
ε→0

E

∣∣∣∣
∫ t2

t1

E
(
Lslϕ(uε(r), vε(r)) − Lavϕ(uε(r))|Ft1

)
dr

∣∣∣∣ = 0,

where Lsl and Lav are the Kolmogorov operators associated, respectively, with
the slow motion equation, with frozen fast component, and with the averaged
equation, and {Ft }t≥0 is the filtration associated with the noise. Notice that it is
sufficient to check the validity of such a limit for any cylindrical function ϕ and
any 0 ≤ t1 ≤ t2 ≤ T . The proof of the limit above is based on the Khasminskii
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argument introduced in [16], but it is clearly more delicate than in [16], as it con-
cerns a system with an infinite number of degrees of freedom (with all well-known
problems arising from that).

In the particular case of g1 not depending on vε , in order to prove (1.11), we do
not need to pass through the martingale formulation. For any h ∈ D(A1), we write

〈uε(t), h〉H = 〈x,h〉H +
∫ t

0
〈uε(s),A1h〉H ds +

∫ t

0
〈B̄1(uε(s)), h〉H ds

+
∫ t

0
〈G1(uε(s))h, dw

Q1
1 (s)〉H + Rε(t),

where

Rε(t) :=
∫ t

0
〈B1(uε(s), vε(s)) − B̄1(uε(s)), h〉H ds

and we show that for any T > 0

lim
ε→0

E sup
t∈[0,T ]

|Rε(t)| = 0.(1.12)

Thanks to the Skorokhod theorem and to a general argument due to Gyöngy and
Krylov (see [15]), this allows us to obtain (1.11).

2. Assumptions and preliminaries. Let D be a smooth bounded domain
of Rd , with d ≥ 1. Throughout the paper, we shall denote by H the Hilbert space
L2(D), endowed with the usual scalar product 〈·, ·〉H and with the corresponding
norm | · |H . The norm in L∞(D) will be denoted by | · |0.

We shall denote by Bb(H) the Banach space of bounded Borel functions
ϕ :H → R, endowed with the sup-norm

‖ϕ‖0 := sup
x∈H

|ϕ(x)|.

Cb(H) is the subspace of uniformly continuous mappings and Ck
b(H) is the sub-

space of all k-times differentiable mappings, having bounded and uniformly con-
tinuous derivatives, up to the kth order, for k ∈ N. Ck

b(H) is a Banach space en-
dowed with the norm

|ϕ|k := |ϕ|0 +
k∑

i=1

sup
x∈H

|Diϕ(x)|Li (H) =: |ϕ|0 +
k∑

i=1

[ϕ]i ,

where L1(H) := H and, by recurrence, Li (H) := L(H,Li−1(H)), for any i > 1.
Finally, we denote by Lip(H) the set of functions ϕ :H → such that

[ϕ]Lip(H) := sup
x,y∈H

x �=y

|ϕ(x) − ϕ(y)|
|x − y|H < ∞.
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We shall denote by L(H) the space of bounded linear operators in H and we
shall denote by L2(H) the subspace of Hilbert–Schmidt operators, endowed with
the norm

‖Q‖2 = √
Tr[Q�Q].

The stochastic perturbations in the slow and in the fast motion equations (1.6)
are given, respectively, by the Gaussian noises ∂wQ1/∂t (t, ξ) and ∂wQ2/∂t (t, ξ),
for t ≥ 0 and ξ ∈ D, which are assumed to be white in time and colored in space,
in the case of space dimension d > 1. Formally, the cylindrical Wiener processes
wQi (t, ξ) are defined as the infinite sums

wQi (t, ξ) =
∞∑

k=1

Qiek(ξ)βk(t), i = 1,2,

where {ek}k∈N is a complete orthonormal basis in H , {βk(t)}k∈N is a sequence of
mutually independent standard Brownian motions defined on the same complete
stochastic basis (�,F ,Ft ,P) and Qi is a compact linear operator on H .

The operators A1 and A2 appearing, respectively, in the slow and in the fast
motion equation, are second-order uniformly elliptic operators, having continuous
coefficients on D, and the boundary operators N1 and N2 can be either the identity
operator (Dirichlet boundary condition) or a first-order operator of the following
type

d∑
j=1

βj (ξ)Dj + γ (ξ)I, ξ ∈ ∂D

for some βj , γ ∈ C1(D̄) such that

inf
ξ∈∂D

|〈β(ξ), ν(ξ)〉| > 0,

where ν(ξ) is the unit normal at ξ ∈ ∂D (uniform nontangentiality condition).
The realizations A1 and A2 in H of the differential operators A1 and A2, en-

dowed, respectively, with the boundary conditions N1 and N2, generate two ana-
lytic semigroups etA1 and etA2 , t ≥ 0. In what follows, we shall assume that A1,
A2 and Q1, Q2 satisfy the following conditions.

HYPOTHESIS 1. For i = 1,2, there exist a complete orthonormal system
{ei,k}k∈N in H and two sequences of nonnegative real numbers {αi,k}k∈N and
{λi,k}k∈N, such that

Aiei,k = −αi,kei,k, Qiei,k = λi,kei,k, k ≥ 1.

If d = 1, we have

κi := sup
k∈N

λi,k < ∞, ζi :=
∞∑

k=1

α
−βi

i,k |ei,k|20 < ∞(2.1)
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for some constant βi ∈ (0,1), and if d ≥ 2, we have

κi :=
∞∑

k=1

λ
ρi

i,k|ei,k|20 < ∞, ζi :=
∞∑

k=1

α
−βi

i,k |ei,k|20 < ∞(2.2)

for some constants βi ∈ (0,+∞) and ρi ∈ (2,+∞) such that

βi(ρi − 2)

ρi

< 1.(2.3)

Moreover,

inf
k∈N

α2,k =: λ > 0.(2.4)

REMARK 2.1. 1. In several cases as, for example, in the case of space di-
mension d = 1, and in the case of the Laplace operator on a hypercube, endowed
with Dirichlet boundary conditions, the eigenfunctions ek are equibounded in the
sup-norm and then conditions (2.1) and (2.2) become

κi =
∞∑

k=1

λ
ρi

i,k < ∞, ζi =
∞∑

k=1

α
−βi

i,k < ∞

for positive constants βi, ρi fulfilling (2.3). In general,

|ei,k|0 ∼ kai , k ∈ N

for some ai ≥ 0. Thus, the two conditions in (2.2) become

κi :=
∞∑

k=1

λ
ρi

i,kk
2ai < ∞, ζi :=

∞∑
k=1

α
−βi

i,k k2ai < ∞.

2. For any reasonable domain D ⊂ Rd, one has

αi,k ∼ k2/d , k ∈ N.

Thus, if the eigenfunctions ek are equibounded in the sup-norm, we have

ζi ≤ c

∞∑
k=1

α
−βi

i,k ∼
∞∑

k=1

k−2βi/d .

This means that in order to have ζi < ∞, we need

βi >
d

2
.

In particular, in order to have also κi < ∞ and condition (2.3) satisfied, in space
dimension d = 1 we can take ρi = +∞, so that we can deal with white noise, both
in time and in space. In space dimension d = 2, we can take any ρi < ∞ and in
space dimension d ≥ 3, we need

ρi <
2d

d − 2
.
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In any case, notice that it is never required to take ρi = 2, which means to have
a noise with trace-class covariance. To this purpose, it can be useful to compare
these conditions with Hypotheses 2 and 3 in [6].

As far as the coefficients b1, b2 and g1, g2 are concerned, we assume the fol-
lowing conditions.

HYPOTHESIS 2. 1. The mappings bi :D × R2 → R and gi :D × R2 → R

are measurable, both for i = 1 and i = 2, and for almost all ξ ∈ D the mappings
bi(ξ, ·) : R2 → R and gi(ξ, ·) : R2 → R are Lipschitz-continuous, uniformly with
respect to ξ ∈ D. Moreover,

sup
ξ∈D

|b2(ξ,0,0)| < ∞.

2. It holds

sup
ξ∈D

σ1∈R

sup
σ2,ρ2∈R

σ2 �=ρ2

|b2(ξ, σ1, σ2) − b2(ξ, σ1, ρ2)|
|σ2 − ρ2| =: Lb2 < λ,(2.5)

where λ is the constant introduced in (2.4).
3. There exists γ < 1 such that

sup
ξ∈D

|g2(ξ, σ )| ≤ c(1 + |σ1| + |σ2|γ ), σ = (σ1, σ2) ∈ R2.(2.6)

REMARK 2.2. Notice that condition (2.6) on the growth of g2(ξ, σ1, ·) could
be replaced with the condition

sup
ξ∈D

σ1∈R

[g2(ξ, σ1, ·)]Lip ≤ η

for some η sufficiently small.

In what follows we shall set

Lg2 := sup
ξ∈D

σ1∈R

sup
σ2,ρ2∈R

σ2 �=ρ2

|g2(ξ, σ1, σ2) − g2(ξ, σ1, ρ2)|
|σ2 − ρ2| .

Moreover, we shall set

Bi(x, y)(ξ) := bi(ξ, x(ξ), y(ξ))

and

[Gi(x, y)z](ξ) := gi(ξ, x(ξ), y(ξ))z(ξ)
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for any ξ ∈ D, x, y, z ∈ H and i = 1,2. Due to Hypothesis 2, the mappings

(x, y) ∈ H × H �→ Bi(x, y) ∈ H,

are Lipschitz-continuous, as well as the mappings

(x, y) ∈ H × H �→ Gi(x, y) ∈ L(H ;L1(D))

and

(x, y) ∈ H × H �→ Gi(x, y) ∈ L(L∞(D);H).

Now, for any fixed T > 0 and p ≥ 1, we denote by HT ,p the space of processes
in C([0, T ];Lp(�;H)), which are adapted to the filtration {Ft }t≥0 associated with
the noise. HT ,p is a Banach space, endowed with the norm

‖u‖HT ,p
=

(
sup

t∈[0,T ]
E|u(t)|pH

)1/p

.

Moreover, we denote by CT ,p the subspace of processes u ∈ Lp(�;C([0, T ];H)),
endowed with the norm

‖u‖CT ,p
=

(
E sup

t∈[0,T ]
|u(t)|pH

)1/p

.

With all notation we have introduced, system (1.6) can be rewritten as the fol-
lowing abstract evolution system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

duε(t) = [A1uε(t) + B1(uε(t), vε(t))]ds

+ G1(uε(t), vε(t)) dwQ1(t), uε(0) = x

dvε(t) = 1

ε
[A2vε(t) + B2(uε(t), vε(t))]ds

+ 1√
ε
G2(uε(t), vε(t)) dwQ2(t), vε(0) = y.

(2.7)

As known from the existing literature (see, e.g., [9]), according to Hypotheses 1
and 2 for any ε > 0 and x, y ∈ H and for any p ≥ 1 and T > 0 there exists a unique
mild solution (uε, vε) ∈ CT ,p × CT ,p to system (1.6). This means that there exist
two processes uε and vε in CT ,p , which are unique, such that

uε(t) = etA1x +
∫ t

0
e(t−s)A1B1(uε(s), vε(s)) ds

+
∫ t

0
e(t−s)A1G1(uε(s), vε(s)) dwQ1(s)

and

vε(t) = etA2/εy + 1

ε

∫ t

0
e(t−s)A2/εB2(uε(s), vε(s)) ds

+ 1√
ε

∫ t

0
e(t−s)A2/εG2(uε(s), vε(s)) dwQ2(s).
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2.1. The fast motion equation. For any fixed x ∈ H , we consider the problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
(t, ξ) = A2v(t, ξ) + b2(ξ, x(ξ), v(t, ξ))

+ g2(ξ, x(ξ), v(t, ξ))
∂wQ2

∂t
(t, ξ),

v(0, ξ) = y(ξ), ξ ∈ D,

N2v(t, ξ) = 0, t ≥ 0, ξ ∈ ∂D.

(2.8)

Under Hypotheses 1 and 2, such a problem admits a unique mild solution vx,y ∈
CT ,p , for any T > 0 and p ≥ 1, and for any fixed frozen slow variable x ∈ H and
any initial condition y ∈ H (for a proof, see, e.g., [10], Theorem 5.3.1).

By arguing as in the proof of [7], Theorem 7.3, is it possible to show that there
exists some δ1 > 0 such that for any p ≥ 1

E|vx,y(t)|pH ≤ cp(1 + |x|pH + e−δ1pt |y|pH ), t ≥ 0.(2.9)

In particular, as shown in [7], this implies that there exists some θ > 0 such that
for any a > 0

sup
t≥a

E|vx,y(t)|D((−A2)
θ ) ≤ ca(1 + |x|H + |y|H).(2.10)

Now, for any x ∈ H, we denote by P x
t the transition semigroup associated with

problem (2.8), which is defined by

P x
t ϕ(y) = Eϕ(vx,y(t)), t ≥ 0, y ∈ H

for any ϕ ∈ Bb(H). Due to (2.10), the family {L(vx,y(t))}t≥a is tight in
P (H,B(H)) and then by the Krylov–Bogoliubov theorem, there exists an in-
variant measure μx for the semigroup P x

t . Moreover, due to (2.9) for any p ≥ 1,

we have ∫
H

|z|pHμx(dz) ≤ cp(1 + |x|pH )(2.11)

(for a proof see [8], Lemma 3.4).
As in [7], Theorem 7.4, it is possible to show that if λ is sufficiently large and/or

Lb2 , Lg2 , ζ2 and κ2 are sufficiently small, then there exist some c, δ2 > 0 such that

sup
x∈H

E|vx,y1(t) − vx,y2(t)|H ≤ ce−δ2t |y1 − y2|H , t ≥ 0(2.12)

for any y1, y2 ∈ H . In particular, this implies that μx is the unique invariant mea-
sure for P x

t and is strongly mixing. Moreover, by arguing as in [8], Theorem 3.5
and Remark 3.6, from (2.11) and (2.12), we have∣∣∣∣P x

t ϕ(y) −
∫
H

ϕ(z)μx(dz)

∣∣∣∣ ≤ c(1 + |x|H + |y|H )e−δ2t [ϕ]Lip(H)(2.13)

for any x, y ∈ H and ϕ ∈ Lip(H). In particular, this implies the following fact.
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LEMMA 2.3. Under the above conditions, for any ϕ ∈ Lip(H), T > 0, x,
y ∈ H and t ≥ 0

E

∣∣∣∣ 1

T

∫ t+T

t
ϕ(vx,y(s)) ds −

∫
H

ϕ(z)μx(dz)

∣∣∣∣ ≤ c√
T

(
Hϕ(x, y) + |ϕ(0)|),(2.14)

where

Hϕ(x, y) := [ϕ]Lip(H)(1 + |x|H + |y|H ).(2.15)

PROOF. We have

E

(
1

T

∫ t+T

t
ϕ(vx,y(s)) ds − ϕ̄x

)2

= 1

T 2

∫ t+T

t

∫ t+T

t
E

(
ϕ(vx,y(s)) − ϕ̄x)(

ϕ(vx,y(r)) − ϕ̄x)
ds dr

= 2

T 2

∫ t+T

t

∫ t+T

r
E

(
ϕ(vx,y(s)) − ϕ̄x)(

ϕ(vx,y(r)) − ϕ̄x)
ds dr,

where

ϕ̄x :=
∫
H

ϕ(z)μx(dz).

From the Markovianity of vx,y(t), for r ≤ s, we have

E
(
ϕ(vx,y(s)) − ϕ̄x)(

ϕ(vx,y(r)) − ϕ̄x)
= E

[(
ϕ(vx,y(r)) − ϕ̄x)

Ps−r

(
ϕ(vx,y(r)) − ϕ̄x)]

,

so that in view of (2.9) and (2.13),

E

(
1

T

∫ t+T

t
ϕ(vx,y(s)) ds − ϕ̄x

)2

≤ c

T 2

∫ t+T

t

∫ t+T

r

([ϕ]Lip(H)(E|vx,y(r)|2H)1/2 + |ϕ(0)| + |ϕ̄x |)
× (

E[Ps−rϕ(vx,y(r)) − ϕ̄x]2)1/2
ds dr

≤ c

T 2

(
Hϕ(x, y) + |ϕ(0)| + |ϕ̄x |)Hϕ(x, y)

∫ t+T

t

∫ t+T

r
e−δ2(s−r) ds dr

≤ c

T

(
Hϕ(x, y) + |ϕ(0)| + |ϕ̄x |)Hϕ(x, y)

with Hϕ(x, y) defined as in (2.15). As from (2.11), we have

|ϕ̄x | ≤ [ϕ]Lip(H)(1 + |x|H) + |ϕ(0)|,
we can conclude that (2.14) holds. �
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2.2. The averaged coefficients. In the next hypotheses, we introduce the coef-
ficients of the averaged equation, and we give conditions which assure the conver-
gence of the slow motion component uε to its solution. For the reaction coefficient,
we assume the following condition.

HYPOTHESIS 3. There exists a Lipschitz-continuous mapping B̄ :H → H

such that for any T > 0, t ≥ 0 and x, y,h ∈ H∣∣∣∣ 1

T

∫ t+T

t
E〈B1(x, vx,y(s)), h〉H ds − 〈B̄(x), h〉H

∣∣∣∣
(2.16)

≤ α(T )(1 + |x|H + |y|H )|h|H
for some function α(T ) such that

lim
T →∞α(T ) = 0.

Concerning the diffusion coefficient, we assume the following condition.

HYPOTHESIS 4. There exists a Lipschitz-continuous mapping Ḡ :H →
L(L∞(D);H) such that for any T > 0, t ≥ 0, x, y ∈ H and h, k ∈ L∞(D)∣∣∣∣ 1

T

∫ t+T

t
E〈G1(x, vx,y(s))h,G1(x, vx,y(s))k〉H ds − 〈Ḡ(x)h, Ḡ(x)k〉H

∣∣∣∣
(2.17)

≤ α(T )(1 + |x|2H + |y|2H)|h|∞|k|∞
for some α(T ) such that

lim
T →∞α(T ) = 0.

3. The averaged equation. In this section, we describe some relevant situ-
ations in which Hypotheses 3 and 4 are verified and we give some notation and
some results about the martingale problem and the mild solution for the averaged
equation.

3.1. The reaction coefficient B̄ . For any fixed x,h ∈ H , the mapping

y ∈ H �→ 〈B1(x, y), h〉H ∈ R

is Lipschitz-continuous. Then if we define

B̄(x) :=
∫
H

B1(x, z)μx(dz), x ∈ H,

thanks to (2.13) we have that limit (2.16) holds, with α(T ) = c/
√

T .
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Due to (2.16), for any x1, x2, y, h ∈ H, we have

〈B̄1(x1) − B̄1(x2), h〉H
= lim

T →∞
1

T
E

∫ T

0
〈B1(x1, v

x1,y(s)) − B1(x2, v
x2,y(s)), h〉H ds.

Then as the mapping B1 :H × H → H is Lipschitz continuous, we have

|〈B̄1(x1) − B̄1(x2), h〉H |
≤ c|h|H lim sup

T →∞
1

T

∫ T

0

(|x1 − x2|H + E|vx1,y(s) − vx2,y(s)|H )
ds

= c|h|H
(
|x1 − x2|H + lim sup

T →∞
1

T

∫ T

0
E|ρ(s)|H ds

)
,

where ρ(t) := vx1,y(t) − vx2,y(t), for any t ≥ 0. In the next lemma, we show that
under suitable conditions on the coefficients there exists some constant c > 0 such
that for any T > 0

1

T

∫ T

0
E|ρ(s)|H ds ≤ c|x1 − x2|H .

Clearly, this implies the Lipschitz continuity of B̄1.

LEMMA 3.1. Assume that

Lb2

λ
+ Lg2

(
β2

e

)β2(ρ2−2)/(2ρ2)

ζ
(ρ2−2)/(2ρ2)
2 κ

2/(2ρ2)
2

(3.1)

×
(

ρ2

λ(ρ2 + 2)

)1/2−β2(ρ2−2)/(2ρ2)

=: M0 < 1.

Then under Hypotheses 1 and 2, there exists c > 0 such that for any x1, x2,
y ∈ H and t > 0

1

t

∫ t

0
E|vx1,y(s) − vx2,y(s)|H ds ≤ c|x1 − x2|H .

PROOF. We set ρ(t) := vx1,y(t) − vx2,y(t) and define

�(t) :=
∫ t

0
e(t−s)A2[G2(x1, v

x1,y(s)) − G2(x2, v
x2,y(s))]dwQ2(s)

and set �(t) := ρ(t) − �(t). For any η ∈ (0, λ/2), we can fix c1,η > 0 such that

1

2

d

dt
|�(t)|2H ≤ −λ|�(t)|2H + (

c|x1 − x2|H + Lb2 |ρ(t)|H )|�(t)|H

≤ −
(

λ

2
− η

)
|�(t)|2H + L2

b2

2λ
|ρ(t)|2H + c1,η|x1 − x2|2.
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This implies

|�(t)|2H ≤
(

1 + 2c1,η

λ − 2η

)
|x1 − x2|2 + L2

b2

λ

∫ t

0
e−(λ−2η)(t−s)|ρ(s)|2H ds,

so that for any ε > 0 and η < λ/2

E|ρ(t)|2H ≤ (1 + ε)

(
1 + 2c1,η

λ − 2η

)
|x1 − x2|2

+ (1 + ε)L2
b2

λ

∫ t

0
e−(λ−2η)(t−s)E|ρ(s)|2H ds(3.2)

+ (1 + ε)

ε
E|�(t)|2H .

Thanks to Hypothesis 1, for any J ∈ L(L∞(D),H) ∩ L(H,L1(D)), with
J = J � and for any s ≥ 0, we have

‖esA2JQ2‖2
2

=
∞∑

k=1

λ2
2,k|esA2Je2,k|2H

≤
( ∞∑

k=1

λ
ρ2
2,k|e2,k|20

)2/ρ2( ∞∑
k=1

|esA2Je2,k|2ρ2/(ρ2−2)
H |e2,k|−4/(ρ2−2)

H

)(ρ2−2)/ρ2

≤ κ
2/ρ2
2 sup

k∈N

|esA2Je2,k|4/ρ2
H |e2,k|−4/ρ2

0

( ∞∑
k=1

|esA2Je2,k|2H
)(ρ2−2)/ρ2

.

Hence, thanks to (2.4), we obtain

‖esA2JQ2‖2
2

(3.3)

≤ κ
2/ρ2
2 ‖J‖4/ρ2

L(L∞(D),H)e
−4λ/ρ2s

( ∞∑
k=1

|esA2Je2,k|2H
)(ρ2−2)/ρ2

.

We have
∞∑

k=1

|esA2Je2,k|2H =
∞∑

k=1

∞∑
h=1

|〈esA2Je2,k, e2,h〉H |2 =
∞∑

h=1

∞∑
k=1

|〈e2,k, J esA2e2,h〉H |2

=
∞∑

h=1

|Je2,h|2He−2α2,hs ≤ e−λs‖J‖2
L(L∞(D),H)

∞∑
h=1

|e2,h|20e−α2,hs .

Then as for any β > 0,

e−αt ≤
(

β

e

)β

t−βα−β, α, t > 0,(3.4)
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if we take β2 as in condition (2.2), we get
∞∑

k=1

|esA2Je2,k|2H ≤
(

β2

e

)β2

s−β2e−λs‖J‖2
L(L∞(D),H)

∞∑
h=1

|e2,h|20α−β2
2,h

≤
(

β2

e

)β2

ζ2s
−β2e−λs‖J‖2

L(L∞(D),H)

and from (3.3) we can conclude

‖esA2JQ2‖2
2 ≤

(
β2

e

)β2(ρ2−2)/ρ2

ζ
(ρ2−2)/ρ2
2 κ

2/ρ2
2 s−β2(ρ2−2)/ρ2e−λ(ρ2+2)/ρ2s

(3.5)
× ‖J‖2

L(L∞(D),H).

This means that if we set

K2 :=
(

β2

e

)β2(ρ2−2)/ρ2

ζ
(ρ2−2)/ρ2
2 κ

2/ρ2
2

and if we take

J := G2(x1, v
x1,y(s)) − G2(x2, v

x2,y(s))

for any 0 < η < λ/2,

E|�(t)|2H =
∫ t

0
E

∥∥e(t−s)A2[G2(x1, v
x1,y(s)) − G2(x2, v

x2,y(s))Q2]
∥∥2

2 ds

≤ K2

∫ t

0
(t − s)−β2(ρ2−2)/ρ2e−λ(ρ2+2)/ρ2(t−s)

× E
(
c|x1 − x2|H + Lg2 |ρ(s)|H )2

ds

≤ c(1 + η)

η
|x1 − x2|2H

+ (1 + η)L2
g2

K2

∫ t

0
(t − s)−β2(ρ2−2)/ρ2e−λ(ρ2+2)/ρ2(t−s)E|ρ(s)|2H ds,

last inequality following from the fact that, according to (2.3), β2(ρ2 − 2)/ρ2 < 1.
Now, if we plug the inequality above into (3.2), for any ε > 0 and 0 < η < λ/2,

we obtain

E|ρ(t)|2H ≤ (1 + ε)

(
1 + 2c1,η

λ − 2η

)
|x1 − x2|2 + c

(
1 + ε

ε

)(
1 + η

η

)
|x1 − x2|2H

+ (1 + ε)L2
b2

λ

∫ t

0
e−(λ−2η)(t−s)E|ρ(s)|2H ds

+ (1 + ε)

ε
(1 + η)L2

g2
K2

×
∫ t

0
(t − s)−β2(ρ2−2)/ρ2e−λ(ρ2+2)/ρ2(t−s)E|ρ(s)|2H ds
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and hence, if we integrate with respect to t both sides, from the Young inequality
we get ∫ t

0
E|ρ(s)|2H ds

≤
[(

1 + 2c1,η

λ − 2η

)
+ c

ε

(
1 + η

η

)]
(1 + ε)t |x1 − x2|2H

+ (1 + ε)

[
L2

b2

λ

∫ t

0
e−(λ−2η)s ds

+ 1 + η

ε
L2

g2
K2

∫ t

0
s−β2(ρ2−2)/ρ2e−λ(ρ2+2)/ρ2s ds

]

×
∫ t

0
E|ρ(s)|2H ds

≤ cη,εt |x1 − x1|2H + Mη,ε

∫ t

0
E|ρ(s)|2H ds,

where

Mη,ε := (1 + ε)

[
L2

b2

λ(λ − 2η)
+ 1 + η

ε
L2

g2

(
β2

e

)β2(ρ2−2)/ρ2

(3.6)

× ζ
(ρ2−2)/ρ2
2 κ

2/ρ2
2

(
ρ2

λ(ρ2 + 2)

)1−β2(ρ2−2)/ρ2]
.

Now, by taking the minimum over ε > 0. we get∫ t

0
E|ρ(s)|2H ds ≤ cη,ε̄t |x1 − x1|2H + M2

η

∫ t

0
E|ρ(s)|2H ds,

where

Mη := Lb2√
λ(λ − 2η)

+ √
1 + ηLg2

(
β2

e

)β2(ρ2−2)/(2ρ2)

× ζ
(ρ2−2)/(2ρ2)
2 κ

2/(2ρ2)
2

(
ρ2

λ(ρ2 + 2)

)1/2−β2(ρ2−2)/2ρ2

.

Then as in (3.1) we have assumed that M0 < 1, we can fix η̄ ∈ (0, λ/2) such that
Mη̄ < 1, and hence ∫ t

0
E|ρ(s)|2H ds ≤ cη̄,ε̄

1 − M2
η̄

t |x1 − x1|2H .

This implies

1

t

∫ t

0
E|ρ(s)|H ds ≤

(
c3,η̄

1 − M2
η̄

)1/2

|x1 − x1|H
and the proof of the lemma is complete. �
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3.2. The diffusion coefficient Ḡ. If we assume that the function g1 :D×R2 →
R is uniformly bounded, the mapping G1 is well defined from H into L(H).
Moreover, for any fixed x,h, k ∈ H the mapping

z ∈ H �→ 〈G1(x, z)h,G1(x, z)k〉H ∈ R,

is Lipschitz continuous. Thus, under the assumptions described above, if we take

〈S(x)h, k〉H =
∫
H

〈G1(x, z)h,G1(x, z)k〉Hμx(dz),(3.7)

we have that S :H → L(H) and, due to (2.13), for any T > 0, t ≥ 0 and
x, y,h, k ∈ H∣∣∣∣ 1

T

∫ t+T

t
E〈G1(x, vx,y(s))h,G1(x, vx,y(s))k〉H ds − 〈S(x)h, k〉H

∣∣∣∣
(3.8)

≤ α(T )(1 + |x|2H + |y|2H)|h|H |k|H
for some function α(T ) going to zero as T ↑ ∞.

It is immediate to check that S(x) = S(x)� and S(x) ≥ 0, for any x ∈ H . Then
as is well known, there exists an operator Ḡ(x) ∈ L(H) such that Ḡ(x)2 = S(x).
If we assume that there exists δ > 0 such that

inf
ξ∈D

σ∈R2

g1(ξ, σ ) ≥ δ,

we have that S(x) ≥ δ2, and hence Ḡ(x) ≥ δ. In particular, Ḡ(x) is invertible and

‖Ḡ(x)−1‖L(H) ≤ 1

δ
.

Next, we notice that for any x1, x2 ∈ H

S(x1)S(x2) = S(x2)S(x1).(3.9)

Actually, according to (3.7) for any h, k ∈ H,

〈S(x1)S(x2)h, k〉H =
∫
H

〈G1(x1, z)S(x2)h,G1(x1, z)k〉Hμx1(dz)

=
∫
H

∫
H

〈G2
1(x2,w)h,G2

1(x1, z)k〉Hμx2(dw)μx1(dz)

=
∫
H

∫
H

〈G2
1(x1, z)h,G2

1(x2,w)k〉H μx1(dz)μx2(dw)

= 〈S(x2)S(x1)h, k〉H .

In particular, from (3.9) for any x1, x2 ∈ H, we have

Ḡ(x1)Ḡ(x2) = Ḡ(x2)Ḡ(x1).(3.10)
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Now, as g1(ξ, ·) : R2 → R is bounded and Lipschitz-continuous, uniformly
with respect to ξ ∈ D, we have that g2

1(ξ, ·) : R2 → R is Lipschitz-continuous as
well, uniformly with respect to ξ ∈ D. This implies that for any x1, x2, y ∈ H ,
h ∈ L∞(D) and k ∈ H

|〈[G2
1(x1, v

x1,y(s)) − G2
1(x2, v

x2,y(s))]h, k〉H |
≤ c

(|x1 − x2|H + |vx1,y(s) − vx2,y(s)|H )|h|∞|k|H ,

so that according to (3.8),∣∣〈(S(x1) − S(x2)
)
h, k

〉
H

∣∣
≤ c|h|∞|k|H lim sup

T →∞
1

T

∫ T

0

(|x1 − x2|H + E|vx1,y(s) − vx2,y(s)|H )
ds

= c|h|∞|k|H
(
|x1 − x2|H + lim sup

T →∞
1

T

∫ T

0
E|vx1,y(s) − vx2,y(s)|H ds

)
.

Then thanks to Lemma 3.1, we can conclude that S :H → L(L∞(D),H) is
Lipschitz-continuous.

This implies that Ḡ :H → L(L∞(D),H) is Lipschitz-continuous as well. Ac-
tually, thanks to (3.10) and to the fact that Ḡ(x1) + Ḡ(x2) is invertible, for any
h ∈ L∞(D) and k ∈ H,

〈[Ḡ(x1) − Ḡ(x2)]h, k〉H = 〈[S(x1) − S(x2)]h, [Ḡ(x1) + Ḡ(x2)]−1k〉H .(3.11)

Then as

‖[Ḡ(x1) + Ḡ(x2)]−1‖L(H) ≤ 1

2δ
,(3.12)

we obtain

|〈[Ḡ(x1) − Ḡ(x2)]h, k〉H | ≤ c|x1 − x2|H |h|∞ 1

2δ
|k|H

and this implies the Lipschitz-continuity of Ḡ :H → L(L∞(D),H).
We conclude by showing that the operator Ḡ introduced in Hypothesis 4 satis-

fies a suitable Hilbert–Schmidt property which assures the well-posedness of the
stochastic convolution∫ t

0
e(t−s)A1Ḡ(u(s)) dwQ1(s), t ≥ 0

in Lp(�;C([0, T ];H)), for any p ≥ 1 and T > 0 and for any process u ∈
C([0, T ];Lp(�;H)).

LEMMA 3.2. Assume Hypotheses 1, 2 and 4. Then for any t > 0 and x1,
x2 ∈ H , we have

‖etA1[Ḡ(x1) − Ḡ(x2)]Q1‖2 ≤ c(t)|x1 − x2|H t−β1(ρ1−2)/(2ρ1)

for some continuous increasing function c(t).
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PROOF. According to Hypothesis 1, we have

‖etA1[Ḡ(x1) − Ḡ(x2)]Q1‖2
2

=
∞∑

k=1

|etA1[Ḡ(x1) − Ḡ(x2)]Q1e1,k|2H

≤
( ∞∑

k=1

λ
ρ1
1,k|e1,k|2∞

)2/ρ1

×
( ∞∑

k=1

|e1,k|−4/(ρ1−2)∞ |etA1[Ḡ(x1) − Ḡ(x2)]e1,k|2ρ1/(ρ1−2)
H

)(ρ1−2)/ρ1

≤ c sup
k∈N

|e1,k|−4/ρ1∞ |etA1[Ḡ(x1) − Ḡ(x2)]e1,k|4/ρ1
H

×
( ∞∑

k=1

|etA1[Ḡ(x1) − Ḡ(x2)]e1,k|2H
)(ρ1−2)/ρ1

and then as Ḡ :H → L(L∞(D),H) is Lipschitz-continuous, we conclude

‖etA1[Ḡ(x1) − Ḡ(x2)]Q1‖2
2

(3.13)

≤ c(t)|x1 − x2|4/ρ1
H

( ∞∑
k=1

|etA1[Ḡ(x1) − Ḡ(x2)]e1,k|2H
)(ρ1−2)/ρ1

for some continuous increasing function c(t).
Now, by using again the Lipschitz-continuity of Ḡ :H → L(L∞(D),H), we

have
∞∑

k=1

|etA1[Ḡ(x1) − Ḡ(x2)]e1,k|2H =
∞∑

k=1

∞∑
h=1

|〈etA1[Ḡ(x1) − Ḡ(x2)]e1,k, e1,h〉H |2

=
∞∑

h=1

|[Ḡ(x1) − Ḡ(x2)]e1,h|2He−2tα1,h

≤ c|x1 − x2|2H
∞∑

h=1

e−2tα1,h |e1,h|2H
and then, if we take β1 as in Hypothesis 1, we obtain

∞∑
k=1

|etA1[Ḡ(x1) − Ḡ(x2)]e1,k|2H

≤ c|x1 − x2|2H t−β1

∞∑
h=1

α
−β1
1,h |e1,h|2H ≤ c|x1 − x2|2H t−β1 .
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Thanks to (3.13), this implies our thesis. �

3.3. Martingale problem and mild solution of the averaged equation. Since
the mappings B̄ :H → H and Ḡ :H → L(L∞(D);H) are both Lipschitz-
continuous and Lemma 3.2 holds, for any initial datum x ∈ H the averaged equa-
tion

du(t) = [A1u(t) + B̄(u(t))]dt + Ḡ(u(t)) dwQ1(t), u(0) = x,(3.14)

admits a unique mild solution ū in Lp(�,C([0, T ];H)), for any p ≥ 1 and T > 0
(for a proof, see, e.g., [6], Section 3). This means that there exists a unique adapted
process ū ∈ Lp(�,C([0, T ];H)) such that for any t ≤ T

ū(t) = etA1x +
∫ t

0
e(t−s)A1B̄(ū(s)) ds

+
∫ t

0
e(t−s)A1Ḡ(ū(s)) dwQ1(s)

or equivalently,

〈ū(t), h〉H = 〈x,h〉H +
∫ t

0
[〈ū(s),A1h〉H + 〈B̄(ū(s)), h〉H ]ds

+
∫ t

0
〈Ḡ(ū(s)) dwQ1(s), h〉H

for any h ∈ D(A1).
Now, we recall the notion of martingale problem with parameters (x,A1, B̄, Ḡ,

Q1). For any fixed x ∈ H , we denote by Cx([0, T ];H) the space of continuous
functions ω : [0, T ] → H such that ω(0) = x and we denote by η(t) the canonical
process on Cx([0, T ];H), which is defined by

η(t)(ω) = ω(t), t ∈ [0, T ].
Moreover, we denote by Et the canonical filtration σ(η(s), s ≤ t), for t ∈ [0, T ],
and by E the canonical σ -algebra σ(η(s), s ≤ T ).

DEFINITION 3.3. A function ϕ :H → R is a regular cylindrical function as-
sociated with the operator A1 if there exist k ∈ N, f ∈ C∞

c (Rk), a1, . . . , ak ∈ H

and N ∈ N such that

ϕ(x) = f (〈x,PNa1〉H , . . . , 〈x,PNak〉H ), x ∈ H,

where PN is the projection of H onto span〈e1,1, . . . , e1,N 〉 and {e1,n}n∈N is the
orthonormal basis diagonalizing A1 and introduced in Hypothesis 1.
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In what follows, we shall denote the set of all regular cylindrical functions by
R(H). For any ϕ ∈ R(H) and x ∈ H, we define

Lavϕ(x) := 1

2
Tr[(Ḡ(x)Q1)

�D2ϕ(x)Ḡ(x)Q1]
+ 〈A1Dϕ(x), x〉H + 〈Dϕ(x), B̄(x)〉H

= 1

2

k∑
i,j=1

D2
ij f (〈x,PNa1〉H , . . . , 〈x,PNak〉H)

(3.15)
× 〈Ḡ(x)Q1PNai, Ḡ(x)Q1PNaj 〉H

+
k∑

i=1

Dif (〈x,PNa1〉H , . . . , 〈x,PNak〉H )

× (〈x,A1PNai〉H + 〈B̄(x),PNai〉H )
.

Lav is the Kolmogorov operator associated with the averaged equation (3.14).
Notice that the expression above is meaningful, as for any i = 1, . . . , k

Q1PNai =
N∑

k=1

λ1,k〈ai, e1,k〉He1,k ∈ L∞(D)

and

A1PNai = −
N∑

k=1

α1,k〈ai, e1,k〉He1,k ∈ H.

DEFINITION 3.4. A probability measure Q on (Cx([0, T ];H),E) is a solu-
tion of the martingale problem with parameters (x,A1, B̄, Ḡ,Q1) if the process

ϕ(η(t)) −
∫ t

0
Lavϕ(η(s)) ds, t ∈ [0, T ]

is an Et -martingale on (Cx([0, T ];H),E ,Q), for any ϕ ∈ R(H).

As the coefficients B̄ and Ḡ are Lipschitz-continuous, the solution Q to the
martingale problem with parameters (x,A1, B̄, Ḡ,Q1) exists, is unique and coin-
cides with L(ū) (to this purpose see [9], Chapter 8, and also [26], Theorems 5.9
and 5.10).

4. A priori bounds for the solution of system (1.6). In the present sec-
tion, we prove uniform estimates, with respect to ε ∈ (0,1], for the solution uε

of the slow motion equation and for the solution vε of the fast motion equation
in system (1.6). As a consequence, we will obtain the tightness of the family
{L(uε)}ε∈(0,1] in C([0, T ];H), for any T > 0.
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In what follows, for the sake of simplicity, we denote by | · |θ the norm
| · |D((−A1)

θ ). Moreover, for any ε > 0, we denote

�1,ε(t) :=
∫ t

0
e(t−s)A1G1(uε(s), vε(s)) dwQ1(s), t ≥ 0.(4.1)

LEMMA 4.1. Under Hypotheses 1 and 2, there exists θ̄ > 0 and p̄ ≥ 1 such
that for any ε > 0, T > 0, p > p̄ and θ ∈ [0, θ̄]

E sup
t≤T

|�1,ε(t)|pθ ≤ cT ,p,θ

∫ T

0

(
1 + E|uε(r)|pH + E|vε(r)|pH

)
ds(4.2)

for some positive constant cT ,p,θ which is independent of ε > 0.

PROOF. By using a factorization argument, for any α ∈ (0,1/2), we have

�1,ε(t) = cα

∫ t

0
(t − s)α−1e(t−s)A1Yε,α(s) ds,

where

Yε,α(s) :=
∫ s

0
(s − r)−αe(s−r)A1G1,ε(s) dwQ1(r)

and

G1,ε(s) := G1(uε(s), vε(s)).

For any p > 1/α and θ > 0, we have

sup
s≤t

|�1,ε(s)|pθ ≤ cα,p

(∫ t

0
s(α−1)p/(p−1) ds

)p−1 ∫ t

0
|Yε,α(s)|pθ ds

(4.3)

= cα,ptαp−1
∫ t

0
|Yε,α(s)|pθ ds.

According to the Burkholder–Davis–Gundy inequality, we have

E

∫ t

0
|Yε,α(s)|pθ ds

≤ cp

∫ t

0
E

(∫ s

0
(s − r)−2α

∥∥(−A1)
θ e(s−r)A1G1,ε(s)Q1

∥∥2
2 dr

)p/2

ds.

By the same arguments as those used in the proof of Lemma 3.1, we have∥∥(−A1)
θ e(s−r)A1G1,ε(s)Q1

∥∥2
2

≤ sup
k∈N

∣∣(−A1)
θ e(s−r)A1G1,ε(s)e1,k

∣∣4/ρ1
H |e1,k|−4/ρ1

H
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× κ
2/ρ1
1

( ∞∑
k=1

∣∣(−A1)
θ e(s−r)A1G1,ε(s)e1,k

∣∣2
H

)(ρ1−2)/ρ1

≤ cθκ
2/ρ1
1 (s − r)−4θ/ρ1‖G1,ε(s)‖4/ρ1

L(L∞(D),H)

×
( ∞∑

k=1

∣∣(−A1)
θ e(s−r)A1G1,ε(s)e1,k

∣∣2
H

)(ρ1−2)/ρ1

.

By proceeding again as in the proof of Lemma 3.1 we have
∞∑

k=1

∣∣(−A1)
θ e(s−r)A1G1,ε(s)e1,k

∣∣2
H

≤ ‖G1,ε(s)‖2
L(L∞(D),H)

∞∑
k=1

|e1,k|20αθ
1,ke

−α1,k(s−r)

and then thanks to (3.4), we get
∞∑

k=1

∣∣(−A1)
θ e(s−r)A1G1,ε(s)e1,k

∣∣2
H

≤
(

β1 + θ

e

)β1+θ

ζ1(s − r)−(β1+θ)‖G1,ε(s)‖2
L(L∞(D),H).

Therefore, if we set

K1,θ := cθ

(
β1 + θ

e

)(β1+θ)(ρ1−2)/ρ1

ζ
(ρ1−2)/ρ1
1 κ

2/ρ1
1

and fix θ̄ > 0 such that

β1(ρ1 − 2) + θ̄ (ρ1 + 2)

ρ1
< 1

for any θ ∈ [0, θ̄], we have

E

∫ t

0
|Yε,α(s)|pH ds

≤ cpK
p/2
1,θ

∫ t

0
E

(∫ s

0
(s − r)−(2α+(β1(ρ1−2)+θ(ρ1+2))/ρ1)

× ‖G1,ε(r)‖2
L(L∞(D),H) dr

)p/2

ds.

Hence, if we choose ᾱ > 0, such that

2ᾱ + β1(ρ1 − 2) + θ̄ (ρ1 + 2)

ρ1
< 1
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and p > p̄ := 1/ᾱ, by the Young inequality this yields for t ∈ [0, T ]
E

∫ t

0
|Yε,ᾱ(s)|pθ ds

≤ cpK
p/2
1,θ

(∫ t

0
s−(2ᾱ+(β1(ρ1−2)+θ(ρ1+2))/ρ1) ds

)p/2

× E

∫ t

0
‖G1,ε(s)‖p

L(L∞(D),H) ds

≤ cT ,p

∫ t

0

(
1 + E|uε(s)|pH + E|vε(s)|pH

)
ds.

Thanks to (4.3), this implies (4.2). �

Now, we can prove the first a priori bounds for the solution uε of the slow motion
equation and for the solution vε of the fast motion equation in system (1.6).

PROPOSITION 4.2. Under Hypotheses 1 and 2, for any T > 0 and p ≥ 1,

there exists a positive constant c(p,T ) such that for any x, y ∈ H and ε ∈ (0,1]
E sup

t∈[0,T ]
|uε(t)|pH ≤ c(p,T )(1 + |x|pH + |y|pH )(4.4)

and ∫ T

0
E|vε(t)|pH dt ≤ c(p,T )(1 + |x|pH + |y|pH ).(4.5)

Moreover, there exists some cT > 0 such that

sup
t∈[0,T ]

E|vε(t)|2H ≤ cT (1 + |x|2H + |y|2H ).(4.6)

PROOF. Let ε > 0 and x, y ∈ H be fixed once for all and let �1,ε(t) be the
process defined in (4.1). If we set �1,ε(t) := uε(t) − �1,ε(t), we have

d

dt
�1,ε(t) = A1�1,ε(t) + B1

(
�1,ε(t) + �1,ε(t), vε(t)

)
, �1,ε(0) = x

and then for any p ≥ 2 we have

1

p

d

dt
|�1,ε(t)|pH = 〈A1�1,ε(t),�1,ε(t)〉H |�1,ε(t)|p−2

H

+ 〈
B1

(
�1,ε(t) + �1,ε(t), vε(t)

)
− B1(�1,ε(t), vε(t)),�1,ε(t)

〉
H |�1,ε(t)|p−2

H

+ 〈B1(�1,ε(t), vε(t)),�1,ε(t)〉H |�1,ε(t)|p−2
H

≤ cp|�1,ε(t)|pH + cp|B1(�1,ε(t), vε(t))|pH
≤ cp|�1,ε(t)|pH + cp

(
1 + |�1,ε(t)|pH + |vε(t)|pH

)
.
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This implies that

|�1,ε(t)|pH ≤ ecpt |x|pH + cp

∫ t

0
ecp(t−s)(1 + |�1,ε(s)|pH + |vε(s)|pH

)
ds,

so that, for any t ∈ [0, T ],
|uε(t)|pH ≤ cp|�1,ε(t)|pH + cpecpt |x|pH

+ cp

∫ t

0
ecp(t−s)(1 + |�1,ε(s)|pH + |vε(s)|pH

)
ds

≤ cT ,p

(
1 + |x|pH + sup

s≤t
|�1,ε(s)|pH +

∫ t

0
|vε(s)|pH ds

)
.

According to (4.2) (with θ = 0), we obtain

E sup
s≤t

|uε(s)|pH ≤ cT ,p(1 + |x|pH ) + cT ,p

∫ t

0
E|vε(s)|pH ds

+ cT ,p

∫ t

0

(
1 + E sup

r≤s
|uε(r)|pH

)
ds

and hence by comparison,

E sup
s≤t

|uε(s)|pH ≤ cT ,p

(
1 + |x|pH +

∫ t

0
E|vε(s)|pH ds

)
.(4.7)

Now, we have to estimate ∫ t

0
E|vε(s)|pH ds.

If we define

�2,ε(t) := 1√
ε

∫ t

0
e(t−s)/εA2G2(uε(s), vε(s)) dwQ2(s)

and set �2,ε(t) := vε(t) − �2,ε(t), we have

d

dt
�2,ε(t) = 1

ε

[
A2�2,ε(t) + B2

(
uε(t),�2,ε(t) + �2,ε(t)

)]
, �2,ε(0) = y.

Hence, as before, for any p ≥ 1, we have
1

p

d

dt
|�2,ε(t)|pH = 1

ε
〈A2�2,ε(t),�2,ε(t)〉H |�2,ε(t)|p−2

H

+ 1

ε

〈
B2

(
uε(t),�2,ε(t) + �2,ε(t)

)
− B1(uε(t),�2,ε(t)),�2,ε(t)

〉
H |�2,ε(t)|p−2

H

+ 1

ε
〈B2(uε(t),�2,ε(t)),�2,ε(t)〉H |�2,ε(t)|p−2

H

≤ −λ − Lb2

2ε
|�2,ε(t)|pH + cp

ε

(
1 + |uε(t)|pH + |�2,ε(t)|pH

)
.
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By comparison this yields

|vε(t)|pH ≤ cp|�2,ε(t)|pH + cp|�2,ε(t)|pH
≤ cpe−p(λ−Lb2 )/(2ε)t |y|pH

(4.8)

+ cp

ε

∫ t

0
e−p(λ−Lb2 )/(2ε)(t−s)(1 + |uε(s)|pH + |�2,ε(s)|pH

)
ds

+ cp|�2,ε(t)|pH .

Therefore, by integrating with respect to t , we easily obtain∫ t

0
|vε(s)|pH ds ≤ cp

(
ε|y|pH +

∫ t

0
|�2,ε(s)|pH ds +

∫ t

0
|uε(s)|pH ds + 1

)
.(4.9)

According to the Burkholder–Davis–Gundy inequality and to (3.5), we have

E|�2,ε(s)|pH
≤ cpε−p/2E

(∫ s

0
‖e(s−r)/εA2G2(uε(r), vε(r))Q2‖2

2 dr

)p/2

≤ cpK
p/2
2 ε−p/2E

(∫ s

0

(
s − r

ε

)−β2(ρ2−2)/ρ2

e−λ(ρ2+2)/(ερ2)(s−r)

(4.10)

× ‖G2(uε(r), vε(r))‖2
L(L∞(D),H) dr

)p/2

≤ cpK
p/2
2 ε−p/2E

(∫ s

0

(
s − r

ε

)−β2(ρ2−2)/ρ2

e−λ(ρ2+2)/(ερ2)(s−r)

× (
1 + |uε(r)|2H + |vε(r)|2γ

H

)
dr

)p/2

,

so that ∫ t

0
E|�2,ε(s)|pH ds ≤ cp

∫ t

0

(
1 + E|uε(s)|pH + E|vε(s)|pγ

H

)
ds.(4.11)

Due to (4.9), this allows to conclude∫ t

0
E|vε(s)|pH ds ≤ cp

(
ε|y|pH +

∫ t

0

(
1 + E|uε(s)|pH

)
ds +

∫ t

0
E|vε(s)|pγ

H ds + 1
)

and then as γ is assumed to be strictly less than 1, if ε ∈ (0,1] and t ∈ [0, T ], we
obtain∫ t

0
E|vε(s)|pH ds ≤ 1

2

∫ t

0
E|vε(s)|pH ds + cp|y|pH + cp

∫ t

0
E|uε(s)|pH ds + cp,T .

This yields∫ t

0
E|vε(s)|pH ds ≤ cp|y|pH + cp

∫ t

0
E sup

r≤s
|uε(r)|pH ds + cp,T .(4.12)
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Hence, if we plug (4.12) into (4.7), we get

E sup
s≤t

|uε(s)|pH ≤ cT ,p(1 + |x|pH + |y|pH ) + cT ,p

∫ t

0
E sup

r≤s
|uε(r)|pH ds

and from the Gronwall lemma (4.4) follows. Now, in view of estimates (4.4)
and (4.11), from (4.9), we obtain (4.5).

Finally, let us prove (4.6). From (4.10), with p = 2, we get

sup
t≤T

E|�2,ε(t)|2H ≤ c2|y|2H + c2

(
1 + sup

t≤T

E|uε(t)|2H + sup
t≤T

E|vε(t)|2γ
H

)

and then if we substitute in (4.8), we obtain

E|vε(t)|2H ≤ c2

(
1 + |y|2H + sup

t≤T

E|uε(t)|2H
)

+ c2 sup
t≤T

E|vε(t)|2γ
H .

As γ < 1, for any η > 0, we can fix cη > 0 such that

c2 sup
t≤T

E|vε(t)|2γ
H ≤ η sup

t≤T

E|vε(t)|2H + cη.

Therefore, if we take η ≤ 1/2, we obtain

1
2 sup

t≤T

E|vε(t)|2H ≤ c2

(
1 + |y|2H + sup

t≤T

E|uε(t)|2H
)

and (4.6) follows from (4.4). �

Next, we prove uniform bounds for uε in L∞(0, T ;D((−A1)
α)), for some

α > 0.

PROPOSITION 4.3. Under Hypotheses 1 and 2, there exists ᾱ > 0 such that
for any T > 0, p ≥ 1, x ∈ D((−A1)

α), with α ∈ [0, ᾱ), and y ∈ H

sup
ε∈(0,1]

E sup
t≤T

|uε(t)|pα ≤ cT ,α,p(1 + |x|pα + |y|pH )(4.13)

for some positive constant cT ,α,p .

PROOF. Assume that x ∈ D((−A1)
α), for some α ≥ 0. We have

uε(t) = etA1x +
∫ t

0
e(t−s)A1B1(uε(s), vε(s)) ds

+
∫ t

0
e(t−s)A1G1(uε(s), vε(s)) dwQ1(s).
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If α < 1/2, t ≤ T and p ≥ 2∣∣∣∣
∫ t

0
e(t−s)A1B1(uε(s), vε(s)) ds

∣∣∣∣
p

α

≤ cp,α

(∫ t

0
(t − s)−α|B1(uε(s), vε(s))|H ds

)p

≤ cp,α

(∫ t

0
(t − s)−α(

1 + |uε(s)|H + |vε(s)|H )
ds

)p

≤ cp,α

(
1 + sup

s≤T

|uε(s)|pH
)
T (1−α)p

+ cp,α

(∫ T

0
s−2α ds

)p/2(∫ T

0
|vε(s)|pH ds

)
T (p−2)/2,

so that, thanks to (4.4) and (4.5),

E sup
t≤T

∣∣∣∣
∫ t

0
e(t−s)A1B1(uε(s), vε(s)) ds

∣∣∣∣
p

α

≤ cT ,α,p(1 + |x|pH + |y|pH ).(4.14)

Concerning the stochastic term �1,ε(t), due to Lemma 4.1 and to (4.4), there exists
θ̄ > 0 such that for any α ≤ θ̄ and p ≥ 1

E sup
t≤T

|�1,ε(t)|pα ≤ cT ,α,p(1 + |x|pH + |y|pH ).(4.15)

Hence, if we choose ᾱ := θ̄ ∧ 1/2, thanks to (4.14) and (4.15), for any p ≥ 2 and
α < ᾱ we have

E sup
t≤T

|uε(t)|pα ≤ sup
t≤T

|etA1x|pα + E sup
t≤T

∣∣∣∣
∫ t

0
e(t−s)A1B1(uε(s), vε(s)) ds

∣∣∣∣
p

α

+ E sup
t≤T

|�1,ε(t)|pα

≤ cT ,α,p(1 + |x|pα + |y|pH ). �

Next, we prove uniform bounds for the increments of the mapping t ∈ [0, T ] �→
uε(t) ∈ H .

PROPOSITION 4.4. Under Hypotheses 1 and 2, for any α > 0, there exists
β(α) > 0 such that for any T > 0, p ≥ 2, x ∈ D((−A1)

α) and y ∈ H it holds

sup
ε∈(0,1]

E|uε(t) − uε(s)|pH ≤ cT ,α,p|t − s|β(α)p(|x|pα + |y|pH + 1),(4.16)

s, t ∈ (0, T ].
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PROOF. For any t, h ≥ 0, with t, t + h ∈ [0, T ], we have

uε(t + h) − uε(t) = (ehA1 − I )uε(t)

+
∫ t+h

t
e(t+h−s)A1B1(uε(s), vε(s)) ds

+
∫ t+h

t
e(t+h−s)A1G1(uε(s), vε(s)) dwQ1(s).

In view of (4.13), if we fix α ∈ [0, ᾱ) and p ≥ 1, we have

E|(ehA1 − I )uε(t)|pH ≤ cphαpE|uε(t)|pα ≤ cT ,α,phαp(1 + |x|pα + |y|pH ).(4.17)

In view of (4.4) and (4.5),

E

∣∣∣∣
∫ t+h

t
e(t+h−s)A1B1(uε(s), vε(s)) ds

∣∣∣∣
p

H

≤ chp−1
∫ t+h

t

(
1 + E|uε(s)|pH + E|vε(s)|pH

)
ds

(4.18)

≤ cT hp

(
1 + sup

s≤T

E|uε(s)|pH
)

+ chp−1
∫ T

0
E|vε(s)|pH ds

≤ cT ,p(1 + |x|pH + |y|pH )hp−1.

Finally, for the stochastic term, by using (3.5), for any t ≤ T and p ≥ 1, we have

E

∣∣∣∣
∫ t+h

t
e(t+h−s)A1G1(uε(s), vε(s)) dwQ1(s)

∣∣∣∣
p

H

≤ cpE

(∫ t+h

t

∥∥e(t+h−s)A1G1(uε(s), vε(s))Q1
∥∥2

2 ds

)p/2

≤ cpK
p/2
1 E

(∫ t+h

t
(t + h − s)−β2(ρ2−2)/ρ2

× ‖G1(uε(s), vε(s))‖2
L(L∞(D),H) ds

)p/2

.

Then, if we take p̄ ≥ 1 such that

β2(ρ2 − 2)

ρ2

p̄

p̄ − 2
< 1

for any p ≥ p̄, we have

E

∣∣∣∣
∫ t+h

t
e(t+h−s)A1G1(uε(s), vε(s)) dwQ1(s)

∣∣∣∣
p

H

≤ cT ,ph(p−2)/2−β2(ρ2−2)/ρ2p/2
∫ T

0

(
1 + E|uε(s)|pH + E|vε(s)|pH

)
ds



930 S. CERRAI

and, thanks to (4.4) and (4.5), we conclude

E

∣∣∣∣
∫ t+h

t
e(t+h−s)A1G1(uε(s), vε(s)) dwQ1(s)

∣∣∣∣
p

H
(4.19)

≤ cT ,p(1 + |x|pH + |y|pH )h(1−2/p̄−β2(ρ2−2)/ρ2)p/2.

Therefore, collecting together (4.17), (4.18) and (4.19), we obtain

E|uε(t + h) − uε(t)|pH
≤ cT ,α,phαp(1 + |x|pα + |y|pH )

+ cT ,p

(
h(1−2/p̄−β2(ρ2−2)/ρ2)p/2 + hp−1)

(1 + |x|pH + |y|pH )

and, as we are assuming |h| ≤ 1, (4.16) follows for any p ≥ p̄ by taking

β(α) := min
{
α,

1

2

(
1 − 2

p̄
− β2(ρ2 − 2)

ρ2

)}
.

Estimate (4.16) for p < p̄ follows from the Hölder inequality. �

As a consequence of Propositions 4.3 and 4.4, we have the following fact.

COROLLARY 4.5. Under Hypotheses 1 and 2, for any T > 0, x ∈ D((−A1)
α),

with α > 0, and y ∈ H the family {L(uε)}ε∈(0,1] is tight in C([0, T ];H).

PROOF. Let α > 0 be fixed and let x ∈ D((−A1)
α) and y ∈ H . According

to (4.16), in view of the Garcia–Rademich–Rumsey theorem, there exists β̄ > 0
such that for any p ≥ 1

sup
ε∈(0,1]

E|uε|p
Cβ̄([0,T ];H)

≤ cT ,p(1 + |x|pα + |y|pH ).

Due to Proposition 4.3, this implies that for any η > 0 we can find Rη > 0 such
that

P(uε ∈ KRη) ≥ 1 − η, ε ∈ (0,1],
where, by the Ascoli–Arzelà theorem, KRη is the compact subset of C([0, T ];H)

defined by

KRη :=
{
u ∈ C([0, T ];H) : |u|

Cβ̄([0,T ];H)
+ sup

t∈[0,T ]
|u(t)|α ≤ Rη

}
.

This implies that the family of probability measures {L(uε)}ε∈(0,1] is tight in
C([0, T ];H). �

We conclude this section by noticing that with arguments analogous to those
used in the proof of Propositions 4.2, 4.3 and 4.4, we can obtain a priori bounds
also for the conditional second momenta of the H -norms of uε and vε .
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PROPOSITION 4.6. Assume Hypotheses 1 and 2. Then for any 0 ≤ s < t ≤ T

and any ε ∈ (0,1] the following facts holds.

1. There exists ᾱ > 0 such that for any x ∈ D((−A1)
α), with α ∈ [0, ᾱ], and y ∈ H

E(|uε(t)|2α|Fs) ≤ cT ,α

(
1 + |uε(s)|2α + |vε(s)|2H

)
, P-a.s.

for some constant cT ,α independent of ε.
2. For any x, y ∈ H

E(|vε(t)|2H |Fs) ≤ cT

(
1 + |uε(s)|2H + |vε(s)|2H

)
, P-a.s.(4.20)

for some constant cT independent of ε.
3. For any α > 0, there exists β(α) > 0 such that for any x ∈ D((−A1)

α) and
y ∈ H

E
(|uε(t)−uε(s)|2H |Fs

) ≤ cT ,α(t − s)2β(α)(|uε(s)|2α +|vε(s)|2H +1
)
, P-a.s.

for some constant cT ,α independent of ε.

5. The key lemma. We introduce the Kolmogorov operator associated with
the slow motion equation, with frozen fast component, by setting for any ϕ ∈
R(H) and x, y ∈ H

Lslϕ(x, y)

= 1

2
Tr[Q1G1(x, y)D2ϕ(x)G1(x, y)Q1]

+ 〈A1Dϕ(x), x〉H + 〈Dϕ(x),B1(x, y)〉H

= 1

2

k∑
i,j=1

D2
ij f (〈x,PNa1〉H , . . . , 〈x,PNak〉H)(5.1)

× 〈G1(x, y)Q1,Nai,G1(x, y)Q1,Naj 〉H

+
k∑

i=1

Dif (〈x,PNa1〉H , . . . , 〈x,PNak〉H )

× (〈x,A1,Nai〉H + 〈B1(x, y),PNai〉H )
.

LEMMA 5.1. Assume Hypotheses 1–4 and fix x ∈ D((−A1)
α), with α > 0,

and y ∈ H . Then for any ϕ ∈ R(H) and 0 ≤ t1 < t2 ≤ T ,

lim
ε→0

E

∣∣∣∣
∫ t2

t1

E
(
Lslϕ(uε(r), vε(r)) − Lavϕ(uε(r))|Ft1

)
dr

∣∣∣∣ = 0.(5.2)

PROOF. By using the Khasminskii idea introduced in [16], we realize a parti-
tion of [0, T ] into intervals of size δε > 0, to be chosen later on, and for each ε > 0
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we denote by v̂ε(t) the solution of the problem

v̂ε(t) = e(t−kδε)A2/εvε(kδε) + 1

ε

∫ t

kδε

e(t−s)A2/εB2(uε(kδε), v̂ε(s)) ds

(5.3)

+ 1√
ε

∫ t

kδε

e(t−s)A2/εG2(uε(kδε), v̂ε(s)) dwQ2(s),

t ∈ [
kδε, (k + 1)δε

)
for k = 0, . . . , [T/δε]. In what follows, we shall set ζε := δε/ε.

Step 1. Now, we prove that there exist κ1, κ2 > 0 such that if we set

ζε =
(

log
1

εκ2

)κ1

,

then

lim
ε→0

sup
t∈[0,T ]

E|v̂ε(t) − vε(t)|2H = 0.(5.4)

If we fix k = 0, . . . , [T/δε] and take t ∈ [kδε, (k + 1)δε), we have

vε(t) = e(t−kδε)A2/εvε(kδε) + 1

ε

∫ t

kδε

e(t−s)A2/εB2(uε(s), vε(s)) ds

+ 1√
ε

∫ t

kδε

e(t−s)A2/εG2(uε(s), vε(s)) dwQ2(s),

so that

E|v̂ε(t) − vε(t)|2H
≤ 2δε

ε2

∫ t

kδε

E|B2(uε(kδε), v̂ε(s)) − B2(uε(s), vε(s))|2H ds

+ 2

ε
E

∣∣∣∣
∫ t

kδε

e(t−s)A2/ε[G2(uε(kδε), v̂ε(s)) − G2(uε(s), vε(s))]dwQ2(s)

∣∣∣∣
2

H

.

For the first term, we have
δε

ε2

∫ t

kδε

E|B2(uε(kδε), v̂ε(s)) − B2(uε(s), vε(s))|2H ds

(5.5)

≤ c

ε

∫ t

kδε

ζε

(
E|uε(kδε) − uε(s)|2H + E|v̂ε(s) − vε(s)|2H

)
ds.

For the second term, by proceeding as in the proof of Proposition 4.2, we obtain

E

∣∣∣∣
∫ t

kδε

e(t−s)A2/ε[G2(uε(kδε), v̂ε(s)) − G2(uε(s), vε(s))]dwQ2(s)

∣∣∣∣
2

H

≤ c

∫ t

kδε

(
t − s

ε

)−β2(ρ2−2)/ρ2

e−λ(ρ2+2)/(ερ2)(t−s)(5.6)

× (
E|uε(kδε) − uε(s)|2H + E|v̂ε(s) − vε(s)|2H

)
ds.
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In view of (4.16), we have

1

ε

∫ t

kδε

[(
t − s

ε

)−β2(ρ2−2)/ρ2

e−λ(ρ2+2)/(ερ2)(t−s) + ζε

]
E|uε(kδε) − uε(s)|2H ds

≤ cT

ε

∫ t

kδε

[(
t − s

ε

)−β2(ρ2−2)/ρ2

e−λ(ρ2+2)/(ερ2)(t−s) + ζε

]

× (s − kδε)
2β(α) ds(1 + |x|2α + |y|2H )

≤ cT δ2β(α)
ε (1 + ζ 2

ε )(1 + |x|2α + |y|2H).

Moreover,

1

ε

∫ t

kδε

[(
t − s

ε

)−β2(ρ2−2)/ρ2

e−λ(ρ2+2)/(ερ2)(t−s) + ζε

]
E|v̂ε(s) − vε(s)|2H ds

≤ c

ε

(
εβ2(ρ2−2)/ρ2 + ζεδ

β2(ρ2−2)/ρ2
ε

)

×
∫ t

kδε

(t − s)−β2(ρ2−2)/ρ2E|v̂ε(s) − vε(s)|2H ds.

Then thanks to (5.5) and (5.6), we obtain

E|v̂ε(t) − vε(t)|2H ≤ cT δ2β(α)
ε (1 + ζ 2

ε )(1 + |x|2α + |y|2H )

+ cεβ2(ρ2−2)/ρ2−1(
1 + ζ 1+β2(ρ2−2)/ρ2

ε

)
(5.7)

×
∫ t

kδε

(t − s)−β2(ρ2−2)/ρ2E|v̂ε(s) − vε(s)|2H ds.

Now, we recall the following simple fact (for a proof, see, e.g., [11]).

LEMMA 5.2. If M,L, θ are positive constants and g is a nonnegative function
such that

g(t) ≤ M + L

∫ t

t0

(t − s)θ−1g(s) ds, t ≥ t0,

then

g(t) ≤ M + ML

θ
(t − t0)

θ + L2
∫ 1

0
rθ−1(1 − r)θ−1 dr

∫ t

t0

(t − s)2θ−1g(s) ds,

t ≥ t0.

Notice that if we iterate the lemma above n-times, we find

g(t) ≤ c1,n,θM
(
1 + L2n−1(t − t0)

2n−1) + c2,n,θL
2n

∫ t

t0

(t − s)2nθ−1g(s) ds

for some positive constants c1,n,θ and c2,n,θ .
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If we apply n̄-times Lemma 5.2 to (5.7), with n̄ ∈ N such that

2n̄θ := 2n̄

(
1 − β2(ρ2 − 2)

ρ2

)
> 1,

we get

E|v̂ε(t) − vε(t)|2H
≤ cT δ2β(α)

ε (1 + ζ 2
ε )(1 + |x|2α + |y|2H)

× (
1 + ε−(2n̄−1)θ (

1 + ζ (2n̄−1)(2−θ)
ε

)
δ(2n̄−1)θ
ε

)
+ cε−2n̄θ (

1 + ζ 2n̄(2−θ)
ε

) ∫ t

kδε

(t − s)2n̄θ−1E|v̂ε(s) − vε(s)|2H ds

≤ cT δ2β(α)
ε (1 + |x|2α + |y|2H)(1 + ζ 2n̄+1

ε )

+ c

δε

(1 + ζ 2n̄+1

ε )

∫ t

kδε

E|v̂ε(s) − vε(s)|2H ds.

From the Gronwall lemma this yields

E|v̂ε(t) − vε(t)|2H ≤ cT δ2β(α)
ε (1 + |x|2α + |y|2H )(1 + ζ 2n̄+1

ε ) exp(cζ 2n̄+1

ε ).

Now, since we have

exp(cζ 2n̄+1

ε ) = exp
(
c

(
log

1

εκ2

)κ12n̄+1)
,

if we take κ1 := 2−(n̄+1) and κ2 < 2β(α)c−1, we conclude that (5.4) holds.
Moreover, as for t ∈ [kδε, (k + 1)δε] the process v̂ε(t) is the mild solution of the

problem

dv(t) = 1

ε
[A2v(t) + B2(uε(kδε), v(t))]dt + 1√

ε
G2(uε(kδε), v(t)) dwQ2(t),

v(kδε) = vε(kδε)

with the same arguments as those used to prove (4.6) and (4.20), we obtain

sup
t∈[0,T ]

E|v̂ε(t)|2H ≤ cT (1 + |x|2H + |y|2H )(5.8)

and, for any t ∈ [kδε, (k + 1)δε],
E(|v̂ε(t)|2H |Fkδε ) ≤ c

(
1 + |uε(kδε)|2H + |vε(kδε)|2H

)
, P-a.s.

Step 2. Now, we fix ϕ ∈ R(H). We can assume that

ϕ(x) = f (〈x,PNa1〉H , . . . , 〈x,PNak〉H )
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for some f ∈ C∞
c (Rk) and k,N ∈ N. According to (3.15) and (5.1), we have

Lslϕ(uε(r), vε(r)) − Lavϕ(uε(r)) = 1

2

k∑
i,j=1

I ε
ij (r) +

k∑
i=1

J ε
i (r),

where

I ε
ij := D2

ij f (〈uε,PNa1〉H , . . . , 〈uε,PNak〉H )

× (〈G1(uε, vε)Q1,Nai,G1(uε, vε)Q1,Naj 〉H
− 〈Ḡ(uε)Q1,Nai, Ḡ(uε)Q1,Naj 〉H )

and

J ε
i = Dif (〈uε,PNa1〉H , . . . , 〈uε,PNak〉H )〈B1(uε, vε) − B̄(uε),PNai〉H .

Hence, if we prove that for any i, j = 1, . . . , k,

lim
ε→0

E

∣∣∣∣
∫ t2

t1

E(I ε
ij (r)|Ft1) dr

∣∣∣∣ = 0(5.9)

and

lim
ε→0

E

∣∣∣∣
∫ t2

t1

E(J ε
i (r)|Ft1) dr

∣∣∣∣ = 0,(5.10)

we immediately get (5.2).
We have ∫ t2

t1

E(I ε
ij (r)|Ft1) dr =

3∑
l=1

∫ t2

t1

E(I ε
l,ij (r)|Ft1) dr,

where

I ε
1,ij (r) := D2

ij f (〈uε(r),PNa1〉H , . . . , 〈uε(r),PNak〉H)

× 〈G1(uε(r), vε(r))Q1,Nai,G1(uε(r), vε(r))Q1,Naj 〉H
− D2

ij f (〈uε([r/δε]δε),PNa1〉H , . . . , 〈uε([r/δε]δε),PNak〉H )

× 〈G1(uε([r/δε]δε), v̂ε(r))Q1,Nai,

G1(uε([r/δε]δε), v̂ε(r))Q1,Naj 〉H
and

I ε
2,ij (r)

:= D2
ij f (〈uε([r/δε]δε),PNa1〉H , . . . , 〈uε([r/δε]δε),PNak〉H )

× (〈G1(uε([r/δε]δε), v̂ε(r))Q1,Nai,G1(uε([r/δε]δε), v̂ε(r))Q1,Naj 〉H
− 〈Ḡ(uε([r/δε]δε))Q1,Nai, Ḡ(uε([r/δε]δε))Q1,Naj 〉H )
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and

I ε
3,ij (r) := D2

ij f (〈uε([r/δε]δε),PNa1〉H , . . . , 〈uε([r/δε]δε),PNak〉H)

× 〈Ḡ(uε([r/δε]δε))Q1,Nai, Ḡ(uε([r/δε]δε))Q1,Naj 〉H
− D2

ij f (〈uε(r),PNa1〉H , . . . , 〈uε(r),PNak〉H )

× 〈Ḡ(uε(r))Q1,Nai, Ḡ(uε(r))Q1,Naj 〉H .

It is immediate to check that

|I ε
1,ij (r)| + |I ε

3,ij (r)|
≤ c

(|uε([r/δε]δε) − uε(r)|H + |vε(r) − v̂ε(r)|H )
× (

1 + |uε(r)|2H + |vε(r)|2H + |uε([r/δε]δε)|H + |v̂ε(r)|H )
,

so that(
E

∫ t2

t1

[|I ε
1,ij (r)| + |I ε

3,ij (r)|]dr

)2

≤ c

∫ t2

t1

[
E|uε([r/δε]δε) − uε(r)|2H + E|vε(r) − v̂ε(r)|2H

]
dr

×
∫ t2

t1

[
1 + E|uε(r)|4H + E|vε(r)|4H + E|uε([r/δε]δε)|2H + E|v̂ε(r)|2H

]
dr.

According to (4.16), (4.4), (4.5) and (5.8), we conclude(
E

∫ t2

t1

[|I ε
1,ij (r)| + |I ε

3,ij (r)|]dr

)2

≤ cT

(
δ2β(α)
ε + sup

t∈[0,T ]
E|vε(t) − v̂ε(t)|2H

)
(1 + |x|4H + |y|4H + |x|2α),

so that due to (5.4),

lim
ε→0

E

∫ t2

t1

[|I ε
1,ij (r)| + |I ε

3,ij (r)|]dr = 0.(5.11)

Next, let us estimate I2,ij . We have∫ t2

t1

E(I2,ij (r)|Ft1) dr

=
[t2/δε]−1∑

k=[t1/δε]+1

∫ (k+1)δε

kδε

E(E(I2,ij (r)|Fkδε )|Ft1) dr

+
∫ ([t1/δε]+1)δε

t1

E(I2,ij (r)|Ft1) dr

+
∫ t2

[t2/δε]δε

E
(
E

(
I2,ij (r)|F[t2/δε]δε

)|Ft1

)
dr.
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The distribution of the process

v1,ε(r) := v̂ε(kδε + r), r ∈ [0, δε],
coincides with the distribution of the process

v2,ε(r) := ṽuε(kδε),vε(kδε)(r/ε), r ∈ [0, δε],
where ṽuε(kδε),vε(kδε) is the solution of problem (2.8) with random frozen slow
component uε(kδε), random initial datum vε(kδε) and noise w̃Q2 independent of
uε(kδε) and vε(kδε). Then if we set

h(x) := D2
ij f (〈x,PNa1〉H , . . . , 〈x,PNak〉H), x ∈ H

for any k = [t1/δε] + 1, . . . , [t2/δε] − 1, we have

∫ (k+1)δε

kδε

E(I2,ij (r)|Fkδε ) dr

=
∫ δε

0
E

(
h(uε(kδε))[〈G1(uε(kδε), v1,ε(r))Q1,Nai,

G1(uε(kδε), v1,ε(r))Q1,Naj 〉H
− 〈Ḡ(uε(kδε))Q1,Nai,

Ḡ(uε(kδε))Q1,Naj 〉H ]|Fkδε

)
dr

=
∫ δε

0
E

(
h(uε(kδε))[〈G1(uε(kδε), v2,ε(r))Q1,Nai,

G1(uε(kδε), v2,ε(r))Q1,Naj 〉H
− 〈Ḡ(uε(kδε))Q1,Nai,

Ḡ(uε(kδε))Q1,Naj 〉H ]|Fkδε

)
dr

and, with a change of variables,

∫ (k+1)δε

kδε

E(I2,ij (r)|Fkδε ) dr

= ε

∫ δε/ε

0
E

(
h(uε(kδε))

× [〈
G1

(
uε(kδε), ṽ

uε(kδε),vε(kδε)(r)
)
Q1,Nai,

G1
(
uε(kδε), ṽ

uε(kδε),vε(kδε)(r)
)
Q1,Naj

〉
H

− 〈Ḡ(uε(kδε))Q1,Nai, Ḡ(uε(kδε))Q1,Naj 〉H ]|Fkδε

)
dr.
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Therefore, due to the Markov property, we obtain∫ (k+1)δε

kδε

E(I2,ij (r)|Fkδε ) dr

= ε

∫ δε/ε

0

(
E〈G1(x, vx,y(r))Q1,Nai,

G1(x, vx,y(r))Q1,Naj 〉Hh(x)

− 〈Ḡ(x)Q1,Nai, Ḡ(x)Q1,Naj 〉Hh(x)
)
|x=uε(kδε),y=vε(kδε)

dr

and hence according to (2.17),∣∣∣∣
∫ (k+1)δε

kδε

E(I2,ij (r)|Fkδε ) dr

∣∣∣∣ ≤ cij δεα(δε/ε)
(
1 + |uε(kδε)|2H + |vε(kδε)|2H

)
,

P-a.s.

Analogously,∣∣∣∣
∫ ([t1/δε]+1)δε

t1

E(I2,ij (r)|Ft1) dr

∣∣∣∣
≤ cij δε(1 − {t1/δε})α(

(1 − {t1/δε})δε/ε
)(

1 + |uε(t1)|2H + |vε(t1)|2H
)
,

P-a.s.

and∣∣∣∣
∫ t2

[t2/δε]δε

E
(
I2,ij (r)|F[t2/δε]δε

)
dr

∣∣∣∣
≤ cij δε{t2/δε}α({t2/δε}δε/ε)

(
1 + |uε([t2/δε]δε)|2H + |vε([t2/δε]δε)|2H

)
,

P-a.s.

Thanks to (4.4) and (4.6), the three inequality above imply

lim
ε→0

E

∣∣∣∣
∫ t2

t1

E(I ε
2,ij (r)|Ft1) dr

∣∣∣∣ = 0,

so that from (5.11), we conclude that (5.9) holds.
In an analogous way [just by replacing assumption (2.17) with assump-

tion (2.16)], we can prove that (5.10) holds and then combining together (5.9)
with (5.10), we obtain (5.2). �

6. The averaging limit. Before concluding with the proof of the averaging
limit, we introduce an approximating slow motion equation.

For any n ∈ N, we define

A1,n := A1Pn, Q1,n := Q1Pn,
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where Pn is the projection of H into spam〈e1,1, . . . , e1,n〉, and we denote by uε,n

the solution of the problem

du(t) = [A1,nu(t) + B1(u(t), vε(t))]dt + G1(u(t), vε(t)) dwQ1,n(t),(6.1)

u(0) = x.

Notice that as A1,n ∈ L(H) and Q1,n has finite rank, uε,n is a strong solution
to (6.1), that is,

uε,n(t) = x +
∫ t

0
[A1,nuε,n(s) + B1(uε,n(s), vε(s))]ds

(6.2)

+
∫ t

0
G1(uε,n(s), vε(s)) dwQ1,n(s).

By standard arguments, it is possible to show that for any p ≥ 1 and ε > 0,

lim
n→∞E sup

t∈[0,T ]
|uε(t) − uε,n(t)|2H = 0.(6.3)

Moreover, for any p ≥ 1 and ε > 0, it holds

sup
n∈N

E sup
t∈[0,T ]

|uε,n(t)|pH < ∞.(6.4)

In analogy to (5.1), we introduce the Kolmogorov operator associated with the
approximating slow motion equation (6.1), with frozen fast component y ∈ H , by
setting

Ln
slϕ(x, y)

= 1

2
Tr[Q1,nG1(x, y)D2ϕ(x)G1(x, y)Q1,n]

+ 〈A1,nDϕ(x), x〉H + 〈Dϕ(x),B1(x, y)〉H

= 1

2

k∑
i,j=1

D2
ij f (〈x,PNa1〉H , . . . , 〈x,PNak〉H )

× 〈G1(x, y)Q1,N∧nai,G1(x, y)Q1,N∧naj 〉H

+
k∑

i=1

Dif (〈x,PNa1〉H , . . . , 〈x,PNak〉H)

× (〈x,A1,N∧nai〉H + 〈B1(x, y),PNai〉H )
.

In the next lemma, we show that the Kolmogorov operator Ln
sl approximates in

a proper way the Kolmogorov operator Lsl .

LEMMA 6.1. Assume Hypotheses 1 and 2. Then for any ϕ ∈ R(H) and ε > 0,

lim
n→∞E sup

t∈[0,T ]
|Ln

slϕ(uε,n(t), vε(t)) − Lslϕ(uε(t), vε(t))| = 0.(6.5)
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PROOF. Let

ϕ(x) = f (〈x,PNa1〉H , . . . , 〈x,PNak〉H ), x ∈ H

for some k,N ∈ N, a1, . . . , ak ∈ H and f ∈ C∞
c (Rk). If n ≥ N , then

Ln
slϕ(x, y) − Lslϕ(x, y) = 0, x, y ∈ H,

so that for any ε > 0 and n ≥ N,

Ln
slϕ(uε,n(t), vε(t)) − Lslϕ(uε(t), vε(t))

= Lslϕ(uε,n(t), vε(t)) − Lslϕ(uε(t), vε(t)).

Now, due to the assumptions on the coefficients B1 and G1 and on the function f ,
it is immediate to check that for x1, x2, y ∈ H,

|Lslϕ(x1, y) − Lslϕ(x2, y)| ≤ c|x1 − x2|H (1 + |x1|2H + |x2|2H + |y|2H ).

Then

sup
t∈[0,T ]

|Lslϕ(uε,n(t), vε(t)) − Lslϕ(uε(t), vε(t))|

≤ c sup
t∈[0,T ]

|uε,n(t) − uε(t)|H

×
(

1 + sup
t∈[0,T ]

|uε,n(t)|2H + sup
t∈[0,T ]

|uε(t)|2H + sup
t∈[0,T ]

|vε(t)|2H
)
.

According to (6.3) and (6.4), this implies (6.5). �

Finally, we conclude with the proof of the averaging limit.

THEOREM 6.2. Assume Hypotheses 1–4 and fix any x ∈ D((−A1)
α), with

α > 0, and any y ∈ H . Then if ū is the solution of the averaged equation (3.14),
for any T > 0,

w − lim
ε→0

L(uε) = L(ū), in C([0, T ];H).

PROOF. Due to the tightness of the sequence {L(uε)}ε∈(0,1] in P (Cx([0, T ];
H),E) (see Proposition 4.5), there exists a sequence {εk}k∈N ↓ 0 such that the se-
quence {L(uεk

)}k∈N converges weakly to some Q. If we are able to identify Q with
L(ū), where ū is the unique mild solution of the averaged equation (3.14), then
we conclude that the whole sequence {L(uε)}ε∈(0,1] weakly converges to L(ū) in
C([0, T ];H).

As uε,n verifies (6.2), for any ϕ ∈ R(H) we can apply Itô’s formula to ϕ(uε,n),

and we obtain that the process

t ∈ [0, T ] �→ ϕ(uε,n(t)) − ϕ(x) −
∫ t

0
Ln

slϕ(uε,n(s), vε(s)) ds
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is a martingale with respect to {Ft }t∈[0,T ]. Then by taking the limit as n goes to
infinity, due to (6.3) and to (6.5), we conclude that for any ε > 0 the process

t ∈ [0, T ] �→ ϕ(uε(t)) − ϕ(x) −
∫ t

0
Lslϕ(uε(s), vε(s)) ds

is an Ft -martingale. In particular, for any 0 ≤ s ≤ t ≤ T and any bounded Fs -
measurable random variable �

E

(
�

[
ϕ(uε(t)) − ϕ(uε(s)) −

∫ t

s
Lslϕ(uε(r), vε(r)) dr

])
= 0.(6.6)

We denote by EQ and EQk the expectations in (Cx([0, T ];H),E) with respect
to the probability measures Q and Qk , where Qk = L(uεk

), and we denote by η(t)

the canonical process in (Cx([0, T ];H),E). Then for any bounded Es -measurable
random variable

� = F(η(t1), . . . , η(tN))

with F ∈ Cb(R
N) and 0 ≤ t1 < · · · < tN , any function ϕ ∈ R(H) and any 0 ≤ s ≤

t ≤ T we have

EQ

(
�

[
ϕ(η(t)) − ϕ(η(s)) −

∫ t

s
Lavϕ(η(r)) dr

])

= lim
k→∞EQk

(
�

[
ϕ(η(t)) − ϕ(η(s)) −

∫ t

s
Lavϕ(η(r)) dr

])

= lim
k→∞E

(
� ◦ uεk

[
ϕ(uεk

(t)) − ϕ(uεk
(s)) −

∫ t

s
Lavϕ(uεk

(r)) dr

])
.

In view of (6.6), this implies

EQ

(
�

[
ϕ(η(t)) − ϕ(η(s)) −

∫ t

s
Lavϕ(η(r)) dr

])

= lim
k→∞E

(
� ◦ uεk

∫ t

s
[Lslϕ(uεk

(r), vεk
(r)) − Lavϕ(uεk

(r))]dr

)
.

We have∣∣∣∣E
(
� ◦ uεk

∫ t

s
[Lslϕ(uεk

(r), vεk
(r)) − Lavϕ(uεk

(r))]dr

)∣∣∣∣
=

∣∣∣∣E
(
� ◦ uεk

∫ t

s
E

(
Lslϕ(uεk

(r), vεk
(r)) − Lavϕ(uεk

(r))|Fs

)
dr

)∣∣∣∣
≤ ‖�‖∞E

∣∣∣∣
∫ t

s
E

(
Lslϕ(uεk

(r), vεk
(r)) − Lavϕ(uεk

(r))|Fs

)
dr

∣∣∣∣.
Hence, according to (5.2), we can conclude that

EQ

(
�

[
ϕ(η(t)) − ϕ(η(s)) −

∫ t

s
Lavϕ(η(r)) dr

])
= 0.
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This means that Q solves the martingale problem with parameters (x,A1, B̄, Ḡ,

Q1), and due to what we have see in Section 3.3, Q = L(ū). �

6.1. Averaging limit in probability. In the case the diffusion coefficient g1 in
the slow motion equation does not depend on the fast variable, it is possible to
prove that the sequence {uε}ε∈(0,1] converges in probability to ū and not just in
weak sense.

To this purpose, we need to replace Hypothesis 3 with the following stronger
condition.

HYPOTHESIS 5. There exists a mapping B̄1 :H → H such that for any T > 0,
t ≥ 0 and x, y,h ∈ H

E

∣∣∣∣ 1

T

∫ t+T

t
〈B1(x, vx,y(s)), h〉H ds − 〈B̄1(x), h〉H

∣∣∣∣(6.7)

≤ α(T )(1 + |x|H + |y|H )|h|H
for some α(T ) such that

lim
T →∞α(T ) = 0.

In Section 2.1, by referring to our previous paper [7], we have seen that if the
dissipativity constant of the operator A1 is large enough and/or the Lipschitz con-
stants Lb2 and Lg2 and the constants ζ2 and κ2 introduced in Hypothesis 1 are small
enough [in this spirit see condition (3.1)], then the fast transition semigroup admits
a unique invariant measure μx , which is strongly mixing and such that (2.13) holds.

In Lemma 2.3, we have seen that this implies that for any ϕ ∈ Lip(H), T > 0,
x, y ∈ H and t ≥ 0,

E

∣∣∣∣ 1

T

∫ t+T

t
ϕ(vx,y(s)) ds −

∫
H

ϕ(z)μx(dz)

∣∣∣∣
≤ c√

T

([ϕ]Lip(H)(1 + |x|H + |y|H ) + |ϕ(0)|).
Then if we apply the inequality above to ϕ = 〈B1(x, ·), h〉H and if we set B̄1(x) =
〈B1(x, ·),μx〉, we have that Hypothesis 5 holds.

As uε is the mild solution of the slow motion equation in system (1.6) [see
also (2.7) for its abstract version] and g1 does not depend on v2, for any h ∈
D(A1) ∩ L∞(D), we have

〈uε(t), h〉H = 〈x,h〉H +
∫ t

0
〈uε(s),A1h〉H ds +

∫ t

0
〈B̄1(uε(s)), h〉H ds

(6.8)

+
∫ t

0
〈G1(uε(s))h, dwQ1(s)〉H + Rε(t),
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where

Rε(t) :=
∫ t

0
〈B1(uε(s), vε(s)) − B̄1(uε(s)), h〉H ds.

In order to prove the averaging limit, we need the following key lemma, which is
the counterpart of Lemma 5.1.

LEMMA 6.3. Assume Hypotheses 1, 2 and 5 and fix T > 0. Then for any
x ∈ D((−A1)

α), with α > 0, and y,h ∈ H, we have

lim
ε→0

E sup
t∈[0,T ]

|Rε(t)| = 0.

PROOF. Step 1. We prove that

lim
ε→0

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
〈B1(uε([s/δε]δε), v̂ε(s)) − B̄1(uε(s)), h〉H ds

∣∣∣∣ = 0,(6.9)

where v̂ε(t) is the solution of problem (5.3). Let k = 0, . . . , [T/δε] be fixed. If
we take a noise w̃Q2(t) independent of uε(kδε) and vε(kδε) in the fast motion
equation (2.8), it is immediate to check that the process

z1,ε(s) := ṽuε(kδε),vε(kδε)(s/ε), s ∈ [0, δε],
coincides in distribution with the process

z2,ε(s) := v̂ε(kδε + s), s ∈ [0, δε].
This means that

E

∣∣∣∣
∫ (k+1)δε

kδε

〈B1(uε(kδε), v̂ε(s)) − B̄1(uε(kδε)), h〉H ds

∣∣∣∣
= E

∣∣∣∣
∫ δε

0
〈B1(uε(kδε), z2,ε(s)) − B̄1(uε(kδε)), h〉H ds

∣∣∣∣
= E

∣∣∣∣
∫ δε

0
〈B1(uε(kδε), z1,ε(s)) − B̄1(uε(kδε)), h〉H ds

∣∣∣∣
= δεE

∣∣∣∣ 1

ζε

∫ ζε

0

〈
B1

(
uε(kδε), ṽ

uε(kδε),vε(kδε)(s)
) − B̄1(uε(kδε)), h

〉
H ds

∣∣∣∣.
Hence, according to Hypothesis 5, due to (4.4) and (4.6), we have

E

∣∣∣∣
∫ (k+1)δε

kδε

〈B1(uε(kδε), v̂ε(s)) − B̄1(uε(kδε)), h〉H ds

∣∣∣∣
≤ δεα(ζε)

(
1 + E|uε(kδε)|H + E|vε(kδε)|H )|h|H

≤ cT (1 + |x|H + |y|H )|h|Hδεα(ζε).
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This allows to obtain (6.9). Actually, we have

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
〈B1(uε([s/δε]δε), v̂ε(s)) − B̄1(uε(s)), h〉H ds

∣∣∣∣
≤

[T/δε]∑
k=0

E

∣∣∣∣
∫ (k+1)δε

kδε

〈B1(uε([s/δε]δε), v̂ε(s)) − B̄1(uε(kδε)), h〉H ds

∣∣∣∣

+
[T/δε]∑
k=0

∫ (k+1)δε

kδε

E|〈B̄1(uε(kδε)) − B̄1(uε(s)), h〉H |ds

and, as B̄1 is Lipschitz continuous, thanks to (4.16) we get

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
〈B1(uε([s/δε]δε), v̂ε(s)) − B̄1(uε(s)), h〉H ds

∣∣∣∣
≤ cT [T/δε](1 + |x|H + |y|H )δεα(ζε)

+ cT [T/δε](1 + |x|α + |y|H )|h|Hδ1+β(α)
ε

and (6.9) follows.
Step 2. It holds

lim
ε→0

sup
t∈[0,T ]

E|Rε(t)| = 0.

Thanks to (6.9), we have

lim sup
ε→0

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
〈B1(uε(s), vε(s)) − B̄1(uε(s)), h〉H ds

∣∣∣∣
≤ lim sup

ε→0
E

∫ T

0
|〈B1(uε(s), vε(s)) − B1(uε([s/δε]δε), v̂ε(s)), h〉H |ds

+ lim
ε→0

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
〈B1(uε([s/δε]δε), v̂ε(s)) − B̄1(uε(s)), h〉H ds

∣∣∣∣
= lim sup

ε→0
E

∫ T

0
|〈B1(uε(s), vε(s)) − B1(uε([s/δε]δε), v̂ε(s)), h〉H |ds.

By using (4.16), we have

E

∫ T

0
|〈B1(uε(s), vε(s)) − B1(uε([s/δε]δε), v̂ε(s)), h〉H |ds

≤ c

∫ T

0

(
E|uε(s) − uε([s/δε]δε)|H + E|vε(s) − v̂ε(s)|H )

ds|h|H
≤ cT (1 + |x|α + |y|H)|h|Hδβ(α)

ε + T sup
t∈[0,T ]

E|vε(t) − v̂ε(t)|H |h|H
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and then due to (5.4), we have

lim
ε→0

E

∫ T

0
|〈B1(uε(s), vε(s)) − B1(uε([s/δε]δε), v̂ε(s)), h〉H |ds = 0.

This allows to conclude. �

THEOREM 6.4. Assume that the diffusion coefficient g1 in the slow motion
equation does not depend on the fast variable vε and fix x ∈ D((−A1)

α), for some
α > 0, and y ∈ H . Then under Hypotheses 1, 2 and 5 for any T > 0 and η > 0, we
have

lim
ε→0

P
(|uε − ū|C([0,T ];H) > η

) = 0,(6.10)

where ū is the solution of the averaged equation (3.14).

PROOF. We have seen that the family of probability measures {L(uε)}ε∈(0,1]
is tight in P (C([0, T ];H)), for any fixed T > 0. Then if we fix any two sequences
{εn}n∈N and {εm}m∈N which converge to zero, due to the Skorokhod theorem, we
can find two subsequences {εn(k)}k∈N and {εm(k)}k∈N and a sequence

{Xk}k∈N := {(uk
1, u

k
2, ŵ

Q1
k )}k∈N ⊂ C := [C([0, T ];H)]2 × C([0, T ];D ′(D)),

defined on some probability space (�̂, F̂ , P̂), such that

L(Xk) = L
((

uεn(k)
, uεm(k)

,wQ1
))

, k ∈ N(6.11)

and Xk converges P̂ almost surely to some X := (u1, u2, ŵ
Q1) ∈ C and ŵQ1 is a

cylindrical Wiener process. In particular, (ŵ
Q1
k , P̂) is a cylindrical Wiener process,

for any k ∈ N, and

lim
k→∞ sup

t∈[0,T ]
|〈ŵQ1

k (t) − ŵQ1(t), h〉H | = 0

for any h ∈ H .
Now, for k ∈ N and i = 1,2, we define

Rk
i (t) := 〈uk

i (t), h〉H − 〈x,h〉H −
∫ t

0
〈uk

i (s),A1h〉H ds

(6.12)

−
∫ t

0
〈B̄1(u

k
i (s)), h〉H ds −

∫ t

0
〈G1(u

k
i (s))h, dŵ

Q1
k (s)〉H .

In (6.8), we have defined

Rε(t) := 〈uε(t), h〉H − 〈x,h〉H −
∫ t

0
〈uε(s),A1h〉H ds

−
∫ t

0
〈B̄1(uε(s)), h〉H ds −

∫ t

0
〈G1(uε(s))h, dwQ1(s)〉H
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and in Lemma 6.3 we have proved that

lim
ε→0

E sup
t∈[0,T ]

|Rε(t)| = 0.

In view of (6.11), this implies

lim
k→∞ Ê sup

t∈[0,T ]
|Rk

i (t)| = 0, i = 1,2.

On the other hand, since the sequence {Xk}k∈N ⊂ C converges P̂-a.s. to X =
(u1, u2, ŵ

Q1), it is possible to show that for i = 1,2 there exists the P̂-a.s. limit of
the right-hand side in (6.12) and it coincides with

〈ui(t), h〉H − 〈x,h〉H −
∫ t

0
〈ui(s),A1h〉H ds

−
∫ t

0
〈B̄1(ui(s)), h〉H ds −

∫ t

0
〈G1(ui(s))h, dŵQ1(s)〉H

(for a detailed proof of this fact, see, e.g., [22], Lemmas 4.3 and 4.4).
Then if we pass possibly to a subsequence, we can take the P̂-almost sure limit

in both sides of (6.12), and we get that both u1 and u2 solve the problem

〈u(t), h〉H = 〈x,h〉H +
∫ t

0
〈u(s),A1h〉H ds

+
∫ t

0
〈B̄1(u(s)), h〉H ds +

∫ t

0
〈G1(u(s))h, dŵQ1(s)〉H

for any h ∈ D(A1) ∩ L∞(D). This means that u1 = u2, as they coincide with the
unique mild solution of equation

du(t) = [A1u(t) + B̄1(u(t))]dt + G1(u(t)) dŵQ1(t), u(0) = x

and then the sequences {L(uεn(k)
)} and {L(uεm(k)

)} weakly converge to the same
limit.

This allows to conclude that (6.10) is true. As a matter of fact, in Gyöngy and
Krylov [15], Lemma 1.1, it is proved that if {Zn} is a sequence of random element
in a Polish space X, then {Zn} converges in probability to a X-valued random
element if and only if for every pair of subsequences {Zl} and {Zm} there exists a
subsequence vk = (Zlk ,Zmk

) converging weakly to a random element v supported
on the diagonal of X × X. �
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[25] SEIDLER, J. and VRKOČ, I. (1990). An averaging principle for stochastic evolution equations.
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