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EXPECTED ABSOLUTE RANDOM DETERMINANTS
AND ZONOIDS!

By RicHARD A. VITALE

University of Connecticut

For matrices with iid columns, the expectations of the title are exam-
ined using ideas from convex geometry. In particular, a representation is
shown which involves random realizations from the class of convex bodies
called zonoids. This result is used to derive bounds and comparisons of
various types.

1. Introduction. Random matrices arise in a variety of contexts, ranging
from statistical applications to the asymptotics of neural networks [e.g., Wilks
(1960), Grenander (1978), Silverstein (1984) and Lindsay (1989a, b)]. In partic-
ular, various moments of their determinants have been intensively studied
[Girko (1988)]. Our purpose here is to introduce a novel approach from
stochastic geometry for looking at expected absolute determinants (eads). We
make use of particular convex figures, called zonoids, in a random form and
more precisely their expectations. The notion of an expected figure (or set-val-
ued expectation) is based on the integral of a set-valued function [Aumann
(1965)] and has proved useful in other contexts [Artstein and Vitale (1975),
Mecke (1987) and Vitale (1987a, b, 1988)]. For other examples of the utility of
convex-geometric ideas in applications, the reader can see Anderson (1955),
Egorychev (1981) and Falikman (1981).

In the next section, we set notation and preliminaries. After interpreting
zonoids in probabilistic terms, Section 3 presents our key result, which ex-
presses eads in terms of zonoids. Bounds and comparisons of various types
appear in later sections.

2. Preliminaries. We shall consider the ead of a d X d matrix My,
which has as columns iid copies of the random d-vector Y. N.B. The individ-
ual entries of the matrix are not required to be independent (as is the case for
some other approaches).

We regard R¢ as equipped with the usual inner product ¢ - , - ), norm || - ||,
closed unit ball B, unit sphere S?~! and collection % of nonempty compact,
convex subsets or convex bodies. Distance between convex bodies is given by
the Hausdorff metric p(K,L) =inf{e > 0|/K c L + ¢B, L c K + ¢B}. Here
“+” means vector addition of sets and aK = {ax|x € K}. The norm of a
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convex body K is ||K|| = max{||x|| |x € K} = p(K,{0}). For other general back-
ground, see Eggleston (1969) and Guggenheimer (1977).

It is often the case that geometric arguments for convex bodies can be
replaced by simpler function-theoretic proofs by using the support function
identification K © hy, hy(x) = max{<{x,y)ly € K}, u € 8¢~ !, which has the
following features:

(2.1) KcL e hg<h; (pointwise),
(2.2) K=Lehg=hg,

(2.3) hox=ahg, a=0,
(2.4) hgipr=hg+hy.

We shall also deal with the restriction of k. to S9!, with the further
properties:

(2.5) |hg(u) — hg(uw)| < IKlllu - ul, u,u €81,
(2.6) p(K, L) = max{|hg () — hy(u)|lu € $971),
(2.7) K, Ko hg(u)>hg(n), VYueSit

A random convex body X is a Borel measurable map from a probability
space into %. Among several equivalent ways of defining the expectation of X
[Aumann (1965), Debreu (1967) and Artstein and Vitale (1975)], we give a
quick sketch of one based on support functions: If E|| X|| < », an easy applica-
tion of the Cauchy-Schwarz inequality gives E|hy(x)| < ©» and hence the
existence of Eh 4(x), V x € R?~1. A convex combination of support functions
is again a support function [(2.3) and (2.4)], and this generalizes to show that
Eh () is a support function. Its associated convex body is defined to be the
expectation EX of X: hpy(x) = Ehy(x), x € R,

Among convex bodies, we focus on finite sums of line segments, or zono-
topes, and their limits in the Hausdorff metric called zonoids [Bolker (1969)
and Schneider and Weil (1983)].

3. Zonoids and eads. To fix ideas [and incidentally answering a query of
Bolker (1971)], we begin with a probabilistic interpretation of zonoids.

THEOREM 3.1. Z € % is a zonoid if and only if there is some x € R4 and
random vector Y with E||Y || < « such that Z = x + EOY.

Proor. For the only if part, rewrite a typical zonotope x,y; + x5y, + -+ +
X,¥, as

(3.1) PV + PolloUy + - +p,U U,

where p; = llx;y,ll/Zllx;y;ll and u,v;= (Zlx;y;l/Ilx;y;IDx;y;. Localize u,v; by
fixing 2d signed unit vectors ej,...,e,; and observing that |lx;y;ll <
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rhi5;(ep) so that

Z s || < Z %hm(ek) = Z E hzz(er) < Z 595 | = 25 -

Thus each u,v; lies in the ball (2dE||x ~7;IDB. Thinking of (3.1) as EUV, we

conclude that if Z is a zonoid, it is the limit of zonotopes {Zy = EUyVy)y_ 1,
where U,,V,,U,,V,,... are uniformly bounded random vectors. Further,
without loss of generality, (Uy, Vi) = 4(U, V) so that, for each u € S¢~1,

hz (u) = E max({u, Uy),{u,Vy)) - E max({u,U),{u,V))
=<{u,EU) + E max(0,{u,V — U)),

which together with (2.7) and setting x = EU and Y=V — U gives the
desired representation. For the if part, assume without loss of generality that
x=0. Given ¢ >0, let Y, be a random vector with finite support such
that E|Y — Y|l <e. Then EOY, is a zonotope and by elementary estimates
= h(u) for each u € §?°! as & — 0. By (2.7), OY= lim, _,0Y,

and is hence a zon01d O

Our point of departure for examining eads is the following representation
theorem. Recall that M, signifies a d X d matrix whose columns are iid
copies of Y.

THEOREM 3.2. Let Y be a random d-vector with E|Y|| < «. Then

(3.2) E|det My| = d!vol( EOY).
Proor. Consider an infinite sequence Y, Y,,... of iid copies of Y, and for
each n=1,2,... form the zonoid Z, = (1/n)OY; + OY, + --- + OY, .

Since E||Y|l < ®, we have E|OY] < . ThlS suffices to invoke the relevant
strong law of large numbers [Artstein and Vitale (1975)] to conclude that
Z, — EOY a.s. in the Hausdorff metric. Since the volume functional is contin-
uous,

(3.3) vol(Z,) - vol(EOY) a.s.
On the other hand, Shephard (1974) provides the expansion

(3.4) vol(Zn)=;ng ¥ |det M(Y,,..., ;)|

11<ig< -+ <ig

where we have displayed particular columns of the matrix. By Hadamard’s
determinant theorem [e.g., Roberts and Varberg (1973), page 205], the dis-
played term in (3.4) is bounded above by [Y, || 1Yl - - - IIY; Il and so has finite
expectation. It follows from Hoeffding’s strong law for U-statistics [e.g.,
Serfling (1980)] that vol(Z,) — (d!)~'E|det My| a.s., which upon comparison
with (3.3) completes the proof. O
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ReEMaRKS. 1. Note that (3.2) exhibits a kind of interchange between vol-
ume evaluation and taking of expectations.

2. Representations for zonoids and versions of (3.2) with no probabilistic
connotation can be found in the convex geometry literature [e.g., Schneider
and Weil (1983), page 307].

4. Bounds. In a few special cases, for example, an isotropic (or even
elliptically contoured) distribution for Y, vol( EQY) can be evaluated directly to
provide a value for (3.2). It is, however, precisely in these cases when E|det M|
can likely be evaluated by other methods as well. It is in more general
situations that (3.2) appears to be useful and then not for exact evaluation but
for bounds. The idea is to parlay some information about the distribution of Y
into information about the shape (and size) of EOY.

For example, Hadamard’s bound in the form |det My| < [[Y;[l - [IY5ll - -+ (1Yl
upon taking expectations, yields the bound E|det M| < (E|Y[)¢. One would
expect to get a better bound by relaxing the point-wise requirement, and this
was already indicated in a preliminary study [Vitale (1988)].

THEOREM 4.1. Let Y be a random d-vector with E||Y || < ». Then E|det M|
< a(BIIY D¢, where

| T(d+1)
%= T(d/2 + 1)

r'(d/2) 4
2r'((d + 1)/2)]

satisfies a/* —» e /2 as d - .

[Note: In Vitale (1988), page 203, the expressions for y, and the later
asymptotic bound carry an incorrect divisor of 2.]

Theorem 4.1 can be improved by making use of a remarkable and in some
ways definitive result of Lutwak (1975). The sharpening can be explained by
noting that Theorem 4.1 is based on the inequality of Urysohn [e.g., Burago
and Zalgaller (1988)] which asserts that the volume of a convex body K (e.g.,
EOQY) is bounded above by the volume of a ball which shares the same mean
width (i.e., average separation of parallel supporting hyperplanes): E[h (U) +
hg(=U)] for U uniform on S¢ !, Lutwak showed that the assertion of
Urysohn can be sharpened by replacing mean width with “(—p)-mean width”
w_, = {E[hg(U) + h(=U)]"P}~ /P,

THEOREM 4.2. Let Y be a random d-vector with E|Y| < . Then
Eldet My| < d'w? B, where B, is the volume of the d-ball and w_,; =
{E{E[KU, Y )| |Ul}~9}~Y/4, Equality occurs iff EOY is an ellipsoid.

ProoF. EOY has width E|{«, Y )|in the direction u. Lutwak’s result then
applies together with his assertion that the bound is tightest for p = d in
which case the indicated condition for equality holds. O
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For comparison, we give another approach to bounding (3.2). As can be read

from the condition for equality, this bound is sharper than that in Theorem
4.2 if EOY is close to a rectangular parallelepiped.

THEOREM 4.3. Under the same conditions as Theorem 4.1,

d
(4.1) Eldet My| < d!'min [ ] E|{u;,Y)|,
i=1
where the min is taken over orthonormal bases {u, ..., u}. Equality occurs iff
there is an orthonormal basis {u§,u%,...,u%} such that the event U%_[Y =

(Y,u})u}} occurs with probability 1.

Proor. The width of EOY in the direction u € S9! is E(u, YOl If
Uy,...,u, form an orthonormal basis, it follows that some translate of EOY
lies in [0, El{u, Y[l X [0, EKu,, Y[ X - -+ X [0, EKu 4,Y >[]. This establishes

(4.1). Equality occurs iff the translate of EOY coincides with the indicated set.
In this case EOY is a zonotope and Y must behave as indicated. O

Finally, we note that bounds and expressions for E|det My|?> have been
discussed [Wilks (1960), Grenander (1978), pages 416-421, and Lindsay
(1989a)]. Via Chebyshev’s inequality, this leads to statements about E|det My/,
which we shall take up elsewhere.

5. Comparisons. In addition to providing bounds for eads, we can also
make various comparisons. The following is a consequence of Theorem 3.2.

THEOREM 5.1. Suppose that Y and Y' are random d-vectors with
max{E|Y|, E|lY'|} < w. If there is a vector a € R% such that EKu,Y)| <
EKu,Y") +<u,a) for all u € S¢~, then E|det My| < E|det M.

_ProoOF. It is clear from (3.2) that the conclusion holds if some translate of
EQY lies in EOY". In terms of support functions, this means that E{u,Y )., <
E{u,Y')++ (u,a) for some a € R? [recall (2.1) and the fact that translation
of bodies appears in support functions as a linear term]. An alternative form
follows by taking expectations on the identity {u,Y ). = Ku, Y/2)| +u,Y/2)
to get hygy="hix=yv ¥+, EY/2), which asserts that 1/2E-Y,Y is a

translate of EOY. The same holds for 1 /2E —Y',Y' and EOY’, which provides
the asserted sufficient condition. O

We use this result to show that making a distribution more diffuse in a
certain way increases the ead.
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THEOREM 5.2. If Y and Y' are independent random d-vectors with
max{E||Y|, E|IY'l} < «, EY' = 0, then E|det My| < E|det My, y|.
ProoF.
E|{u,Y)| = E(sgn{u,Y)<u,Y))

= E[sgn{u, Y Xu,Y +Y") + sgnlu, Y X {u, - Y]
<E{u,Y+Y)|+Esgn{u,YXu,—-Y)
<E|{u,Y+Y)|+ Esgn{u,Y) E{u,-Y"
<EKu, Y+ Y")| m|

We show next that moving the center of a symmetric distribution away from

the origin results in a larger ead [cf. Anderson (1955) and Vitale (1990) for a
similar statement about multivariate densities].

THEOREM 5.3. Suppose that x, € R, x, # 0, is fixed and that Y is a
random d-vector which is symmetrically distributed about the origin and with
E|lY|l < ». E|det My.,, | is an increasing function of the positive parameter A.

Proor. From Theorem 5.1, it suffices to show that for 0 < A < 1,

E|{u,Y + Axo)| < E|{u,Y +x,)|, VueS8i
Employing 0 < 8 <1 such that Y + Axy, = 0(Y + x,) + (1 — XY — x,), we
have
Elu,Y + Axg)| = E[{u,0(Y + x5) + (1 — 0)(Y — x))]
<OE|{u,Y +xo)| + (1 — 0)E|{u,Y — x|
<OE|{u,Y +x0|+ (1 - 0)E|{u, - Y — xy)|
<E|{u,Y +xy)]|. m]

The next result, a concavity feature under mixtures, resembles the classical
determinantal inequality of Minkowski [Roberts and Varberg (1973), page
205].

THEOREM 5.4. Suppose the Y is a mixture of two random d-vectors, each
with finite expectation: Y =Y, with probability p, Y =Y, with probability
1 —p. Then

(Eldet Myl)"* = p(Eldet My,))"* + (1 — p)(Eldet My,)"".

Proor. The mixture model implies that EOY= pEOY; + (1 — p)EOY,.
An appeal to (3.2) and an application of the Brunn-Minkowski inequality
[Eggleston (1969)] then yields the result. O
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We close with a comparison of taking mixtures and convex combinations.

_ THEOREM 5.5. Let Y, Y, and Y, be as in the last theorem, and let
Y = pY, + (1 — p)Y,. Eldet My| < E|det Myl

Proor. Note that almost surely

0Y = pOY; + (1 - p)OY,  pOY; + (1 - p)OY,
so that
EOY c E[pOY; + (1 - p)OY, | = pEOY, + (1 — p) EOY, = EOY
and the result then follows from (3.2). O
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