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DIFFUSION APPROXIMATION IN PAST DEPENDENT
MODELS AND APPLICATIONS TO OPTION PRICING
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Universita di Padova

We obtain a diffusion approximation result for processes satisfying
equations with past-dependent coefficients. We apply this result to a model
of option pricing, in which the underlying asset price volatility depends on
past evolution, and obtain a generalized (asymptotic) Black and Scholes
formula.

1. Introduction. The purpose of this paper is twofold. A first (theoreti-
cal) purpose is to provide a diffusion approximation result (which to the best of
our knowledge is new) for a certain class of processes satisfying equations with
past-dependent coefficients. We assume, in particular, that the dependence on
the past is through the quadratic variation process. The main result states
that the pairs, given by the processes and their quadratic variations, converge
in a suitable sense to a limit pair, where the first component is the limit
process and the second component is its quadratic variation. Since the limiting
quadratic variation process satisfies a deterministic delay equation, if the
initial condition is known (deterministic), then the entire limiting quadratic
variation process is deterministic; this in turn implies that our limit process is
a Gauss—Markov diffusion process.

The second purpose is more of an applied nature and concerns the problem
of determining the value function for risky financial operations, in particular
for European call options. Since in real world situations the volatility of asset
price returns is subject to random and time-varying changes, which can often
be explained by changes in past sample volatilities of asset prices, we believe
that in a consistent model of option valuation one should explicitly account for
the dependence of future asset price distributions on past evolution. Assuming
that asset price observations occur more realistically at discrete time points
(with the intervals between successive observations being small with respect to
the total time interval) and that the dependence on the past is through a
dependence of the asset price volatility on the quadratic variation, we recover
for the asset price evolution the class of processes that is the object of our
theoretical investigations. Although it is possible to derive an option valuation
formula when asset prices evolve according to processes of the above type, the
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actual computation is practically impossible. It turns out, however, that the
limit process, obtained by letting the observation intervals tend to zero, is of
the lognormal type with a deterministic quadratic variation process; for such a
process one can therefore apply the standard Black and Scholes formula [Black
and Scholes (1973)]. The convergence result of the theoretical part then allows
us to approximate the option value of the more realistic discrete observation
and past dependent case by that of the limit process, for which an explicitly
computable formula is available.

In Section 1.1, we introduce the class of processes that is the object of our
study; Section 1.2 states the assumptions and the main convergence result and
Section 1.3 explains more closely the applied aspects of the paper. In Section 2
we prove our main convergence results. In Section 3 we describe in more detail
the option pricing problem for the past-dependent setting; here we also apply
the results of Section 2 to derive the approximation procedure leading to the
asymptotic option valuation formula for the above more general setting. In
Remark 3.3 of Section 3 we also discuss the relation of the present paper to
other work concerning the question of continuous-time versus discrete-time
trading. An Appendix contains two auxiliary results for Section 2.

1.1. The model. We start by defining the model for the sequence of
stochastic processes (X;, Y;°), . , that will be the main object of our study. For
this purpose consider a sequence of random variables (x,)_. .., Where
(¢4) _w< i<+ is @ sequence of deterministic time points such that for a given
e >0,

(1.1) t0=0, tk+1_tk=£'

Given a positive number I, define for ¢ > —1

(1.2) (X5, X, = ¥ (x,-x, )"

ki —I<t,<t
and let
(X5, Xe]e =X, X°), - [ X5, X*),, t>s> -1
We suppose that for £ > 0, the sequence (x, ) satisfies the following recursive

relation

(1‘3) xtk+1 = xtk + {atku([XE’ X* 'f”:H_I) + dtlﬁ-l([XF’ Xﬁ]ftﬂ_l)xtk}

et 1/2
X(tk+1_tk).+btk+1([X&’X t:+1—1)(tk+1_tk) Ervts

where a,/y), a/(y), b(y) are given functions in (¢,y) and (£,),., is a
sequence of ii.d. random variables, independent of the random sequence
(xtk, —o < k < 0), with

(1.4) E¢ =0, E(&)=1.
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Let us now introduce the following processes:

(15) X; = xtk, OStkSt<tk+1,

(1.6) A; = tk? tkSt<tk+1,

(1.7) M;=¢V2 Y &, My =0,
kit <t

as well as the filtration F° = (&,),. o, where

(1.8) = 9;,\,’ by <t <tpiq,

with

(1.9) F=olx,, ~1<t;<0;¢,1<j<k}

From the above definitions we have immediately that A} is an increasing
and right continuous process whose jumps A A% do not exceed ¢, that is,

(1.10) AA; <& (more precisely, either AA, = 0 or AAj, = ¢)

and

(1.11) [A7, 4], = ¥ (A4
0<s<t

Furthermore,

(1.12) A <t suplAS — ¢ -, ., 0.

t

M+ = (M;),., is an & “-square integrable martingale with

(1.13) (M%), = A,

and

(1.14) [M, M), = ¥ (AMD)®
O<s<t

Notice that the process [A*, M*] = (A", M*],),. , with

(1.15) (4, M), = ¥ AAAM = [‘AA;dM;
0

O0<s<t

is [see, e.g., Problem 2.3.5 in Liptser and Shiryayev (1989)] also an & “-square
integrable martingale.

Taking into account (1.3), we can now give the following representation for
the process X* = (X;) defined in (1.5):

X;=xo+ [{a,([X, X1 + a,([X0, X*157,) X:_) dA,
(1.16) 0
t . .18 — .
+ [ou(1X7, XN) dmy,

where h,_:=lim,, h,. From (1.16) [equivalent to (1.3)], we also obtain the
following representation, for ¢ > 0, of the process ([ X*, X¢],) defined according
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to (1.2):
[X, X7], = [X, X* ]0+f (X5 X))
+a,([X, X)X ) dl A, A,
(1.17) + 2[ (X5 X)) +a ([0, X 0eo,)X: )
xb, ([ X, X*1,2;) d[ A", M*],
+f0tbf([X*‘, X*127,) d[ M*, M*],.

Letting
(1.18) ¥, = [ X7, X7,
we finally obtain for the sequence (X}, Y;"),. , the model

X =xo+ [{au(Y = Yip) +a,(Yi — Y) KoL) dA,

(1.19)
b, (ve - ¥ ) du,
0
= Y5+ [la (¥ - ¥op) +a (Y - Yo )X d[ A, A),
0
t
+2[Ma (Ve Yo ,) +a,(Y — Y )Xe
(120) j;){ s( s I) ( I) }

Xb (Y — Y )d[A, M*],
+ [02(Y - Y,) d[ M, M7,
0
Notice that Y, is an increasing process.

1.2. Assumptions and main results. We shall make the following assump-
tions on model (1.19), (1.20).

AssumpTiON 1. The function 4,(y) is continuous in ¢ and y and bounded,
that is, |@ (y)| < L.

AssumpTiON 2. a,(y) and bZ(y) are continuous in ¢ and Lipschitz con-
tinuous in y with Lipschitz constant not depending on ¢; furthermore,
sup,(la,(0)] + [5,(0)]) < oo.

AsSUMPTION 3. limsup, ,, EY§ < .

ASSUMPTION 4. Elx,| < o.
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We assume, furthermore, that for a given nondecreasing deterministic
process Y,, —I < u < 0, we have

(1.21) sup Y —Y,| -, 0.
-I<u<0

Consider now the process (Y,) defined, for ¢ > 0, by
(1.22) Y, = Yo+ [03(Y, - Y,_;) ds
0

with Y, _, = Y,_, for s < I, and notice that by the Lipschitz property of 52(y)
(Assumption 2), the equation (1.22) has a unique solution. Furthermore, let
(X,) be given by

X, =%+ [{a(Y, = Yoo)) +a,(Y, - Y, ;) X, ) ds
(1.23) 0
t
+ [b,(Y, ~ Y,_;) dW,
0

with W = (W,) a Wiener process.

Our main results consist of the following two theorems, which will be
proved in Section 2, and where —, denotes convergence in probability while
—, stands for convergence in distribution (law).

THEOREM 1.1. Consider Assumptions 1-4 as well as (1.21). We then have
for arbitrary T > 0,
(1.24) sup Y=Y, —>p0 fore—0.

—-I<t<T

THEOREM 1.2. Again, consider Assumptions 1-4 and (1.21); then
X -, X.

It is worth remarking that in our case the quadratic variation of the
semimartingale X, is

(1.25) (X, X), = ['62(Y, - Y._,) ds
0

so that by (1.22),
(1.26) Y, =Y, +[X, X],

that is, the process (Y,) is the quadratic variation process of (X,).

Since Y,, —I < u < 0, is deterministic, by (1.22), Y;, ¢ > 0, is also determin-
istic so that X, in (1.23) is a Gauss-Markov diffusion process. The main
purpose of proving Theorems 1.1 and 1.2 is therefore equivalent to giving a
diffusion approximation result for a process X¢ that [see (1.16)] depends on its
past over a finite interval of length I.
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1.3. A financial application. As already mentioned, the model (1.19)
[equivalent to that of (1.3)] is motivated [see Kind (1988)] by the problem of
determining the value function for risky operations, in particular by that of
pricing European call options.

The classical result for option pricing is the celebrated Black and Scholes
formula [Black and Scholes (1973)] which is based on a continuous-time asset
price evolution model of the lognormal type, where the price volatility (stan-
dard deviation) is deterministic. In reality, although it may be reasonable to
assume that asset prices evolve in continuous time, they can be observed only
at discrete time points (generally with short intervals between successive
observations), and there is some kind of nonstationarity present in their
distribution, in particular in the standard deviation. It turns out that changes
in volatility of asset price returns can often be explained by changes in past
asset price sample volatilities. In a consistent model of option valuation, the
specification of the asset price process should thus explicitly account for the
dependence of the future asset price distribution on past evolution. [For a
related discussion see also Section 7.4 of Aase (1988), where a Monte Carlo-type
simulation is suggested to compute the value of the option.] It will be shown in
Section 3.1 below that a special case of model (1.19) may well accomplish the
above purpose, thereby providing the basis for a theory of option pricing under
more general and possibly more realistic assumptions than those underlying
the Black and Scholes model.

The greater generality of the underlying model raises a first question
concerning the existence of a perfect hedge portfolio for the option. It is clear,
however, that the possibility of pricing contingent claims on the basis of
arbitrage considerations alone should not depend on the specific mathematical
model for the underlying asset price process, but only on economic considera-
tions. In fact, as shown already in Harrison and Pliska (1981) and (1983), a
perfect hedge portfolio exists also under very general assumptions. Subsequent
work by Bensoussan (1984) and Karatzas (1989) show such a property more
specifically for models that include the ones considered here. All of the above
works also provide a formula for the computation of the value of a contingent
claim that is a direct generalization of the Black and Scholes formula stating
that the value of the claim is equal to the expected discounted value of the
cumulative payoff under the risk-neutral probability measure. Such a formula
will be described in more detail in Section 3.1, but its explicit computation in
the more general nonlognormal case will be practically impossible. An approxi-
mation procedure is therefore in order.

The main result of the paper concerning the convergence of the discrete
time process (X*,Y?) to (X,Y) provides the basis for such an approximation
procedure that will be the main subject of Section 3.2. Since Y is deterministic
(and consequently X is a Gauss—Markov diffusion process), the central feature
of this approximation procedure is as follows.

Assume the asset price past trajectory is given; then, if the time intervals
between the discrete asset price observations are small, the distribution (under
the risk-neutral probability measure) of any future asset price is close to a
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lognormal distribution with a time-varying variance that can be computed
explicitly in terms of asset price past returns. With the limiting lognormal
asset price distribution, one can then compute the standard Black and Scholes
formula. In this way, for the above more general situation, one obtains an
asymptotically (for the discrete time observation intervals tending to zero)
exact closed-form option valuation formula given by a modified version of the
standard Black and Scholes formula, where in place of a constant asset price
volatility one has to substitute a function of the asset price past returns.

Besides the important qualification concerning the approximation character
of the Black and Scholes formula for the limit process X, there is also the
important aspect that it provides a closed-form option valuation formula that
explicitly accounts for the fact that different realizations of the underlying
asset price process may affect the value of an option not only through a direct
underlying asset price effect, but also through an indirect conditional distribu-
tion effect.

2. Proofs of the main results.

2.1. Proof of Theorem 1.1. The proof of Theorem 1.1 follows immediately
from Lemma 2.1 and Lemma 2.2. We have:

LEMMA 2.1. Let the process Yf be defined by

(2.1) Vi = Y5+ [b3(Y - Yo, )dl M, M7,
0
where Y ;= Y/ ; for s <I. Then, under the assumptions of Theorem 1.1,
(2.2) sup |Yf — Y, -, 0 fore— 0.
t<T

Proor. We have

A

Vi - Y, =Yy - Yo+ [B3Ve - Y )dI M, M), — [B3(Y, ~ Y, ) ds
0 0
(28) = (Y5 = Vo) + [{p2Ye = Vo)) - B2V - Yoy pal MY, M7,

+ 0¥, = Y ) d(IM, M), —5).
By the Lipschitz property of 52(y) (Assumption 2), we have for s > 0:
B3(Ye = Yiy) - b3(Y, — Y, )|
< L('ff— = AR AT Ys—Il)
4 _ LYy - Y, | +I(s < DY/ + Y, | +I(s> )Y, — Y, ,l)

< 2L{ sup [Y:!_ —Y, |+ sup |YF-— Yul}

O<uc<s —I<u<0
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with I(-) denoting the indicator function. Thus, for ¢t < T,

sup| [ {62(Y - P¢ ) —b2(Y,_— Y,_,)\ d[ M, M7],
ugl:t)'l;){(s sI) (s sl)}[ ]
(2.5) <2L sup |Y;-Y,I[M, M),
—I<u<0
+ 2L [ sup [V - ¥, _|d[M*, M°],.
Ouxs
From (2.3) and (2.5) we obtain that
sup |YF - Y| <|Yf— Y, +2L sup Y2 - Y, [[Me, M),
0<t<T —I<u<0

+ 2LfTsup IY: —Y,_|d[M*, M*],

0 u<s

+ sup f b2(Y,_— Y, ) d([M:, M*], —s)|.
u<T
Define
=Y - Y|+ 2L sup |YF-Y,I|[M:, M),
—I<u<0
(2.6)
+ sup sz(Y _Ys—I) d([ME’MS]s_S) .
u<T

Then, for t < T,

sup 1Yy - Y] <a®+ 2Lft sup |Y:. — Y, _|d[M¢, M¢],

O<s<t 0 u<s
and so from Liptser and Shiryayev [(1989), Theorem 2.4.3] we have for any
T>0,
(2.7) sup |Y7 - Y, < aexp(2L[ M°, Ms]r).
0<t<T
We now show that the right side of the inequality (2.7) tends to zero in
probability for ¢ — 0. For this purpose we first show that

(2.8) lim sup [[M*, M¢], —¢t| =0 Pas.forall T > 0.

e=0 4o

From the definition of M* [see (1.7)] one easily obtains

[¢/€] [t/s] 1 [e/el
& & _ 2
[MyM]t_Ekglfk_ t/ [t/] ng

On the other hand, by Birkhoff-Khinchin’s theorem [see, e.g., Stout (1973)],

1 [e/e]
li Ee2 =1, Pas.
e20 [t/e] [t/e kzlfk &
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Therefore, for all ¢,
' [M¢, M¢),—»t fore >0, Pas.,

and, consequently, (2.8) holds by Problem 5.3.2 in Liptser and Shiryayev
(1989). Thus in (2.7), exp(2L[M*, M*];) — exp(2LT), P a.s., and it remains
to prove that

(2.9) a® —p 0 fore — 0.
From (2.8) and the given assumptions, it follows that the first two terms on

the right-hand side of (2.6) tend to zero in probability for ¢ — 0 so that (2.9)
holds if

(2.10) sup

u<T

fubsz(Y__ Y, ) d([M¢, M¢],—s)|»p O fore— 0,
0

which in turn follows from Lemma A.2 in the Appendix by taking G, =
[M¢, M*],, G, = t, using furthermore (2.8) and noticing that, by Assumption 2
and the definition of Y, in (1.22), the function bX(Y,_— Y,_,) is continuous
in s. O

LeMMA 2.2. With Y¢ given in (2.1), we have under the assumptions of
Theorem 1.1,

(2.11) sup [V — Y/ -, 0 fore— 0.
t<T

Proor. From (1.20) and (2.1), it follows that for ¢t < T,

(2.12) 1Y = ¥/ < B+ [Ib3(YE - i) = b2(Ye = Yo, )ldMe, M),

where
) Nay (Yo - Ye,) +a,(Ye. - Yo )X )P d[ A7, A7),
(213)  +2 sup |[fau (Y0 - ¥ ) a,(Y - Y )X:)
0<t<T Y0

xb (Y7~ Yr ) d[A", M7],|
Analogously to (2.4) we obtain
DAY — Yo y) — bV - Yo ) <20 sup |V - Y[,

O<u<s

so that from (2.12) it follows that for ¢ < T,

sup |V - Y:l <B° + 2L/t sup |Y: - Yr |d[M*, M*],

O<u<t 0 0<u<s
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and thus by Liptser and Shiryayev [(1989), Theorem 2.4.3]
sup |Y; — Y| < Brexp(2L[M*, M*];), ¢t<T.

O<u<t
Since by (2.8), we have [M*, M*], —» T, P a.s., we obtain (2.11) if
(2.14) B —p 0 fore— 0.
According to the definition (2.13), B = B4 + B5. We now show that
(2.15) Bi »p 0 fore— 0, i=1,2.
For this purpose define
(2.16) M= (Y5 <r) N {sug X¢| < rz}.

s=<

Due to the fact that the Lipschitz condition implies linear growth, it follows
from Assumptions 1 and 2 that on the set I'* we have the following inequality,
uniformly in s < T':

(217) {a (Y — Yp) +a,(Y - Y ) X b2 (Y - Yo ,) <k,

where the constant k£ depends only on r;, r, and the L appearing in Assump-
tions 1 and 2.

Notice that an inequality of the type (2.17) holds also without the factor
bAY; — Y ;) on the left. Since furthermore [see (1.10) and (1.11)]

[A, Alp = Y (A4 <e ¥ (AAY) = eAy < 6T,
0<s<T 0<s<T
we then first have that
Bi < kT,
so that
lill}) P(B;>6,T°) =0 forall §>0.

Consequently,
P(B;>06) <P(B{>68,T) +P(ANTY)

<P(B;>68,I") +P(Y;>r) + P(sup Xz > r2) -0
s<T
upon taking lim, .. limsup, ,,, since by Lemma A.1 of the Appendix we
have
lim limsup P(Y; > r;) =0 and
ry—® e—0
(2.18)
lim lim sup P(sup Xz > r2) = 0.
r2=® g0 s<T
Thus we have (2.15) for i = 1. Let us establish (2.15) for i = 2. As already
remarked [see (1.15)], [A®, M¢], = [JAAS dM¢ is a square integrable martin-
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gale. Furthermore, the process

{a (Y5 = Yy,) +a(Ye — Y )X, Jo,(Y - Y7 )
is left-continuous and, consequently, locally bounded. From this property of
local boundedness and the inequality 0 < A%, < ¢ it follows that the process

e ¢ 3 3 o] £ € € € € € €
A= [V = Yip) + @Y~ YE) XD )b,V - ¥iyp) dl A%, M-,

is a locally square integrable martingale with ./ = 0 and predictable quadratic
variation [see (1.13), (1.15)]

(Y= [la, + 8, X5 ) HAA A0,

0
t . 2 2

= [{a, + &, X; ) b2(AAY)" dAS.
0

From the implication {.# ) —>p 0 = sup,_r.#,°| —=p 0 as € — 0 [see, e.g,
Problem 1.9.2 in Liptser and Shiryayev (1989)] it follows that we need only to
prove {# )y —»p 0 as ¢ — 0 or, in our situation,

(2.19) Hm P({ A )p > y,T) = 0

-0

for any fixed y as well as r, and r, (see the definition of the set I'*). On the
other hand, from (2.17) it follows that on the set T, we have {.#*)r < ke®T,
and thus (2.19) holds. O

2.2. Proof of Theorem 1.2. The proof follows in a straightforward fashion
[see, e.g., Problem 6.1.2 in Liptser and Shiryayev (1989)] from Lemma 2.3 and
Lemma 2.4 below. We have:

LEMMA 2.3. Let the process X’f be defined by

R =z + [{o (Vo= Yoop) +4,(Yo— Y, ) Xi ) dA;
(2.20) 0

+ [B,(Y, -~ Y,;) dM,
0 S S S

where Y, is the solution of (1.22). Then, under the assumptions of Theorem
1.2,

(2.21) Xt -, X.

Proor. [In what follows we shall drop the arguments (Y,_— Y,_;) of the
functions a (Y,_— Y,_p), 4,(Y,_— Y, ), b(Y,_— Y,_p).]

Step 1. Since |4,] < L, let &, be such that Le, < 3 and take & < &,. Put

(2.22) B; - ['a,dAs,
0
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and notice that |AB{| < 3. Defining the Doleans-Dade exponential [see
Doleans-Dade (1970)]

(2.23) &,(B?) =B TT(1+ AB:)e 25,

s<t

let us first show that for any ¢ < T,
&,(B*) — exp[ftds ds]
0

For this purpose notice first that

(2.24) sup
t<T

— 0 fore— 0.

(2.25) sup | B; — ['a, ds
t<T Y

In fact, write |Bf — [(d, ds| = |[{d (dAS — ds)| and, taking (1.12) into ac-

count, use Lemma A.2. Next we have

(2.26) sup

t<T
Indeed, using |AB¢| < 1, the fact that for |x| < § it follows In(1 + x) — x <
x285 _olx* 72 < x2L5_o(3)F = 2x% and that T|AB:| = LI4,lIAAY <
LY |A A%, we obtain

TT(1+ AB)e 35 — 1‘

s<t

-0 fore— 0.

TT(1+AB)e 2B — 1‘ -0 fore— 0.

s<t

sup
t<T

suplexp( Y. In(1+ AB¢) — AB§) -1

t<T s<t
< (exp 2y (AB§)2 _ 1) < (exp[2Lsup|AB§|AeT - 1)
s<T s<T

< (eXp[ZLzsAET] —1) >0 fore—0.
Relation (2.24) now follows from (2.25) and (2.26). Similarly we obtain

(2.27) sup /teos'l(BE)as dA® —ftexp[—/sdudu]as ds
0 0 0

t<T

-0 fore— 0.

STEP 2. From the definition of &,(B®) [see (2.23)], it follows that &(B*®) =
[T, _ (1 + ABY) and consequently

AB;
-1 & _ 1 _ s )
¢ (B9 SISIt( 1+ AB;)
[We suppose that ¢ < ¢, and so (see Step 1), [AB¢| < 1.] Thus

) |A B¢
+ R —
1- |AB]

s<t

& 1B < exp( Y. In

< exp(2ftlds| dAss) < exp(2LT).
0
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Using this estimate and the continuity property (in s) of the deterministic
function b, = b(Y,_— Y,_;), we now consider the square integrable martin-
gale 4 = (A"),. , where

(2.28) A = [(67(B)b, dM;,
0

(229)  (#y = [(&74(B)b,) A, = ['&73(B)bE dA,
0 0
and show that

(2.30) N =, A fore — 0,

where

= [O‘exp[—j:dudu]bs dw,,

with W = (W,), ., a Wiener process. For this purpose it is sufficient to show
[see Theorem 5.5.6 in Liptser and Shiryayev (1989)] that

(2.31) (AN —p /texp[—2/8du du]bf ds forallt>0
0 0

and that
(2.32) EY (AA)’I(IAA| > 8) >0 withe > 0forall > 0and ¢ > 0.

s<t

In order to establish (2.31), notice that for ¢t < T with T > 0,

t s
Ny — -2 &, dulb?d
{ e /Oexp[ /Oau u] < ds

(2.33) < [Mle B - exp[—2fsdudu] b2 dA"
0 o
+ sup ftexp[—Zfsdudu]bf d( A5 —s)|.
t<T 1|70 0

Using Assumption 2 and the fact that A% < T, the first term on the right in
(2.33) is bounded above by

sup L(1+Y,)T

s<T

and this bound tends to zero in probability [by (2.24) and the fact that Y, is a

given deterministic quantity]. The second term on the right in (2.33) tends to
zero in probability by Lemma A.2 with G, = A} and G, = t.

Let us now establish (2.32). For this purpose notice that by Assumption 2

and the fact that Y, is deterministic we have sup,_,lb,| <1 + sup,_, b% <

&-2(B*) — exp[—2fsdudu]
0
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(L + 1) + LY, < ». Furthermore,

)

sup|&, 1 Bf)l < exp[fOTlduIdu] + sup|& Y B*) - exp[—f:du du]

s<t s<T

where by (2.24) the second term on the right tends to zero for ¢ —» 0. From
(2.28) we then have for small ¢ and s < T,

A = &1 BY)lbl IAM¢| < KIAM],
where K = exp(2LT)sup, _,/b,|. Consequently, (2.32) holds if for ¢ — 0,
(2.34) EY (AM?)*I(|AM:| >8) — 0 foralld>0and¢> 0.

s<t

But

[¢/¢] S
EZ (AM§)21(IAM§I > 6) =FE Z 5§ZI(I§k| > 7_—)
k=1 €

s<t
— £ E 2] 4
-o|cleetier - 7

)
)—>0 for e — 0.

< tE-f%I(|§1| > —\/‘8:

STEP 3. Rewrite (2.20) in the form

(2.35) R =z + [@,(Y,_~ Y,_) Re_ dAs + S,
0
where
(2.36) 57 = [b(Y,_~ Y,_))dM; + [a(Y,_~ Y,_;) dA]
0 0

is a semimartingale. For ¢ > 0 sufficiently small (¢ < L™!) and using the
Doleans—Dade exponential (2.23), we then obtain

(2.37) X = (B 20+ ['67(B)a, day + 577
0

where B{ is as in (2.22) and .#;° as defined in (2.28). From (2.24), (2.27) anc
(2.30) it then follows that
(2.38) X -, X,

where

Xo + /Otexp[—j:dudu]as ds

+]:exp[—f03dudu]bs dWs)

A S
X, = exp[/ dudu]
0
(2.39)
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which is the unique solution to the linear It6 equation
(2.40) X, =xo+ [fa, +a,X)ds + [b, W,
0 0
so that [see (1.23)] X = X and thus X* —», X. O

LeMMA 2.4. Under the assumptions of Theorem 1.2 we have
(2.41) sup|X; — X{| >, 0 fore > 0andallT > 0,
t<T
where X! is as defined in (2.20).
Proor. From (2.20) and (1.19), we have
. N t . € £
Xi = Xi = [lau(Ye = Yip) — ey (Y= Yoo dag
t . . 3 o
+[a (Y = Yo ) (Xi - Xp) dAg
0
(2.42)
t A
+ [l (Y = Yip) = a,(Y,~ Y, )] Xi_ dAy
0
+ [V = Yo ) = by(Y,_— Y, ;)] dM;.
0
Define

T
v = [ el =Y - ay (Y- Yo )ldA,
T A . - A B .
e (Y = Yi) = (Y= Vo)l IXi | dA,

+ sup
0<t<T

t ) . .
/O[bs(Y;_ — Y ) = b(Y,_— Y,_;)] dM; |,

then from (2.43), taking into account Assumption 1, it follows that for all
t<T,

suplX: — X:| <y + L/tsupIX*'_ - X5 _|dA:,.
u<t 0ux<s
By Theorem 2.4.3 in Liptser and Shiryayev (1989), we then have
sup |X: — X5 < y¢ exp[ LA7].
u<T

Since A% < T, it is therefore enough to show that y* —, 0 for ¢ — 0. But
v" = 1vyi{ + vy + v§ and so it remains to show that

(2.43) ¥f »p 0 fore > 0andi=1,2,3.
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By Theorem 1.1 and the continuity of a (y) (Assumption 2) we have
supla (Y- = Y ;) —a(Y,_— Y, )l =p 0,
s<T

so that (2.43) holds for i = 1.
Again by Theorem 1.1 and the continuity this time of ¢ (y) (Assumption 1),
it follows that

ygl(suplX';fl < r) -, 0 forall r > 0.
s<T

On the other hand, by Lemma 2.3 we have X* —, X so that

lim lim supP{ supIX'\jl > r} =0,
r—oe s<T
thus (2.43) holds also for i = 2.

To obtain (2.43) for i = 3, using Problem 1.9.2 in Liptser and Shiryayev
(1989), it suffices to show that

&0

JTIb¥e — Y2 )~ by(Y, — ¥, D]*d(M), =, 0 fore = 0.
0

Since (M*); = A5 and A% < T, this latter property is obtained by complete
analogy to the case i = 1, taking into account the continuity of b, (Assump-
tion 2). O

3. Application to option pricing.

3.1. A past-dependent option pricing model. In this section we introduce
an option pricing model for European call options where the distribution of
future asset prices depends on past evolution. We shall also present an option
valuation formula for such a situation. For simplicity we shall consider only
options on a single risky asset assuming furthermore that there are no
dividends and that the interest rate is constant over time. With slightly more
complicated derivations, our methods can, however, also handle the more
general cases.

Given a probability space (2, %, P) with a Wiener process W = (W,) and a
filtration %, == o{W,, s < ¢}, in our model we let the price S, of the risky asset
evolve according to the Itd equation

(3.1) dS, = S,(n, dt + o, dW,).

The initial condition S, is given, deterministic and positive, while u, and o,
are bounded and (.%;)-adapted processes with ¢, > ¢ > 0. In addition to the
risky asset let there be given a nonrisky asset (bond) whose price S0 evolves
according to

(3.2) dS? —aS0dt, S80-=1,

with «, the interest rate, being a given constant.
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Due to the practical impossibility of a continuous-time asset price observa-
tion, we assume that the values of S, and S are observed only at discrete
time points ¢, satisfying (1.1) for a given ¢ > 0. More specifically, we shall
assume that the coefficients are adapted in the sense that they depend only on
the discrete-time past observations of S, , ¢, < ¢. Since we may vary the length
¢ of the observation interval ¢, ; — ¢, in (1.1), in what follows we shall use the
notation u% and o, instead of simply u, and o, and consider instead of a fixed
price process (S,, S?) given by (3.1), (3.2), the family of processes (S}, S£°), .,
satisfying

(3.3) dS; = Sp(us dt + of dW,),
(3.4) dS;® = aSs0dt, S =1,

where, for all e > 0, S§ = S,, 07 = & > 0, and « is the same constant interest
rate as in (3.2).

To complete the description of the option pricing problem we have to specify
the claim that will be represented by a random payout A°(T') > 0, adapted to
7, at a fixed maturity date T'. Being interested in European call options, we
shall take

(3.5) he(T) = max[0, Si A C — K|

with K > 0 denoting the strike (exercise) price and C a sufficiently large
positive constant. We use the minimum S% A C between S7 and C instead of
simply S4, only for technical reasons, such as to guarantee the existence of the
expectation of h?(T), and others that will become apparent below. From a
practical point of view, however, this will hardly be any restriction.

As mentioned in the Introduction, in the past-dependent setting described
here, there exists a perfect hedge portfolio and a closed-form option valuation
formula. For this we refer to the literature cited in Section 1.3, recalling here
only the following facts:

1. For each ¢ > 0, there exists a unique martingale measure Q¢ (risk-neutral
probability measure), equivalent to P, such that under Q¢ the price S; of
the risky asset evolves according to

(3.6) dSf = aSf dt + of AW

with the same initial condition S§ as in (8.3) and where W is a Wiener
process under @¢, while « is the same interest rate as in (3.4).

2. There exists one and only one option valuation function 9 that can be
expressed as

(3.7) ut = E5{h*(T)e T 9.7},
where E° denotes expectation with respect to @°.

We remark here that the fact that (3.6) represents the price evolution in a
risk-neutral world can be seen from the relation (recall that « denotes the
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interest rate)
(3.8) ' E<{S/IS§} = Sge™

which is an immediate consequence of (3.6).
We shall now reexpress (3.6) in a more suitable form. Defining

(3.9) X;=1InS;
and using It6’s rule, we find that under @° the process X; satisfies
(3.10) dX; = (a = 3(0f)?)dt + of dWs, X5 =In S;.

Recall that, by S§ = S, for all £ > 0, we also have X§ = X, for all ¢ > 0 with
X, deterministic and known. Since the instantaneous asset price variance
(0)* was assumed to depend only on S, for ¢, <¢, it is constant on each of
the intervals [¢,, ¢, ). Therefore, at the points ¢, the solution to (3.10) has
the same distribution as the discrete time process X; defined by

(3.11) X:

o= X (@ = 3(o))e + e 22,
where (z,,) is an i.i.d. sequence of standard Gaussian random variables.

We shall now introduce an explicit form for the dependence of the instanta-
neous asset price variance (o,°)% on S/ for t, < ¢ We shall in fact assume that
(o, )2 is, for each ¢,, a weighted sum of an exogeneously given constant o2 and
an unweighted sample variance of the logarithms of the asset prices over a
past interval of length I, that is,

(3.12) (o) =802+ (1 -8)(65)", 8<(0,1),
where
k
(3.13) (62 =1 ¥ (X-X )
h=k—[I/e]+1

Notice now that model (3.11) together with (3.12) and (3.13) is a particular
case of model (1.3) with (1.2) and therefore also of model (1.19) with (1.20),
where

bAYS — Yo ,) =80+ pYS —pYs,,

(3.14) 1-6
8 € (0’ 1)’ ,0 = 7 >
I
(3.15) a,(Yo - Y5,) =0,
1
a (Y - Y ) =a- Ebsz(Ysg— -Y7))
(3.16) S
p p
=a— 50-2 - 51738— + —2’y's£—17

so that Assumptions 1 and 2 can easily be seen to be satisfied and all results
obtained previously carry over to our option pricing model.
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ReEMARK 3.1. In the description of our model we imposed the requirement
that o be uniformly bounded, an assumption that allows the application of
results in the literature concerning the existence of a perfect hedge portfolio
and of a closed-form option valuation formula. Since o, = b(Y,” — Y,” }), by
(3.14) this assumption would be satisfied if we knew that the process Y, was
uniformly bounded almost surely. Since by our results the processes (Y;")
converge uniformly to a continuous and deterministic process (Y,) only in
probability, we cannot guarantee the almost sure uniform boundedness of Y,
even for small ¢ and finite £. We now show that we may slightly modify our
problem so as to satisfy the stronger requirement and still retain the main
result of the paper. Letting C > Sup, <7 Y,, define two processes X! and Y, as
follows: Y == Y/ A C, while X; is given by (1. 19) with Y, replacmg Y/ there.
On the one hand we then have ' =bY" — Y, ;) uniformly bounded while
on the other it is immediately seen that the results of Theorems 1.1 and 1.2
also hold for Y and X;, respectively (while the former holds by definition, the
latter becomes straightforward by noticing that Lemma 2.4 holds with the
same proof also for X, instead of X;).

REMARK 3.2. If we take for o a deterministic time function, formula (3.7)
coincides with the Black and Scholes formula. In this case it follows in fact
from (3.6) that, under @, the price S4 has a lognormal distribution, that is,
for X4 = In S, we have from (3.10):

(3.17) X5~ N (my, Vi),

where the symbol ~ here means distributed according to, .#(m, o?) denotes

the normal distribution with mean m and variance o2 and
(3.18) mp=xo+ [ (a = (0f)?) dt
0
. T .\2
(3.19) Vi = [ (of)? dt.
0

With the claim given by (3.5) in the more customary form A (T) =
max[0, S — K, one can then compute exactly the expectation in (3.7) obtain-
ing for ¢ =0 rather straightforwardly [see also Remark 5.7 in Karatzas
(1989)]:

uhy = eXoNep((miy + Vi — In K)(V;) %)

(3.20)
— Ke "Ny ((my — In K)(V5) "),
where
x £2
(3.21) New(x) = [ (2#)_(1/2)exp(—?) d¢.

Now (3.20) with (3.18) and (8.19) is indeed the classical Black and Scholes
formula.
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Notice now that, although (3.7) holds for very general price processes, its
actual computation is in general prohibitive; an exception is the lognormal case
mentioned in Remark 3.2. Notice, furthermore, that the proofs for such a
formula, as given in the literature, are in general not constructive, being based
on martingale representation results. To compute the option value in a more
general situation like the past-dependent case considered here, one needs an
approximation which will be the subject of the next subsection.

REMARK 3.3. Notice that the present paper differs in various respects from
recent work concerning the question of continuous-versus discrete-time trad-
ing. In particular, we do not deal with the question of the validity of assuming
a continuous trading model as in Denny and Suchanek (1986), nor do we
address the problem of approximating an idealized continuous securities mar-
ket model by a sequence of discrete-time trading models such that the latter
converge and certain properties are preserved along the approximating se-
quence as in Willinger and Taqqu (1989) [see also Duffie and Protter (1988) as
well as He (1989)]. Our models are formally all continuous trading models, but,
on the one hand we use them only as convenient representations for our
specific discrete-observation situation [in fact, with the coefficients in (3.6),
(3.10) piecewise constant, at the discrete observation points t,, these models
are equivalent—in distribution—to the discrete time models (3.11)]. On the
other hand, our limiting continuous observation model [(3.26) below] is used
only as a computational tool to obtain an approximate solution to the given
discrete-observation and past-dependent problems, for which the solution
cannot otherwise be computed in practice. Furthermore, each of the (formally
continuous) models (3.3), used as convenient representations for the more
realistic situation when prices are observed in discrete time, is complete and
admits a unique equivalent martingale measure as well as a perfect hedge
portfolio. This has some similarity to the skeleton approach in Willinger and
Taqqu (1989), but the general methodology as well as the problem itself are
here rather different. Notice also that we do not deal with questions of
convergence of replicating portfolio strategies, which are considered, for exam-
ple, in He (1989) for a more traditional securities market model under rather
strong regularity assumptions; our interest concentrates on the value of the
option. Notice finally that, although we obtain a different martingale measure
Q° for each discrete observation interval e, it is possible to represent all our
processes (or at least copies thereof), including the limiting continuous obser-
vation process (3.26) below, on the same probability space; this is again similar
to the situation in Willinger and Taqqu (1989), where all elements in a finite
market approximation are defined on the same probability space and differ
from each other by the sets of trading dates, equilibrium price processes and
information structures.

3.2. An asymptotic option valuation formula. Consider now the following
option pricing problem: The logarithm X, of the price of the risky asset
evolves (under the risk-neutral measure Q¢) over the discrete time observation
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points ¢, according to (3.11)-(3.13); the claim is given by (3.5) with C > 0
sufficiently large. The purpose is to determine (see Theorem 3.1. below) an
asymptotic (for ¢ = 0 and C — «) valuation formula for the given claim at
time ¢ = 0 assuming that the evolution of X; before and at ¢ = 0 is known.
Once this purpose is accomplished, it then follows that, if the value of &
corresponding to the given process is small, that is, if the time intervals
between the discrete asset price observations are small (and C is large), then
the asymptotic valuation formula yields an approximation to the actual option
value which is better the smaller the value of ¢ > 0.

We start by recalling from the previous subsection that the given discrete
time process X, has, for ¢ =¢,, the same distributions as the process X;
defined in (1. 19) with Y as in (1.20), when the coefficients are given by
(3.14)-(3.16). Recall also [see (1.2)] that the initial segment Y}, —I <u < 0 for
the delay equation (1.20) is given by
(3.22) vy= Y (X -X.), -I<u<o.

u
k: —I<t,<u

Defining
(3.23) Zi =Y =Y,
we may then consider X; as being equivalently obtained, for ¢ = t,, from
)
(3.24) X; = xy+ j‘(a -5t gzg_) dA" + ‘(502 + ,oZ;:_)”2 dm:.
Recall furthermore from Section 2 that, if the initial segment Y/, —I <u <

0, for (1.20) converges uniformly (in «) in probability to the 1n1t1al segment Yu
of the process Y, defined by the delay equation (1.21), then (X;) converges in
distribution to the process (X,) defined by (1.23) with Y, as in (1.22) and where
the coefficients are again given by (3.14)-(3.16). More precisely, letting

(3.25) Z,=Y,-Y,_, Y=Y for-I<t<O,
such X,, Y, are therefore given by

5
(3.26) X, =x,+ j:(a -0t ng) ds + f()t(Saz +92,)"* dW,,

(3.27) Y, = ¥, + 0% + [ pZ,ds.
0

Notice that, given x, and Z = (Z,), the random variable X is conditionally
Gaussian with mean m ;(x,, Z) and variance V(Z) expressed by

' T 5 , P
(3.28) mp(x0, Z) = %, +[0 (a -5 EZs)ds,

(3.29) Vr(2) = [[(50% + pZ,) ds.
0

Consequently, if f = f(x) is a continuous function such that |f(x)| < exp(ax)
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for some constant « > 0, then

B(f(Xp)ixo, 2} = (2m) "% [ F(Ve(Z)y + my(xo, 2))

y2
- ?) dy = H(mT(xO,Z),VT(Z)),
with H = H(m,V) a function which is easily seen to be continuous by
Lebesgue’s dominated convergence theorem.

We next show how to use our main convergence result for (X;), (Y;), as
well as (3.30), for the approximate computation of the value of our claim at
t = 0, namely of [see (3.7)]

E‘{max[0,exp(Xj A C) — K]e *Tlx,, Y, =1 < u < 0}

when ¢ is small and C is large.
Using the notation a” — 4 « with the meaning that

lin}) Qfla" —al >8} =0

(3.30)

X exp

for all & > 0, we first have the following.

ProposITION 3.1. For any continuous and bounded function f = f(x) we
have for € = 0,

E*{f( X, Y, =TI <u < O} o E{f(XT)|x0,Z}.
Proor. Consider the process (X!), defined in the proof of Theorem 1.2

[formula (2.20)], which in our particular case (and under the measure Q) is
given by

2

As was established in the proof of Theorem 1.2, the process (X'tF ) has the
following properties for ¢ — 0 (see Lemma 2.4 and 2.3, respectively):

e _ ¢ 6 2 p £ ¢ 2 £
(3.31) Xf=x,+ jo(a - 50" - —Zs)dAs + fo(aa — pZ,) dM:.

(3.32) sup|X; — X;| >4 0,
t<T
(3.33) (X5) =L (X,).

From (3.32) it follows that
E°|E<{f(X§)lxo, Yy, =1 <u < 0}
(3.34) — B f(Rf)lxo, Y, =1 < u < 0]
<EIf(X5) - f(X5) —> 0 ase— 0.
On the other hand, for each ¢,
E*{f( X5 )wo, Yy, 1 <u < 0) = E{f(R})xo, Z)  Pas.
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Furthermore, let X° = X — x, and X = X, — x,. From (3.31) and (3.26),

it then follows that (X »°) and (X) are independent of x,, and the conver-

gence (3.33) implies X%° —, X°. 6 Therefore, for each constant d € R,

E* f(X*TO +d) - Ef(X? + d) as & — 0. Since EH{f(Xy° + x)lx,} =

Ef(X5° + d)gx, and E{f(X + xo)lxo} = Ef(X2 + d)4_,,, We then have
lim E*{ (X5 + xo)lxo} = E{f(XQ + x0)lxo).

The desired result now follows from this and (3.34), Z being deterministic. O

Let
(3.35) fe(x) = max[0,exp(x A C) — K]e T
and let [see (3.30)] H, = Hy(m,V) correspond to f.. By Proposition 3.1 we
then have
E*{max[0,exp( X5 A C) — K]e *T|xy, Y5, —I < u < 0}

(3.36)
—o Ho(mp(x9,2),Vp(Z)) ase— 0.

Consequently, if Z,, 0 <s < T, is known and H,(m, V) can be computed, we
may compute m(x,, Z) and V5 (Z) according to (3. 28) (3.29) and take as an
estimate for E‘{max[0, exp(X% A C) — K]e““TIxO, —I < u < 0} the value
of Ho(mp(xy, Z),Vp(Z)). Concerning the computatlon of the function
H (m,V), notice that it may be approximated, for large C, by the function
H(m, V) corresponding to

(3.37) f(x) = max[0, exp(x) — K]e T,
In fact, X, being (conditionally) Gaussian, we have
gi_rgoHC(mT(xO’ Z)’VT(Z))

(3.38) = lim E{max[0,exp(X,; A C) — K|e *T|x, Z}

= E{max[0, exp(X;) — K]e™T|x,, Z} = H(my(x,,Z),V7(Z))

with the expectation of the right being finite and explicitly computable via a
Black and Scholes formula according to Remark 3.2 [formula (3.20) with m?%,
Vi replaced by m(x,, Z), V (Z)].

On the other hand, Z, = Y, — Y,_; has to be computed using (3.27) with
the unobservable initial segment Y'u, —I < u < 0. We do observe, however, the
random function Y, —I < u < 0, which is supposed to be close, for small ¢, to

Y, in the sense specified in (1.21). Therefore, defining the random function

(3.39) Zi =Y - Yo,
where l?f is obtained, by analogy with (3.27), from

(3.40) Y7 =Y +o0%+ [pZids, Yi=Y¢ for—I<t<0,
0
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it follows that sup, _;1Z¢ — Z,| —¢o 0 as ¢ = 0 and, consequently, for ¢ — 0,
(341)  H(my(x0,2%),Ve(Z")) = g H(mo(x0, 2), Vr(2)),
where m;(x,, ZAEA) and V,(Z¢) are obtained from formulae (3.28) and (3.29),

replacing Z_ by Z:.
The convergence results (3.36), (3.38) and (3.41) now lead to the following.

THEOREM 3.1. The exact value of the claim at t = 0, namely the value of
E*{max[0, exp(X5 A C) — Kle™*Tlx,, Y, I < u < 0} can be arbitrarily closely
approximated by the value of H(m ;(x,, 2°), V,(Z%)), provided ¢ is sufficiently
small and C sufficiently large.

To conclude, notice that the result of Theorem 3.1 continues to hold, if
instead of (X;, Y,) we consider the pair (X;, Y,") introduced in Remark 3.1.

APPENDIX

LemMma A.1. Consider Assumptions 1-4. For any T > 0, we then have

lim limsupP(Y; >¢) =0 and lim limsupP(supIXfI > c) = 0.
C2®  £-0 C2®  £-0 t<T

Proor. Let
(A1) Ve =Y/ + suplX:|.

s<t

Given the obvious inequalities Y; < V; and sup, _,|X;| < Vj, it suffices to
prove that
(A.2) lim limsupP(V; > c) = 0.

=@ 250
Introduce the stopping times
w=inf(t <T:Vf>2r)AT, inf(J) = o,
and notice that for any r,
(A.3) P(Vi>c) <P(Vi>c)+P(rf<T).

Now, using the facts that {rf =0} ={V{ >r} and {0 <7 < T} =
0<rE<TIn{Vg<rin {V,% > r} as well as Chebyshev’s inequality, we ob-
tain from (A.3):

1 1 1
(A4) P(Vi>c) < —EVS5+ —EV: + —EV{.
c T r T r
Since EV§ = EY§ + E|x,| arid by Assumption 3, limsup, _, , EY§ < «, we have
1
lim lim sup —EV{§ = 0.
rowo ., I -
Consequently (A.2) holds if
(A.5) limsupE(VS) <k

>0
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with % not depending on r. Indeed, from (A.4) it then follows that

k1
lim limsupP(V; >¢c) < — + —hmsupEV* -0 forr — .
r

Cc—x >0 £—>0

To show inequality (A.5) let us use the representations (1.19), (1.20) [here and
in what follows we shall drop the arguments in the functions a, d,, b,]. From
(1.20), it follows that

Yi < Y5 +2[ (a,+a,X; ) AA dA; + 2['b2d[ M, M"],
0 0
(A.6) t
sY5+4ef [a + 42 supIX*_IZ}dA* +2[b§d[M”,M‘]s.
0 u<s 0

Furthermore, from (1.19) we deduce

(A7) suplX:| < Ixol+[

u<t

2
la | + |&,lsuplX; _|] dAY + 1+ sup(f b, dM*)

u<s u<t

Using Assumptions 1, 2 and Y — Y/, < Y/ , we have
la,l <L(1+Y:), l&)<L, b2<L(1+Y).
With these estimates we obtain from (A.6):
Yo <Y+ 48[ [L2(1 LY ) + L2 suplX: | }dAf;_

u<s

(A.8) +2[L(1+Y) d[M", M),
0

<Y+ 8L2e[t[1 +(Vi)?] aar + 2L[’(1 + V) d[M*, M7,
0 0
Analogously we obtain from (A.7):

2
(A.9) suplX:l <1+ lx +Lf(1 + V) dAY + sup(f b, dM*)

u<t u<t
From (A.8) and (A.9) it follows that

tAT,

VW,<1+VO+8L2[ [1+ (Vi)Y aa

tAT,

(A.10) + 2Lf (1 +Vi)d[M, M,

2
+Lf‘“'(1+w_)dA; sup (f b, dM*)
0

u<tAnr,
Defining
(A.11) U= BV,
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from (A.10) we then find

U™ <1+ EV§ + SLZSE/;)t/\T:[l + (‘,;_)2] A,

(A.12) + 2LE[‘A75(1 + Ve ) d{M®),
0
tAT, tAT .
+LE (1+V;_)dA§+4E[ b2 d(M*),,
0 0

where we have used Doob’s inequality. From Assumption 2 we have bZ <
LA +Y)<LA+ V) and from (1.13) we have A; = (M*),; therefore,
using (A.12) and some additional straightforward estimates that take the
definition of 7 into account, we obtain

Usr <1+ EVi+ 7LEf0MT:(1 + V2 ) dAS
(A.13) +8L%E [ 7[1 + (V)?] dag
0

<1+ EVg + 8L%(1 + r?) Ay + TLAY + TL ['(US") dAS,.
0
From this inequality, using Theorem 2.4.3 in Liptser and Shiryayev (1989),
namely an analogue of the classical Gronwall-Bellman inequality, we have
Up™ < [1+ EV§ + 8L%(1 + r?) Ay + TLAG |exp[ TLAY |
and, consequently, by the convergence A% — T for ¢ — 0,

limsupUjp™ < [1 + limsupEY{ + Elx,| + 7LT |exp[7LT ] = k.

£—0 -0

Thus [see definition (A.11)] we have established the required inequality (A.5).
O

Lemma A2, Let G* = (G;}),. , be a family of right-continuous and increas-
ing processes with G§ = 0 such that
(A.14) G; —>p G, ase— 0 forallt >0,

where G, is a continuous and increasing process with G, = 0. Furthermore let
f = (f,) be a continuous process. Then

(A.15) sup|[*f,d(GS = G,)| = 0 fore = 0.
‘ t<T 10

Proor (Sketch only). For integer N > 0, define fY := finsy/n SO that
(A.16) lim sup If,—fN =0

N-ow©og<cs<T
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and consider

sup| ['f, d(G: - G,)
t<T 170
t t
(A.17) < sup|[fNd(G; - G)| + [If. - £Nd(G; + G,)
t<T 170 0
< sup| [ d(G; — G|+ sup If, — FNI(Gy + Gp),
t<T 170 0<s<T

where, to estimate the first term, one then uses the fact that (A.14) implies

sup|G; - G,| » p0 fore — 0;
t<T

see, for example, Problem 5.3.2 in Liptser and Shiryayev (1989). O
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