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RANDOM USC FUNCTIONS, MAX-STABLE PROCESSES AND
CONTINUOUS CHOICE

By SioNEY I. ReEsnick! anp RisHIN Roy?

Cornell University

The theory of random utility maximization for a finite set of alterna-
tives is generalized to alternatives which are elements of a compact metric
space T'. We model the random utility of these alternatives ranging over a
continuum as a random process {Y,, ¢ € T'} with upper semicontinuous
(usc) sample paths. The alternatives which achieve the maximum utility
levels constitute a random closed, compact set M. We specialize to a model
where the random utility is a max-stable process with a.s. usc paths.
Further path properties of these processes are derived and explicit formulas
are calculated for the hitting and containment functionals of M. The
hitting functional corresponds to the choice probabilities.

1. Introduction. We describe a general approach to the modeling of
probabilistic choice from a set of alternatives whose cardinality need not be
finite. We assume that the set of alternatives T' is a compact separable metric
space. In concrete examples, T is usually the unit interval, the unit square or
the unit circle. We postulate that the preferences of an individual over the
range of alternatives are represented by a real-valued utility function. Individ-
uals are assumed to adhere to utility maximization as the criterion for
selecting a particular alternative. The randomness in the utility function is
assumed since even if the choice process is deterministic for a particular
individual, the analyst is in general not cognizant of its precise specification.
[For further discussions on this and on models of choice from finite sets of
alternatives, see McFadden (1981).] To ensure that the choice problem is well
defined, we assume that the random utility function has upper semicontinuous
(usc) realizations implying that the maximum level of utility is achieved by at
least one alternative in the space T. The use of usc utility functions to
represent preferences for alternatives in T' has been axiomatically derived in
Rader (1963) and the extension to random usc utility functions is achieved by
adapting arguments in Hildenbrand (1971). Cohen (1980) also discusses the
choice problem from sets of infinitely many alternatives within the context of
random utility theory.

The study of this problem is motivated by choices in sets which are not
finite. A potential area of application includes the issue of choice of retail store
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268 S. L. RESNICK AND R. ROY

location where the choice set may be modeled as a compact subset of RZ.
Lerman (1985) contains a discussion on issues related to continuous choice
sets in the context of choice for spatial alternatives. Alternatively, a media
manager selecting a time slot in a media vehicle may be viewed as facing a
continuum of alternatives. The brand and quantity purchase decision of a
consumer may be modeled as choice from a compact subset of R* where the
n-vector x has as its ith component the quantity of brand i which is
purchased. Note that here one would be implicitly assuming that the brand
and quantity purchase decision are simultaneously executed.

The choice of mode of transportation may be dependent on the time of
travel, which can be viewed as alternatives which are elements of a closed
interval in R,. In the area of transportation demand forecasting, Ben-Akiva,
Litinas and Tsunokawa (1985) provide a comprehensive exposition for spatial
choice models based on the continuous logit model, which was derived by
taking limits of logit choice probabilities for finite sets of alternatives as the
size of these sets tended to « [cf. also Ben-Akiva and Watanada (1981)].
McFadden (1976) initially derived the continuous logit model by defining an
“independence from irrelevant alternatives” (IIA) principle for nonfinite sets
in terms of an absolute continuity condition on the choice probability mea-
sures.

Section 2 contains the description of the general model with utility func-
tions as random elements of the space of upper semicontinuous functions on T'
denoted by US(T'). The topological preliminaries concerning US(T) and #(T),
the space of closed subsets of T, are discussed. We then show that the set M
of alternatives which achieve the maximum utility level is a random element of
F(T) and deduce that the choice probabilities correspond to the hitting
functional of M [cf. Matheron (1975) and Salinetti and Wets (1986b)].

McFadden (1978, 1981) developed a class of choice models consistent with
random utility theory for a finite set of alternatives, {1, ..., d}, on the basis of
a social surplus function G: R? > R, which was primarily characterized by a
homogeneity property. He then proceeded to demonstrate that G was essen-
tially the exponent measure of a max-stable random vector in R¢ with Gumbel
marginals, and subsequently named this class, generalized extreme value
(GEV) models. In Section 3, we extend McFadden’s approach to infinite
dimensions. Instead of the social surplus function G we need a measure u on
US,(T) = US(T) — {0} (0 is the function identically 0 on T'). u is character-
ized by a homogeneity property analogous to the finite-dimensional case and u
distributionally determines a max-stable process [cf. de Haan (1984) and
Resnick and Roy (1990b)] with paths in US,(T'). This provides a foundation
for max-stable random usc functions as models of random utilities over T.

In summary, max-stable processes are the natural extension of the GEV
class of random utility models to infinite dimensions. As will be evidenced from
the results to follow, max-stable random utility processes also lead to relatively
tractable formulas for the choice probabilities.

The use of max-stable processes in modeling continuous choice was inge-
niously proposed by Cosslett (1988). He selected a specific parametrization of a
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stationary moving-maximum process [cf. Balkema and de Haan (1988)] with
a.s. continuous paths to represent the random utility functions, and the choice
set was a closed subinterval of the real line. As we have subsequently learned,
Dagsvik (1988) had also independently developed a continuous choice model
with max-stable random utility processes with a.s. continuous realizations,
where a subset of the real line was the choice set. He also discusses an
alternative rationale for max-stability in the continuous choice problem in the
special case where the choice probabilities satisfy the IIA principle [cf.
McFadden (1976)].

Our focus is primarily on generalizations of the modeling aspect, expanding
the applicability of these models, and towards achieving this end, we build the
theory from random usc utility functions on a compact metric space T. In
Section 3, we develop characterizations of max-stable processes with usc and
continuous sample paths. Subsequently in Section 4, by suitably projecting the
underlying Poisson random measure onto subspaces of its state-space, we
compute the functionals of M which correspond to the choice probabilities.
Then explicit characterizations are provided for max-stable processes which
result in M being a.s. singleton. Finally, by invoking results on measurable
selections, we provide insight into how one can develop tractable choice models
in this framework and present some illustrative examples.

2. Preliminaries on US(T) and #(T). The space of nonnegative up-
per semicontinuous (usc) functions on 7T denoted US(T), is a convenient
setting for considering utility maximization with a continuous range of alter-
natives. This is because a usc function on a compact set achieves its maximum.
Recall that we assume T is a compact metric space. The o-algebra of Borel
subsets is denoted by Z(T').

A standard topology for US(T) is the sup-vague topology [cf. Vervaat
(1988)] which has basis sets of the form

{fe US(T): V f(¢) <x}
teK
and
{fe Us(T): V f(¢) >x},
teG

where K € #(T), the closed subsets of T, and G € £(T), the open subsets of
T. We denote by #(US) the usual Borel o-algebra on US(T), i.e., the
o-algebra generated by open sets. Henceforth we will use the abbreviation

fY(B)= V f(t), Be %(T).

teB
If (Q, &7, P) is a complete probability space, we say that the map
& Q- US(T)
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is a random usc function if it is a random element of (US(T'), Z(US(T))). This
means
EHH(US(T))) c .

To construct a random usc function proceed as follows. Suppose Y =
{Y,, t € T} is a separable stochastic process with values in [0, ») and that for
almost all o € Q,Y(w) is a usc function of ¢. Modify Y so that all paths are
separable and in US(T'). This change on an w-set of measure 0 produces a new
version which we also call Y. This Y is a random element of US(T)
[cf. Salinetti and Wets (1986a), Theorems 6.1 and 6.2, and Vervaat (1988),
Theorem 7.2]. To check this, we need to verify

(1) Y- YfeUS(T): fY(K) <x} €,
(2) Y YfeUS(T): fY(G) >x} € «,
for xeR,, Ke Z(T), Ge HT). If D is a separant for the separable
process Y, then [Billingsley (1986), page 550 ff., Ash and Gardner (1975) and
Kendall (1973)] (2) above becomes

{0:YY(G,0) >x} ={0: YV(GND,w) >x} €,
since D is countable. For (1) let G, € Z(T), V n, and G, DK, G, | K. By
upper semicontinuity of paths

YY(G,)IY(K)

and so

{0:YY(K,0) <x} = U {0:YY(G,,o) <x}

n

= U{«:YY(G,ND,0) <x} .

n

This argument also shows that Y V(K) and Y V(G) are random variables.

The following fact will be essential for using measurable selection theorems
in the last section. If Y(w) = {Y(¢, w), t € T} is a random element of US(T),
then Y is measurable, i.e.,

(t,w) = Y(t,w)
is measurable
B(T) X - B(R,)

[cf. O’Brien, Torfs and Vervaat (1988) and Salinetti and Wets (1986a)].

This is checked as follows: Let {{G{™, i < k,}, n > 1} be a nested sequence
of open coverings of T' and suppose diam(G{™) < 1/n. If we define for ¢ € T,
Y™y = Vo YY(G™)
irteGM™

then upper semicontinuity implies for ¢ € T,
Y™() L Y(¢t).
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To prove Y is measurable, it is enough to prove Y measurable. For x € R,
{(t,0): Y (0) >x} = U GP X {0:YV(GM,0)>x} € B(T) X «,

l<i<k,

since Y V(G{™) is a random variable whenever Y is a random element of
Us(T).

Recall #= Z(T) is the class of closed subsets of T. We may give #(T) a
topology by declaring the following collection as sub-basis sets of the topology:

(Fe #(T): FNK=0), (Fe %(T):FnG+ Q)

for K € #(T), G € Z(T). Since T is compact, metric, F(T) coincides with
J#(T'), the space of compact subsets of T. Then the hit-miss topology defined
above on Z(T') is the same as the topology generated by the Hausdorff metric
on #(T) [cf. Vervaat (1988)]. Let #(%(T)) be the Borel o-algebra generated
by the open subsets of #(T). A random element of (F#(T), Z(F(T))) is a
random closed set (RACS) [cf. Matheron (1975) and Vervaat (1988)].

If f e US(T), then

F={teT: f(t)=f"(T)} e #(T).
For if ¢, € F and ¢, — t,, then since f(¢,) =fY(T), we have by upper
semicontinuity

fY(T) = limsupf(¢,) <f(t,) <f"(T),
whence ¢, € F, showing F is closed.
If Y={Y,, t € T} is a random element of US(T), then define
M(w)={teT:Y,(0) =Y "(T,w)}.
For each w € Q, M(w) is a closed subset of T, and in fact M: Q —» #(T)is a
random closed set. To verify this, it is enough to show
(3) {o: M(w)e{Fe F(T):FNK+0}} e
for K € F(T) [cf. Wagner (1977) and Vervaat (1988), Theorem 11.9]. The set
in (3) is
{0: M(w0) NK# 0} ={w:3teKst. V(o) =Y (T, )}
and since the supremum of Y over K is achieved, the above is
{w:YY(K,0) >2YY(T,0)} € «,

since Y Y(K) and Y V(T') are random variables.

We now summarize this discussion. We intend to model a random utility
process corresponding to alternatives in a compact, metric space T, by a
stochastic process Y = {Y(w), t €T, w € Q}. We want Y to be a random
element of US(T') since functions in US(T') achieve their maxima. If Y has
all paths separable and in US(T'), then Y is a random element of US(T) and
enjoys the technical property of measurability. The set of alternatives

M(w) = {t € T: Y(w) = Y (T, 0)},
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which provide the economic agent with maximum utility, is a random element
of #(T); that is, a random closed set.

For a utility maximizing agent, the probability of selecting an alternative
from a nonempty set K € #(T) is specified by the Choquet capacity, or
hitting functional of M:

P[M N K # J] = P[some alternatives in K maximize utility].

As yet we have not yet specified any properties of the random utility process Y,
except that it be a random element of US(T). In the next section we specify
that {Y,, ¢ € T} is a max-stable process.

3. Max-stable random utility processes: Specification and path
properties. In order that a random utility model Y = {Y,, ¢t € T} lead to
tractable results, the process Y must have the following properties:

(a) For any m and compact sets K, ..., K,,, the random variables
(YY(K;),1<i<m)
should have a distribution belonging to some well-defined tractable class of
multivariate distributions.

(b) For any compact subsets K, K, of the choice set T, we must be able to
compute

P[YV(K,) > Y V(K,)]
reasonably explicitly.

These dual requirements lead naturally to max-stable processes. The distribu-
tional class referred to in (a) is the max-stable class of distributions and the
computation in (b) is carried out in de Haan (1984) and Resnick and Roy
(1990).

Another justification for the use of max-stable processes to model random’
utilities is obtained by generalizing McFadden’s (1978, 1981) notion of the
social surplus function and his definition of the GEV class from finite to
infinite dimensions. Let u be a Radon (i.e., finite on compact sets) measure on
US(T), satisfying for 6 > 0, A € Z(US(T)):

(4) Ou(0A) = n(A),
(5) r({feUSy(T): f¥(T) = =}) =0,
(6) u(USo(T)) = .

The condition in (4) is the extension of the homogeneity condition of the social
surplus function to infinite dimensions. Equation (5) will ensure that the
resulting utilities are finite over T and (6) is a canonical consistency condition.
The differentiability conditions in finite dimensions which were imposed for
the derivation of the discrete choice models are unnecessary.

The modern interpretation of McFadden’s (1978, 1981) construction ex-
tended to infinite dimensions is as follows: Let

N=Y e,
k=1
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be a Poisson random measure (PRM) on US(T) [i.e., n, € USy(T)] with
mean measure u so that

Y = V Ne
k=1
is a max-stable process [cf. Norberg (1986), Giné, Hahn and Vataan (1989)]
with a.s. usc sample paths. Obviously u determines the distribution of Y. In
particular, for K € 9(T), x > 0,

~logP[Y V(K) < x| = u({f € USo(T): fV(K) > x}).

One may provide a behavioral interpretation of the 7,’s as constituting
information signals received by the decision maker on the alternatives in 7.
The decision maker processes this information in a boundedly rational fashion,
by recalling only the most “significant” signal for each alternative. Here
“significance” is quantified in terms of the natural ordering of the nonnega-
tive reals. Since all of the incoming information is not observed by the analyst,
the signals represented by 7,’s, are modeled as random functions. Also we
remark that the homogeneity property in (4) results in a max-stable utility
process with finite—dimensional distributions which are Frechet extreme value.
The analogous condition resulting in Gumbel marginals is

e~u(A - 6) = u(A),
where A — 0 ={f—0: f < A).

Note that the representation above is in the canonical form for sup-
infinitely divisible processes [cf. Norberg (1986)]. In this article, we develop the
subject of max-stable random utility processes via the alternative approach of
de Haan’s (1984) spectral representation theorem which is friendlier to appli-
cations than the function space approach. The two approaches to max-stable
processes are equivalent on US,(T). As we will see below,

v K,
u({g € USy(T): g¥(K) > z}) = fU—’c(—x“—)p(du)

for suitable spectral functions f and a measure p on a space U which are all
defined below.

The analogue of McFadden’s (1981), Lemma 5.2, social surplus function can
easily be computed (after a transformation to Gumbel marginals) as

E[lny V(T)] =y + lnfoV(T, u)p(du),

where vy is Euler’s constant.

Summarizing, the notion of a social surplus function in finite dimensions
generalizes quite naturally to infinite dimensions and generates a random
utility probabilistic choice model on T which shares many of the appealing
characteristics of the model in finite dimensions.

We now give the construction of a max-stable process which is best for
modeling and most suited to our needs [cf. de Haan (1984)]. Let (U, %, p) be a
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complete probability space. Recall T is a compact, metric space. Let {T},, £ > 1}
be the points of a homogeneous Poisson process with unit intensity so that

k
L, = Z E;,

i=1
where E; is a sequence of iid unit exponentials. Suppose u, is a sequence of iid
U-valued rv’s with distribution p, independent of TI',. Then {(x,,T}), & > 1}
are the points of N, a Poisson process (PRM) on U X [0, ), with intensity
measure u(du, dx) = 1y(u)p(du) X 1y (x)dx [Proposition 3.8, Resnick
(1987)). Let {f,, t € T} be a class of nonnegative functions (but not identically
0) with domain U which are L,(p) [i.e,V ¢t €T, [, f(u)p(du) < «]. Then

fi(ug)
v, =V tr—
k=1 k
is a max-stable process with index set T [cf. de Haan (1984)]. The finite-
dimensional distributions of Y, are

n

Pl N {Yt, < x(i)}] = exp(_fu -\:/1 ft;c((:‘;) p(du)

(7
i=1

for t, €T, x?>0,i=1,...,n. Cosslett (1988) and Dagsvik (1988) specified
their processes to have Gumbel marginals. This can be achieved in our
framework by a trivial logarithmic transformation Y, — In Y,. Cosslett (1988)
and Balkema and de Haan (1988) considered a special case of the max-stable
model, namely the stationary max-moving average. Also, Dagsvik (1988) pro-
vides an interpretation of the u,’s as attributes of the alternatives in T' which
vary randomly, because of ‘‘unobserved heterogeneity’’ in opportunities, which
give rise to observability problems for the analyst. The randomness in the I',’s
accounts for the “taste” variations across consumers.

We may consider {f,, t € T} as a stochastic process on (U, %, p).
This process always has a separable version [Ash and Gardner (1975) and
Billingsley (1986)] which we also denote by {f,, t € T'}. Thus, if the separant
is D,

fY(T)=f"(TnD)
is measurable. Henceforth we assume that for all u € U, {f(u), t € T} is
separable. This assumption does not change the finite-dimensional distribu-
tions (7).
Two basic results are the following: Let {Y,, ¢ € T'} be a separable max-sta-
ble process whose finite-dimensional distributions are given by (7) above. Then

(a) Y, is a.s. finite in any measurable set B c T iff

fo (TN D,u)p(du) < .

(b) Assume fV(T) € L(p), i.e, Y, is as. finite on T. Then {Y,, ¢t € T} is
stochastically continuous iff {f,, t € T'} is L (p)-continuous G.e., as ¢, — ¢,

ftn —)LI(P) ft)'
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To check (a), note that Y V(B) < Y V(T') and that by separability and (4)
~logP[Y Y(T) < x| = —logP[Y V(T N D) <x]

= x‘lfo (TN D,u)p(du), x>0,

and the result is immediate [cf. de Haan and Pickands (1986)]. The result in (b)
is Lemma 2 of de Haan (1984).

For the purpose of modeling the random utilities of the alternatives in T as
a max-stable process, it follows from the discussion in Section 2 that we would
like the utility process to have usc realizations. The next theorem character-
izes a.s. finite max-stable processes with usc paths.

It is convenient to define

f*(u) =fY(T,u) =fY(T N D,u), ueU,
and recall that {f(«), ¢t € T} is separable with separant D, for all u.

THEOREM 3.1. Suppose f* € L(p). If for p-a.a. u € U,
t = fi(u)

is usc, then {Y,, t € T} is separable with separant D and for a.a. w, Y(w) €
US(T). Conversely, if Y = {Y,, t € T} has a.a. paths usc, then Y is separable
with separant D and for p-a.a. u,

t - fu(u)

is usc.

Proor. Let N =X ,¢,, r,) be the Poisson process with points {(u,, I}),
k > 1} and mean measure 1;,(u)p(du)l, .(x) dx. Then for any 6 > 0,

E[N({(u’x): f*’(CU) 7 6})] ) f([«u x):\f*(u)/x>8)1U(u)p(du))lloyw)(x) dx

1
= 5 ) f*@e(du) <.

This implies E[#k: f*(u,)/T, > 8] < « and consequently for all 7,

Q, = {““ L Yy msnmy(®) < °°}
k

satisfies P[Q,] = 1. Define

M,(0) = sup{k: f*f_,uk) > n“l}
3

so that on Q,, M, (0) < .
Now we proceed with the proof of the theorem.



276 S. I. RESNICK AND R. ROY

(Sufficiency.) For p-a.a. u € U, suppose f,(u) is uscin ¢. Let
U, ={ueU: f(u) € US(T)}
so that p(U;) = 1. Define
Q. = {o: u4(0) € U,V E)

so that
P[] = (9 esUl)
< X p(Uf) =0
k
and
P[Q,]=1.

We show that for € (N ,Q,) N Q,, Y(w) is usc. Pick ¢, € Y and consider
two cases.

Case 1: If Y,(w) > 0, then there exists n, such that 1/n, <Y,(w) and
since

we have
M, (w) <=
Thus
limsup ¥ (w) = limsup \/ 1ACH2)
t=to toty k=1 lr(@)
[ M, (o) -
i v f#a(@) Flua(@))
=1 T(Upl@))
lltn—>stl:ph( k\=/1 [ (@) )v(k>1t\4{o(w) I(w) )J
[ | M, (o)
. no ft(uk(w)) f*(uk(a)))
<1 I{u)) F*(up(@))
= lItILS;‘:pL( k\=/1 [ (o) ) v (k>1‘\4{o(‘") I(w)
M, (0)
. v ft(uk(w)) B
shr:xj:p k\=/1 Tow) )v ot

Since u,(w) € Uy, f(u(w) € US(T)for k=1,...

, M, (»), whence

Mrile2) fi(up(w))
k\=/1 —l"k(w) e US(T).
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Therefore the previous expression is bounded above by

M @)\ [ flmae))
(750§ 2]

= Y (0) V gt = Y (w),

since n, was chosen to satisfy ny' <Y, (o).
Case 2: If € (N ,Q,) N Q, and Y, (o) = 0, then for any =,

[ [ M (0) u (o uilw
imsup(0) = imsup |V u)( v f »)]

t—t, t—t, k=1 [ (w) k>M,(0) [(w)
. [ [ Mol ft(uk(w)) ) f*(uk(“’))
= lntn_)st?p ( k\=/1 I.(w) Y k>1\v1/,,(w) T(@)

Mol fi(u(w)) ) v -l

< limsup| V
t—ty k=1 [(w)

<Y (o) vnlt=n7}

and since n is arbitrary
limsupYy(w) = ¥, (@) = 0.

t—t,

For either Case 1 or Case 2, we have shown that for 0 € (N ,Q,) N Q, and
any t, €T,

lim sup¥,(w) < Y, (w),

t—t,

whence ¢ — Y,(w) is usc.
Conversely, define

Quge = {w: t » Y(o) is usc}

and therefore we have P[Qygc] = 1. If [, f *(uw)p(du) = 0, then f*(u) = 0 for
p-a.e. u and for all t € T, f(u) =0 for p-a.e. u. So for p-aa. u: f(u) is
continuous in ¢. Hence suppose henceforth that [, f*(u)p(du) > 0. Then
there exists ¢ > 0 such that

[ (F*(w) = )" p(du) > 0.
Write [cf. Balkema and de Haan (1988)]

Yt=( vV ft(uk))v( V ft(uk))=Yt’\/Yt”

k:Tp<c Fk k:Tp>c l-‘k

so that Y,’ is independent of Y,” by the complete randomness of the underly-
ing Poisson process.
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Define E' := {w: N(U X [0, c], ) = 1} and we have
P[E'] = P[N(U x [0,c]) = 1]
=EN(U x [0,c])exp{ —EN(U % [0,c])} =ce ©> 0.
Define E” as the event

E"=|:VY;”S].]

teT

e 0

= {w: V f*(uk) < l}

B:Ty>e Lk

and we have

- P[E"] = [F"[N({(u,x): x>ec, f*iu) > 1}

2

- exp(—f f*(u)>1)p(du) dx)

{(u,x): x>c,

—exp( = [ (1*(w) = )" Jo(au) > .

Again from the complete randomness on N, E’ and E” are independent so
that PLE’' N E”] > 0. Note that if v € E’, then

Y, (w) = —’c‘(rlz(li)“)’)) .
Forw e E'NE",
Y(w) = Y/(0) V ¥/() = % v ¥/ (),
whence
Y(o) V1= f—‘(l—f% VY"(w) V1
_ fo(uy(w))
- I'(w) Vi

and therefore

I(0)(Yi(w) V1) = f(uyw)) V Ty(w).
For w € E' N E" N Qygc We have that Y(w) is a usc function of ¢ and from
the precec!ing equation conclude f(u,(w)) V I'(w) is usc in ¢. This implies

P[{f.(u1) VT, & US(T)} n {E'nE")] = 0.



CONTINUOUS CHOICE 279

Consequently,
Pl f(u,) VI, € US(T)E' NnE"] =0.
Conditional on E’' N E”, (u,, ;) has distribution p(du)c™'dx on U X [0, c].
From this and Fubini’s theorem, we get
P[f(u,) VI, & US(T)E' N E"]

= c_l

/ ( / p(du) | dx
[0,cl\{ueU: f(u)vxeUS(T)}

=c'[ plueU: f(u) vVae US(T))dx = 0.
[0,¢]

We conclude that for Lebesgue a.a. x € [0, c],
p({u € U: f(u) vx & US(T)}) = 0.
Now pick a sequence x, |0, such that p{u € U: f(u)V x, & US(T)} = 0.
Then the sets
A, ={ueU: f(u)Vx,&US(T)}
satisfy
A, 1A = {ueU: f(u) € US(T)}.
From monotone convergence p(A, )1 p(A,) whence p(A,) = 0 and we have
our required result.

It remains to prove that if Y has a.s. usc paths, then Y is a separable
random function. Set

Q. = {w: ¢t = f(u(w)) is separable, V & > 1}.
Since {f,, t € T'} is assumed separable
P[Qgp] = 1.
We show for w € (N,Q,) N Q, N Qyge that {Y(w): ¢ € T} is a separable
function with separant D.

Suppose initially that Y, (w) > 0 and let n, be an integer satisfying 1/n, <
Y, (@). Then

M, (w)
Y filur(w))
Y, () = k\=/1 TT(0)

Suppose for 1 < j, < M, (o),

07 Lea(@) i)
k=1 (@) Ii(w) .
Since f,(u; ) is separable, there exist ¢, € D, ¢, — ¢, such that
fu(id@) i)
I(@) Ti(w)

Y, (o) =
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Therefore

fto( ujo(w))
I ()

liminfY, () > =Y, (o).

Also, by upper semicontinuity,

lim sup¥, (w) < ¥, (w),

n—>w
whence
Y, (0) = Y, (0).
If on the other hand Y, (w) = 0, then by upper semicontinuity
limsup¥, (o) < ¥, () =0

n—o
so that again
Y, (0) = Y, ().

This demonstrates separability. O

REMARK 1. If we assume {Y} is stochastically continuous or equivalently
that {f,} is L,(p)-continuous, then any countable set may serve as the sepa-
rant. By mimicking the construction of Neveu (1965), page 92, or Ash and
Gardner (1975), we observe that if {f,} is L,(p)-continuous and ¢ — f,(u) is
p-a.e. usc, then there is a version of { f,}, call it { f,*} which is L,(p)-continuous,
p-a.e. usc and separable. Note that if the functions { f,} are p-a.e. continuous in
tand f (T, ) € L(p), then {f,} is L,(p)-continuous and it follows that {Y}} is
stochastically continuous. To see this, note that for any ¢, — ¢, f,(-) > f(-)
p-a.e. and from dominated convergence we get f, —. ., f;

REMARK 2. Theorem 3.1 and the discussion in Section 2 show how to
construct a max-stable process which is a random element of US(T).

REMARK 3. Max-stable random usc processes are associated and hence the
random utilities for the alternatives in 7' are nonnegatively correlated. This
will be discussed elsewhere.

The same methods allow one to give a criterion for sample path continuity.
Continue to suppose {Y,, ¢ € T} is max-stable with spectral functions {f,,
¢t € T} and that {f,} is separable with separant D.

THEOREM 3.2. Y ={Y,, t € T} is almost surely continuous iff:

@ f*=fY(T)=fY(T nD)eLp).
(ii) For p-a.a.u € U, t — f(u) is continuous.
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Proor (Sufficiency). Given (i) and (ii), we get from Theorem 3.1 that Y(w)
is usc for a.a. w. To check that paths are also lower semi-continuous (Isc) and
hence continuous, observe that since arbitrary maxima of lsc functions are lsc,
we have for any ¢, € T,

i, (o) = ot ¥ FEE)
_k\z/l [ (w) Yt"()

for w € {w: f(u,(w)) is continuous on T, V k > 1}, i.e,, for a.a. w. Thus for
a.a. o, t = Y,(w) is both usc and lsc.

(Necessity.) Almost sure continuity of paths implies a.a. paths are finite
whence (i) follows from (3.1). The proof of (ii) is very similar to the comparable
part of Theorem 3.1. O

REMARK 4. Sample path continuity for max-moving averages is discussed
in Balkema and de Haan (1988), and characterizations for the sample path
continuity of sup-infinitely divisible processes via Norberg’s (1986) representa-
tion, which include max-stable processes, are presented in Giné, Hahn and
Vataan (1989).

The motivation behind considering max-stable random utility processes Y
which are random elements of US(T') is twofold. First, it ensures that there
exists an alternative which achieves the maximum level of utility, and second
it allows utilities to vary discontinuously over T, for instance, the price system
associated with the alternatives in T' can have discontinuities, as might be
expected in applications.

We note from the discussion in Section 2 that {Y,, t € T}, a separable
max-stable process with a.s. usc sample paths on a complete probability
space (Q, &7, P), is a measurable stochastic process, that is, (w,?) — Y,(w) is
& X #(T) measurable. Similarly, by considering the spectral functions f =
{f;, t € T} as a separable stochastic process on the probability space (U, %, p)
with usc realizations for p-a.a. u € U, we get (u,?) = f(u) is X #(T)
measurable. We modify the paths of {f,, ¢ € T'} on the p-null set Uf (see
Theorem 3.1) so that ¢ — f(u) is usc for all u € U, and it is clear that this
modification does not affect the finite-dimensional distributions (7) of
{Y,, ¢t € T'}). This modification on a p-null set simplifies matters related to the
computations of the choice probabilities.

4. The choice probabilities. Consider a separable max-stable random
utility process Y = {Y,, ¢t € T} with a.s. usc sample paths. Then, from the
discussion in Section 2, it follows that Y is a random element of US(T'). This
implies that M = {¢: Y, = Y Y(T)} is a random element of %(T). In cases
where M consists a.s. of a single element, it is natural to imagine that the
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alternative chosen is the one with maximum utility. In this case, the probabil-
ity that an alternative is chosen from a closed set K is

P[choose an alternative in K] = P[M c K].

In cases where M(w) is not a.s. singleton, the situation for the analyst is
complicated by the fact that the rule “pick the alternative with maximum
utility”” does not uniquely specify an alternative. This creates an identification
problem with respect to the sets containing the utility maximizing alterna-
tives. The ambiguity that results from this may be used to develop models
representing flexible preferences [cf. Kreps (1979)]. Eventually we will concen-
trate on understanding characteristics of max-stable processes which result in
unambiguous choice probabilities stemming from M(w) being a.s. singleton.

We first specify the distribution of the random set M by giving the hitting
and containment functionals. (U, %, p) is a complete probability space, and we
are given the functions { f,(u), ¢ € T} such that for each u € U, f(u) € US(T).
Then from the discussion in Section 2,

(u,t) = f(u) is X #(T) measurable,
and for each u € %, the set
My(u) ={t €T: f(u) =f*(u)}

is closed, where we recall that we set V ,.,f,(+) = f*(-). Consequently, from
the analogous discussion in Section 2, the closed set-valued map

M;:U - 5(T)

is a random element of (F(T), Z(#(T))) with probability space (U, %, p),
that is, M; (#B(F(T)) c %.
If K € (T), then define

K® ={ueU:3t,eKst. f,(u)>f(u),Vs €K
ueU: fY(K,u)>f(u),VseKe)

ueU: M (u) cK}={ueU: My (u) NK* =2}

{
{

={ueU: M (u) K+ Q) €%,

K9 ={ueU:3s, €K st. f,(u) >f(u),VteckK)
={ueU:3s,eKest. f,(u) >f"(K,u)}
={ueU:My(u) cK})={uecU: M(u) NK=0} €%,

K& = (K> UK&)°

={uceU:M(u)NK+3, M(u) NK*+ D} € %.
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The underlying Poisson process (PRM(w)) on U X [0,©) of the max-stable
process {Y,} is
N = Z g(“j’r})’
Jj

where for B € % X %[0, «),

= 1’ xEB,
“m={g 165

N has mean measure
m(du,dl’) = 1yp(du) X 1 . dT.
Now consider the Poisson processes

NK(>) = Z E(uj,l})l(ujeK(”) = N(‘ N K(>) X [0, °°)),
J

NK(<) = Z s(uj’r_‘i)l(ujeK(<)) = N(' N K(<) X [0, m)),
J

Nge- = Z e(uj’rj)l(ujeK(a) =N(-Nn K™ x[0,)).
J

Then by the complete randomness of N: Ng(<), Ng- and Ng>) are mutually
independent PRM’s with mean measure

pr () =p(-N K3 x[0,))

for Nk>) and the mean measures of Ng<, and Ng) are defined similarly.
[Similar projections were employed in Resnick and Roy (1990) to derive choice
probabilities for multivariate extremal random utility processes.]

Define the random variables

F*(uy)
Xgn =V _F—kl(ukeK(>))7
k k
F*(uy)
Xpeo=V _F—l(ukEK(<))’
k k
f*(ug)
Xgoo = V _F—l(ukeK(“))-
k k

Then Xy), Xg<) and Xy - are independent random variables with distribu-
tions which are of ®, extreme-value type:

1
Pl X < x] =exp(—;fK(>)f*(u)p(du)), x> 0.

The distributions of Xy- and Xy« are similar, except that the domain of
integration varies according to the underlying sets K<<’ or K. Also define
the random variable

Xgi) = Xgo) V Xgeo,
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which is also &, extreme-value distributed.

THEOREM 4.1. Suppose {Y,, t € T} is a separable max-stable process with
a.s. usc sample paths, and f* € L(p). The random closed set M is defined as

M= {t:Y,=YY(T))}.
For an arbitrary K € #(T):
(a) The containment functional [cf. Eddy and Trader (1982)] is
Jg» *(u)p(du)
Juf*(w)p(du)
(b) The hitting function or Choquet capacity [ Matheron (1975)] is
Tu[K]=P[M N K + @]
=P[McK]+P[Xge> (Xgor V Xge»)]
g £ (w)p(du)
 Juf*(u)p(du)

Proor. The event that alternatives exclusively in some K € F#(T') achieve
the maximum utility level corresponds to the event [M c K] and has probabil-
ity
P[McK]=P[Xge) > (Xgo V Xgo)]

= [Fewn(-(1/m [ _fr(untdu) jep{=1/) [ _f*(w)o(a) |

P[M cK]:=

xXd

ol -/ [ f(wo(aw)|

_ Jxef*(u)p(du)
fuf*(u)p(du)

The other probabilities are calculated similarly [cf. de Haan (1984) and Resnick
and Roy (1990)].

Now we note that for max-stable utility processes the maximum value of
utility realized is independent of the alternative(s) which actually attained this
maximum utility level. For finite T', a similar result in the context of multi-
variate extremal processes is in Resnick and Roy (1990). O

COROLLARY 4.1. Assume the hypotheses of the previous theorem. Then
Y Y(T) and M are independent.

Proor. We have that Y V(T') is ®, extreme-value distributed with distri-
bution function

PlYV(T) <z] = exp(—(—i—)fvf*(u)p(du)), z2>0.
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Now
P{(YV(T) <2) N (MNK +2)|
=Pz 2 (Xgo V Xgo) > Xgeo]
e f*(u)p(du
e edny L wetan)
=P[MNK=+QIP[YV(T) <z].
This gives the desired independence. O

We now discuss when M(w) consists of a single element. We first review
the notation

f*(u) = VTft(u),
. _= w) = f*(up(w))
Y(e): t\e/TYt( ) k\z/1 [ () ’

M(w) ={teT:Y(0) =YY (T,w)},
My(u) ={teT: f(u) =f*(u)}
TueoreM 4.2. (Y, t € T} is a separable max-stable process with a.s. usc
sample paths and f *(+) € L(p). Then
M(w) isa.s. singleton
iff for p-a.a. u € U,
M(u) is singleton.

Proor. Y.(w) € US(T) iff f(u) € US(T) for p-a.a. u. Without loss of
generality, by suitably modifying { f,} we assume that ¢ — f,(u) is usc in ¢ for
allu e U.

(Sufficiency.) Let

Uy={uecU: My(u) =({t,);ie, M(u)is singleton}
so that p(U,) = 1. Then it follows that for any K € F(T),
KONU,=0@
and hence p(K() = 0. Therefore from the formulas in Theorem 4.1,
P[ Xgor > (Xgo V Xge»)] = 0,
and thus we conclude that for any K € %(T') we have
P[IMcK]=Ty[K]=P[MNK =+ J],

i.e., the hitting function coincides with the containment functional, and by
Eddy and Trader (1982), Proposition 4.7, M is a.s. singleton.
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(Necessity.) Conversely we may suppose that [;; f *(u)p(du) > 0 and define
Qp=[Y*>0] N {w: M(w) is singleton}
so that P[Q,] = 1. Define E’, E” as in Theorem 3.1 so that E’ and E” are

independent, with P[E’' N E”] > 0.
As before we have on E' N E”,

f(uy(w))
Y, Vi=———V1
1) @)
so that on Qp,NE'NE"N[V,.,Y/ > 1] we have {t € T: fluw) =
f *(u,(w))} is singleton. This follows from recalling that ¢ — f(u(w)) is usc in
t and hence M (u (w)) is nonempty. Therefore, defining the event
SING = {w: {t € T: f(uy(w)) = f*(u,(w))} is singleton},

we get

IP[(SING)” NE' NE"n [ VY > 1] - o.
teT

Since on E’ we have V, Y, = f *(u,)/T;, we conclude
P[{SING} n {f*(u,) > }IE' n E"| = 0.

Conditional on E’'=[N(U X [0,c]) =1] =[TI; <c <T,], we have I, uni-
formly distributed on [0, ¢] so we have

o=c-1/ ([ p(du))dx,
[0, ]I\ “[{¢: fu)=f*(u)}is not singleton]N[ f *(u)>x]

whence for Lebesgue a.a. x,

0 = p({u: {t: f(w) = f*(u)}is not singleton} N {u: f*(u) > x})
and letting x |0 through an appropriate sequence gives the desired result. 0

ReEMARK 5. Note that for Cosslett’s (1988) parametrization of the spectral
functions {f;, t € T} of a stationary max-moving average, M(u) is singleton
V u € U, and hence for his case M is a.s. singleton.

Given a max-stable random utility process with a.s. usc realizations, on the
alternatives space T, we now find a measurable way of identifying the
alternative(s) which actually attain the maximum utility value.

From the discussion in the beginning of this section, we have that (u, ¢) —
flu) is % X #(T)-measurable, and for M;: U — F(T') we have

M;Y(B(F(T))) € %.
Then from a classical result on measurable selections [cf. Wagner (1977),

Theorem 4.1], there exists a %measurable function hA: U — T such that
h~%%(T)) € % and

h(u) € My(w).
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Hence for any u € U,
Fray(u) = F*(u).
Suppose M is a.s. singleton, so that if
U; = {u € U: My(u)is singleton},

then p(Us) = 1. For u € U, there exists ¢, € T such that M () = {¢,). So if
h is a measurable selection and u € U, we have h(u) = ¢,. This means all
measurable selections agree on Uj, a set of p-measure 1. Conversely, if all
measurable selections agree on a set U, of p-measure 1, M (u) must be
singleton for u € U,;. We summarize in the following corollary.

COROLLARY 4.2. If the hypotheses in Theorem 4.2 hold, then the following
are equivalent:

1. M is a.s. singleton.
2. M(u) is singleton for p-a.a. u € U.
3. There exists a Zmeasurable selection h: U — T such that

h(u) € Mi(u)
and h(-) is unique up to sets of p-measure 0. For any K € F(T) we have
K®)=h Y (K) ={u: h(u) € K}
and
Jg F*(u)p(du) _ o Fran(w) p(du)
Juf*(@)p(du) [y fau()p(du)

(8) P[IMcK]=

5. Complements and examples.

5.1. Max-stable random sup-measures and max-stable processes. This sec-
tion is a brief exposition devoted toward developing choice models for sets of
alternatives. Preferences for sets of alternatives are discussed in Kreps (1979).
His utility representations interpreted in terms of state-dependent utility
functions lead to random sup-measures [cf. Vervaat (1988)].

Let (Q, o7, P) be a complete probability space, and assume T is a compact,
metric space. A function m: Z(T) —» R, is called a sup-measure if m(J) = 0
and for an arbitrary collection of open sets (G,); ., € A(T),

m(U6)- Vm@)
Jjed jed
[cf. Vervaat (1988)]. Denote the collection of sup-measures on T by SM(T)

and endow it with the sup—vague topology which has the following collection
as sub-basis sets: For x € R,

{meSM(T): m(K) <x}, Ke F(T),
{m e SM(T): m(G) >x}, GeZHT).



288 S. I. RESNICK AND R. ROY

Let #(T) be the Borel o-algebra generated by the open subsets of SM(T).
Then a measurable function X: Q — SM(T) is called a random sup-measure.

For a sup-measure m, define its sup-derivative as the mapping d“Vm:
T - R,, where

dVm(t) == A m(G) =m({t})
G>t
[ef. Vervaat (1988) and O’Brien, Torfs and Vervaat (1988)]. Then it follows
that d Ym € US(T) [cf. Vervaat (1988)]. Assume US(T') is topologized by the
sup-vague topology as described in Section 2.

Let X be a max-stable random sup-measure. By this we mean that X is a
random sup-measure whose finite-dimensional distributions are max-stable.
This implies that there exists a collection of Lebesgue integrable functions
f(G,-):10,1] - R_ indexed by sets in #(T) such that for G; € L(T), x® > 0,

=1,...,n:
n ) " f(G;,u)
P X(G,)) <xDY| = - ——2d
500 =) o 1 a8

[cf. Resnick (1987), Theorem 5.11]. The random sup-derivative of X, d VX, is a
random element of US(T') [cf. Vervaat (1988)]. If d ¥V X(¢) is nondegenerate for
all ¢, then by virtue of the max-stability of X, it follows that the sup-derivative
{d VX(¢), t € T} is a max-stable process.

Conversely suppose that Y = {Y,, ¢t € T'} is a max-stable process which is a
random element of US(T'). Then it follows that Y V(-) is a max-stable random
sup-measure.

5.2. Choice probability densities. Let U be a complete metric subspace of
R and T be a compact subset of R. Suppose k(x) is monotone (say increasing)
in u, implying that A is Lebesgue a.e. differentiable [cf. Hewitt and Stromberg
(1965)]. Then for K = [a,b] C T,
fl?__lt(:))fh(u)( u)p(du)
Ju Frq(®)p(du)

Let p be Lebesgue measure. This implies for [a, ¢] € T we have

fi(h™1(2)) dh7(2)
Ju fh(u)(u) du dat "’

In general, we obtain from the transformation theorem for integrals that
the probability in (8) can be obtained by integrating over K the density

f*(R'(y))
Juf*(u)p(du)

with respect to the measure p o A~ (dy).

P[M c[a,b]] =

d
Et-P[M cla,t]] = Lebesgue a.e.
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5.3. Independence from irrelevant alternatives (IIA). The IIA property for
a compact, metric choice set T' is defined as follows: Suppose T, is a compact
subset of T. Then for any K; € #(T)), i = 1,2, IIA prescribes that

Pr[McC K] _ Pr[M C K]
Pr[M c K,] Pr[M c K,]

[cf. McFadden (1976)], where P,[-] denotes the choice probability when the
underlying choice set is T'.
Then an inspection of (8) indicates that

PrIMc K] _ Jxf (T, u)p(du)
Pr[MCKy] — fxgrf (T, u)p(du)

is in general not equal to

PTI[MQKI] _ fK;>)fv(Tlau)p(du)
Pr[M c K,] - fK§>)fV(T1,u)p(du)'

In situations where U = T' and the specification of f is such that the selection
function hk(-) satisfies

h(u) =u,
the choice probabilities will satisfy IIA.

5.4. Examples.

ExampLE 1 (Uniformly distributed random set M). Suppose for any K €
9- (T),

[ *@)p(du) = p(K),

and set C = [f*(u)p(du). Then
U

p(K)
P[McK]= c Ke 7(T).
For instance, suppose U = T = [0, 1% |- |l is Euclidean distance, f,(u) =

e~ =% and p is Lebesgue measure. Then A(u) = u, K’ = K and f*@ =1,
and for t = ¢V, t®) e T,

P[M c [0,t]] = tDt?,

that is, M is uniformly distributed on [0, 1]2.

In general if p is Lebesgue measure on T = U and f.(u) has the unique
maximum 1 at z (for p-a.a. u), then K>’ =K and M is uniformly dis-
tributed.
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ExampLE 2. Let U =T =[0,1], 8 € R is a constant and define

fi(u) = exp(—(1/2)[(u — 0)* + (¢ — u)?]).
p is Lebesgue measure. Then A(u) = u and for ¢ € [0, 1],
O(t—-0) +P(0) -1
(1 -6) +d(0) -1’

where ®(-) denotes the standard normal distribution function.

P[M - [O!t]] =

ExampLE 3. Suppose U = T = [0, 1] and p is Lebesgue measure. Define for
0<6<log2,

Fu) = 10— It — ul, t€[0,1/2),
ef(1— It —ul), te[l/2,1].
Then
[q,r](>)= [q,r], 0<g<r=<(1/e-1/2),
[r,s]17 =2, (1/e°-1/2)<r<s<1/2,
(1727 = (1/¢° - 1/2,1/2],
[5,¢] =[s,¢], 1/2<s<t<]l,
and hence
P[Mg[s,t]]=t;s, 0<s<t<(l/e’ - 1/2),
=0, (1/e°-1/2)<s<t<1/2,
= i(t——s—) 1/2<s<t<1,
Cc
Plae - (/2 - LD
where

C=e®+1/(2° —1/2.

6. Discussion. In this section we make some observations about the
modeling framework analyzed above and discuss some research questions
which arise in this context.

Spectral functions which are unimodal seem to be the obvious candidates
for modeling purposes. Thought is being given to the basic issue of how to
systematically select spectral functions. If one assumes that the spectral
functions are functions of some underlying parameters 6 in some parameter
space 0O, then issues related to the estimation of these parameters arise. This
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issue is left for future research. Cosslett (1988) does look into the estimation
issue for a specific parametrization of the spectral functions.

The measurable selection notion is really an existence result, and not
constructive. What it does provide, though, is insight into how one can
construct a max-stable random utility process model, and then identify the
relevant domains of integration in the formulas for the choice probabilities.

It may be possible to incorporate the model proposed in this article in
dynamic programming models where the action space is compact, metric. For
instance, proceeding in a similar fashion as Rust (1988) (where the action
space is assumed to be finite), the social surplus function [cf. McFadden (1981)
and Section 3 above], corresponding to the action space T, is just
log[ [y f *(u)p(du)], where f*(u) would incorporate an additional term ac-
counting for the future as described in Rust (1988). Investigations into this
problem are subjects of ongoing research. Also, it is often assumed in dynamic
choice modeling that exactly one action maximizes utility [for instance, see
Manski (1988)]. Hence it may be worth reiterating that in the discussion
above, this situation has been completely characterized for max-stable random
utility processes on compact, metric action spaces. Modeling the dynamic
continuous choice problem is underway.
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