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In a sample variance decomposition, with components functions of the
sample’s spacings, the largest component I, is used in cluster detection. It is
shown for normal samples that the asymptotic distribution of i;1 is the Gumbel
distribution.

1. Introduction. Clusters are nowadays data structures of considerable inter-
est: Microarray data is used to attribute genes in clusters; gene expression is used
to cluster tumors and identify similar types of cancer. Extreme value theory, in
particular of sample spacings, has been used extensively in modeling phenomena.
The extreme value in of functions of spacings is introduced in Yatracos (2007) to
detect data clusters from their one dimensional data projections; n is the size of
the data. In this work, the asymptotic distribution of I, is obtained for data from
the normal distribution, and can be used to determine statistical significance of
potential clusters.

Consider a sequence X1, ..., X, of independent identically distributed random
variables with cumulative distribution function F. Let X ;) be the ith order statis-
tic,i =1,...,n. Define the spacing

Si=X(,'+1)—X(,'), i=1,...,n—1,
the maximum spacing
M, =max{S;,i=1,...,n—1} =MD

and the kth largest spacing M,gk), k=1,....,n—1,

The large sample behavior of M,, and Mn(k), that is, their asymptotic distribution,
large deviation properties and a.s. behavior has been studied for various choices of
F by Pyke (1965), Slud (1977/78), Devroye (1981, 1982, 1984), Deheuvels (1982,
1983, 1984, 1985) and other authors.

When F = ®, the cumulative distribution function of a standard normal N (0, 1)
random variable, it is shown herein that the asymptotic distribution of

inzmaX{Sif},izl,...,n—l}
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is a standard Gumbel distribution;

i =) Xjip1n — X141
n? (X - X)2/n’

~

i=1,....,n—1,

X li,j] 18 the average of the order statistics from i to j,i < j.

Results in Deheuvels (1985) are crucial to obtain the result.

S;T; is the ith component in a standardized sample variance decomposition,
i =1,...,n— 1 [Yatracos (1998)]. The largest component in the decomposition,
I, determmes two least homogeneous sample clusters. For multivariate data, I,
is used to determine two clusters with the least homogeneous one-dimensional
data projection [Yatracos (2007)]. Significance with respect to the normal model
is justified since for many high dimensional data sets to find unusual projections
one should search for nonnormality [Diaconis and Freedman (1984)].

2. The sample variance decomposition and I,. Univariate observations
X1, ..., X, are usually separated in two clusters by comparing the standardized
difference of the group averages X (1,i] and X li+1,n], Tespectively, of the i smaller
observations X (1), ..., X(;) and of the n — i larger observations X 1), ..., X(n),
fori =1,...,n—1. The spacing S; between the two groups may vary and it is nat-
ural to be used in a dissimilarity measure. The product i(':l;i) (X[i+l,n] — )_([1,,-])S,-
is related to the sample variance [Yatracos (1998)]

—1 . . _ _
—Z(X —-X)* = Z o l)(X[i+1,n] — Xp1.i1)Si

2
ll lln

and measures between-groups variation. The standardized variance components

i — i) Kjip1m — X)) Si
n’ YL (X=X n

indicate the relative contribution of the groups X (1), ..., Xy and X(i11), ..., X

in the sample variability.
The statistic

~
Il

Si

.,n—1

I, =max{S;T;,i=1,...,n—1}
determines two potential clusters. When in =S fj, these clusters are él =

{X),--» X(h}» C2 = {X(j+1),---» X(m} and the cluster separators are § =
X(jy» 52 =X (j+)-

3. The asymptotic distribution of I,.

THEOREM 3.1. Let Zy,...,2Z, be i.i.d. standard normal random variables,
x € R. Then it holds that

() lim P[nl < x + logn] = exp{—exp{—x}}.

n——+00
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The proof of Theorem 3.1 is based on the four lemmas that follow. It is enough
to obtain the asymptotic distribution of

{l(l’l—l)

(Zii+1.1 = Ztia)(Zi+1) —Z(w)} i=1,....n—1

Let Z(;) be the ith order statistic with density g;,i = 1,...,n. Let ny (resp.
n_) be the number of positive (resp. negative) observations. Then it holds that
ny ~n_~ % a.s.; a, ~ b, denotes lim,,_, oo Z_Z = 1. Due to the symmetry of the
normal distribution, without loss of generality, the lemmas are proved for the pos-
itive observations 0 < Z;/241,) - - » Zn)» Z(n/241,~1) < 0,1, = o(n) can take ei-
ther positive or negative values. One may think of the arguments as conditional on
the value of n.

LEMMA 3.1. Fore >0andi =5 +1n,...,n, it holds that
2) P[Z(i)(Z(i-H) — Z(i)) > g] <(1-— 86—1.5£)n—i‘

PROOF. Recall that for any x > 0 it holds

X X
x ¢ (x)

7 +x2¢(x) <1l—-®x) < p;

) ,
[Chow and Teicher (1988), page 49],
and thus
(5) (D(x—i-é‘/x)—q)(x) 2 8¢(X+8/x) :8670'582/)(278.
1 —®(x) ¢ (x)

The Markovian property of Zyy, ..., Z(,) implies that given Z;) = z, the r.v.’s
Z(i+1), - -+ Z(n) form a sample from a standard normal distribution truncated at z

and, therefore,

EP(Zi)(Zi+1) — Zay) > €l Zay = x)

(6) ool ] — @ o
_[ [ — (x+8/x)} gi(x)dx.
1 —®(x)
For 0 < x < /e,
1—d(x+¢/x)7
ew

_ —oGte/0d - g/x*)(1 = () + ¢ () (1 = P(x +¢/x))
(1—®(x))?

>0,
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thus,
-0 te/x) 1-0QV6) 22/ -@(WE) _ |
1—0x) ~ 1-0W/e) 1-®(/e) ~

The last inequality follows from (5) with x = \/e.
For x > /e, it holds that

—1.5¢

ge

)

(8) o058 e—o.ssz/xz_
From (5) and (8), it follows that

1—<I>(x—|—8/x)_1 OP(x+¢e/x)—D(x)
1—dx) 1—®(x)

€))

<1— 86—0.582/x2—8 <1 —ge 15
Inequality (2) follows from (6), (7) and (9). U

9 (Zi)
¢ (Ziy+Ti(Zir1y—Z@)’
istence is guaranteed by Taylor’s theorem,0 < T; < 1,i = % +l,...,n—1,k, ~
(logn)'*%,0 < ¢ <2,m, — +00 as n — +o0. Then for small ¢ >0 as n —
+00, it holds that

LEMMA 3.2. LetR; =

T; is a random variable whose ex-

(10) P[sup{Ri,i:g—i—ln,...,n—kn}>1+8}—>0,
(1D Plsup{R;,i=n—k,+1,....,n—1} >m,] - 0.

PROOF. Fori =75 +1I,,...,n— 1, itholds that
(12) 1<R; < 03 Za=Zi) +Zo)(Zirn—Za)
In Deheuvels (1985), it is shown that for n > 0,

P[/2lognmax{Zi1)— Ziy;i=1,...,n— 1} > (1 4+ nloglogn) i.0.] = 0;

i.o. denotes “infinitely often.” Thus, from (12), to prove (10) and (11), it is enough
to prove respectively that as n — 400,

n
P[sup{Z(,-)(Z(,-H) — Z(,‘)),l = 5 +1,,...,n —kn} > 8:| — 0,

P[Sup{Z(i)(Z(,‘_H) — Z(i)), i=n—k,+1,...,n— 1} > logmn] — 0.
From (2), it follows that

. n
P[Sup{Z(,')(Z(H_]) — Z(,‘)),l = 5 +1,...,n— kn} > 8]

< (g —ky—1, + 1)(1 e~k 0
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as n — +o0 since I, = o(n).!

For0 >0, Z,) < (140)4/2logn a.s. forn > n(0) and
Plsup{Zi)(Zi+1)— Z@)),i=n—k,+1,....,n— 1} > logm,]

< P[(1+6),/2logn

X sup{(Z(,-+1) — Z(,‘)),i =n—k,+1,....,n— 1} > logmn].
From Lemma 6 in Deheuvels (1985), the K,, = [(log n)3] largest order statistics

generate spacings which are uniformly close to (21log n)_l/zEj /jsji=1,..., Ky,
where {E;, j =1, ..., K,} are i.i.d. exponential r.v.’s with mean 1. Thus, it holds
that

— logm
P|: 210gn(Z(j+1) — Z(j)) > T;}

Np[Ej>jl"ﬂ]:e—jlogmn/<l+e>, i=1....K,

146
and
. logm
P[\/@sup{(z(m) —Z@)i=n—ki+1...on—1}>- +9n}
o1 —(kn—1)logm, /(146
< Z e~ J1ogmn/(140) _ ,—logm,/(1+6) - Yo/
< 1 — e—logmy,/(146)

j=1
~ g logmy/(146) o

asn — +oo. [

LEMMA 3.3. Forany real x, as n — +00,

n—1
P[ N A0 =D(Za+) = Zo)E(Ziirim|Za) < x + logn}:| — 05,
i=n/2+1,

PROOF. Letk, ~ (logn)'*%,0 <¢ <2, m, ~loglogn,

(13) Ai ={(n = )(Zi+1) = Zi) E(Zii1m|Zi)) < x +logn)
and A{ its complement, i =5 +1,,...,n — L.

n—ky n—1

P|: m AN < ﬂ A,’):|
i=n/2+I, i=n—k,+1
n—ky n—ky n—1
:P|: N A,-i|—P|: N Aiﬂ< U Af>i|
i=n/2+1, i=n/2+1, i=n—kp+1

IThe result follows also from Deheuvels (1985) with k;, = [(log n)3].
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and it is enough to show that as n — +o00

n—ky B
P[ N Al} — e 0

i=n/2+l,
and

n—1

P[ U Af} — 0.
i=n—k,+1

Let U(;) be the ith order statistic from 7 i.i.d. uniform r.v.’s on (0, 1). Then it holds

that

_ _ Uasy — Uwy)
(14)  Zgyny = Zo =07 (Uisn) — 07 (Up) = — 222
¢(Zi)

with Z,- =Zi) + T;(Zi+1) — Z@y), T; is a random variable whose existence is
guaranteed by Taylor’s theorem, 0 < T; < 1.

Given Z(;) =z, ther.v.’s Z(i11), ..., Z(») form a sample from a standard normal

distribution truncated at z with mean 1115515()1) and variance 1 + 1Z¢(Z) —[5 ¢ 12,

. —@(2) —®(2)
Thus, it holds that

> & (Zi))
E(ZinnlZo) = 1= g7 qD(lZ(.))
1

and that
. - Wity —Um)  ¢(Ziy)
(n—i)(Zis1) — Z)E(Ziis1.m| Z@) = (n — i) _
(Zi+1) = ZiH) E(Zji+1,m|Z i) oG 1-9(Za)
V .
—(n— i)<1 _ M)Ri,
Vin—i+1)
R; is defined as in Lemma 3.2, V(,_;) =1 — ®(Z;)) is the (n — i)th order statistic
from i.i.d. uniform r.v.’s on (0, 1), and

|7/ n—i
<¥> . di=1,...,n—1
Vin—i+1

are i.i.d. uniform random variables on (0, 1) (see, e.g., David and Nagaraja, 2003).
From Lemma 3.2, using D, = x 4 logn, it holds that

P|: nhk A,}~P|: nhkn {(n—i)(l—m)gDn”

i=n/2+l, i=n/2+1, Vi—it+1)
n—k .
n D n—i
- I =002
i=n/2+, n—t
n—ky

~ T (=ePry=(1—elogn—sy/2—hulitl  ,=05¢™
i=n/2+l,

’
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since [,, = o(n).
From (11), it also holds that

P[ U Af:|§ ,12_:1 P[(n—i)mn(l—vv(ni_i))>Dn:|

i=n—ly+1 i=n—ky+1 (n—i+1)
Hi (1 D >n_i
i=n—kp+1 mp(n — i)

< kne_(x+10gn)/mn -0

asn — +oo. [

LEMMA 3.4. Letk, ~ (logn)'™¢,0<¢ <2. Asn — +o0:

@) sup{(n —i)(Zg+1y = Z@IZ],i =5 +lysoocon =1} =0,

(®) sup{(n —i)(Zi+1) — ZiDZli+1.0) — EZfiam| ZaD i =5 + 1y - .0
n—k,}— 0, ) )

(©) sup{(n — )(Zi+1) — ZiPWZi+1.n1 — ECZliv1ml Zi)Il, i =n — ky +
1,....,n—1}—0,

all in probability.

PROOF. (a) (4) implies that % is decreasing for x > 0. Thus, it holds that

. . n _
Sup{(n —l)(Z(H_]) — Z(,‘)),l = 5 +1,,...,n— 1}|Z|

) - . n
< Sup{(n —)(Zi+1) = Zi)) E(Ziiv1.ml Zaiy), i = > Tlnseen— 1}

1—-®0) -
« 12207150
#(0)
in probability as n — +00; use Lemma 3.3 and limit theorems for Z.
.. 2 Ziy¢(Zay) P (Zi) 12
(b) Conditionally on Z;, let 070 = 1+ 1(—)<I>(Z((l-))) _ [I—CD((Z)([))] < 1, denote
the variance of Z 1), ..., Zu),i =0.5n+1,,...,n — k,. Then it holds that

Sup{(n — ) (Zi+1) = Zo»)| Ziiv1.m — E(Ziiv1m| Zaiy)

- 1 —®(0)
)

n
,i=5+ln,...,l’l—kn}

Sup{(n —i)(Zi+1y — Zo) E(Ziis1.m| Ziy)

y | Ziiv1.01 — EZjiv1.0| Z)| ;"
UZ(i) ' 2

+ln,...,n—kn}.
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Let S; = Z,}:H—l Zjy — E(Z?:H—l ZpHlZiy),i =0.5n + Iy, ...,n — k. For
8 > 0, it holds that

P[(n _ )0 Ziit1.m = EZir1ml Zi) 8]
9Z)

|Si ] 04 ]

=EP|———>6mn—i)""|Zi)=z2
|:UZ(i) [— ( ) | i)

|Sl| 0.4 :| 04
<|EP|——=>8m—1i)"|Zy=z|— Pl|Z| > 8(n—i)”
4 [Qwﬁj (n =" Za) [1Z] > 8(n — )™

+ P[|1Z] > 8(n — i)™
—0.582(n—i)08

< 2C1Cy e

< +C——>
Jn—ill+(n—i)0882] 7 s(n—i)04

Cy is the universal constant in the Berry—Esseen bound [see, e.g., Serfling (1980)

or Ibragimov and Linnik (1971)], C7 is positive constant. The Markovian prop-

erty of Z(y, ..., Z() implies that given Z;) =z, the r.v.’s Z(;11), ..., Z(,) forma

sample from a standard normal distribution truncated at z, therefore,

E(1Z1) — E(Z+)|Za) = 2P| Za) =
sup{ (Z¢+1 — EC (1“3)/'2 0 =DV Za) Z),Z>0,j=i,...,n—1}
Oz

in the bound is replaced by its equivalent for the sample

ElZ1 — E(Z1|1Z1 > 2)*|1Z1 > 2]
sup 32
(eF

,z>0}=C1.

C is bounded since:
(1) for z > 0 large, (4) implies z ~ 1%5()1) =E(Z|Z1 > z) and

El|Z\ — E(Z1|1Z1 > 2|1 Z1 > 2]
3/2
(oF

 El(Z1 — E(Z1|Zy > )12y > 2]
o

_EWZ1 — E(Z\|Z1 > 2))*|1Z1 > 2]
~ 3/2 ’
Oz

where a = max(a, 0),
3
(i) limg, oo PLAEAIZIZOVIZ1Z2] — 3 [Narjaki and Akihide (1985)],
.

Gii) £l E(ZI|3Z/12>Z)) 1Z1>2] ig continuous function in z and, therefore,
(of

achieves its maximum in any compact [0, M], M > 0, and in particular for M
large.
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Thus, as n —> 400, it holds that

n—k, > >
¢ Ziivtm) — E(Zpiv1.0) Za
Z Pl —i)0'1| [i+1,n] ( [l+1,n]| (l))| > 5:|
i=0.5n+1, OZ)
n—ky n—ky —0.582(n—i)08
2CCy e
=y Nhia Y S
= _ 13 _ 04
i=05m1, 71— 1) =05, M0

1 1
~C — 0;
3((10g n)030+0(0.5n — ln)0'3> —

C3 is a positive positive constant, [, = o(n). Let

Zii — E(Z;i Zi
G; = {(n_l-)o.1| [i+1,n] (Zii+1,nZ )| 58}, i=05n+1,. ... .n—k,.
0Z

Using relations in the proof of Lemma 3.3, it follows that

n—ky
> PH(n —i)(Zi+n — Z@))
i=0.5n+1,
_ Zii — E(Z Z
y E(Z[i+1,n]|Z(i))| li+1,n] (Zii+1,mZ i)l >8} ﬂGl}
0Z
n—ky ~ e
< P[(n = )(Za+1) = Za) E(ZisialZo) = 01— i)o-l}
i=0.5n+1,
n—ky _ 14+¢
- /8= / OB s
i) 0.5n-+,
10

ke 05 (0.5n—1,)! oy
= e : ¢ -
Z kY ](logn)0.1(1+§) + 11 /(log”)(ll(l-#() Y

asn — +o00; ¢ = 5,1, =o(n), C{ isaconstant, k =1, ..., 11.
(¢) From Deheuvels (1985), fori =n —k, +1,...,n — 1, it holds that
2logn(n —i)(Zi+1) — Zy) ~ En—i;

E;,j=1,...,k;, — 1, are i.i.d. exponential with mean 1. From (4), it also holds
that

Ziiv1in — E(Ziis1.01 Zay)
_Za+y = Zi) + Ziva) = Z@) + -+ Zwy — Z@)
n—i
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=((n = )(Zi+1) — Zw))
+n—i—1(Zasa) = Zasn) + -+ (Zwy — Z—1))(n — )"
N Ei+---+E,_; - sup{Ej,j:I,...,n—i}

J2logn(n —i) — /2logn
- sup{Ej, j=1,...,k, — 1}
- /2logn '

Thus,
P[sup{(n —)(Z+1) = Z)| Zii+1.m — E(Ziiv1.m| Zay)
i=n—ky+1,....n—1} > ¢]
<P[ { E,—i sup{E;,j=1,...,k, —1}
< P|sup ,
/2logn /2logn

i:n—kn+1,...,n—1}>e}

= P[sup{Ej, j=1,....k, — 1} > V/&,/2logn]
=1— (1= Vev2loenh=l_ ¢

’

k)

asn— +oo. O

PROOF OF THEOREM 3.1. Conditionally on the value of n, from the def-
inition of /,, (before Lemma 3.1) it holds that Z,/247,-1) <0 < Z(/2+41,), and
assume without loss of generality that ¢ (Z(,/241,-1)) > ¢(Z(n/241,)). Note also
that it holds

in—1i), - - n—i, - -
(Ll = Zpa) = (Ziit1.m1 = Z)
I = 5 .
=;(Z—Z[1,i]), i=1,...,n—1.
Let A; be as in (13), B; = {i(Zi+1) — Z@)(—DE(Zp1,ijl Zi+1)) < x + logn},
i=1,...,%. From Lemma 3.3 and its proof, it follows directly for the A’s, and by

symmetry for the B’s that
n/2 n—ky, n/2 n—ky
P[ N B A,-] ~ P|: N B,-]P[ N A,-] ~e ¢,
i=ky+1  i=n/2+1 i=k,+1 i=n/2+1
and as n — +00,
ky, n—1
P[U B Af} — 0.
i=1 n—k,+1
The proof is completed using Lemma 3.4. [J
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