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SOME LIMIT THEOREMS ON DISTRIBUTIONAL PATTERNS
OF BALLS IN URNS

By SAMUEL KARLIN! AND MING-YING LEUNG?2

Stanford University and University of Texas at San Antonio

In an independent, equiprobable allocation urn model, there are vari-
ous Poisson and normal limit laws for the occupancy of single urns.
Applying the Chen-Stein method, we obtain Poisson, compound Poisson
and multivariate Poisson limit laws, together with estimates of their rates
of convergence, for the number of chunks of « (fixed) adjacent urns
occupied by certain numbers of balls distributed in some specified patterns.
Several related results on occupancy, waiting time and spacings at certain
random times are also presented.

1. Introduction. The original motivation of the results reported in this
paper stems from comparative studies on molecular sequences seeking to
characterize repetitive structures in DNA and protein sequences [e.g., see
Karlin (1986)]. Some problems concerning long repeats in a random letter
sequence are idealized into a ball-in-urn model (urns correspond to all DNA
words of a given size and balls refer to the observed words in a given
sequence). Limit theorems for several generalized occupancy problems are
presented. More discussion of the background problems is given at the close of
the introduction and some molecular data applications are set forth in Sec-
tion 8.

A sequence of n indistinguishable balls are allocated independently into an
array of m urns following a uniform distribution. Two prominent Poisson
limit laws refer to the variable N,, the number of urns containing r
balls: With n,m — o, N, has a Poisson limit law with parameter c/r! if
n/m" Y7 5¢>0;and if n=mlnm+rmlnlnm + mx + o(m), then N,
has a Poisson limit law with parameter e /" Limiting distributions for the
waiting times T, (T") until some urn first acquires r balls {(all urns acquire
greater than r balls) ensue through their duality relations with the occupancy
problems. A compendium of results of this kind with references can be found
in Johnson and Kotz (1977). Kolchin, Sevast’yanov and Chistyakov (1978)
contains detailed information on these limit theorems and further generaliza-
tions.
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514 S. KARLIN AND M.-Y. LEUNG

In this paper, we consider the number of x-chunks (each chunk consists of
k adjacent urns) containing a prescribed configuration of balls under the
independence uniform allocation scheme. A k-chunk is said to have configura-
tion ¢ = (o4, ..., o) if the urn components of the chunk, respectively, contain
0y, 0y, ...,0, balls in that order. Theorem 1 indicates that the counts of
k-chunks with the different configurations totalling exactly r balls are dis-
tributed approximately multivariate Poisson provided n,m — « in a proper
relationship. Invoking the Chen-Stein method of establishing Poisson limit
laws, a rate of convergence is ascertained.

Many ball-in-urn distributional problems can be handled more expeditiously
via an embedding into an appropriate system of independent Poisson processes
or equivalently to distributing a Poisson distributed number of balls in the
wins and it is easy to obtain the corresponding results for a fixed number of
balls from this. This technique, quite old, is explained in Johnson and Kotz
(1977) [see also Karlin (1967)]. It is well known that the embedding into
Poisson processes is equivalent to distributing a Poisson number of balls into
the urns, and it is easy to obtain the corresponding results for a fixed number
of balls from this fact. Thus, our results are presented in the context of a
system of m independent Poisson processes, where the acquisition of balls in
each urn occurs with the events of these Poisson processes. Exceptions are
Theorems 6 and 7, where the embedding does not seem to simplify the proof,
and Theorem 13, where compound Poisson processes are used to reflect a
Markov allocation of balls. We let Y (¢), Yy(¢),..., Y, (¢t) denote m independent
Poisson processes, each with parameter 1/m. k-chunks correspond to k con-
. tiguous lines in the embedded processes. For simplicity of exposition, we
arrange the urns in a circle with Y, adjacent to Y,, so that there will be exactly
m distinct k-chunks. The circular arrangement eases the counting of chunks.
All the results below hold with the Poisson processes arranged in a linear
array.

The following notation is useful. Let

Q(n,k) = {o: o = (oy,...,0,), 0, nonnegative integers
(1.1) .
and ) o, =n};
i=0

(12) Q*(n,k) ={o:0€Q(n,k)and oy > 1}.

For each 1 < i < m and each o € Q(n, k), define

X, () = {1’ if(Yi(t)’ Yi+1(t)"“’Yi+K—1(t)) =0,
" 0, otherwise,

and

N(m,t) = ¥ X, o(0)
i=1
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so that N,(m, ¢t) is the number of k-chunks at time ¢ exhibiting the configura-
tion of events described by o.
For any two discrete (univariate or vector) random variables W and Z, let

(1.3) I-2(W) - £(Z)| = X |pr{W = o} — pr{Z = o}|

[-Z(-) denotes the probability law], where ¢ ranges over all possible values for
W and Z. This is the familiar total variation distance except for a factor of ;.

THEOREM 1. (a) If t,m — « in the manner that t"/m"~! - c for some
constant 0 < ¢ < © and

1
= O(—) for somep > 0,
m

p

tr
14 — -
( ) ‘ mr—l ¢

then the total variation distance for the joint probability law of N,(m,t), ¢
restricted to Q*(r, k), satisfies

” ../({No.( m, t)}o-eQ*(r,K)) - j({Z’\u}UEQ*(T,K))

where ¢ = min(p, 1/r) and {Z, }, c g, ) is @ family of independent Poisson
random variables with parameter

| = 0(1/m),

N c
° olog! g
(b) For m,t — « obeying

1 r
(15) t=—mlnm+ —mInlnm + me(m), c(m) »c,0<c<o,

K K
then

Inln m

|2 ((No(m, D)ocair.0) = 2 (20 }yeqro) | = Oc(m) —c) + 0( — )

where Z, are independent Poisson random variables with parameter

—KC

e
A=

r
aylo,! ok

Without the Poisson process embedding, when ¢ = m"~1/" balls are dis-
tributed successively into the urns, the error from the Poisson process model is
an additional O(m~=/7).

For the k-chunks with configurations (o, ..., ¢ ) fulfilling o, + -+ 40, >r
(< r) the corresponding count variables also tend in distribution to a Poisson
limit law as set forth in the following two theorems. These results reduce to
the classical occupancy and waiting time theorems if « = 1.
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THEOREM 2. For fixed positive integers k and r where r > 2, define

Xy = {1 D 2 Land Y(0) + (B 2

0, otherwise.
(Note the restriction that the first line in the chunk is nonempty; otherwise, see
Theorem 5.) Set

N(m,t) = f:lei(t).

Let t, m — o satisfying t"/m"~! > ¢, 0 < c < », and

L 1
(1.6) ‘F—c =O(;n_;) for somep > 0.

Then
|-#(N(m,t)) - £(Z,)| = 0(1/m?),

where ¢ = min(p, 1/r) and Z, is a Poisson random variable with parameter
X=c(k" = (k= 1)7)/rL.

THEOREM 3. For any fixed positive integer k and nonnegative integer r,
define

L ifY(¢) + Y ,(8) + - +Y,a(2) <1,
0, otherwise.

Xi(t) = {
Set
L(m,t) = f‘, X, ().
i=1

If m,t — « satisfying

1
(1.7) t=—K—mlnm+£mlnlnm+mc(m), c(m) »¢c,0<c <o,
then
Inln m
|A(L(m, 1)) = £(2)]| = O(e(m) = ¢) + 0 T2,

where Z, is a Poisson random variable with parameter A = e~"°/r!.

In Theorem 3, the error of the model of the Poisson process from the
straight multinomial procedure is of the order O(1/m).

Let T, , be the waiting time until some k-chunk first accumulates r events
(balls) and let 7,7, be the waiting time until all k-chunks accrue more than r
balls. The limiting distributional behavior of these waiting times follows from
the previous two theorems by virtue of the duality relations of the events
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{T; >t} ={N(m,t) = 0} and (T}, < t} = {L(m, ¢) = 0}. Thus we have:

rk —

COROLLARY 4.

(1.8) lim pr{mT4 >x} = exp{ il Gl Gl )}

m—w (r=1)/r r!

T, 1 r '
(19) lim pr{—— - |—Inm + —lnlnm) <x} =exp{—e /).
m-—o m K K
In Theorem 2, the condition that the k-chunk starts with a nonempty urn is
necessary for convergence to a Poisson limit law. The following result indicates
that without any restrictions, the limiting distribution is intrinsically com-
pound Poisson.

THEOREM 5. For any fixed positive integers k and r where r > 2, define

Xi(t) —_ {1; lfY:(t) +Y+K l(t) =,
0, otherwise.
Set

m
N(m,t) = ¥ X,(¢).
i=1
Lett,m — o witht"/m"™™! > ¢, 0 < ¢ < o, Then

©...,r, indistribution,

where C, r, 18 a compound Poisson random variable with probability

generating function

expi Y A(s* 71— 1)},

k=1
where

M=c/rl,  Ay=c(k"—2(k-1)+ (k-2))[r! fork=2,... «

Limit results involving compound Poisson processes also occur in recent
works of Arratia, Goldstein and Gordon (1990).

We shall derive several other results of interest related to the above urn
problems. Corollary 4 indicates that T, , /m“~"/" has a limiting distribution
function 1 — exp(—x"/r!). To simplify notation, we write T, instead of T,
Consider the exact times in acquiring the previous r — 1 ba.lls by that urn
which first accumulates r balls. Theorem 6 describes these times as asymptoti-
cally uniformly distributed relative to the time T,. It is well known and trivial
that for an unencumbered Poisson process, given the rth event at time T, the
successive earlier events relative to T, are distributed as the order statistics of
r — 1 uniform random variables. However, for the times among all the m urns
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when some urn first acquires r balls (this involves conditions on the total
composition of all the urns), only in the limit as m — « do the corresponding
uniform order statistics hold as stated in Theorem 6. In Theorem 7, we
investigate the number N* of urns occupied by exactly i balls, 1 <i <r -1
at time T,.

THEOREM 6. Let TV, T®, ..., T~V be the times at which the urn that is
the first to accumulate r balls receives its first, second,...,r — 1st ball. As
m — o, the limiting joint distribution of

(Tr(l) Tr(2) Tr(r—l))

T.' T, T

is the same as that of the order statistics of r — 1 independent, uniformly
distributed random variables on [0, 1].

THEOREM 7. For each positive integer land 1 <i <r — 1,

N® l ' 1 T, il
m-o7r | | T ”1113100 (i!)zE (m(r—l)/r) .

Hence, N /m"~9/" has a limiting distribution with density given by

, — 1)! o 1y)7/
(111) g(y) = E_;Tl-%?(i!y)(r_l)/l EXp{— (l .’}j') }

(1.10) lim E

as m — o,

In Section 7, we discuss the limiting behavior of T, if each allocation
assigns a random number of balls into the selected urn (i.e., each line gener-
ates events according to a compound Poisson process).

It is a common technique in the solution of classical occupancy problems to
consider the sequence of Bernoulli random variables X;, which is defined to be
1 if urn i contains the required number of balls and 0 otherwise. Then
N =X, + -+ +X,, and hence the limiting distribution of N, can be found by
calculating moments or generating functions directly [see Kolchin, Sevast’yanov
and Chistyakov (1978)]. However, these calculations become arduous in our
problems when k > 1 because the chunks of overlapping urns entail additional
dependence relations among the Bernoulli random variables.

In 1975, Chen adapted Stein’s differential method for obtaining normal
limit laws [see Stein (1972)] and provided error estimates in establishing
Poisson limit laws for a sequence of dependent Bernoulli random variables by
effectively computing only first and second moments. The method provides an
upper bound on the total variation distance to the difference from the Poisson
distribution. Since then, Chen’s result has been further refined and applied in
myriad contexts [e.g., see Arratia, Goldstein and Gordon (1989) and Barbour
and Holst (1989) and references therein]. The proofs of Theorems 2 and 3,
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which will be given in Section 4, are based upon the Chen-Stein method and
Theorem 1 will be proved in Section 3 by applying the multivariate version as
extended in Arratia, Goldstein and Gordon (1989). The proof of Theorem 10
exploits some further decompositions of the random variable and the multi-
variate Poisson limit law. Theorems 6, 7 and 13 are analyzed by more direct
means.

We describe three practical biomolecular sequence problems to which the
results of this paper may give some qualitative insights.

1. Consider a long random letter (DNA or protein) sequence sampled from an
alphabet of size a (e.g., a = 20 for proteins). We examine s-words (a
contiguous set of s letters in the sequence). There are potentially a® = m
urns reflecting all s words and m would be quite large for ¢ = 20, s = 3.
For a given sequence of length N, we can view each positioni =1,..., N —
s + 1in the sequence to determine an s-word engendering a ball in an urn.
Of course, overlapping words are certainly dependent but as an approxima-
tion we assume that the balls (the collection of s-words in the sequence) are
independently randomly generated. Allowing for few errors, we may coa-
lesce words and thereby obtain an idealization of balls falling into neighbor-
ing urns or a related set of urns.

The concept and identification of “rare” and ‘“‘frequent’’ words in a letter
sequence is a useful assessment. For a given sequence of length N, we
determine s (the size of the word) to satisfy

(1.12) s—1< 1 <s

and then choose r such that
r—1 logN r
< < .
r loga®  r+1

(1.13)

Here, s words occurring greater than or equal to r times are considered
frequent words. On the basis of Theorem 2, we propose that the number of
frequent words, defined by the clump size «, is Poisson distributed with
parameter c(k” — (k — 1)7)/r! where ¢ = N"/m”"~1. By exploiting the con-
cepts of Theorem 3, we characterize rare words as follows. Determine the
word size s to satisfy

(1.14) a’lna®* <N <a**'lna**!
and then determine r such that (for m = a°)
(1.15) m(lnm +rinlnm) <N <m(lnm + (r + 1)lnlnm).

By this prescription, s-words occurring less than or equal to r times are
considered rare words. Real data applications of these notions of frequent
and rare words with some interpretations are given in Section 8.

2. Given a sequence of N independent random letters from a finite alphabet
with equal probability of sampling each letter, let L, denote the length of
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the longest r-fold repeat (words occurring at least r times in the sequence).
It is of interest to determine the expected spacings of the L, maximal
length r-fold repeat. The result of Theorem 6 suggests that asymptotically
as N — o, the locations of these copies are distributed like r observations
from a uniform distribution over the sequence length.

3. The following problems are motivated by the human genome initiative
having the objective of sequencing the totality of human DNA. The ideas of
this paper can be used to give a rough estimate of the following problem.
Given a sequence of DNA bases (say 1600 long and assuming the 4 bases
occur equally likely and independently), it is of interest to estimate the
number of repeated 8-words that occur in a 1600 genomic stretch. There
are 4% = 65,000 possible 8-words (urns) and about 1600 balls corresponding
to the sequence to be distributed to the urns. Note 65,0002/% = 1600.
Therefore we would expect a triply repeated (r = 3) 8-word to be very rare.
Guided by Theorem 7 on the variable N(, we would expect an order
65,0001 "2/3 = 40 double repeats. This kind of information is useful in
developing apparatus for matrix sequencing as described in Drmanac,
Labat, Brukner and Crkvenjakov (1989).

2. The Chen-Stein method.

THEOREM 8 [As formulated in Arratia, Goldstein and Gordon (1989)]. Let I
be an index set. For any a €I, X, is a Bernoulli random variable with
parameter p, and B(a) is a subset of I containing a, called the neighborhood
of dependence of a. Let

W= Y X,
acl
and let Z, be a Poisson random variable with parameter A = ¥ , . ;p,. Define

bl = Z Z papﬂy

a€l peB(a)

b= Y Y P.g Wwherep,;=E[X,X,]
a€l geB(a)\{a}
by= Y s, wheresa=E‘E[Xa—palX7,'y$B(a)]|‘

acl

Then

1—e? 2
| £(W) = £(2,)] < 2| (b, + b)) — +min(1,\/;)b3].

For many levels of applications, see Aldous (1989), Barbour (1982), Barbour
and Eagleson (1984), Barbour and Hall (1984), Barbour and Holst (1989),
Godbole (1991) and Janson (1987), among others. The formulation above and
the multivariate version given below have been elegantly set forth in Arratia,
Goldstein and Gordon (1989).
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THEOREM 9. Retaining the notations in Theorem 8, suppose the index set I

can be partitioned into a finite disjoint union of subsets I, I,,..., I, and
W, = Z Xa’
aEIL
)‘i = Z E[Xa]
acl,
Then,

| LWy, Wy, ...\ W,) — £(Zy, Zs,...,2Z,)| < 8(by + by + by),

where Z,, Z,, ..., Z, are independent Poisson random variables with parame-
ters Ay, Ag, .., AL

Generally, b; serves as a measure of far away dependence. In all the
applications discussed below, X, is always independent of X, 6 whenever
X, & B(a). Hence, b; = 0. In these cases, to derive a Poisson limit law, it
suffices to show that b, and b, tend to 0.

3. Poisson limit laws for occupancy problems of k-chunks.

Proor oF THEOREM 2. Take the index set I to be {1,2,..., m} and for any
i € I, take the neighborhood of dependence to be {k € I: |k — i| < k}. Each X,
is then a Bernoulli random variable with mean

< e/ (t/m)”

-E[X]-Y ¥ Il

n=r ge@*n,x) k= 0!
S (" 1
= (e7/™) Z(—) )y ——»
ner \M ] v, ) 01 a,l
where @*(n, k) is defined in (1.2). Note that
1 1
a!"'a'!_z_ L g, a!
ce@*(n,k) "1 K o =1 oy ot - to,=n—o; 02 K

1
= m(Kn - (k—1)"), abbreviated f(n,«).

Set A,, = T ,p; = ELN(m, t)). Then,

=]

A, = me t/m Y (%) f(n,k)

n=r

r

tr_le—tk/m[f(r,lc) + f (%)nf(n+r,1<)l‘

m n=1
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We then have

r
—tk/m __ ce—tk/m

A, — Al < f(7r, k) + f(r,k)lce™ /™ — ¢|

mr—le
r

t =]
+ mr—l n2=1 (

The first term is O(1/m?) by condition (1.6); the second and the third terms
are both O(t/m). Since ¢" = cm™™ !, O(t/m) = O(1/m'/"). These estimates
combined yield

(3.1) A,, = Al =0(1/m?), q=min(p,1/r).
Now we compute the relevant b, and b, of Theorem 8 (note that b5 = 0):

b= Y pips

i=1FkeB(i)

)nf(n+r,r<).

t
m

2

= (2x — 1)me~2<t/m i (¢/m)" f(n,«)

=0(t¥/m* 1) = 0(1/m).

To get b,, we examine E[X; X,]for 0 < |k — i| < k. We may obviously assume
i <k and set d = k — i > 1. Then, denoting the configurations of the ith and
kth k-chunks by 7 and o, respectively, we have

E[X;X,]
=pr{X, =X, =1}
© e—tx/m(t/m)" o e—td/m(t/m)ﬂ1+’72+"'+"7d
=X X PRpe b MDY T Looe
n=r geQ*(n,x) 91:02* Oc* u=r ne@*u,x) N1:Mg* Ng:

t r+1
= e‘(“+d)t/m0((—) ) since n; > 1,
m

where QX(u,«) ={(ny,mg,...,m) € Q" u,1): gy =0, 1=1,2,...,k —d}
is the subset of k-tuples of @*(u,«) whose last xk — d components are in
agreement with the first «k — d components of o.

Thus B

m t r+1 1
b2= Z Z E[Xle] Sm(ZK—Z)e_(K+1)t/m0((—) ) =0(W).
i=1 keBO\G) m m

Now by Theorem 8,

1
(3.2) |-2(N(m,t)) - £(2,,)| < O(b; + b,) =O(W)‘
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Trivially, in view of (3.1),
(3.3) |-z(2.,) - 2(2)| =0@1/m9).

Combining (3.2) and (3.3), the theorem is confirmed. O
The condition that the first urn is nonempty is essential in the counts of
Theorem 2, as is to be shown in Theorem 5. This condition, however, is not

necessary in Theorem 3.

Proor oF THEOREM 3. Let A,, be the mean of L(m,¢). Then

r 1
A, = mE[X(t)] = me /™ ).

n
—————,
n=0(m) ceQn, ) 1° log! -+ !

with Q(n, «) defined in (1.1). Since

1 K"
S — ,
@1 oylog! - ol n!
we have
r (t/m) k"
Am —Kt/m Z ( / ) .

Inserting ¢t = (1/k)m In m + (r/k)m Inln m + me(m) yields

A, = e *™(In m)‘[(}n—:—l)(i:—‘) +0((Inm) " 'Inlnm)

1 Inlnm
=e M| — 4 0( )
r! Inm

and therefore
(34) Ap—A=0(c(m) —c)+O(lnlnm/Inm).

Taking the neighborhood of dependence B(i) of i € I = {1,2,..., m} to be the
set of all %’s satisfying |k — i| < x,

R S

1t +oc=n

— m(2x — 1)e =M m-2(In m)‘z’[———(lnr',n) + o((In m)’)}

of2]



524 S. KARLIN AND M.-Y. LEUNG

To obtain b,, note that for any { = 1,2,...,m and for any % such that
k>lk—1i=d>0, :

E[X;X,]
r n r—oy— =04 u
[ g am( L)
ne0 M cain o ol ol Py m
1
X ] 1
neQu,d) M """ Ma:
- reo = —0_y t/m)"
= ekrdi/m ¥ Y ) Y : ( /')' -
n=0 ceQ(n,x) u=0 neQu,d) 910 " O Tt Mt

It is easy to see that the highest power of ¢/m in the above sum is 2r and it is
attained whenever 0, + -+ +n,=r, ng,; = - =M =0y = ' =0._g=
0Oand o,_,;,; + - +0, = r. This gives

E[X,X,] = e < D/mO((¢t/m)™)

and hence

by, = i Z E[XiXk]

i=10<|k-il<k

m (2« — 2)e~ D/ mO((t/m)*")

= O(m~V*(In m)"* 7).
Now, appealing to Theorem 8, we have
(8.5) |-2(L(m,t)) —£(2, )| = O(m~Y*(In m) 7).
From (3.4), we have
|-2(2, ) - £(Z,)|| = 0(c(m) = ¢) + O(Inln m/In m),
and consequently the conclusion of Theorem 3. O

ProOF OF COROLLARY 4. Observe that
pr{T; > m"~Y"x} = pr{N(m, m"~ /%) = 0}.
Since (m"~Y/7x)" /m"~! = x”, Theorem 2 implies

lim pr{N(m,m" Y x) = 0} = pr{Z, = 0} = exp{ —x"f(r,«)},

proving the first statement (1.8) of Corollary 4. By similar arguments, the
statement (1.9) follows from Theorem 3. O
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4. Multivariate Poisson limit laws. The k-chunks with a total of r or
more balls may be classified into « distinct groups according to which line in
the chunk is the first having a partial sum of greater than or equal to r events.
For k =1,2,...,k, let P®)X(r, k) denote the set of «k-tuples of nonnegative
integers whose first element is nonzero and whose kth partial sum is the first
to reach the level r or more, that is,

PO(r,k) ={(0y,09,...,0): 0, =7},
(41) PP®(r,k) ={(01,09,...,0): 0, 21,0+ - +0o,_, <1
and oy + -+ +o, 21},

for k = 2,3,..., k. Define

X.(k)(t) = {1’ if(Yi(t)""’YHK—l(t)) < P(k)(r”‘)’
' 0, otherwise,

then
m
N®(m,t) = T XP(t)
i=1
counts the number of k-chunks given by some configuration (oy,...,0,) €

P®(r, k). Theorem 10 shows that the joint distribution of the numbers of
chunks in these groups tends to a multivariate Poisson limit when ¢ = cm” 1.
This result will be used later to prove Theorem 5.

THEOREM 10. Suppose t, m — » in such a way that t”/m"™™! - ¢,0 <c <
o, and

2 1
(4.2) 'm"l -c =O(W) for somep > 0.
Then
(4.3) | 2((N®(m, o)) - 2((2.,);_) | = 01 /me),

where q = min(p, 1/r) and {Z, };_, is a family of Poisson random variables
with parameters

No=c/rl,  Ag=c(km =2k -1+ (k-2))[r! fork=2,...«

ProoF. Let the index set I be the ordered pairs {(i,k): 1 <i<m,1 <k <
k}. Then I is the disjoint union of the subsets I(k) ={(i,k): 1 <i <m},
k=1,2,...,k. For any (i,k) € I, define its neighborhood of dependence
B(i, k) to be the set of all ordered pairs (i, k') such that |i' — i| < k with no
restriction on k'. Let P{*)X(r, k) = {0 € P®(r,k): 0, + -+ +0, = n}. Note that
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the sets P®(r,k), n =r,r +1,..., are mutually disjoint and P®(r,«) =
U=_,P¥(r, k). Hence,

E[X{"(t)]

Ms IMS

pr{(Yi(t),. .., Y oo(t)) € PP(r, )}

n
e—tx/m(_t_) E 1 .
ey M| fep®r, o) olog! - o !

Let X® = E[N®(m, ¢)]. Then

n—r
hd 1
= f spxmo mee (L E (L] x L
m olo,! - o !
i=1 = eeP®(r, k) ~ 1772 K*
Since P{*)(r, k) € Q*(n, ) [defined in (1.2)],
1 1 k® — (k — 1)"
L olo! - o ! T ooyl gl n! ’
eePM(r, ) "1772 K ce@*(n,k) 1772 K
which is bounded above for all values of n. So, we have
r 1 t
A('l;) = e_tK/m —1 E —#__'—T + O(_) .
m eeP®r, 0 T1102 o] m
Now observe that o € P*X(r, k) ifand onlyif oy > 1,0, > 1,0, + -+ +0o, =T
and 0,,; = ' = o, = 0. This implies that
1 r 17”11 1
Lz 0!0'“‘0!_2; a,! ) gyl o]
ceP®(r k) T 172" K 01=1"1" 03,=1 Yk* op+ ** +op_y=r—01-0; 2 k-1

-2k -1+ (k-2)")[r!, forkz=2,
1/rl, for k = 1.

When m,t —  as given by (4.2), we have A®) - A,. Furthermore [\%) — A,| =
O(1/m?) with ¢ = min(p,1/r).

Next, we estimate b, and b,. Note first that ©5_, X{*(¢) = X,(¢) with X(¢)
defined in Theorem 2. So,

b=Y ¥ E[X()]E[X(0)]

i=11i"—il <k

and as in the proof of Theorem 2, this quantity is O(1/m). Similarly, b, is
identical to that in Theorem 2 and therefore O(1/m!/"). Hence by Theorem 9,
the desired result is established. O

Proor oF THEOREM 1 (Stated in Section 1). We shall only prove part (a). To
apply Theorem 9, let the index set be I = U , c g« I(@), where I(o) = {(i, 0):
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1 <i < m}. For any (i, o) € I, define its neighborhood of dependence B(i, o)
to be the set of all ordered pairs (k, ) such that [k — i| < k and w € Q*(r, «).
Denoting E[N_(m,t)] by A,(m), we have

m
Ao’(m) = Z E[Xi,o(t)]
i=1
r
— 4 e—tx/m 1
mr~1 oloy! -+ o !
‘ A
ol gl T

Furthermore, by (1.4), [A,(m) — A | = O(1/m?P).
Now we estimate b, and b,:

m —tc/m r —tk/m r
=Y Y e (t/m) 5> e (t/m)

i=10€Q*(r,x) ailogt-- ol lk—i] <k weQ*(r, ) wlwg! - !
t 2r ) 1
— -2t/ m| __ 2% — 1 ro_ -1 r —o|l=
me K K K
(m) @<= D[ = (x = )T = 0[],

bz = f’: Z Z Z E[Xi,o-Xk,w]‘

i=10eQ*(r,k) 0<|k—i|l <k 0wEQ*(r, k)
For any i,k suchthat 0 <k —i =d <k,

e_(K+d)t/m(t/m)r+‘71+ 1t tog

) lfw1=0'd+1,...,wk_d=0'K,

E[X; o Xpul =1 olo,!  oyle! o)

0, otherwise.

As t" = cm™ L

by < m(t/m) " '(2x - 2)e_("+1)t/’”[(1<’ - (k- l)r)/r!] =0(1/m'T).
By Theorem 9 and the foregoing estimates, we get
” =‘/({Zvﬂ'( m, t)}o-eQ*(r, K)) - "/({Z)\.,}UEQ*(r,K))
=0(b; +by) + O(1/mP?)
= 0(1/m9), q = min(p,1/r). O

5. Compound Poisson limit law. In Theorem 2, we showed that the
number of chunks which begin with a nonempty urn and have acquired a total
of r or more balls has a Poisson limiting distribution. The condition that the
chunk starts with a nonempty urn is essential for convergence to a Poisson
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limit law. Theorem 5 shows that without this condition, the limiting distribu-
tion is genuinely compound Poisson. The following notation is useful. Let
U= {o=(0y,...,0,): 0; nonnegative integers and o, + - +0, > r},
={o€U:g;=0foralli <j,o; =1},
0P (o2 Upoy2r)
UP ={o€Uy:og+ - +0,,4_g<r,o;+  * +0;,, 27},
2<k<k-j+1.

Thus U; consists of all ¢ € U whose first nonzero component is the jth, and
U(k) con51sts of all ¢ € U; that require & components thereafter to attain a
level of r or more. Clearly U{® is analogous to P*X(r, k) defined in Theorem
10 except for beginning at the Jjth component of o. Denote by N,(m,t)
[N®(m, ¢)] the number of k-chunks with configurations in U, (U®). We have
the following lemma.

LEmMma 11. For any j=1,...,x and k=1,...,k —j+ 1, as m, t >
such that t"/m™™ ! > ¢, 0 < ¢ < o,
(5.1) N®(m,t) = N®(m,t) - 0 in distribution,

where N®(m., t) is the number of chunks of k contiguous lines whose config-
uration is in P*)X(r, k) as defined in (4.1).

Proor. We claim that N®(m,¢) — N*®(m,¢) > 0. In fact, whenever
Y,...,Y,, ¢ is in UP, (Y,,,,. ..,YHHK ) is necessarily in P®(r, k).
Furthermore,

o1+ - +ao,

K

(t/m)

ol ol

E[N®(m,t)]=m ¥ e /™

(k)
o'eUJ

> (t\" 1
=me /™ ) (—) Y
n=r\M 0.EUJ(k) J K

o+ Fo.=n

o] 5 el

1...
eceu® I o,!
o+ o =r
1
e L ol o!
o.er(k) J K*
g+ o o =r

as m,t — o such that ¢"/m""! - ¢. For any 0 € U®, 0y + -+ +0, =r if
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and only if o, = -+ =0,_;=0;,,= - =0,=0,0;2>1,0;,,_;>1and
o, + -+ +0;,,_; =r. We therefore have

> 1

ceU}k) 0:1‘ ) O.K!
ot o =r
r o 1 1
- X o;! o; ! b gl o !
a=1%j Ty p-1=1 Jt+k—1 01t O =TT, =0, J+1 j+k—2

(k’—2(k - 1)r+ (k —2)’)/7'!, for k > 2,
1/rl, for k = 1.
Comparing with the limit of E[N *)(m, t)] in the proof of Theorem 10, we see

that as m,t —» o, E[N®(m,¢) — Nj(k)(m, t)] » 0, which implies that
N®(m,t) — N¥(m,t) - 0 in distribution. O

ProoF oF THEOREM 5. First observe the disjoint decomposition

k k—j+1

v-Uu-U U ug®
j=1 j=1 k=1
Hence,
. Kk k—j+1
N(m,t)=3Y Y N®(m,t)
j=1 k=1
K K—j+1 K K—j+1
=Y ¥ N®m,t)+ ¥ ¥ [N®(m,t) - NP(m,1)].
j=1 k=1 j=1 k=1

By Lemma 11, the second term tends to 0 in distribution. Interchanging the
order of summation, the first term reduces to L% _,(x — & + 1)N®(m, t). By
Theorem 10, the joint distribution of {N*X(m, ¢)},_, . . converges to that of
{Z,}4-1, .., .» where Z, ,...,Z, are independent Poisson random variables.
N(m, ¢t) therefore converges in distribution to the compound Poisson random
variable C,  , with probability generating function

K
E[s*&nt =Dyt 42, ] = exp{ L Ap(sH - 1)}. -
k=1

6. Spacings and counts of balls in urns at certain random times.
In Theorem 6 (see the Introduction), we consider the times of acquisition of
the previous r — 1 balls by the urn which first acquires r balls and determine
the limiting joint distribution of these variables. Next, we consider the number
N of urns occupied by exactly i balls, 1 <i <r — 1, at time T,. The limiting
distribution of N /m(" ="/ is described in Theorem 7.
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Proor oF THEOREM 6 (Stated in Section 1; consult the notation there). For

any 0 <x; <x, < '+ <x,_; <1, conditioning on the value of T, consider
TOD T® Tr—1
r r r
Pr{i— <Xy, 5 < Xg,..., <X, 1
T, T, T,

pr{TV < bx,, ..., TV < bx,_4|T, = bjpr(T, = b}.
0

I
T

The infinite sum is conveniently split into three parts, the first summing on b
up to um'~'/", the second from um!'~'/" to vm'~'/" and the third from
vm!~1/" to », where u (small) and v (large) are fixed. Since

m — o

1. Tr < _ 1_ _xr/’.!
im pr W <X, = e s

we have, when m is sufficiently large,

Y pr{T® <bxy,..., TV < bx,_,|T, = bjpr(T, = b}

b<um{~V/r
<pr{T, <um" Y7} <1 - exp{—(u +¢)"/r!} foranye>0
and

Y pr{T® <bxy,..., T < bx,_,|T, = blpr{T, = b}

b>omt /7
< pr(T, > vm"~D/"} < 2e7V /"

These estimates are arbitrarily small for u, ¢ small and v large.

To evaluate the remaining sum, observe that the event {T, = b} occurs if
and only if exactly » — 1 of the first & — 1 balls go into the urn receiving the
bth ball, and the rest of the balls distribute among the other m — 1 urns such
that each contains fewer than r balls. So

(6.1) pr{T, = b} =

b-1
mb—1 (7‘ -1 )Db—r,m—l,r’
where D, ., is the number of distinct assignments of b distinguishable balls
into g distinguishable urns such that each urn contains fewer than r balls.
The factor 1/m®~! rather than 1/m® occurs because by symmetry any urn
can be specified to receive the r balls. Also

pr{TV < bxy,..., TV < bx, , T, = b}

(6.2) =_1__( ) D 1)D,,_,,m_1,r~

b1 . L
lp_g<i,_1<bx,_, i1<ig<bxy 0<i <bx;
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The ratio of (6.2) to (6.1) gives
pr{T® < bxy,..., T < bx,_4|T, = b}
(r—1)! r
(b-1)(b-2)---(b—-r+1)"’

where

r= X SRNED VD . ¥

i,_9<i,_1<bx,._; i1 <ig<bxy 0<i;<bx;
So, we can write
Y pr{T® < bxy,..., T < bx,_,|T, = blpr{T, = b}

um!~ YT <b<om!~Vr
br—l
(63) —(r- D! L (b-1)(b—-2) - (b—r+1)

um!~ YT <b<om! V"

r
X FT pr{T, = b} .
As m — o, b - o, clearly

(r- 1)!FT = Fixp,xg,.. xx o(¥0 %250 %21),

where Fix: xy . x» , is the distribution function of the order statistics of
r — 1 independent uniformly distributed random variables X,,..., X,_; on
[0, 1]. Thus the limit as m — « of the sum in (6.3) is

v
ot xt,.., x5 o( %1 %55 %,21) [ f(x) da,
u

,,,,

f(x) being the limiting density function of T,/m /", Since u and v are
arbitrary, letting « — 0 and v — « yields the desired result. O

Proor oF THEOREM 7. Take i fixed and 1 <i<r — 1. Let I, be the
indicator random variable which takes the value 1 if urn a contains exactly i
balls at time T. and 0 otherwise so that N = L7_,I, is the count of urns
containing i balls at time T.. Expanding the /th power of N®, we have

m l l
(Nr(l))l = ( Z Ia) = Z_lAlu Z IalIaz Ia,"

l<a;< -+ <a,<m

where A,, is the number of different assignments of / distinguishable balls to
u distinguishable urns such that each urn contains at least one ball. Then, by
symmetry, we have

N L 1 !
E(—‘—_—) = ——= L Aul|7 )ELLL, - L]
[ mr—/ } mir=/r = l(u) 172
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We need to estimate E[I;1I, --- I,] conditioned on T,. In the rest of the proof,
we shall use T, , to denote the waiting time until some urn among an array of
g urns first acquires r balls. Obviously by the multinomial theorem and the
meaning of T, (= T, ,), we have

b— 1) (iw)! pr{T, ,_,=b—iu}
iw ) (i)“mi pr{T, = b}

B biu biu Pr{Tr,m—u =p— iu}
LG m ( ) pr{T, = b}

E[LI, -+ LT, =b] = (

miu
with i and u fixed and b large. Observe that for b = ym" /7 0 <eg <y <
K < «, we have

pr{T, =ym" V" — iy}

r,m—u

pr(T, = ym"~V/7}

— 1 wuniformly in y.

Observe next that

muyiumiu(r—l)/r

(64) (TE[LIL -+ LT, = yme=D/7] = 0(

miu
and therefore dividing (6.3) by 1,/m'"~9/" yields

( mu(r—i)/ryiu

k=077 ) -0 foru<I.

When © = [, we have A, ; = [! So,

m
NGO ! ( ] )l! N
r _ _ r=1/r
F (W) } B ml(r—i)/r'/o E[1, LT, = ym® /7]
xpr{T, = ym" =Y/} dy
and hence
NO L 1 T\
(6.5) Jm B (W) ~ (m"‘l’/’) '

Denote by g(y) the limiting density of N®/m"~9/7. The next equation
expresses (6.5):

1 o
e

1 o . 1
- e

[:y’g(y) dy =
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and incorporating the geometric factor 1/(i!)! yields
_ =D
(i!y)(l—l)/l
where f(x) = (x""1/(r — D)e >/ is the limiting density of T./m!'~'/".
Thus we have the formula of (1.11):

(i — 1!
g(y) = T

&(y)

s ily)”!
(i!y)"“’/‘exp{—( f,) }

7. Limiting waiting times for lines of compound Poisson processes.
The following simple Markov structure for distributing balls in urns postulates
that the next ball is added to the previously selected urn with probability p
and otherwise (with probability 1 — p) an urn is selected equally likely from
the totality of urns to receive the ball. The corresponding continuous time
embedding (the geometric case 7.1 following) considers m independent com-
pound Poisson process lines such that at each Poisson event, a random
number N of balls is added to the urn represented by the line. We shall
consider two cases:

(7.1) pr{N =k} = (1 - p)p*1, k=1,2,38,...
and

_ _ 1-p, k=1,
(7.2) pr{N_k}_{pck, k=2,3,...,

where ¢, > 0 are fixed and independent of p and L5 _,c, = 1.

Our objective is to obtain the limit law of T, the waiting time until at least
r balls have accumulated in some line in the context of compound Poisson
processes.

LEmMA 12. Let S, be the waiting time until at least r balls have accumu-
lated for a single compound Poisson process with rate parameter 1/m where a
random number N (> 1) of balls are created at each Poisson event. Let f(¢) be
the density function of S,.

(a) For N geometrically distributed with parameter p, as in (7.1),

(7.3) f(§) =e*/m ’il(,._l)i r=17k(1 - p)*
' o\ k RimE+1P p)-

(b) For N distributed as in (7.2),

~ mr—l gk
(7.4) f(¢) =e ¥/ kgoAkm,
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where
Ay=pYec, A_,=(1-p) "
and fork =1,2,...,r — 2, A, is of the order O(p).

Proor. (a) In order to calculate f(¢) A¢, we condition on % events of the
Poisson process in time (0, ¢), producing (n, ny, ..., n,) contributions of balls,
Tk n,<r—1, and a Poisson event during the infinitesimal time interval
(¢, € + A¢) adding at least r — X %_,n; further balls. This combined probabil-
ity is

€)1 P A¢
—¢&/m| 2| ___ 1-— ni—1_> r—l—ny— - —n,
e (m) pr(t =) Tlp™ ™ —p
—f/m.__fk k_r—k—1
e k!mk+1(1_p) b A¢.
Summing over all configurations (n,,...,n,) such that n;>1,i=1,...,k,

and Xf_n; <r—1,

£ -7
(nl ..... nk) k

yielding the formula (7.3). The derivation of (7.4) is similar. O

THEOREM 13. Consider a system of m independent Poisson process lines
each with parameter 1/m. At the occurrence of each event, N balls are
contributed, where N is a random integer greater than or equal to 1. Let T, be
the waiting time until at least r balls have accumulated in some line.

(a) Suppose N is geometrically distributed with parameter p, where p =
a/m# for some constant a independent of m. Then the limiting behavior of T,,
as m — o, is given as:

B <

(1.5)

r—=1-k k+1

{
o) - £ () e
{
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(b) Suppose N is distributed such that
pr{N=1} =1-p,
pr{N =k} = pc,, k=23,...,

where p = a/m* for some constant a independent of m and some {c,};_,
independent of p with £5_,c, = 1. Then the limiting behavior of T, is given as

1
B<1——r-

1

if \B=1-—
1

B>1-—

(7.6) pr{% > x} - exp{—axérci}

Tr xr 0o
then { pr W>x - exp ——,:T—achi

i=r
T, —x"
oe{ o > ) |
Proor. By symmetry and independence of the Poisson lines,

pr{T./m* > x} = (1 — F(xm*))",

where F denotes the distribution function of S,. For T,/m* to have a
nontrivial limiting distribution, F(xm®) must be of the order 1/m.

(a) Integrating the density function of S, with a change of variable n = £¢/m
gives

-1 r—=1-i i

" — p (1 _p) x/m'” ; _

F(xm“) = Z (r ; 1) - j(’)/ nie " dn.
i=0 :

Substituting p = a/m?” gives the estimates

-1 r—1-i i+1
’Z (,. _ 1) a 1 x
o l (l + 1)| m(r—l—z)ﬁ m(l—a)(z+1)

(7.7)

1
+O( mﬂ(r—l—i)+(1—a)(i+1) )]

For B < 1/r, set @ = (r — 1)B. The above expression reduces to (only the first
term remains involved)

(7.8) apdx<+o(£;)
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and no other choice of a can produce a term of order 1/m. In fact, for
a>(r—1B,[1 - F(xm®)]™ - 0, and for a < (r — 1)B, [1 — F(xm®)]™ - 1.
For B > 1/r, the determination a = (r — 1)/r gives

x” 1
(7.9) F(axm(=b/ry = + o(—)
r'm m

coming from the last summand of (7.7). Finally for B = 1/r, with a =
(r — 1)/r, all terms of (7.7) contribute to produce

1 r—1 ar—l—ixi+1 1
7.10 F(xm=9/7) = — (r‘.l)—+ —).
(7.10) (my = 2 U ) arr tolm

The results of (7.5) follow immediately on the basis of (7.8)-(7.10).
(b) Following the same procedure as above, by (7.4) of Lemma 12, we have

r—1 « gk
F ay _ A am® S _im
() kgo kfo Rimiei® At

+ A,

1 x \2 1
2_!(m1—a) +0(m3(1—a))

1 x \" 1
+ - +Ar_1 r_!(ml_a) + O(m(r+1x1_a)) .

With p = a/m?* and the A,’s as given in Lemma 12,

F(xm®) =

axX_.c, (1- a/mﬁ)r_lxr x
+of )

mB+(1—a) r!ml—a mﬁ+(1—a)

If B <1 - 1/r, the first term dominates. Setting o = B gives
(1 = F(xm®))™ - exp{—ax i cn}.
n=r
If B > 1 - 1/r, the second term dominates. Setting @ = 1 — 1/r gives
(1 - F(xm®))™ - exp{— i;_':}

IfB=1-1/r,setting a =1 — 1/r gives

(l—F(xm"‘))m—»exp{——:—‘:—axi cn}. a

n=r
8. Some data examples and interpretations.

A protein example. All E. coli (bacterium) proteins of the current data
base (culled for repetitions) were concatenated, producing a sequence of N =
160,247 amino acids (a = 20) and similarly the human protein collection
totalled N = 170,737. Following the prescription of (1.12) and (1.13), frequent
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words for these data sets correspond to word size s = 5 (so m = 20°) with at
least r = 5 occurrences. [Data results not shown. See Karlin and Burge
(1991).] The following interesting contrasts emerge.

1. High frequency words in the E. coli collection (the highest word count is 8)
occur mostly in distinct protein sequences, whereas in the human collec-
tion, there are many copies (often tandem repeats) in relatively few se-
quences.

2. Many of the frequent words of the human set are homopeptides (.e.,
iterations on one or two amino acid types, especially proline and glycine).
This may reflect the abundance of collagen type proteins in humans.

A DNA example. Consider the genome (the totality of DNA) of all the
human herpes viruses (herpes simplex virus 1, varicello zoster virus, cy-
tomegalo virus and Epstein-Barr virus). The DNA totals 678,780 base pairs;
alphabet {A, T, C, G}. The criterion for a rare word is size s = 7 and at most
r = 12 occurrences. For these characteristics, 728 rare words qualified from a
totality of 4” = 16,000. All 7-words occurred at least once and the bottom 11 of
least occurrences are TCTAGTA (1 occurrence), ACTAGGC (3), CTAACTC (3),
TCTAGTC (3), AAGTTAG (4), ACTTAGG (4), ATCACTC (4), CTTAGCT (4),
GACCTAA (4), GGACTAG (4) and TACTAAG (4). It is interesting that all but
one of these words center on the stop codons (the DNA triplets that signal the
termination of a gene sequence) TAG, TAA or TGA; see Karlin and Burge
(1991). \
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