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SHARP INEQUALITIES FOR OPTIMAL STOPPING WITH
REWARDS BASED ON RANKS

By T. P. HiLi! anp D. P. KENNEDY
Georgia Institute of Technology and University of Cambridge

A universal bound for the maximal expected reward is obtained for
stopping a sequence of independent random variables where the reward is a
nonincreasing function of the rank of the variable selected. This bound is
shown to be sharp in three classical cases: (i) when maximizing the
probability of choosing one of the % best; (ii) when minimizing the expected
rank; and (iii) for an exponential function of the rank.

1. Introduction. For every finite sequence of independent random vari-
ables there is a stopping time which stops at the maximum value with
probability at least 1/e, one which stops with one of the two largest values
with probability at least e~ 21 + v2) and, in general, one which stops with
one of the % largest values with probability at least p(k) =
exp~tY/OL kL p1y/k /r1 These bounds are best possible, and follow from the
main result of this paper (Theorem 1), which gives a universal bound for the
maximal expected reward for stopping a sequence of random variables when
the reward is a nonincreasing function of the rank of the variable selected.

Let X,, X,,... be a sequence of independent random variables and denote
by 7 the set of positive integer-valued stopping times relative to the natural
filtration &, < F, C ---, where & =o0(X}, X,,...,X,). Let -, be the
subset of stopping times taking values in {1,2,...,n}. For each n > 1 and
r=12,...,n, take M to be the rth largest order statistic among
X,, X,,..., X, so that

M = Vv A Xij-

1<i;< -+ <i,<n j=1
The rank of X, among X, X,,..., X, is defined to be
R} = min{r: X, =M}, fork=1,2,...,n.

When considering stopping times in ., to simplify the notation, set R} =0
for k > n. Notice that if two (or more) values tie, then the rank is taken as the
smaller for each; for example, if two random variables are largest, both have
rank 1 (see Remark 1.5). The object of the present paper is to obtain bounds on
the optimal reward for the problem of choosing a stopping time T' € ./ or
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T € ., so as to maximize Ef,(R?%) for functions f,(r) which are nonincreas-
ing in r, 1 < r < n. One may think of a gambler with a horizon n wishing to
select one of the random variables so as to maximize the expected value of a
nonincreasing function of the rank of the random variable chosen from among
the first n. Here, for each n > 1, take f,:{0,1,2,...,n} = R,, with f,(1) >
fu2) = -+ = f,(n)=0. The assumption that f,(n) =0 is only for conve-
nience; clearly any nonincreasing function f, may be reduced to this case by
taking £,(r) = f,(r) — f.(n). The inclusion of £,(0) is to allow for the possibil-
ity of not selecting one of the n random variables; this corresponds to choosing
aT e with P(T >n)>0.For T € .7, if £,(0) > f,(1), clearly it is optimal
if the horizon is n to take 7' = n + 1. Similarly, if £,(0) < f,(n), it is optimal
to take P(T < n) = 1 and so T € /; that is, if £,(0) < f,(n),

sup Efn(R?‘) = Ssup Efn(R?‘)

Te” Te s,
Hence the interesting case is when f,(1) > £,(0) > f,(n), which will be as-
sumed throughout this paper.

The present setup may be seen to be related to the classical secretary
problem [cf. Freeman (1983) and Ferguson (1989)] as follows. The gambler
may choose one of the n items which appear in random order, each order
being equally likely. When item r is viewed, only its rank among the first r
items is observed. Let Y,,...,Y, be a random permutation of 1,...,n and
denote by Z, the number of Y,,...,Y, not exceeding Y,. For k= 1,...,n,
define X, =k if Z,=1and X, = —Z, if Z, > 2. Then, since Z,,...,Z, are
independent random variables, X;,..., X, are independent. Furthermore,
R} =1ifand onlyif Z, = 1, and R} = 1 if and only if Y, = 1. The secretary
problem corresponds to choosing a stopping time T < n relative to the se-
quence Z,..., Z, so as to maximize P(Y, = 1), but this is clearly equivalent
to choosing a stopping time T relative to X;,..., X, so as to maximize
Ef,(R}) where f,(1) =1, f,(r) = 0 for r # 1. Thus the secretary problem is a
particular case of the class of optimal stopping problems considered in this
paper. However, in general, extensions of the secretary problem involving
ranks greater than 1 (e.g., choosing one of the best % items, £ > 1) cannot be
reduced to the present context (see Remark 1.1).

The principal result of this paper is the following theorem.

THEOREM 1.1. Suppose that f,(1) > f,(2) = -+ > f,(n) =0 and that f,(1)
> £,(0) > f,(n). For all independent random variables X, ..., X, there is a
stopping time T € 7 satisfying

n—1
(1) Ef,(R}) = sup [Z fn(r)(:f)p’(l —p)"_r]-

0<p<l| r=0

When the random variables are continuous it will be shown that the
stopping time 7T in the statement of Theorem 1.1 may be taken to be a
threshold stopping time; that is, stop at the first random variable that exceeds
a fixed level. If the random variables are not continuous the proof of the
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existence of such a T is nonconstructive. By taking the derivative with respect
to p of the summation in the right-hand side of (1), it follows that if f,(1) > 0,
then the supremum is attained by the unique p, 0 < p < 1, satisfying

n—1 r
_ b

CINTORYACRS WIAGCEIACRE (e Feat

r=1
The uniqueness of p satisfying (2) follows by observing that the right-hand
side is strictly increasing in p, 0 < p < 1. Appropriate choices of f,, lead to the
inequalities in the following three theorems; the sharpness claims, however,
require separate proofs.

THEOREM 1.2 (Best & of n). For all independent random variables
X,,..., X,, there is a stopping time T € ./, satisfying

Xi: ('rl)(n - 1)—r/k

(3) P(Xp>Mp) > =%

and this bound is sharp.

Taking the limit of the bound in (3) as n — « yields the inequality stated in
the first paragraph, since the sharpness of the bounds implies that they are
monotone decreasing.

TueEOREM 1.3 (Expected rank). For all independent random variables
X,,..., X, there is a stopping time T € #, satisfying
©)) E(R}) <(n—-D[1 -n"Y""D]+1,
and this bound is sharp.

Observe that if C, denotes the bound on the right-hand side of (4), then
(C,—logn) >1lasn — x

THEOREM 1.4 (Exponential rank function). For all independent random
variables X4, ..., X, and 0 < z < 1 there is a stopping time T € ./, satisfying

1 — » 1 1 —zn 1/(n-1)
B

¥4 ¥4

—(n-1)

2

and this bound is sharp.

As n — », the bound in (5) approaches z(1 — 2)*72/% To illustrate this
bound, consider the particular case where the reward structure is such that
stopping on the best random variable yields 1, on the second best yields 1/2,
and the third best yields 1/4 and so on. Taking z = 1/2, for large n the last
inequality shows that the optimal expected reward is bounded below by 1/2.
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TaBLE 1
k 1 2 3 4 5 6 oo 12
p(k) 0.368 0.587 0.726 0.817 0.877 0.917 e 0.992
q(k) 0.368 0.574 0.708 0.799 0.860 0.903 cee 0.988

The proof of Theorem 1.1 will be given in Section 2 and the proofs of
Theorems 1.2-1.4 will be given in Section 3. It is not difficult to show that the
bound in (1) is sharp for all n < 4 for all f,. An example and proof are given in
Section 4 to show that the bound in (1) is not sharp for n = 5 and the rank
~function fy(1) =2, f4(2) =/f5;3)=f54) =1 and f50) = f5(5) = 0. Surpris-
" ingly enough, such an example to demonstrate that the bound in (1) is not
sharp in general seems to be difficult to construct, and even in the example
mentioned previously, the true bound is very close to the general bound. This
suggests that the bound in (1) may be fairly sharp for a large class of f,.

REMARK 1.1. The bound p(1) =e™! obtained from (3) in the limit as
n — «in the case k = 1 is familiar from the classical secretary problem as the
limiting probability of choosing the best item using an optimal policy as the
number of items n tends to infinity. This observation shows that the secretary
problem behaves asymptotically like the worst case when f,(1) =1, f,(r) =0
for r > 1. This is not true for 2 > 1, the case of choosing one of the best k.
Here the limiting bound p(%) differs from the limit of the optimal probability
q(k) [cf. Frank and Samuels (1980)] of choosing one of the k best in the
classical problem. It should also be noted that p(k) — 1 very quickly as %
increases, as Table 1 illustrates. As Table 1 also suggests, since p(k) > q(k)
for & > 1, there is some slight advantage in knowing the distributions of the
X, as opposed to knowing only the ranks.

REMARK 1.2. Sakaguchi (1984) considers the following variation of the
secretary problem. If the gambler selects the best item from n (> 2), he
receives 1 unit; if he selects any but the best, he pays 1 unit, and if he opts not
to select an item, he receives or pays nothing. The last option corresponds to
stopping at a time that exceeds n. A corresponding generalization of the bound
in Theorem 1.2 may be derived from Theorem 1.1. For any §, 0 <6 < 1, it
follows that for all independent random variables X,...,X,, there is a
stopping time T € 7 satisfying

P(Xp>Mp,T<n)+(1-8)P(T>n)

r/k

®) ) 1—5+§1(’;){5/(nzk1)}/
> AL
1+{5/(n;1)} ]

’
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and this bound is sharp. Notice that the limit of the bound in (6) as n — » is

k-1 {15}
exp(—{k!&}l/k) Y —
r=0 ‘

This is seen to be an extension of Sakaguchi’s case by taking 6 = 1/2 (and
considering the reward/loss function 2 f,(r) — 1); then the gambler wins 1 if
he selects one of the & best of the random variables, he loses 1 if he selects one
of the n — & worst and he receives or pays nothing if he does not select. From
(6), in the case & = 1, it follows that

2
lim sup [P(R3=1) -P(R:=>2)] = — - 1.
nom Tes Ve
Comparing this last bound with the result in Sakaguchi (1984) shows that

again in this situation the secretary problem behaves asymptotically like the
worst case.

REMARK 1.3. The case of (8) when k = 1 provides an interesting bound
related to the prophet inequality [Krengel and Sucheston (1978)], which
establishes that for independent nonnegative random variables X,..., X,,

n

sup EX, > %E( max X,),
Te/, l<r<n

and that 1/2 is the best possible bound for each n > 2. It follows from (3) that
for nonnegative, independent random variables

Xr
sup E{ ———— | = sup P(XT= max X,)
Te/, 1I’IlaX X,. Te/, l<r<n
<r<n

(7)

1 n—1
2(1——) foreachn > 1.
n

Here, interpret 0/0 as 1. It will be seen that the bound in (7) is sharp for each
n (where the bound is taken to be 1 for n = 1). Notice that the limit of the
bound in (7) as n — « is e~ ! < 1/2, which contrasts with the standard
prophet inequality.

REMARK 1.4. Note that the proof of Theorem 1.1 shows the existence of a
threshold stopping time T satisfying (1) for continuous random variables and
that the threshold ¢ may be determined explicitly from the distributions of the
random variables. In the case where the random variables are i.i.d. (and
continuous), there is even a threshold stopping time which stops with the
maximum observation with probability at least 0.517 as was shown by Gilbert
and Mosteller [(1966), page 57].
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REMARK 1.5. The definition of the rank given above is a “generous’’ one, in
that ties always move up, and the result (1) depends heavily on this. If ties
move down, for example, then there is no nontrivial analog of (1), since the
case X; =X,= -+ =X, =1would yield E[ f(R})]=f,(n)=0forall T
,. Similarly, if an averaging definition of rank is used [e.g., the reward is
(f,(D) + £,,(2))/2 if the value selected is tied with one other value for the
maximum], then the best lower bound is easily seen to be (f,(1) +

-+ +f,(n))/n (which is attained if X; = X, = --- = X, = 1), and this is also
the best lower bound for arbitrary dependent random variables (via the
randomized stopping time “stop with probability 1/ at time i, independently
of the X process”). The best lower bound for the arbitrarily dependent case
under the definition of relative rank used in this paper is not known for
general objective functions f,, although for the best-choice problem f,(1) =1,
f.(i) = 0 for i # 1, it is easily seen to be 1/n.

2. Proof of Theorem 1.1.

LeEMMA 2.1. For fixed real numbers a > a, > -+ > a, > 0, the function

r

ém[ S TI(x-1)

1<i;<---<i.<n j=1

is minimized over x, > 1, 1 <r <n, with [1{x,=b>1 when x;, = -+ =
x = b/
. .

ProoF. First, it will be shown that the function
n r
Nw=2m[ > ruﬁ—ﬂ
r=1 1<i;)<---<i,<n j=1

is Schur convex fory = (y,,...,y,) € RY. [For the definition and properties of
Schur convexity, see Marshall and Olkin (1979), in particular, page 54 and
Theorem A4 of page 57.] Let

7 (y) = M [T(e?s-1), r=1,...,n,
1<i;<---<i,<n j=1

with ¢g =1, ¢, = 0 and ¢} = 0 for r > n. For the n-vector y = (y1,...,%,)
let

Vi= (1 YictsYiv1r > Yn)

be the (n — 1)-vector obtained by dropping the ith component and let §;; be
the (n — 2)-vector obtained by dropping the ith and jth components, i #j.
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Observe that

ap;
3y - eyl(ﬁ (yl)
and
T1($) = 6r2E(®i) + o123 (i) (e — 1), forl<r<n.
This gives
gy gy )
oy, T e)[$728(9:) - #722(3:5)]
implying that
b 9P

— — — = (e” —e%) Z [ (yij) - f—_zz(yu)]

dy; 9y,
n—1
= (e —e") ¥ (e, - a,,)$r72(F,))-
r=1

This, in turn, implies that

25 B 1) 0. foris
e D) B *
(y: = ;) 2y, >0, fori+j,
which by Theorem A4 of Marshall and Olkin (1979) proves that ® is Schur
convex. Schur convexity, on the other hand, implies that

(¥, ¥) <2((y1-->92))
where y = (y; + *+* +y,)/n, which completes the proof. O

Proor oF THEOREM 1.1. Without loss of generality assume that f,(1) > 0.
Let F; denote the distribution of X;, and suppose that p is the unique root
of (2), 0 <p <1 First consider the case where there exists ¢ with

? 1F(c) =@ = p)* > 0. Define the pure-threshold stopping time T'(c) =
min{k < n: X, > ¢}, with T'(¢) = n + 1 if there is no such k. If exactly r > 1
of the random variables X, ..., X, exceed c, then 1 < R}, < r, from which
it follows that

n

k 4 1
P(1 <R}, <k)= [LIIF}(C)] §1{1 .<.Z H(Fi(c) ‘1)}

c<i<nj=1

and

P( T = 0) = l_[F(c)



510 T. P. HILL AND D. P. KENNEDY

Using these relations,

Ef.(R% ) = fo(0)P(Rf, = 0) + Z [ fa() = fo(k + 1)]P(1 < Ri,) < k)

v

n n—1
[ TI7©) || £0 + T £(7)

r 1
><{lsi1<~z~- <i,snjl:11 ( Ej(c) B 1)}}

ng:f,,m(’,?)p'(l -»)"7,

v

the last inequality following by Lemma 2.1, and establishing (1).

Now suppose that there does not exist ¢ with IT}F,(¢c) = (1 — p)*, but take
¢ satisfying [1*F,(c —) < (1 — p)* < T1!F(c). Let {U,, 1 < r < n} be indepen-
dent random variables each with the uniform distribution on [0, 1] and inde-
pendent of {X,, 1 <r <n} (defined on an enlarged probablhty space, if
necessary). Deﬁne independent random variables X r=1,...,n,by X =X,
1fX<cX X+11fX>candX X+U1fX—cThen1fFls
the dlstrlbutlon functlon of X , there exists d, ¢ < d <c¢ + 1with H”F d )

(1 —p)*. Let R" denote the relatlve rank of Xk among X,,..., Xn; it is
immediate that R} > R?, k = 1,...,n. Let T(d) = min{k < n: Xk > d}, with
T(d)=n+1if there is no such n. Obqerve that 7(d) € .2, where /:) S is
the class of randomized stopping times for X;, X,,.... By the previous

A

argument applied to Xl, e, X

n’

n—-1
Bf,(Rhw) > Bf,(Rhw) > T (D (F)pr@-p)"

Observing that sup;._s Ef,(R%}) = supre_f,(R7), and that for finite-hori-
zon optimal stopping an optimal stopping time always exists, completes the
proof of the theorem. O

3. Proofs of Theorems 1.2-1.4. In establishing the sharpness of the
inequalities derived in the theorems of Section 1 it will be seen that the
extremal distributions for {X,..., X,} take the same form in each case. Say
that (X,,..., X,) form a Bernoulli pyramid with parameter p, 0 <p < 1, if
X,=1and P(X,=r)=p=1-P(X,=1/r) for r=2,...,n. For each
choice of f, define

V.(x) = sup B[ £,( R3) | X, = ],
T>r
so that V. (x) is the optimal expected reward if stopping takes place at time r,

or later, conditional on the observed value X, = x. In each of the three cases it
will be seen that an optimal stopping time is always to stop at time 1; and in
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each case the gambler is indifferent between stopping at time 1 and continu-
ing.

ProOF OF THEOREM 1.2. The proof of the more general sharp inequality (6)
will be established, which implies the result for (8) by taking & = 1. Here, take
D= =fk)=1, f(k+1= - =f(n)=0 and f,0) =1-6.

Solving (2) for p yields
-1
(n 3 1) : 1/k
k .

Substituting into (1) gives (6). For the sharpness, suppose that (X,..., X,)
is a Bernoulli pyramid with parameter p where p is as before, so that
8= (" X 1)( p/(1 —p)*. Let a, be the conditional probability that X, is
among the & best values given that X, = r; likewise, let ¢, be the conditional
probability that X, is among the %k best given that X, = 1/r. It is clear that

p={1+

(n—r)An(k—1) n—r\ . .
a,= 20 ( ; )p‘(l—p)"_r_' forl<r<n
i=
and
krin—ry . ;
¢, = z_:o( : )pl(1—p)""" forl<r <k,

with ¢, = 0 for » > k. Note that @, =¢;. For1 <r <n,

Vi(r) = max{a,, pVy.i(r + 1) + (1 = p)V,4(1/(r + 1))
and

V.(1/r) = max{c,, pV,,1(r + 1) + (1 = p)V,.,(1/(r + 1))},
with V(n) = max{1,1 — 8} = 1, V,(1/n) = max{0,1 — 8} = 1 — . Last, define
b,, 1 <r <n, setting b, =1 — 8, and then letting b, = pa,,, + (1 — p)b, .,
for 1 < r < n, from which it follows that for r < n,
(n—r)Ak

n-—-r i n—r—i n—r
b= L ("7T)pra-p v a-aa-p)"
i=1
It will be established that a, > b, > c,, for each r, which implies by backward
induction on r =n,n - 1,...,1 that V.(r) = a, and V,(1/r) = b,. This gives
Vi(1) = a,, which in turn demonstrates the sharpness of the bound (6) when it
is observed that the right-hand side of (6) is a,, since
KMl —1) ., —i-1 n oS (n) n—i
o= L ("7Ypa-p T ma-aa-p s L ()ra-p
i=0 i=1
The last relation follows using the definition of p and the identity

(-2 (7Y
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First, to check that b, > c,, it is only necessary to consider 1 < r < k. Since
k —r <(n —r) Ak, it is then sufficient to show that
n—r n—r —r n—k—
(I-p) o< (k s 1)1)" (1 -p)" TN

This is trivial for 6 = 0, and for 1 > § > 0, after substituting the value of p, it
reduces to showing that

i( n—1 1/k - 1.( n—r ) 1/(k—r+1).
s\n—-k—-1 “les\n—k-1 ?

1/(n—k)
this inequality is true because (Z) ! is decreasinginn > k2 + 1 and &
is nonincreasing in £ > 1. To check a, > b,, note that this inequality is

immediate for n — r < k£ — 1, while for n — r > k, using the expression for p,

a,—b,=8(1-p)" " - (n ’: r)p"(l _p)n—r—k

-pra-p (") - (M) = o

To verify the sharpness of the inequality in (7), consider the slight variation
of the preceding example, where X; =1, and P(X,=p" H=1/n=1-
P(X,=1/p"" Y, r=2,...,n, where p > 1. Then it is immediate that

—1/k

1 n—1
(1——) < sup E

|-

Xr

——— | £ sup P(XT= max X,) +
max Xr Te S l<r=<n
l<rs<n "

But the same argument as previously given shows that

1 n—1
sup P(XT = max X,) = (1 - —) ,
Te./; l<r=<n n

which proves that (7) is sharp when p » «. O

Proor or THEOREM 1.3. Taking f(r)=n—r,for 1<r<n, and =0
otherwise, solution of (2) yields p = 1 — n~1/(»~D, Substituting into (1) and
converting E(R}) = n — E[ f,(R})] gives (4). To establish the sharpness of
(4), take a Bernoulli pyramid (X}, ..., X,) with parameter p satisfying (1 —
p) ™ YV =n Forl<r<n,since (n — r)p is the expected number of indices
J» r <J <n, with X; =j, it follows that

V,(r) = max{n = (n = r)p = 1, pV,.i(r + 1) + (1 = p)V,un(1/(r + 1))
and
V.(1/r) =max{n — (n —r)p —r, pV,,(r + 1) + (1 - p)V,.1(1/(r + 1))},
with V(r) = n — 1 and V,(1/n) = 0. First observe that

1<n(1-p)" "<r, forl<r<n.
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For the left-hand inequality n(1 —p)* "=10 —p) "V >1 and for the
right-hand side n(1 — p)*™" = p"~V/=D pHut pl/=D < p1/0-D gince (1 +
x)Y/* is decreasing in x > 0, and the inequality follows. Now letting

b, =pVeun(r + 1) + (1= p)V,on(1/(r+ 1)) forlsr<n,
it follows by backward induction on r that
b,=n—(n-r)p-n(l-p)"~"

and V(r)=n—-(n—-r)p—1 and V.(1/r) =b,. Again, notice that b, =
(n — 1)1 - p). It follows that V,(1) = (n — 1)/n'/™~D, showing that (4) is
sharp. O

Proor oF THEOREM 1.4. Fix z €(0,1) and define f,(r)=2"—2" for
1 <r <n,and = 0 otherwise. Solving (2) yields
1 -1
. 1]

1—2" 1/(n—-1)
- -1
PP ( 1-2 )
and substitution into (1) (recalling that z" was subtracted off) gives (5). To
show that (5) is sharp, again take a Bernoulli pyramid with p as before, so

that
1-2" n-l
={1 +z( P )} .
1-p

1-2
First note the inequalities, for 1 <r < n,
A1-(1-2)p})" "2{1-Q-2)p)" " -1-p)"1-2")
>2{1-(1-2)p}" " .

By rearrangement, the first of these inequalities may be demonstrated by

showing that
1 _zn n—r
1-2 1-p

but this is true, using the equation for p, since (1 — 2")/(1 — 2)) > 1. For
r = 1 the second inequality is immediate, while for r > 1 it reduces to showing

that
1-—2" 1/(r—1) 1 -2z 1/(n—-1)
( ) 2( ) , forr=2,...,n,
1-2z 1-2
which holds since the left-hand side is nonincreasing in r = 2,...,n. Now, as

in the previous two examples, set b, = pV,, (r + 1) + (1 - p)V,, (1 /(r + 1))
for r < n, and since (" N ’)pi(l — p)" "~ represents the probability that for
exactly i of the indices j = r + 1,..., n, the random variable X; = j, it follows
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that

V.(r) = max{ E—: z+1( ;r)pi(l _pytTE z",b,}
and

v.(1/r) = maX{ Z_‘, ”'( i )p"(l -p)" 7 - z",b,},

with V. (n) = z — 2", V,(1/n) = 0. Backward induction now gives
b,={1-(1-2)p)" "= (1-p)""(1-2") —2" and V(1/r)=b

This shows that V.(r) = 2{1 — (1 — 2)p}* ™" — 2" and V,(1/r) = b,. Again note
from the relation giving p that b, =2{1 - (1 —2)p})" ! — 2" and that
V(1) + 2" is the bound on the right-hand side of (5), establishing the sharp-
ness. O

4. An example where the inequality (1) is not sharp. Take n =5

and define f5(1) = 2, f5(2) = f5(3) =f5(4) = 1 and f5(5) = f5(0) = 0 (so that

s = fs — 1is +1 for rank 1, —1 for rank 5 and 0 otherwise). Let B denote the
bound on the right-hand side of (1), so that

4
B= ¥ fx(r)(%)pra-p)*
r=0

=5p(1-p)*+1-p°—(1-p),
where p is the unique solution in [0, 1) of the equation

® 4(11_),,)*(1:,):2-

Observe that p < 1/3 since the left-hand side of (8) is increasing in p,
0 < p < 1, and exceeds 2 when p = 1/3.

ProPOSITION 4.1.

inf{ sup E[fs(R})]: X1h..., X5 independent} > B.
Te S
Proor. Define functions ¢, ¢: [0, 1]° - R, by

5 5 5 5
¥(qr,-.,q5) =1+ X ((l—q,)l_l )—l_ll(l—q,-)—l_llqi,
Jj=1 i= i=

) 4 5 5 4
¢(q1;--,q5) =1+ 1 ((1 —qJ)l_I ) - I1a-g)-A-g9la.
j=1 i= i=
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For q,, ..., q5 satisfying the constraint [13q; = (1 — p)°, observe that I13(1 —
g;) and Y31 /q; are uniquely maximized and minimized, respectively, when all
the g; are equal, so that under the constraint,

5 (1 5 5 5
¥(qy,...,q5) =1+ (Z (f - 1))i=l']1qi— i=l'11(1—qi) - iljlq,-

(9 =119

>y(1-p,...,1-p)=B.

Also, setting B* = ¢(1 — p,...,1 — p), note that
B*=y(1-p,...,1-p)+(1-p)'(1 - 3p) > B,

using the observation that p < 1/3. Now, if F, denotes the distribution
function of X, assume that there exists ¢ with I18F,(c) = (1 — p)°. (For the
general case use randomization exactly as in the proof of Theorem 1.1.) As
before, define the pure-threshold stopping time T'(¢c) = min{l < & < 5: X, > ¢}
or T(c) = 6 if no such % exists. Then set T* = T(c) A 5, T** = T(c) A 4, and
define the event A = {X, < X, < c}.

Cramv 1.
E[ f5(R%+)] = ¢(Fi(c), ..., F5(c)) + Fy(c) Fy(c) F3(c) P(A).
Claim 1 follows by noting that
5 4 4
P(R3+=5)<[I(1-F(e))+P| VX, <c, X, < A X,
i=1 i=1 i

1_5] (1 -F(c)) + Fi(c)Fy(c)F3(c)P(Xs <X, <c)
i=1

IA

5 5
i=l_11(1 = Fy(c)) + ZI;IIF}(C) — Fi(c) Fy(c) F3(c) P(A)

and that
5 5
P(R3«=1)> )}, (1 - F}(c)) l—[‘Fi(c) .
Jj=1 1+
i=1
Cram 2.

E[ fs(R%w)] = &(Fi(c), ..., F5(c)) = Fy(c) Fy(c) Fy(c) P(A).
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Claim 2 follows by noting that

5 3
P(R7+=5)< [I(Q1-F(e))+P| VX, <, X, <X, ANX, A Xy A X
i=1 i=1

< lél (1 - Fy(c)) + Fi(c) Fo(c) F3(c) P(X, < ¢, X, < X;)
i=1
5 4
= T1(1 - F(0)) + (1 = Fy(e) TT Fi(e)
+ Fi(c) Fy(c) F5(c) P(A)
and that

3
j=1

5
(1-Fi(c)) 11_[#].1’1(0)
i=1

+ P

3
VXiSC,XIVX2VX3\/X5<X4)
i=1

4
> )
j=1

5
(1- E(C))QE(C)
i=1

To complete the proof of Proposition 4.1, choose &, 0 < & < min{(1 — p)/2,
(B* — B)/3}, so that

*

3 b
and using the continuity of ¢, compactness of [0,1]° and the uniqueness
conclusion in (9), let § > 0 be such that

lg; — (1 — p)| < & for all i implies that |¢(q,,...,q5) — B*| <

lg; — (1 — p)| > & for some i implies that ¢(qy,...,q5) > B + 8.

Case 1. Suppose that |F(c) — (1 —p)l<e for all i and that P(A) <e.
Then by Claim 2,

B[ fy(Rj)] = B* (B*;B) e

-B+
3 3

B* - B B* — B
zB*—z( ) .

Case 2. Suppose that |Fi(c) — (1 — p)| > ¢ for some i. Then by Claim 1,
E[ fs(R3+)] > B + 5.
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Case 3. Suppose that [F(c) — (1 —p)l <e for all i and that P(A) > .
Then by (9) and Claim 1,

E[fs(R5+)] = B + ( ' ;p )38.

Thus in each case there exists a stopping time T' € ., with
E[ fs(R3)] = B + &%,

where 6* = min{(B* — B)/3,8,e((1 — p)/2)®} > 0 does not depend on the
distribution of the random variables X,..., X;, and this completes the proof.
O
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