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STOCHASTIC ORDER FOR INSPECTION AND
REPAIR POLICIES
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The Florida State University

Inspection and repair policies for (n — r + 1)-out-of-n systems are
compared stochastically with respect to two partial orderings >%1 and >b2
on the set of permutations of {1,2,...,n}. The partial ordering >% is
finer than the partial ordering >% . A given permutation 7 of {1,2,. .., n}
determines the order in which components are visited and inspected. We
assume that the reliability of the ith independent component is given by
P;, where Py <Py, < -+ <P,. If 7 and 7' are two permutations such
that 7 >% 7', then we show that the number of inspections necessary to
achieve minimal or complete repair is stochastically smaller with 7 than
with 7'. We also consider three policies for minimal repair when the
components are each made up of ¢ “parts” assembled in parallel. It is
shown that if 7 >%2 7', then the number of repairs necessary under 7 is
stochastically smaller than the number necessary under 7', but that in
general this is not true for the finer ordering >%! . The results enable one
to make interesting comparisons between various inspection and repair
policies, as well as to understand better the relationship between the
orderings >% and >%2 on the set of permutations.

1. Introduction and summary. In this article we are interested in
comparing inspection and repair policies for an (n — r + 1)-out-of-n system.
We assume that the components function independently with respective proba-
bilities Py, ..., P,, where P, < P, < --- < P,. N will be the random variable
indicating the number of failed components at a particular point of time. In
some cases we will assume very specific knowledge about N; in others we will
not. For example, if we know the system has just failed, then we will assume
that N = r, while if we know that the system has failed at some time in the
past, we will assume N > r. Normally we will be interested in points of time
where the system is down [N > r], but of course N may take any integer value
between 0 and n. Now let = be any permutation of {1,...,n}. Any such =
defines an inspection procedure for the system whereby we first inspect
component (1), then component m(2),..., etc.,, until a specified objective
(say, a minimal repair or a complete repair) is achieved. For any inspection
policy 7 and any integer k, where 1 < k < n, we define the random variable
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W, .. (on the space of possible system states w) as follows:

No. of components inspected (in the order 7) if N(w) = &,
W, (w) = until the kth failure is spotted
n if N(w) <k.

We may view W, _ as the waiting time under procedure 7 until the discovery
of the kth failed component For two policies = and 7' we will be interested in
stochastic comparisons of W, . and W, _. in the situations where (a) nothing
is known about N, (b) it is known that [N = r] (the system has just gone
down) and (c) it is known that [N > r] (the system has been down for some
time). Our comparisons will be relative to two partial orderings defined on the
permutations of {1,...,n}. For two permutations = and =', we say that
m =% 7' (i = 1,2) if either 7 = 7' or 7 can be obtained from 7' by a sequence
of permutations, starting with 7', whereby each successive permutation is
obtained by a pairwise correction of out-of-order elements of the preceding
permutation. If the pairwise corrections of elements of the permutations have
no restrictions, we say that 7 >% 7', while if only adjacent pairs of elements
are corrected we say m >%2 7'. We note that >% is a finer partial order on the
set o, of permutations of {1,...,n} than is >% , and Figure 1 illustrates the
related permutations for n = 3.

The partial order >% was defined by Sobel (1954), Savage (1959) and
Lehmann (1966). This ordering is fundamental to the work of Hollander,
Proschan and Sethuraman (1977) on arrangement-increasing functions. The
ordering >%t is considered by Yanagimoto and Okamoto (1969) in studying
monotonicity results for rank correlation coefficients. Both of these partial
orders are treated by Block, Chhetry, Fang and Sampson (1988, 1990), who
also study other partial orders with applications to concepts of dependence for
bivariate distributions.

In Section 2 of this article we show that conditioned on either [N = r],
[N > r] or unconditionally on N, 7 2% 7' = W, . <* W, .. Applications are
discussed and some stochastic properties of accumulated costs are developed
for various inspection procedures.
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In Section 3 we assume that each component is in turn composed of ¢
independent parts of similar reliability. Series-parallel systems or, more gener-
ally, (n — r + 1)-out-of-n systems whose components are each enforced by
t — 1 active redundancies, are familiar examples. Such systems occur, for
instance, in communication networks and safety design. Assuming indepen-
dence of parts we have that if p; is the reliability of a part in component i,
then the reliability of component i is P, =1 — g!. We investigate three
different types of inspection and repair policies, where our primary interest is
to minimize the number of repairs in order to bring a system which is down
back to life. Let = be a given permutation indicating the order in which
components are visited (inspected). In policy 1 we inspect only the ““first” part
of a visited component. If this first part is good, we know the component as a
whole is working and we proceed to the next component having made no
repair. Otherwise we repair (or replace) that first part (knowing then that the
given component will work) and then test the whole system. If the system
works, we stop; otherwise, we proceed to the next component (as determined
by ). We let R. be the total number of repairs necessary to bring the system
back to life (a form of minimal repair). Policy 2 is similar except that we repair
parts in a component sequentially until we meet a good part in the component.
'If no such part is encountered we make ¢ repairs there, knowing that we have
found one of the bad components in the system. We proceed until the system
comes back to life, letting R2 be the number of repairs necessary to achieve
this. In policy 3, we repair all bad parts in an inspected component, and
continue inspection until the system comes back to life. R2 is the random
variable indicating the total number of repairs made under this policy in order
to obtain a minimal repair. Letting R2 be the number of repairs necessary to
achieve minimal repair using policy « (assuming either the system is “just
down” or has been down for some time), we show that 7 >%2 7' = R® < R2,
for @ = 1,2,3. We show that in general this stochastic implication is not true
for the finer (but more standard) partial order >%: .

Ben-Dov (1977) presents some related work where the objective is to
determine the bad components in a system. He determines the inspection
procedure which is optimal in the sense of minimizing expected costs.

2. Inspection procedures for (n — r + 1)-out-of-n systems. We as-
sume here that component i has reliability P, =1 - @, for i = 1,...,n, and
without loss of generality that P, < -+ < P,. The components are assumed
independent, and the system functions if at least n — r + 1 of the components
function. N is the random variable indicating the number of bad or failed
components, and often we will be interested in conditioning on N = r (the
system has just failed) or N > r (the system is in a failed state). For any given
permutation 7 of {1,...,n} which represents the order of inspection of the
components, we have deﬁned W,, . to be the (waiting time) number of compo-
nents inspected until the %th failed component is discovered. We now define
Wy, . (respectively, Wy _,.; .) to be the number of components visited or
inspected until all failed components (the failed component whose repair
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brings the system back to life) are identified and fixed. If the system is
working, then of course Wy_,.,; . = 0, and if no components are failed then
W, - = 0. We may view Wy _ (Wy_,,; ) as the waiting time or total number
of inspections that are necessary to achieve complete (minimal) repair. We are
of course implicitly assuming that every time we encounter a failed component
we repair or replace it and test the system to see if it then functions or not.
Note that once we perform a repair for a component which results in the
system functioning (for the first time), we know that we have just repaired
failure number N — r + 1 and that there are r — 1 failed components left.
(Previous to this we might only have known that the system was down without
knowing the exact number of failed components.) We are interested in making
stochastic comparisons between Wy . and Wy .. (respectively, Wy _, +1,» and
Wy_, 11, ) for permutations = and 7.

DEeFINITION 2.1. For two permutations 7 and =’ of {1,...,n}, we say
7 2% 7' if 7 can be reached from 7' by successive interchanges, each of which
corrects an inversion of the natural order. In this ordering we say 7 immedi-
ately precedes 7' and write 7 >1 7' if there exist indices i and j such that
i <J, w(@) < 7(j), w(@) = 7'(j), 7w(j) = 7'(Q) and 7(1) = 7'(1) for all | # i, j.
Then 7 > 7' if and only if there exists a sequence of permutations ', ..., y*
such that 7 = y* >P1 ... >P1 yl = 7' For example, (1234) > (3421). Simi-
larly, we define the partial order >%: on the set o, of permutations of
{1,...,n}, where m >% 7' if 7 can be reached from 7' by successive inter-
changes, each of which corrects an inversion of the natural order of adjacent
numbers. We say m immediately precedes =’ in this ordering, and write
m >P2 ' if there exists an index i such that 7(i) = 7'(i + 1) < w(i + 1) =
m'(i) and w(j) = 7'(j) for all j #i,i + 1. Then = =% 7' if there exists a
sequence of permutations ¢',...,¢* such that = = y* >P2 ... >P2 yl = 5,
The partial order >°' is finer than >’ in the sense that 7 >%2 7' = 7 >&
7', but not conversely. For example, (1243) #%2 (3421), but (3124) >° (3421).
For both partial orderings b;, i = 1,2, one has that for any permutation
T €0, (1,2,38,4,...,n) 2% 7 =(7Q),...,7(n)) 2> (n,n — 1,...,1.

We now wish to compare the waiting times W, .. and W, . for two different
inspection procedures 7 and 7' where = >% 7',

LEMMA 2.2.  Let W, . be the number of inspected components in the system
up to and including the discovery of the kth failed component for the inspection
procedure . Let m >% 7'. Then

P[W, ,.>x,N=m]<P[W, . >x, N=m] forx=0,...,n— 1.
Proor. Without loss of generality we assume 7 =1 7. Hence in particu-

lar there exists i < j such that 7(l) = #'(]) for [ # i, j and Py <P, Itis
easy to see that

P[W, ,.>x,N=m]=P[W, . >x, N=m] wheneverx <iorzx >j.

We now let N;  ; indicate the number of failed components among those
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components with indices i,,...,i,, and define Niv--i =N — N, (the

.....

number of failed components in {1, ...,n} — {iy,...,7,}). Note that P[Wk - > X,
N=ml]= P[N(l) ,,,,, Sk —1, N=m]
For i < x <j, we have

P[W, .>x, N=m]
= Q-n'(i)Q‘n-(j)P[N‘rr(l) ,,,,, @ mx) = k-2, N™OTD = m — 2]
+ Py ey P [ Newy o 70wy S = 1, NTO™D = |
+ Quiy Pe P Nocty,.... 70, ..omy S k= 2, N™O™D = m — 1]
+ P @y P[ Nocwy, . 70, miy S B = 1, NTO™D e — 1],

Here we use N.q) . 7.7 = Ne,..., -1, 7G+1),...,nzy Which in the
following expression we abbreviate to N %;,. Then we have

P[W, .>x,N=m]~-P[W, . >x, N=m]
{P[Nx,) <k =2, NOO =m 1]

~P[Nxy<k -1, N"O"D = m — 1]}

= %ri) 1T(J

= @) P w(i){P [N,,*z,-) <k -2, NTO™) =y — 1]
[ X<k -1, N™OT™D) = gy — 1]}

= (Qz Prijy = @uiih P (i)){P[wa?i) <k =2, N =m - 1]
~P[N%y <k -1, NTO"D) = m — 1]}

‘rr(z) =

<0. O

As a consequence of this lemma we are able to stochastlcally compare Wy .
and Wy .. (or Wy_,,, . and Wy_,., ) whenever 7 =" ='. Such compar-
isons can be made conditional on some information about N, or uncondition-

ally.

THEOREM 2.3. Assume mw > 7'. Then foranyx =0,1,...,n — 1:
(i) P[Wy ,.>x] <P[Wy . >x].

(ii) P[Wy_,i1,. > 2] < P[Wy_ i1, > 2]

(iii) P[Wy . >xIN=r] <P[Wy . >z|IN=r].

(iv) P[Wy_, 1. >%IN=r] <P[Wy_, ;1 >xIN=r].

v) P[Wy ,.>xIN>r] <P[Wy . >xIN>r].

(vi) P[Wy_, 1. >xIN2r] <P[Wy_,.1 . >2x2IN>r].

The proof follows readily from Lemma 2.2 and is therefore omitted.
We now consider the practical implications of parts (iii) and (iv) of Theorem
2.3. If an (n — r + 1)-out-of-n system has just gone down, then we know that
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N = r. We may be interested in the number of component inspections WN el
we must make in order to bring the system back to life (a minimal repair, i.e.,
in this case find one bad component and repair it), or the number of compo-
nent inspections Wy . we must make in order to make a complete repair of
the system. In either case we are assuming that 7 determines the order in
which components are inspected. The theorem says that the closer 7 is to the
natural order (inspecting components in the order 1,2, ..., n; remember P, <

- < P, and hence this implies inspecting the “potentially”’ weakest compo-
nent first, etc.) with respect to >%', the smaller is (stochastically) the waiting
time to minimal or complete repair. Parts (v) and (vi) of the theorem imply this
is also true given that you have knowledge that the system has failed or is
down (as opposed to the more specific knowledge that it has “just” failed).
Note in particular that the inspection procedure 7 = (1,2,...,n) is clearly the
best of procedures in all of these circumstances, while 7' = (n n— L, 1Dis
the worst.

In the rest of this section we deal with comparisons of costs for inspection
procedures which are comparable in the > ordering. Suppose now that C;
(= 0) is the random cost of inspecting component i, for i =1,...,n. We
assume that (C,,...,C,) is independent of (X,,..., X,,), the random vector
representing the states of the n components where X; = 1 if component ¢ is
functioning and 0 otherwise for i = 1,...,n. In addition we assume C; <*

- <% C,. Since we already assume that P, < --- < P,, this is in line with
the belief that the conceptually weaker components are cheaper to inspect. If
7 is a permutation indicating the order of inspection, then the total cost of
inspection in order to make a minimal repair is

W —r 11,0
C.i)
i=1
If a complete repair of the system is to be made, then the total cost of
inspection (again assuming the system has failed) is

WN'n'

Z w(i)*

We make some stochastic comparisons of total inspection costs for procedures
m and 7' where 7 >% 7. The following lemma is of considerable use.

LEMMA 2.4. Let w > ='. Then

Wk‘rr Wk‘rr
(Z ol N = m)<E(Z ol N = m)

i=1

for any k and m = 0,1,...,n. Moreover, if Cy,...,C, are independent, then
conditional on N = m,

Wk,n kar

t
Z Crr(z) _s E Cﬂ‘(l)
i=1
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Proor. Note that if £ > m, then W, . = n by definition. Hence without
loss of generality we assume k2 < m, and in this proof we assume expectations
are conditional on N = m. It suffices to prove this lemma for the case where
m =1 7' Now

Wk,'n'
E( Z Cfr(i)) =
i=1

and similarly

E E( (l)) P[Wk,rr = 3] = Egl(Wk,‘rr)’

‘ﬁ[v]a

Wy, o n
E( Z Cw'(i)) = Z Z E( (z)) P[Wk,w' = 3] EEgZ(Wk,‘rr’)’
i=1 s=1

where g,(s) = £i_,E(C,;) and gy(s) = £;_,E(C,;).
Now g, and g, are nondecreasing and g, <g, Since W, . <* W, .
(Lemma 2.2), it follows that

Wk‘ﬂ Wkﬂ
(Z il N = m)<E(Z il N = m)

Now we assume that C,,...,C, are independent random variables, and let f
be any nondecreasing function. We define 4, and h, by hy(s) = Ef(X{_,C, ;)
and hy(s) = Ef(): C.y- Then h; and h2 are nondecreasmg and h, < h,.

Since E(f(X s ,,(,))) =E(h(W, ) and E(fE"C ;) = E(hZ(Wk,ﬂ-))

the result follows since W, » <* W, .. (conditional on N m). O

Note that the result of the above lemma holds unconditionally on N as well.
Lemma 2.4 has many applications. If the (n — r + 1)-out-of-n system is
down, then the total cost of inspection until minimal (complete) repair is

WN—r+1,ﬂ

WN,‘IT
Y Cu ( x C,,(i)),
i=1 i=1

where 7 is the order of inspection. The above lemma implies that whenever
m =% 7', then for either type of repair, and conditioned on either [ N = r] (the
system has just failed) or [N > r] (the system is failed), 7 is to be preferred to
7' from a cost point of view.

3. Inspection and repair policies for (n — r + 1)-out-of-n systems
of parallel subsystems. In this section we still assume we have an
(n — r + 1)-out-of-n system, but now we add the assumption that each compo-
nent is composed of ¢ independent identically distributed parts in parallel.
Letting p; be the reliability of a part in component (i) (without loss of
generality p; <p, < --- <p,), it follows that the reliability of component i
is P,=1-¢!

Assuming that the system is not functioning, we are interested in stochastic
comparisons for three types of minimal repair policies. A given permutation 7
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will denote the order in which components are visited, but parts within a
component are repaired or replaced according to three different policies. The
random variables Rl, RZ and R2 have been defined previously, and denote,
respectively, the number of repairs necessary under the three policies to
achieve minimal repair. We show that if 7 > 7', then assuming the system is
down, R? <, RZ for a = 1,2,3.

Policy 1 would be appropriate when it is not possible to test components
individually, it is onerous to inspect and/or replace each part, and a very
minimal repair is desired. Policy 2 would be appropriate if we feel it advisable
to make a somewhat more complete repair within a component, while in policy
3 the idea is that once one has investigated a given component it seems
advisable to repair or replace all nonfunctioning parts within the component.

Now let X; = 1 if component i is working and 0 otherwise, and let Y;; = 1
if the jth part of component i is working and 0 otherwise. We let G, be the
number of bad parts in component i, up to the first good part G.e., G; =
max{j: Y;; + -~ +Y;; = 0}), and B, the number of bad parts in component i
G.e, B; =t — LY, ;). G, is a truncated geometric random variable and B, is
binomially distributed. Note then that

WN—r+1,1r

qur = Z [1 - Y-rr(i)l] ’

i=1
WN—r+1,ﬂ'
2 _
R‘rr - Z G‘rr(i)
i=1
and

WN—r+ 1,7

Ri= Z B-rr(i)‘
i=1

TuEOREM 3.1. If 7 >% 7', then P[R® >s, N=m] < P[R% >s, N=m]
for any s and a = 1,2,3 where m > r.

Proor. Without loss of generality we assume 7 >%2 7', and hence there
exists an i such that 7(i) < 7(G + 1), #'(G) =7 + 1), #'(i + 1) = w(i) and
(1) = w'(0) for all other ! # i, i + 1.

(a) @ = 1. Now

P[RL>s,N=m| =Y P[RL=s,W,_,.1=1,N=m]

l=s

and for [ #i,i + 1,
P[R:>s,W, ,.,=I,N=m|=P[RL >s,W,_,,,=1,N=m].

Therefore P[R. >s, N=m]=P[R.L >s, N=m] for s > i+ 1. Suppose
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now s = i + 1. Then
P[RL>s,W,_,,;=i+1,N=m]
=P[RL=i+1,W,_,.,=i+1, N=m]
=qf,(i+1)P[N,,(l)...,,(,~)= — 1 Rogyny = 6 Noagy oy =7 = 1]
= q-fr(i+1)P[Nﬂ'(i+2)~-'1r(n) =r- 1]
X&)y P[ Nocty o mg-y = =7 = 1, Rl ooy = i = 1]

+ q‘rr(i)(l q‘rr(z) P[ 7Q) G- = M T, R-,l-,(l) cmG-1) = i — 1]}
[Here N,4.. ;-1 and RL, .. ., are, respectively, the number of failed
components and number of parts repaired in components 7(1),...,7( — 1).
Similarly N_;,)... n(», 15 the number of failed components in components
(@i + 2),...,m(n).]
It follows therefore that
P[RL>i+1,N=m]-P[RL>i+1,N=m]|
=P[R,1,21+ 1,W,_ ,.1=1+ 1,N=m]
- P[RL =i+1, Wm re1=1+1, N=m]

_P[ w(i+2) - m(n) 1]P[ r ) -1 =M =T Rogynony = ‘_1]
t
qu(i+1)qw(i)(qw(i+1) - Qﬂ'(i))
<0

since p, ;) < D +1) Similar calculations show that in the case where s < i,
P[RL>s, N=m| - P[R.L >s, N=m]|
= qﬂ'(i)q‘n’(i+l)(q‘n-(t) qw(z+1)) [ m@+2)mwn) T T 1]
X<P[N‘rr(l)""rr(i—l) =m-—r, R-rr(l)“"rr(i—l) =8 — 1]

—P[N,qyp-py=m =7, Rhy iy 2 8 — 2]}
<0.
(b) a = 2. Arguing as in (a) and concentrating on terms where W, _.., =1
or i + 1, it may be shown that

P[R2>s,N=m| - P[R2 25, N=m]|

=P[Noig)momy =7 — 1]
{ [ Ay aw@-1 M T, R;z,(l)...,,(i_l) >8 — t]
X (qfr(i)(l - q-)t'r(i+l)) - q.,t,(iﬂ)(l — q;(i)))

= 2
+ Z alP[ @ w1 =M T Boqy o pgoy 28 =1 — l]
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[here a, = qfr(i+1)p#(i)q‘llr(i) - qqtr(i)Pw(H l)qql-r(i+l) and R121'(1)"~ w(i—1) is the'num-
ber of repairs performed according to policy 2 in components w(1),...,7( — 1)]

= P[Nfr(i+2)"~rr(n) =r- 1]
t—1
= 2
X Z alP[N,,(l)...,,(i_l) =m-r,s—t> Rqr(l)-~'11'(i—1) >s—t— l]
=1

<0
[since a; < 0 for all [ and Li°§a; = g4 (1 — @by — o1 — @hgay))

(¢) @ = 3. In this repair policy, once we decide to inspect a component we
then repair or replace all of its faulty parts. We therefore perform a complete
repair on each inspected component, and continue doing so until the system as
a whole is back in operation and R3 = T "»+1B_, . Manipulations similar to
those in (b) lead to the expression

P[R:>s,N=m] - P[R3 >s, N=m]
=P[N1r(i+2)""rr(n) =r- 1]

t—1
= 3
X Z blP[N-rr(l)""rr(i—l) =m-—-r,s—t> Rrr(l)"'-rr(i—l) >s—t— l]
=1

<0

[where b, = ‘Ifr(i+1)(;)qqlr(i)l’fr(_il) - q‘;tr(i)(;)qqlr(i+l)p7trz:‘l+l) <0 for all 1=0,...,
t—1L. O

As a consequence of this theorem, we have the following corollary:

COROLLARY 3.2. Let m >%2 #'. Then for any a = 1,2, 3:
(i) P[R2 >s|N=r] sP[R$,23|N=r].
(ii) P[R2>s|N>r]| <P[R% >s|N=r].

Corollary 3.2 implies that for any of the three proposed repair/replacement
policies, the number of repairs (replacements) necessary for minimal repair
decreases stochastically the closer the inspection procedure = is in the partial
ordering >% to the permutation (1,2,...,n). Hence the permutations 7 =
1,2,...,n)and 7* = (n,n — 1,...,2,1) give stochastically the smallest and
largest number of repairs, respectively. These results hold either conditional
on the knowledge that the system has just failed (N = r) or that the system is
in a failed state (N > r).

In the above policies of minimal repair, we have counted the number of
repairs made up to and including the component whose functioning brings the
system back to life. In policies @ = 2 and 3 we actually determine the state of
an inspected component before repairs are made, and hence we would continue
repairing components until all faulty components have been repaired (accord-
ing to the respective policies 2 or 3). These would be types of complete repair,
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and it is worth noting that the total number of repairs done under this format
would be similarly stochastically ordered according to the partial ordering >%z
for both @ =2 and 3. The results also go through for the policy a =1,
although the mode of inspection for this policy does not allow a practical
implementation of the stopping rule Wy . Details are not, however, given
here.

ExampLE 3.3. We now discuss an elementary example to show that our
results concerning stochastic order for >%: do not generally hold for the finer
(but perhaps more natural) ordering >%'. Consider therefore a series system
of three components with respective reliabilities P, = 1 — q!, where p, < p, <
p; and ¢t > 1. We will assume the knowledge that the system has just failed
and hence N = 1. Consider the inspection permutations = = 213 and =’ = 312.
Then 7 >% 7', but of course 7 £%2 7'. We show that for certain values of p,,
po and pg, R}z £° R}, and in fact E(RL,;) > E(R},,) when conditioned on
N = 1. Similar calculations can be done to show similar results for the policies
a = 2 and 3. Note now that

P(R33=38,N=1)=q,(1-qi ")qy(1 - g5 ")qs
and
P(R}; =2, N=1)
= qiga(1 — g5 1)(1 — g5) + a3{an(l — ai7")ga(1 — a57)
+¢3(1 = ¢i7")pa + P1gx(1 — @57V}
Letting p; — 0, p; — 1, it follows therefore that

limOE(Ré13 — Rl,,IN = 1) = q2(1 - qé_l)/P(N =1).
b1~
p3—1

Hence for small p,, large p; and, say, p, = 3,

E(Rb;5IN = 1) > E(R},IN = 1).
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