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THE RESOLVENT OF A DEGENERATE DIFFUSION ON THE
PLANE, WITH APPLICATION TO PARTIALLY OBSERVED
STOCHASTIC CONTROL

By IoanNIs KaraTzas! AND DANIEL L. OcoNE2

Columbia University and Rutgers University

We compute the resolvent of the degenerate, two-dimensional diffusion
process introduced by Benes, Karatzas and Rishel in the study of a stochas-
tic control problem with partial observations. The explicit nature of our
computations allows us to show that this diffusion can be constructed
uniquely (in the sense of the probability law) starting at any point on the
plane, including the origin, and to solve explicitly the control problem of
Benes, Karatzas and Rishel for very general cost functions. Our derivation
combines probabilistic techniques, with use of the so-called “principle of
smooth fit.”

1. Introduction and summary. In this paper we consider the problem
of optimal control for the scalar process

(1.1) Xt"=y+/tzusds+B,, 0<t<o,
0

Here z is a random drift parameter (observable only through X*) with
symmetric distribution, B is a Brownian motion independent of z and u is a
control process with values in [—1,1]. The paper [2] initiated the study of
control problems for this model.

In the completely observable case, in which z is 2 known real constant Z,
this problem goes back to Benes [1], who showed that the control law

(1.2) u, = —sgn(zX})

minimizes any cost functional of the form E[k(|X%|)], where k: [0, o) — [0, x)
is nondecreasing. This result was later established by different methods in [8],
[4], [3] and [9], Section 6.5. In the partially observed setting of (1.1), it is
natural to guess from (1.2) that, according to the so-called “separation’ or
““certainty-equivalence” principle, the law

(1.3) uf = —sgn(2°X)

will be optimal for a wide variety of cost functionals, provided that we take for
8" the least-mean-square estimate of z based on the observations X**, s < ¢.
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630 I. KARATZAS AND D. L. OCONE

An attempt to study this conjecture immediately faces a difficulty, which
forces us to refine the formulation of the problem. If we formally substitute
the control (1.3) into (1.1) and then derive the stochastic differential equation
of filtering for 2", we find that the resulting equation does not admit a strong
Gee., {FX u*} = {o-(Xs"*, s < t)}-adapted) solution. The paper [2] overcomes this
difficulty by introducing a weak formulation. The processes X, for different
u, are replaced by a fixed, canonical process Y. A fixed filtration {%,}, with
respect to which Y is adapted, is then given, and the new class % of admissible
controls consists of those which are adapted to {%,} and take values in [~ 1, 1].
One then “solves” (1.1) by constructing a measure P* (with corresponding
expectation operator E*), under which the process Y, —y — zf{u ds is a
Brownian motion. The objective is to minimize a cost functional calculated
with respect to E*, and the conjectured optimal control suggested by (1.3)
becomes
(1.4) ut = —sgn(2,Y,),
where 3, 2 E*[z|%]. In [2] it was shown that if {&)} is large enough (in
particular, strictly larger than {#*} £ {0(Y,), s <¢}) and %, denotes the
subclass of % that contains the “strict-sense” (i.e., {Z,Y}-adapted) controls,
then the following hold:

(i) The choice (1.4) is consistent—in the sense that the filtering equation
for 2, admits an {%,}-adapted solution (cf. Section 6 for a detailed and rigorous
formulation).

(ii) The resulting control u* € % minimizes the particular, infinite-hori-
zon cost functional

(1.5) Iy(u) 2 E*[ e Y2 dt
0

over the class %.

(iii) «™ cannot be in %,.

(iv) No control in %, can be optimal—despite the fact that the infima of
(1.5) over these two classes % and %, are the same. Such a situation had been
envisaged in the pioneering work of Fleming and Pardoux [6].

The purpose of our paper is to analyze u* and the corresponding optimal
process in greater depth, with a view toward improved optimality results. In
particular, we show that «* minimizes any cost functional of the form

(1.6) J.(u) £ E*[ e e(Y,) dt,
0

assuming only that ¢ is an even, convex function admitting at most exponen-
tial growth. The main result behind our proof is an explicit and tractable
formula of J(u*), for any running cost function ¢(-), which follows from a
more general calculation presented in Theorem 3.4. This theorem is the chief
- technical contribution of the paper, and deals with the two-dimensional diffu-
sion process (Y, Z), solution of the stochastic differential equation
dy, = aw, Yo =,

(1.7)
dz, = —sgn(Y,Z,) dw,, Z,=¢,
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on the plane. Here sgn(x) == 1 (x) — 1_,, ofx) is the usual signum func-
tion, and W is a standard, one-dimensional Brownian motion with respect to a
filtration {#]} large enough to support a solution of (1.7). Equation (1.7) is
directly relevant to the control law u*¥ = —sgn(Z,Y,); namely, in the Bernoulli
case P[z=0]=1—-Plz= —0]=p with 0 <9 <o, 0 <p <1, we have 2, =
60 tanh(6&) and

1
(1.8) dgf = —sgn(¢7Y,) dY,, £ = 5 tanh™}(2p ~ 1);

see Section 6. Since we may use an equivalent probability measure under
which the process Y becomes Brownian motion (thanks to the Girsanov
theorem), the analyses of (1.7) and (1.8) are equivalent.

Our main result is an explicit representation for the resolvent operator
associated to solutions (Y%, Z%¢) of (1.7), for initial conditions (y,¢) €
#?\{0). That is, we compute explicitly

(19) VE(y,€) = E[ e Mg(Y7¢, 206 dt
0

for any bounded, Borel-measurable function g: #? — % (cf. Theorem 3.4). By
examining the resulting formula, we are then able to deduce further useful
information about the solutions of (1.7). It turns out, in particular, that
V&(y, ¢) extends continuously to the origin; this allows one to extend the
Markov semigroup associated with (Y;*¢, Z'¢), 0 < ¢ < », (y, &) € Z2\{0))
and restricted to functions defined on the punctured plane, to a Markovian
semigroup of the Feller type acting on continuous functions defined on %2
This methodology allows us to conclude that there is a weak solution of (1.7)
starting at (y, £) = 0, and this solution is unique in the sense of the probability
law (cf. Proposition 3.7 and Theorem 8.1). Furthermore, we are able to obtain
more refined results on the differentiability of V%, and on how this property
depends on the differentiability of g itself. We then return to the optimal
control problem of (1.6) and obtain improved results (Theorem 7.1 and Re-
mark 7.2); we show that the solution found in [2] is still optimal, if we require
only that the cost function c(-) of (1.6) be even, convex and satisfy an
exponential growth condition, and we also allow the initial condition y in (1.7)
to be equal to 0.

The paper is organized as follows. In Section 2 we present the construction
of the process (Y%, Z?¢) for (y,&) # 0. We repeat this construction here,
because in its course we shall develop an important result (Proposition 2.4),
crucial for further developments. In Section 3 we first state a result of the
Feynman-Kac type (Proposition 3.4) that lays out conditions under which a
solution Q(y, £) of the equation \

‘(1.1’0) ’;‘[ny"'Qgg] —-Sgn(fy)Qy§+g(y’§) =AQ

must, in fact, coincide with V&(y, £); then the explicit representation of V¢ is
stated in Theorem 3.4. Section 4 is devoted to the proof of Theorem 3.4. The
idea is first to derive by probabilistic arguments a simple formula that ex-
presses V&(y, £) in terms of g and of the values of V&(y, £) along the axes; and
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then to invoke a heuristic smooth-fit principle which postulates, as an Ansatz,
that V& be continuously differentiable across the axes. This is in the end
justified because it leads to a candidate for V4, by determining V¥4 along the
axes. The candidate satisfies (1.10), and hence must actually represent V4.
Section 5 is a preliminary to the treatment of the stochastic control problem
and shows under general conditions that, when g(y, £) = ¢(y)cosh(8¢) and
a=A—02/2>0, the function V& of (1.9) satisfies the nonlinear partial
differential equation

(111) 3V, + min [uV,, + 3u?(Vi, — 62V)] + c(y)cosh(8¢) = aV

. of the Hamilton-Jacobi-Bellman (HJB) type. Section 6 defines the optimal
control problem of (1.4) and (1.6) precisely, and singles out a candidate optimal
control. In Section 7 we show that this control law is indeed optimal, using a
verification argument for (1.11). Section 8 develops the semigroup properties
of (Y»¢ Z»%), and proves the existence of a weak solution to (1.7) for

Many of the arguments require heavy calculation. To emphasize the essen-
tial points in Sections 4 and 5, we have relegated some of the proofs to an
Appendix (Section 9). Readers interested primarily in the control problem of
Sections 6 and 7 may wish, on first reading, to skip the proofs of Propositions
2.4 and 3.2 and Corollary 3.6, and to glance quickly through the “analysis”
Section 4.

2. A degenerate, two-dimensional diffusion process. The following
two-dimensional diffusion process (Y, Z) was introduced and studied in [2].

ProBLEM 2.1. To find a complete probability space (Q, &, P), a filtration
{Z,} of sub-o-fields of F which satisfy the usual conditions, as well as two
continuous and {F,}-adapted processes Y, Z on this space, such that:

@ Y={Y, %, 0 <t<x}is a standard, one-dimensional Brownian mo-
tion process with Yy=y € # (i.e., a continuous, square-integrable {F}-
martingale with Yy =y and E[(Y, - Y,)’|Z]=¢t —sa.s.,, for 0 <s <t < )

(ii) the equation

(2.1) Z,=¢- ['sen(Y,2,)dY,, 0st<w,
0

is satisfied almost surely, for an arbitrary but fixed initial condition

(Y07Z0) = (y’ 5) € *@2-

In other words, one seeks a weak solution for the degenerate, two-dimen-
sional stochastic differential equation:

dY= dW, YO =y7
dZ = —sgn(YZ)dW,  Z,=¢,

where W is a standard, real-valued Brownian motion, for any given (y, £) in

(2.2)
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#2?. It was shown in [2] that Problem 2.1 admits a solution for any given
(y, &) € #%2\ {0}, and this solution is unique in the sense of the probability
law; for completeness and later usage, we repeat this construction here
(Theorem 2.3 below). The existence and uniqueness-in-law of a solution for
(y, £) = O are established in Section 8, proof bf Proposition 3.7.

ReEMARK 2.2. We employ throughout the convention

_ /-1, x<0,
@) wio-{h x50

It should be observed that, for any solution of Problem 2.1, the process Z is an
{Z,}-Brownian motion starting at Z, = ¢ [because it is an {%,}-local martingale
with continuous paths and quadratic variation equal to (Z), = ¢, as is easily
checked from (2.1)].

THEOREM 2.3 [2]. For any given (y, £) # 0, there is a solution to Problem
2.1; this solution is unique in the sense of the probability law.

Proor. Without loss of generality, we shall take y # 0, £ = 0.

(a) Existence: Start with a complete probability space (Q, %, P) and a
standard Brownian motion B on it (B, = 0), and let {%,} be the P-augmenta-
tion of the filtration %2 = 0(B(s),0 < s < ¢t), t € [0, ®). We define the contin-
uous, {#,}-adapted processes

Z\(t) 2 B(?),
‘(2.4) Yi(e) 2y - sgn(y)fotsgn(Zl(s))dB(s)

—y- /O‘sgn(Yl(s)Zl(s))dB(s)

for 0 < ¢t < 7, where 7; £ inf{t > 0, Yy(¢) = 0} is a stopping time of {%,}, with
values in (0, ). From the Tanaka formula for Brownian local time (cf. [9], page
205) and (2.4), we obtain

(2.5) V() + 1Z(t) = lyl + LB(¢), O<t<r,

where LB(-) is the local time at the origin for the Brownian motion process B.
In particular, we have from (2.5),

(2.5) |Z,(7)] =yl + LB(7y) = Iyl >0, as.
This allows us to continue, by defining
Yy(t) £ B(t) — B(my),

26) Zy(1) 2 Zi(7)) - sgn(Z4(7)) [ sgn(Yy(s)) dB(s)

=Zy(7y) — ft sgn(Y2(s)Z2(s)) dYy(s)

T1
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for 7, <t <r,, where 7, £ inf{t > 7, Z,(t) = 0} is a stopping time of {7}
with P[r; <7, < ] = 1. Using the Tanaka formula again, as well as (2.6) and
(2.5'), we obtain

2.7) |Yo(8)| +]22(2)| =|Zy(1)| + L¥2(2) — L¥(ry)
' =yl + LY2(¢t), 7, <t<m,,

and in particular

(2.7) |Yao(72)| =1Z(71)| + L¥2(7,) — LY2(7)) >|Z(1y)],

almost surely. Notice also from (2.5') and (2.7’) that both 7, and 7, — 7, are
stochastically larger than the first passage time of |B]| to the level |y|.

Continuing this construction, we create a strictly increasing sequence
{7,.Jy —1 of stopping times, with each r,, — r,,_, stochastically larger than the
first passage time of |B| to the level IyI (and thus with lim,, _,, 7,, = ® a.s.),
such that for every n > 0 we have almost surely:

@ On [79,, Tan1): You(ra,) # 0, Zy,(75,) = 0
Z2n+1(t) = B(t) - B(72n+1)’

(2.8) Yo+ i) = Yaulran) — sen(Yo(73) [ s80(Zyn1a(5)) dB()

=Yy, 1(72,) — ft Sgn(Y2n+1(3)Z2n+1(3))dZ2n+1(3),

T2n
(2.9) Ton+1 = inf{t > 75, ¥, ,1(2) = 0},
(2.10) |Yoni1(8)] +]Z2ns1(t)| =|Yan(7a,) | + L72+1(8) — L#%n01(1y,),
Ton SE < Topir
GD) On [79,41, Tons2) Zonsi(Tans) # 0, Yo, (75,,1) =0
Yonr2(t) = B(t) = B(72,41)s
Zon+2(t) = Zop i 1(T2ns1)

sgn(Z2n+l(T2n+1))f sgn(Y2n+2(s))dB(s)

(211) T2n+1
= Zzn+2(72n+1)
¢
_[ Sgn(Z2n+2(3)Y2n+2(s)) dYs,.2(8),
T2n+1
(2.12) Ton+e = INf{t > 79,1, Zy,  o(8) = 0},
, |Yani2(2) | +] 2oy 2(2)]
(2.13) =123+ (Tgns1) | + L¥ev2(t) — LYnv2(1,, 1),

Ton+1 ST S Topig.
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It is now straightforward to see that the {#}-adapted processes Y and Z,
defined consistently on the entirety of [0, ©) by
(2.14) (Y(t), Z(t)) £ (YV,(t), Z,(t)) forr,_,<t<r,,
are Brownian motions which satisfy (2.1), as well as
(2.15) |V ()| +|Z(t)| = Iyl + &l + L¥(¢) + LZ(t), 0<t<oo.

(b) Uniqueness. [The following argument is due to L. C. G. Rogers (personal
communication).] Let (Q, %, P),{%,)},(Y,Z) be a solution of Problem 2.1.
Then from (2.1) we obtain

z, = [sen(Y,) dW,,
(2.16) 0

t
Y, =y - [ sen(Z,) dW,
0
in terms of the {#}-Brownian motion process

W, & —[O’sgn(ZadYs.

Uniqueness-in-law for the pair (Y, Z) will follow, as soon as we have shown
that pathwise uniqueness holds for the stochastic equation (2.16).

In order to do this, consider another pair of process (Y’, Z') satisfying (2.16)
on the same probability space (Q, %, P),{%,} and with respect to the same
Brownian motion W, that is,

z; = [ sgn(Y) aW,,
(2.16') 0

t
Y =y —f()sgn(Z;) dw,,

and let p;, £ inf{t > 0, Y, = 0 or Y/ = 0}. This stopping time is almost surely
positive and finite, and the processes Y,Y’ are of the same sign on [0, p,];
therefore, Z = Z' on [0, p,], and this in turn implies Y = Y’ on [0, p,]. On the

other hand, from Tanaka’s formula we obtain as before
1Z,| =1Y,| +1Z,| = lyl + L%(p,) 2 Iyl, as.

Similarly, the stopping time p, £ inf{t > p,, Z, =0 or Z’, = 0} satisfies
Plp, < py < ®] = 1, and it can be seen as before that

(i) (Y,Z) = (Y',Z') on[py,p.l,

(i) Y,,| =12, ] + [LY(p;) — L¥(py)]
hold almost surely; in particular, both p; and p, — p, are stochastically larger
than the first passage time of a Brownian motion to =+ |y|. Continuing this way,

we construct a strictly increasing sequence {p,},_; of {Z}-stopping times
with lim,, . p,, = © (because p,, — p,,_; is stochastically larger than the
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Brownian first passage time to + |yl|, for every m > 2), and such that (Y, Z) =
(Y',Z')on [0, p,,], YV m > 1. We conclude that the pairs (Y, Z) and (Y, Z’) are
indistinguishable. O

It is also shown in [2] that for the stopping time 7 = 7, as in (2.9), we have
(2.17) sgn(Z,) is independent of %7,

and that

the processes Z, sgn(Z) are not adapted to the
filtration {#,Y}, Y = 0(Y,, 0 <s < 1),

for any solution (Q, &, P),{%,},(Y, Z) of Problem 2.1. In other words, (2.1)
does not admit a strong solution.

(2.18)

PROPOSITION 2.4. For the process (Y”'¢, Z” %) of Problem 2.1 with (y, &) #
0, introduce the sequence of stopping times

o, = 03 (y,€) 2 inf{t > 0,14 + 1224 = yl + I¢] + k)
= inf{t > 0, LY"*(¢t) + LZ"(¢) > k)

for k € N [recall (2.15)]. Then for every A € (0,®) and 0 < & < V2A, there
exists a positive constant M, < » such that

(2.20) Ee o < Me~ W22 =9k forqllk € N.

(2.19)

PRroOF. Let us recall the construction of Theorem 2.3 (Existence), and the
fact that for a standard Brownian motion B, the stopping time 7, £ inf{t > 0,
LAB(t) > k} has moment-generating function

(2.21) Ee™ Mk = e kA k5

[ef. [9], Theorem 3.6.17 and formula (2.8.6)].
Set f, £ Ee**, k € N, and observe from the strong Markov property:

foryr = E[e—AakE{e—A(ak+1—ak>|g;k}] — E[e—»\akf’l],
fL=E [e e g)] l(y,g‘)=<ygf, z35-

Note that (Y24, Z;Z;f) takes values in the set .} = {(0, 1), (0, —1),(Z,0),(—1, 0)}
with I = k& + |y| + |£|. Let us consider the event

(2.22)

Az {(Yy ¢, Z%*%) undergoes an excursion from one axis to

(2.23) another, durir}g (0, 0’1(5” é))}

From (2.21) we have

(2.24) E[e™ 001 ,] < e V2,

because, on the event A°, o(5, £) is just the time it takes for the local time of a
standard Brownian motion (either Y¥¢ or Z%¢) to increase by one unit.
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On the other hand, with (7, He 7}, for the event A to occur, a standard
Brownian motion (either Y¥%¢ or Z%¢) must undergo an excursion of size [
before its local time grows by one unit:

P(A) = P[|B] hits I, before L® hits 1].
Now the pairs (|B|, LB) and (M — B, M), with M(¢) = max,_,_, B(s), are
equivalent in law (e.g., [9], Theorem 3.6.17); furthermore, for M — B to hit [
before M hits 1, B must hit 1 — [ before it hits 1. But this event has
probability 1/7; thus,
(2.25) P(A) <

~| =

From (2.24) and (2.25),

- 1 &
E[e—)\(rl(j"yf)] Se—‘/é_)‘_'F 7, (5;76) e%’

and from this and (2.22) we deduce
— 1
< fk (e— 2x + E ) )

o .
fk+1sfk[e + k + |y| + |§|

as well as

pey

k
Ee % = f, < fle ™2 T (1 + ) =f.8,e ", keN.
j=1

It is easy to see that

1+ —
J

k eV2h
g = ﬂ
Jj=1

satisfies lim, _, ., g,e~°* = 0 for any & > 0, and the conclusion (2.20) follows. O

3. The resolvent of (Y%, Z%), ,. We would like now to compute
explicitly the resolvent function

(8.1)  VE(y,6) LE[ e Mg(YP4, 206 dt,  (3,6) € #2\(0},
0

for the unique (in the sense of probability law) solution (Y%, Z?'%),,, of
Problem 2.1, corresponding to the initial condition (Y%, Z3¢) = (y,¢) and a
given function g. We want our formula to be valid for a class of functions g
sufficiently large, both to use the resolvent V# in order to characterize
(Y%, Z %), . ¢, and to include functions of the form

(3:2) (3, £) = c(y)cosh(6¢)

(where c is sufficiently smooth and satisfies suitable growth conditions) that
arise in the optimal control problem treated in Sections 6 and 7. Bounded
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functions g suffice for characterizing (Y%, Z}¢),. , via the resolvent. How-
ever, to handle (3.2) we shall have to consider g satisfying a growth condition
of the type

(33) lg(y,€)| < Ke®™*%, ¥ (y,¢) € 22,
for some K > 0,60, >0, 0, = 0.

LEMMA 3.1. Let g satisfy (3.3). Then, for every A > (0, + 0,)%, the func-
tion VE&(y, £) is well defined and finite, and there exists a real number K, > 0
such that

(3.4) [VE(y, £)| < K,e®WI*0:kl W (y,&) € R2.

Proor. Observe that (Y€ — y),., and (Z'¢ — £),,, are Brownian mo-
tions. Moreover, for a Brownian motion B, we have

EeMPl < 2Fe Pt = 2¢"/2, VA e .
Thus, by Hélder’s inequality and (3.3),
E‘g(Yty’f, Zty’f)| < Ke01|y|+92|§|(Eep101|Bt|)1/P1( Eep292|Bt|)1/p2
— 9 Ke?1lyI+ 0211 o(63p1+63p2)t /2
for p; > 1, p, > 1 such that 1/p; + 1/p, = 1. Since
min{efpl + 03Py p1> 1, p2 > 1, S 1} = (6, + 6,)%,
P1 D2

we see that V¢ is well defined and finite for A > (8, + 6,)?, and (3.4) holds.
O

Our approach to computing V&(y, ¢) will be to exhibit an explicit solution of
the resolvent equation formally associated with (3.1):
(3.5) %[ny + fo] —sgn(y€)Qy: + 8 = AQ in R

We make precise the connection between (3.1) and (3.5) in Proposition 3.2.
The discontinuity of the coefficient sgn(y¢) across the axes makes it neces-
sary to define carefully a suitable domain of functions for the operator

B 1] 92 92 9%
(36) L—E :93’_2+5§_2- —sgn(yf)agay.

Let T,, T,, T; and T, denote, respectively, the first through fourth open
quadrants of %2. We shall say that a function V: R? - R is of class D, if

Ve CY#?), \
Ve C*T,), foreachi=1,...,4.
" For each V € 9, LV(y, ¢) is unambiguously defined in every open quadrant.

We define LV(y, £) on the axes by continuation from the quadrant correspond-
ing to the convention sgn(0) = —1. That is, for y = 0, £ > 0,

[LV](0,£) 2 5[V, (0—,€) + Vee(0—,6)] + V. (0—, §);

(3.7)
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for y =10, £ <0,
[LVI(0,€) 2 5[V, (0+, &) + Vie(0+,6)] + V,e(0+,6);

and so on. Finally, we define by convention LV(0,0) £ LV(0, 0+ ). With those
definitions, (3.5) has an unambiguous meaning on #2, for every @ € 2.

PROPOSITION 3.2. Let g: #? — R be a locally bounded, Borel-measurable
function, and assume that A > 0 is large enough, so that V'é(y, ¢) exists for
all (y, &) € #2\{0). Assume that Q € 2 obeys (3.5) and

(3.8) |Q(y, €)| < Ke® ™™D,V (y,¢) € #2,
for some 0 < K < wand 0 <0 < V2A. Then
(3.9) Q(r.6) = VE(y, ) 2 E[ e ™g(¥p, 20 ) de

for all (y, ¢£) € 22\ {0}.

ProoF. The well-known argument behind (3.9) is to apply It&’s rule, and
we follow this procedure. However, we must deal with the fact that @ is not
necessarily of class C? across the axes. We shall smooth out @ and take limits,
using the fact that the time spent by the process (Y%, Z)€),. , on the axes
has Lebesgue measure 0.

Accordingly, let p be a compactly supported, symmetric, nonnegative C*-
function on #? such that [4:p(y, £)dydé = 1, and introduce the functions
¢.(y, &) & n?p(y/n,&/n) and Q,(y, &) £ [, * QUy, £). Here, * denotes convo-
lution. Because @ € Z, it remains true that

IQu(y,€) = ¢, **Q(y, £),

for any multi-index a = (a;, @,) € N? with |a| £ @, + a, < 2. Consequently,

(3.10) sup sup [0°Q,(y,£)| <,
n (y,£)eK

for any bounded K ¢ #? and any multi-index « = (@, a,) with |al < 2. Also,
lim 3°Q,(, £) = #Q(y,£), V(3.£) € iflal <1,

(3.11) s
lim 9°Q,.(y,§) = Q(y,¢), V(y,¢&) e UT, iflal =2.

For every integer %k > 1, recall the stopping time o, = inf{t > 0, |Y;"¢] +
1ZY¢| = |yl + &l + &} of (2.19), as well as the upper bound (2.20) for its
moment-generating function. Application of Itd’s rule to e *Q, (Y%, Z¢)
yields

eTNQ (YE, Zp) + fote—“{AQn(Ysy"f,Zz'f) - [LQ,)(¥¢, 23%)} ds

i s aQ” aQn
=@y, €) + foe ’ { 5y (X5 206) dYy e+ (Ysy’f,zgvf)dzg’-f}.
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Consequently, for every ¢t > 0,
Qu(y,€) = E[e™™row, (Yt Z3¢, )]

(3.12) tna,
+ B[ (1Q,(v4, 2) ~ [LQ, (¥, 24)) .
0

Now we can take limits in (3.12) as n — o, using dominated convergence
[valid by (3.10) and (3.11)] and the fact that the time spent by the process
(Y4, Z»¢) on the axes has zero Lebesgue measure. After this, we take limits
in ¢ — « and appeal to the uniform boundedness of @ and g on bounded sets,
in order to obtain

(313) Q&) = B[ e (¥, 22) ds + B[eQ(¥3:%, 23;")].

Letting k& — « in (3.13), we obtain (3.9), since E[ge **|g(Y>¢, Z¥¢)|ds < »
and, by (3.8), (2.19) and Proposition 2.4, we have for 0 < ¢ < V21 — 6,

— — i1 , &
' Ee ’\”kQ(Yak, Zak)' < Eeton+00YZ5+12,5)
< M6e0(|y|+|§|+k)e—k(‘/2A —&) — 0. 0
k—ox

REMARK 3.3. The bound (3.8) is consistent with the bounds (3.4) and (3.3),
from Lemma 3.1. Because Q belongs to 2 and obeys (3.5), we have g € C(T}),
1 < i < 4, automatically.

We shall present now an explicit solution to (8.5), for suitable functions g.
To state the result, it will be convenient to introduce the following notation:

(3.14)  Fé(s) & z/: sinh(uv2A )g(s - u,u) du,

(315)  G%(s) £ 2/ sinh(uv2X)g(u,s - u) du,
0

{Fg(u)[cosh(u\/ﬂ)cosh(sx/Z_)«) - 1]
» +G&(u)|cosh(uv21 ) — cosh(svV2A
{Gg(u)[cosh(u\/Z—/\)cosh(S\/2_A) - 1]
o +Fg(u)[cosh(u\/2_/\) - cosh(S\/Z—/\—)]}

(3.17)  N2(s) é[s S (ayah) du,

2 inh(yv2A ‘
J(y,€) £ \/;[Sin:(r(ly(i g)‘/)z_,\) [;sinh(ux/ﬁ)g(y +&—u,u)du
(3..18) sinh(§\/2_/\)

Y .
i sinh((y + §)\/2_/\)«[0 sinh(uv21 )g(u,y + ¢ — u) du|.
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THEOREM 3.4. Consider a function g € 2 which satisfies the growth condi-
tion (3.3).

(i) For every A > 3(0, + 0,)?, there exists a unique function @ € 9 which
satisfies (3.5) and the growth condition (3.8) with 0 = 6, V 6,.
(ii) This function agrees with V€ of (3.1) on %2\ ({0}, as follows directly
from (i) and Proposition 3.2.
(iii) If g is even in both variables, that is, if g = g, where

8o(7,€) 2 5[8(v,6) +g(~y,€) +&(y, —§) +g(~y, —6)],
then @ = Q, is given as
sinh(&v21)
sinh((y + £)V21)
sinh(y\/—2—)t-)
" sinh((y + £)vV21)

This function is of class C*(#?%) and even in both variables.
(iv) More generally, we have

(3-20) Q= Qo + Q1 + Q2 + Qa,
where fory >0, £ > 0,

Qo(y, &) £ J8(y,€) + Mé&o(y + &)

(3.19)

N&o(y + ¢).

(321)  Qu,£) 2J5(y,é) + Slnh(f‘/z—)‘)fy+f s]th(le\t/;—A)
(322)  Qy(y,¢) 2J5(y,¢) + Slnh(fr)f+§ slnhz(z(cl\;;_x\) ©

(3:23)  Qy(y,¢) £J%(y,¢),
and
g1y, €) = i[8(y,6) + g(~y,€) —g(y, —€) — g(~y, -8)],
82(y,¢) = :[8(y,€) —&(~y,8) +8(y,—¢) —g(~y, —6)],
83(y,€) = 1lg(v,€) —8(~y,¢) —g(y, —¢) + &(—y, —&)];
the functions Q,, ..., Q3 have the following symmetry properties:
Qo(¥,¢) = Qo(y, =€) = Qo(—y,€) = Qo(~y, —£): eveninbothyand &,
Qi(¥,8) = Qi(—y,8), @y, ¢) = —Qu(y, —¢): eveniny,oddin &,
@y, €) = —Qa-y,£), Qa(y,€) = Qa(y, —¢): oddiny,evenin ¢,
Q3(y,8) = ~Q3(—y,¢) = —Qs(y, —¢) = Q3(—y, —¢): oddinbothyand ¢.

(The same symmetry properties are satisfied, respectively, by g,, &, 8, and
&3
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RemARK 3.5. (i) The assumption (3.3) implies that for s > 0 and A >
3(8, + 0,)%, we have

|Fé(s)| < Kfse"‘/ﬁe"zue"l(s'“) du
0

(3.24) — K [e(‘/27+02)s _ eols} )
0, — 6, + V21

Similarly,

(3.25) |Gé(s)| < K [e<¢27+91>s - e"zS].
0, — 0, + V21

It follows that there is a real constant K > 0, such that
|[Fé(s)l + 1G#(s)I
sinh?(sv21)
and hence M4(-) and N#(-) are well defined on (0, ©) since A > 3(8, + 0,)%, by
assumption. In Section 4 we shall see that these functions are, in fact, of class

C70, ).

(ii) By Theorem 3.4 and Lemma 3.1, @ inherits the growth condition (3.3)
from g. In fact, it is a straightforward consequence of (3.24) and (3.25) that
the growth rate of (3.3) is inherited by the different components of @ in (3.19)
and (3.21)-(3.23); if g satisfies (3.3), then, for suitable K & (0, «): |J&(y, Ol <
Ke®W1* %201 Y (y, £) € B2, [sinh(£V2A ) /sinh((y + EWV2A)IME(y + £) < Ke¥,
and so on.

< Ke—s\/2_A(eols + eozs), Vs> 1’

(3.26)

According to Proposition 3.2, in order to prove Theorem 3.4 it suffices to
verify that the function @ defined by (8.19)-(3.23) is of class 9, and satisfies
(3.5) as well as the growth condition (3.8). This could be checked analytically,
directly from the expressions (3.19)-(3.23). We shall prefer, however, to give
the derivation described in Section 4, which computes V&: subject to the Ansatz
that V& be a C' function, fori=0,...,3, and then shows that the resulting
function is, in fact, a solution of (3.5) in the class 9. In connection with the
decomposition g = £?_,g;, the Ansatz then determines V& = £3_ V4.

This derivation will clarify the probabilistic significance of the expression
for @ and will also provide, in the context of the problem treated in Sections 6
and 7, a further example of the use of the smooth-fit principle in stochastic
optimal control.

Theorem 3.4 allows us to compute explicitly the resolvent operator on the
space of bounded measurable functions, as the following result indicates.

COROLLARY 3.6. Let g: #% > R be any bounded, Borel-measurable func-
tion. Then the function Q = Q¢ is well defined by (3.19)—(3.23), and

(3.27) VE(y,£) 2 E fo “eMg(YE, Z€) dt = Q5(y,£), VY (3,£) #0,
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for any given A > 0. Moreover, Q¢ is continuous at the origin, and hence
Vé(y, &) extends continuously to the origin, for any bounded, Borel-measur-
able g.

Proor. Let {f,),_, be a sequence of bounded, Borel-measurable, real-
valued functions on %2 We say that f: #2 —» % is the bounded, pointwise
limit of this sequence, and write bp-lim, _,, f, =f, if sup, .l f,ll < © and
lim, . f,(,8 =18, ¥V (y,6) € #% (here and in the sequel, ||f]l =
sup, se22lf(y, ©D. It is clear from (3.1) and (3.19)-(3.23) that, if
bp-lim,, . g, = &, then bp-lim, V4" = V¢ and bp-lim,, , , @%» = @5. Let

(3.28) C(#?) & {¢p € C(#?), lI¢ll < =}.

The set C(#2?) N C%AR?) is bp-dense in C(#?), which in turn is bp-dense in
the space of bounded, Borel-measurable functions on %2 (cf. [5], Chapter 3,
Proposition 4.2). By Theorem 3.4, V& and Q¢ coincide on C(%#?) N CH #?);
hence, they are equal for any bounded, Borel-measurable g: #? —» Z.

The continuity of @# at the origin can be proved directly from (3.19)-(3.23).
The essential observation is that, if g is bounded, there exists a positive
constant K < o such that

(3.29) |Fé(u)| < Ku?, |G%(u)|<Ku?® forO<u<l.
Therefore,

M#(0) = N#(0)
(3.30)

= j:[Fg(u) + Gg(u)](cosh(u\/2_A) - l)sinh‘3(\/2_,\u)du

exists, and, by (3.16),
cosh( uv21 )-1

|M5(s) — M4(0)| < /:[Fg(u) + G5(u)] (a2
(3.31) + [eosh(sv3X) — 1] /:o Fg(u)c:?:}(l:t(% ; G4(u)

<K[s?+s?lns], VO0<s<l,

for some K < o. It follows that M# is continuous at 0, and a similar argument
proves that the same is true for N&. Thus,

Jlim sinh((y + £)V21) " '[sinh(yV2X ) N&(5 + £)
Yo,
) " +sinh(&V21 ) ME(y + £)| = M#(0).

Since an inequality like (3.29) proves lim,  , ., o J4(y, &) = O for the function
of (3.18), we derive easily the continuity of @4(y, ¢) at 0 from (3.19)-(3.23). O
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In Section 8 we shall use the fact that V&(y, ¢) extends continuously to the
origin, to prove the following result.

ProposiTION 3.7. Problem 2.1 admits a solution for (y, &) = 0, which is
unique in the sense of the probability law.

4. Analysis. Consider a function g € 9 satisfying the growth condition
(3.3), and fix A > 3(6, + 6,)% Recall the decomposition g =g, + g, + g, + &5
of g into functions with various even and odd symmetries, as in Theorem 3.4.
It suffices to prove Theorem 3.4 for each g;, 0 < i < 3, separately.

Thus, we begin by assuming that g is even in both y and &, that is, g = g,.
It is easy to see that such a g belongs to C2(#2). Our candidate for @ is then
VO £ V&0 which inherits the symmetry of g, that is,

(4.1) VO(y,€) = V(-5,¢) = V(y, —€) = V°(-y, -§)
holds, and satisfies the growth condition
(42) [VO(y, &) < Ke®™+0#1, ¥ (y,¢) € 27\ {0},

for a suitable real constant K > 0, by Lemma 3.1.
Let us start our analysis by studying the function V° in the positive
quadrant.

ProposiTiON 4.1. For (y,¢) € fl \ {0} we have
sinh((y + £)V21 )V(y, §)

~ /2 sinn(pvan) [ simb (w23 )y + € - u,w) du

(4.3)
+ \/? sinh(‘f\/ﬁ)[ysinh(u\/ﬁ)g(u,y +€¢é—-u)du
0
+ sinh(§\/2_A)M(y + &) + sinh(y\/ﬁ)ﬁ(y + §),
where

(4.4) M(s) 2V°0,s), N(s)2V°s,0), 0<s<o,

Proor. First, let us take (y, £) € T}, and consider the stopping time

(4.5) 7=inf{t > 0, Z7'¢ & (0,5 + £)}.
Obviously, A
(4.6) Y=y +¢-2Zp¢ forO<t<r,

and we can write the function V° = V&0 of (3.1) as

(47 V(y.é) = Ef(:e‘“g(ﬁ — Zp4,2p%) de + B[ e Mg(YP 4, 27 ¢) dt,
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where we have put y + ¢ = B. The first expectation on the right-hand side of
(4.7) equals

(4.8) E[ Vg (p ~ We, WE,) dt,

where (Wg‘ft),zo is the Brownian motion on [0, 8] which starts at ¢ and is
killed when it hits the endpoints. The expression of (4.8) is precisely the
resolvent (AI — &/®)~'f, where &7* is the generator of (Wf,), ., and f(x) =
g(B —x,x), 0 <x < B. Since &# = 3 (d?/dx?) on the domain D(AF) = (f e
Clo, B1 n €0, Bl, f(0) = f(B) = 0}, if ¢ € CI0, B], the function r(¢) = [(AT —
P)1p)(€) is the solution of Ar(¢) — 3r"(¢) = ¢(&), r(0) = r(B) = 0. It is well
known then that

(4.9) (A1 =) 70 (8) = [*Gy(5,w)o(w) du,

where GB is the Green’s function

2 sinh(£/2X )sinh((B — u)V21)
X \/; sinh(BV2A ) o v=S
Gl ) £ 2 sinh(uv2A )sinh((B — £)V21)
‘/—{ sinh(8v2A ) ’ u<é.
Thus, the expression of (4.8), with 8 =y + £, becomes
\/? — i )ver) [sinh(y\/2_/\)];)§sinh(u\/2_/\)g(y +¢é—-u,u)du

+sinh(§¢2_A)[§y+§sinh((y +E—u)V2r)g(y +€—u,u)du| =JE(y,£),

where J8(y, £) is defined as in (3.18). This way, we obtain the first two terms
on the right-hand side of the expression (4.3).

On the other hand, conditioning on % Y'Z and using the fact that (Y, Z) of
(2.1) is a strong Markov process (e.g., [9], page 322), we obtain for the second
expectation of (4.7):

E[ e Mg(Yp¢, 2y ¢) dt

= Ele [T Ng(vf, 2216) |
L 0

)|

- Ele{B[ e g, 2 at)

= E{e’A’VO(Ky'f, z24)]
= E[e ™ gpemyin] V00,5 + €) + E[e™ Lz o] VO(y + £,0).

[ o
- B|eB{ (e Ma(vf, 21)
| 0

11=Y3”§, z=z¥,§]
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The last two terms on the right-hand side of (4.3) follow now from the
definitions of (4.4), and from the computations (e.g., [9], page 100):

Elo-ir1 _ sinh(&vV2A )
[ bz ensra] = sinh((y + £)v21)’
. B sinh(yv2/\ )
Ele™ el = sinh((y + £)V2A )

It is quite straightforward that (4.3) remains valid if either one of y or £ is
equal to 0, as long as (y, £) # 0. O

REMARK 4.2. In the notation of the preceding proof, we have
2

‘z“gx—z(ﬂ—'ﬁ/b)_ f(x)
(4.10) , by -1
=&°(AM - &%) f(x)
= —f(x) +MAl - &%) ' f(x), 0<zx<b,
V(b = (AL ar?)” sinb(£v24) 17
(b=%x) = (M =) () + e M)
(4.11)

sinh((b —x)v21) _ '
sinh(b\/EX) N(b), 0<x<b,

for every b € (0, ). Here again, f(x) =g(b —x,x),0 <x <b.

Now, in order to prove Theorem 3.4 for a function g = g, (which is even in
y and §¢), we must show VO(y, &) = Q,(y, £), where @, is defined in (3.19).
Notice that the first two terms of (4.3) correspond to J#(y, ¢) as defined in
(3.18). Hence, to complete the argument, it remains to identify M(s) with
M&(s) and N(s) with N&(s).

We shall proceed as follows: We take, as working assumptions,

(4.12) M and N are of class C?2 on (0, )
and
(4.13) V? is of class C! on #2\ {0}.

We shall show that (4.12) and (4.13) lead to M = M4, N = N¢ (Proposition
4.4), and by virtue of (4.3) and (3.19) to V° = @,. Always under (4.12), we
shall see that V° is of class C2 on U %_,I; and satisfies (3.5) there (Proposition
4.3); while (4.13) implies then that V° is of class C%(T)) for every 1 <i < 4,
and V° € 2. In fact, since V° is even in both y and ¢, V° € C%(%#?).

In the opposite direction (synthesis), we shall show that @, of (3.19) is of
class & and satisfies (3.5) as well as a growth condition of the type (3.8)
(Proposition 4.5 and the remarks preceding it). From Proposition 3.2 we shall
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conclude then @, = V°, thus vindicating the Ansdtze (4.12) and (4.13) and the
above analysis.

PROPOSITION 4.3. Under the Ansatz (4.12), the function V° is of class C2
in each open quadrant T;, 1 < i < 4, and satisfies there the equation

(4.14)  3[V,3(5,6) + VI, 6)] = VU3, €) + 8(3,€) = AV°(3,¢).

Proor. For any fixed b € (0, »), we have

2
2 dx?
But from (4.11) and (4.10),

2

2 dx?

1
(4.15) VO(b = x,x) = |5 (V5 + Vi) = Vig|(b —x,).

Vo(b —x,x)
= 1 a® by "1
= 5 7z = &) (%)
sinh(xv22 ) sinh((b — x)V22)
A[sinh(‘bx/Z—A) M(®) + sinh(b\/—27) (®)

“1 sinh(xv2A )
—f(x) + )\[()\I— &%) f(x) + W—)-M(b)

(4.16)

sinh((b — x)\@T)N 5
sinh(b@) ()

—f(x) +AVO(b —x,x) =AVO(b —x,x) — g(b —x,x).

Equation (4.14) follows, upon setting x = £, b = y + ¢ and equating terms in
(4.14) and (4.15). The required smoothness of the function V° follows directly
from its representation (4.3) and from the corresponding smoothness of the
functions N and M [assumption (4.12)]. O

We proceed now with the derivation of M = Mé and N = N¢ from (4.12)
and (4.13). Note first that, from the symmetry relation V°(y, ¢) = VO(y, —¢)
of (4.1), V0 is automatically continuous across the ha.lf-ams (y >0, ¢=0);in
order for V0 also to be continuous, we must have

(4.17)(i) Vo(y,04) =0, 0<y<o.
Similar considerations across the half-axis (y = 0, £ > 0) lead to

(4.17)(ii) VO(0+,6) =0, 0<é<w
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Let us work in the quadrant I, where, by virtue of (4.3), the partial
derivatives V, and V, are given, respectively, by

sinh((y + £)V21 )V,°(y, £) + V21 cosh((y + £)V21 )V°(y, €)
= V22 cosh(yV21 )N(y + &) + sinh(&/22 )M'(y + £€)
+ sinh(yV21 )N'(y + &)
+ 2cosh(y\/§X)j:g(y + & — u, u)sinh(uv21 ) du

(4.18) 5
+ \/; sinh(yv22 )sinh(&V2X )g(y, £)
27 ¢
+ \/;[smh(ymu;gy(y + & — u,u)sinh(uV21 ) du

+sinh(§\/§X)[yg§(u,y + & — u)sinh(u\/ﬁ) dul,
0

sinh((y + £)V21 )V, (y, &) + V2A cosh((y + £)V21)VO(y, €)
= V2X cosh(&V2A )M(y + ¢) + sinh(&V21 )M'(y + £)
+ sinh(yv21 )N'(y + £)

+ 2cosh(§\/§X)[ysinh(u\/§_A—)g(u,y +¢—u)du
0

(4.19) D)
+ \/; sinh(yv2A )sinh(£V21 )g(y, £)

2
+ ‘/;[sinh(y\/Z_)\)[:gy(y + ¢ — u,u)sinh(uV221 ) du

+sinh(§\/2_)t)[yg§(u,y + & - u)sinh(uﬁ)du .
0

Letting y | 0 in (4.18), we obtain
. . N(¢)V2x
Vyo(0+,§) =M'(¢) - \/Z—)t_coth(§1/2_A)M(§) + smfl(ﬁ;

(4.20) ¢sinh(uv2))

+2) ———
fo sinh(£y22 )
The requirement (4.17)(ii) thus amounts to the differential equation

sinh(sV2A )M'(s) = JZ_)t_[cosh(sJﬁ)M(s) - N(s)] — F&(s),

0<s<oo,

g(é—u,u)du, 0<éE<o.

(4.21)

where F#(-) is the function of (3.14).
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On the other hand, letting ¢ | 0 in (4.19), we obtain
VOo(y+,0) =N’ — V2 coth(yv2A )N(y) + —————M
2(y+,0) = N'(y) — V2A coth(yvV2X ) N(y) Sinh(yV21) ()
ysinh((y — u)V21)
-[o sinh(yv22 )
Then the requirement (4.17)(i) amounts to the differential equation

sinh(sV2A )N'(s) = V—ZT[cosh(S\/ﬁ)N(s) - M(s)] - G4(s),

0<s <o,

g(y—u,u)du, 0<y<oo.

(4.22)

where G4(-) is the function of (3.15).
In addition to (4.21) and (4.22), the growth constraint (4.2) implies the

boundary conditions at infinity,

(4.23) lim supe %M (s) < o,
s§—>®

(4.24) limsupe **N(s) < .
s§—®

ProposITION 4.4. The unique solution to (4.21)-(4.24) is given by the
functions M(s) = M#(s) and N(s) = N8(s) defined in (3.16) and (3.17). In
particular, the Ansitze (4.12) and (4.13) lead to V° = Q,,.

Proor. Setting L ,(s) £ (M(s) + N(s))/sinh(sV21), (4.21) and (4.22) can
be written equivalently as

F&(s) + G&(s)

2 sinh(s*/ﬁ)coshz(%‘/ﬁ) ’
Fe(s) — G5(s)

2 sinh(sv21 )sinhz(%m ) '

But from (4.23) and (4.24) and V2A > 6, + 6,, we have lim,_, L ,(s) = 0.
From this and (4.25) and (4.26), we deduce

M(s) + N(s) = coshz(im) ® ' Fé(u) + Gg(z)
2 s slnh(u\/ﬁ)c()sh2(§m)
(4.26) | .
M(s) — N(s) = sinhz(iJg_A) ® ‘ F&(u) ‘ G (Z)
. 2 s Slnh(u‘/z_A)Slnh2(§‘/QT)

and thence the expressions of (3.16) and (3.17) for M and N, after some
algebra. O

S

(L+(s)tanh(2‘/2_)t)), = -

(4.25)

(L_(s)coth(gw/Z_/\))’ = -

du,

v
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Assumptions (4.12) and (4.13) have led us, therefore, to identify @, as the
appropriate candidate for V°.

In the opposite direction (synthesis), it is easily seen by inspection that M#
and N¥ are of class C%(0, «). Hence, reasoning as in Proposition 4.3, we see
that @, is of class C? in each open quadrant I}, 1 <i < 4, and satisfies (3.5)
there. In fact, a simple inspection of the formula for @, shows that, in each
quadrant, the first and second derivatives of @, extend continuously to
[;\ {0}, and hence @, satisfies (3.5) in %2\ {0}). To show @, € 2, it remains
to prove that the first and second derivatives of @, extend continuously to the
origin in each quadrant. Of course, it suffices to consider the quadrant I';; this
is the object of Proposition 4.5, which is proved in Section 9.

PROPOSITION 4.5. The functions Mé and N¢ are of class C%0, »), and
lim[Q,],(y,0+) = lim(N¥)'(y) =0,
yl0 yl0

lim[Qo]c(0+, €) = lim (M#) () =0,
lim[Qo],y(7,0+) = Hm[@01,,(0+,¢)

(4.28) o »G¥(u)cosh(uv21) — Fé(u)

(4.27)

=2 fo sinh®(wv21) du ~£(0,0),
?I%[Qo]gg(o“" €)= }H%[Qo]ﬁ(y’ 0+)
(4.29) = F€(u)cosh(uV21) — G&(u)
= 2)%) b (Var) du — g(0,0).

Moreover, @, is of class 2.

Now that we know @, € 2 and solves (3.5), we have from Proposition 3.2,

Qu(y.6) =Ef “eMg(YE, ZpE) dt = VO(y, &)

for (y, £) € %2\ {0}, thus completing the proof of Theorem 3.4 for the case in
which g is even in both y and &.

The other cases @,, @, and @; of Theorem 3.4 follow by arguments similar
to those presented above, and we shall sketch briefly that for @,. Thus, we
shall assume now that g € 9 is even in y and odd in &¢: g = g,. This property
is then inherited by the function V(y, £) £ V&u(y, £); in particular, V(y, 0) =
0. Moreover, Proposition 4.1 continues to be valid in T \ {0}, and leads to

sinh(fm ) My + £)
sinh((y + £)V21) iy +4),
where M,(s) 2 VX0, s). To derive an equation for M,, we impose again the
Ansitze (4.12) and (4.13). Because V! is odd in &, V! will automatically be

(4.30)  Vi(y,8) =J&(y, ) +
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continuous across the y-axis. However, to obtain continuity of V,! across the
£-axis, we must require again that (4.17)(ii) hold; by way of (4.18), thls leads to

(4.31) M’'(s) = V21 coth(sV21)M(s) — siTh(%’ 0<s<oo,

by analogy with (4.21). The solution of (4.31), subject to the boundary condi-
tion (4.23), is given by

Fé(s)
smhz(u\/ﬁ )

The end result from (4.30) and (4.32) is that the assumptions (4.12) and (4.13)
imply Vi(y, £) = @,(y, £) in the notation of (3.21). To verify that this is indeed
the case, we must show that @, is of class 2 and satisfies (3.5). We omit the
details, which are similar to the corresponding arguments presented above.

du, 0<s <o,

(4.32)  My(s) = sinh(sv2X) /

5. Special properties. The purpose of this section is to obtain further
properties for the function @ of Theorem 3.4, corresponding to the special
choice
(5.1) 8(y,€) = c(y)cosh(6¢),  (,¢) € #2
Here we take ¢: #— [0,x) to be an even, convex function of class C? with
c'(y) > 0 for y > 0, satisfying the exponential growth condition
(5.2) [cD(y)| < Ke®™, Vye®, j=0,1,2

for some positive, real numbers 8, K and 6. Throughout we fix A > (6 + 6,)%
The function of (5.1) is even in both y and ¢, and thus the corresponding
@ = Q° is given by (3.19). The results obtained in this section for @, particu-
larly Propositions 5.1 and 5.4, will be used heavily in the analysis of the
control problem with partial observations, which is the subject of the next two
sections. The proofs of Propositions 5.1 and 5.2 are given in Section 9.

ProposITION 5.1. The function

satisfies
U>0 inI,,T,

(5.4) U<0 inT,,T,,
U=0 ontheaxes.

ProrosiTION 5.2. The second partial derivative Uy, £) exists in T';, and
. the function

(55) W(y’ f) & Ugf(y’ §) - 02U(ya §)

is positive in T7.
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REMARK 5.3. (i) It is quite easy to see [from (9.9) and (5.2)] that the mixed
partial derivative U = @, satisfies a growth condition of the type
(5.6) U(y, £) < Ke®*o8 (y,¢) € 22

(ii) Suppose that ¢”(-) fails to exist at a finite number of points, excluding
y = 0. An examination of (3.20) shows that @ will still be of class C2 on %2
Furthermore, U = @,, and U,, will continue to exist, and will satisfy the
conclusions of Propositions 5.1 and 5.2, as is easily seen.

ProPOSITION 5.4. The function @ of (3.8) satisfies
(5.7) 02Q > Q,, in R

Proor (adapted from [2]). Because of symmetry, it suffices to prove (5.7) in
the quadrant I';. From (3.5) written in the form

(5.8) %[ny + Q§§] +H=\Q inT,,
with

(5.9) H(y,¢) £ c(y)eosh(6¢) - U(y,¢),
and the boundary conditions

(5.10) Q:(y,0+) =0, Q,(0+,£)=0

[cf. (4.17)({) and (ii)], one can obtain the representation

Q(y,¢) = E/“’e—'\‘H(ly + Wy(2)], | + Wy(2)]) dt
(5.11) 0
N /Ugse_“p(t?y’u)P(t;é,n)H(u,n) dudn dt,

where W = (W, W,) is a standard, two-dimensional Brownian motion process
and

1 N2 2
p(t;x,y) = W[exp{—%}+exp{—-(—x—%tl)—}}, x>0,y>0,

is the transition probability density function for Brownian motion in the
positive quadrant, with reflection on its sides. [The derivation of (5.11) is
accomplished in a straightforward manner, by applying Ité’s rule to the
semimartingale e *Q(ly + W(¢)l, |¢ + W,(¢)|) and using (5.8) and (5.10), as
well as the growth conditions (3.8) and (5.6).]

Integrating by parts twice in (5.11), we obtain, after some calculus,

0?Q(y,€) — Qee(7,€) = fffgse‘“p(t;y,u)p(t;é;n)

' (5.12) " X[0%H(u,m) — H,,(u,n)| dudndt
' et/
— —At .
2[[ e Pt ) " (1, 0+) dud
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(cf. [7], Chapter 1, Theorems 3 and 4). Now from (5.9) and Proposition
52, 6°H—-H,,=U,,—0°U=W>0 in (y >0, £>0), and from (9.13),
—H.(y,0+) = U{y,0+) > 0 for y > 0. It follows that the expression of (5.12)
is positive. O

6. A control problem with partial observations. Let us consider now
a probability space (Q, &, P),{%,}, on which a solution of Problem 2.1 has
been constructed with (Y, Z,) = (y, £) € #°. We may always assume that this
space is rich enough to support a random variable z independent of %, with
given distribution x. We shall denote by {<} and {#;¥} the P-augmentations
of the filtrations {o(2) V %} and {0(Y}), 0 < s < t}, respectively.

DEFINITION 6.1. The class % of wide-sense admissible control processes
consists of all {}}-progressively measurable processes u = {u,, 0 < ¢ < «}
with values in [—1,1]. The class %, of strict-sense admissible control pro-
cesses consists of all processes u € % which are adapted to {#Y).

The terminology employed here comes from [6].
For every u € %, we introduce the exponential {-Z}-martingale

(6.1) AL & exp{zftus dy, — %zzftuﬁ ds}, 0<t<o,
0 0

and the process
(6.2) Wt“éYt—y—zj:usds, 0<t< .

For every given T € (0, ), the process {W,“, &, 0 <t < T} is a Brownian
motion on the interval [0, T'] and independent of the random variable z, under
the probability measure

(6.3) PE(A) 2 E[Ay1,], Ac,
by virtue of the Girsanov theorem (cf. [9], Section 3.5).
We can formulate now our control problem with partial observations.
PROBLEM 6.2. Minimize the expected discounted cost

(6.4) J(u) & lim By ["ee(Y,) dt = [ eEpe(Y,) dt
To» 0 0

over u € %. Here a > 0 is a given real constant, and the cost function c(-) is
as in Section 3. :

Put differently, one seeks to minimize the cost functional of (6.4), subject to
‘the dynamics
(6.2") dy, = zu,dt + dW}*, Y, =y,

with W* a Brownian motion independent of the random variable z. The
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minimization is to be over controls u which take values in the interval [—1, 1]
and are adapted to the “observation filtration” {%,}. Because z is independent
of {#}, it is called an “unobservable” variable, and the stochastic control
problem is one of partial (or incomplete) observations.

This independence of z and {%,} allows us to cast (6.4) as

I(u) = [ e E[c(Y)As] dt = E[ e~c(Y,) E[AY.F | dt
0 0
(6.5) ) t t
— —at 2
—Efo e c(y;)F(/ousds,[oudes) dt,

where

(6:6)  F(t,2) & [ explyx — py*tju(dy),  (£,2) € (0,) X #.

On the other hand, the least-squares estimate 2} = E}(z|.%,) of the random
variable z, given the observations %, up to time ¢, is expressed by the Bayes
rule ([9], page 193) as

E[zA}| ¥, | t o t
. U = — — ~ -~ =
(6.7) 2} B[N F, ] G(fousds,j;)us dYs),
where
A2 — 1,2
(6.8) G(¢,x) F(t,x)fyexp{yx 3y thu(dy),

(¢,x) € (0,0) X A.
ExampLE 6.3. In the special case of a Bernoulli random variable z, with

(6.9) Plz=10]=p, Plz=-6]=1-p
for some 0 € (0,) and p € (0, 1), (6.5)-(6.8) become

h(b + 0
Me-toz/z G(t,x;0) = 6 tanh(b + 0x),

. ;0 4 ’
(6.10) F(t,x;0) o

R 1 oo : 0*
(6.11)  J(u;0) 2 mE[O exp —fo(a+ ?us)ds

Xc(Y;)cosh(6¢)) dt,

(6.12) 2" = 9 tanh(0£Y),
where )

b
(6.13) b=tanh™'(2p - 1), ¢= rE
and

(6.14) =+ [u,dY,, 0st<w
0
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In the completely observable case, where z is almost surely equal to a real
constant, it is well known that the optimal control law is of the form

(6.15) u® = —sgn(z2Y,).

This result, first proved by Bene§ [1], was later established by different
methods in [8], [4], [3] and [9], Section 6.5. In the partially observable setting of
the present section, it is natural to guess that an optimal law can be obtained if
one replaces in (6.15) z by its least-squares estimate 2, 2 E**(z|.%,), that is,

(6.16) uf = —sgn(3,Y,).

This was shown in [2] for a symmetric distribution on u, and c(y) = y2. It
will be established in Section 7 for a general cost function c(:) obeying the
assumptions of Section 5.

ExampLE 6.3 (Continued). For a Bernoulli random variable z of the type
(6.9), we have from (6.12), (6.14) and (6.16), u* = —sgn(Y,£) and

t
& =&~ [(sen(Y,£F) ay,,
0
which is (2.1). Thus, we can make the identification ¢* = Z, and try to show
that the process
(6.17) uy = —sgn(Y,Z,), 0<t<o,

is optimal for the Problem 6.2, in the case (6.9) of a Bernoulli random variable.
This will be proved in Theorem 7.1.

REMARK 6.4. For any u € %, the innovations process
¢
(6.18) v,uéyt—y—]ouségds, 0<t<ow,

is adapted to {#,} and, for every T € (0, »), its restriction {v*, %, 0 <t < T} is
Brownian motion on [0, T] under the probability measure P} of (6.3). In the
case of Example 6.3, it follows from (6.18) and (6.12) that the processes Y and
£" [of (6.14)] satisfy the innovations-driven equations

(6.19) dY, = u,0 tanh(60¢}) dt + dv}, Y, =y,
(6.20) d&f = u?f tanh(0¢4) dt + u, dv?, &y = ¢.

7. Solution to the control problem. Let us concentrate first on the
) Bernoulli case of (6.9). Let @ be-as in Section 5, and introduce the function

(7.1) D(y,¢) & %, (y,¢) € 22,
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which is of class C? in #? and satisfies, with a« 2 A — §2/2 > 0, the ana-
logues

[Py + D] - sgn(y€)[ @, + 6 tanh(6¢)®, |
+ 6 tanh(6¢) D, + c(y) = a®,
(7.3) 0 < d(y, £) < Ke®V,
(74) 3 + 0tanh(6¢)P, <0,  sgn[®d,, + 0 tanh(0£)D, ]| = sgn(y¢)

of (3.5), (6.7) and (5.4) [for (7.3), recall Remark 3.5(ii)]. Due to (7.4), (7.2) can
be rewritten as

3®,, + min [u{®, + 0 tanh(6¢)®,}

lul<1

(7.2)

(7.5) .
+u*{3®, + 0 tanh(0¢)D,}| + c(y) = a®,

the formal Hamilton—Jacobi-Bellman (HJB) equation corresponding to the
problem of minimizing the expected discounted cost (6.4), subject to the
dynamics (6.19) and (6.20). The minimization in (7.5) is achieved by

u* = —sgn[®,, + 0 tanh(6¢) D, |

= —sgn(y¢),
again suggesting the process (6.17) is optimal.

THEOREM 7.1 [2]. For the Bernoulli case (6.9), we have
(7.6) J(u;0) = J(u*;0) = ®(y,¢), Vue2,

for any given y € R#, where ¢ is given by (6.13), u* is the control process of
(6.17) and c(+) is an even convex function of class C*R) with c'(y) > 0 for
0 <y < = satisfying the growth condition (5.2).

ProoF. From (6.11) and A = a + 62/2, we have

V(y,£)
cosh(6¢)’

and so the equality in (7.6) is obvious from Theorem 3.4(ii). Now for an

arbitrary u € % we apply Itd’s rule to e *®(Y,, £/) and obtain, in conjunc-
tion with (6.19) and (6.20),

1 o
*.9) = E[ e(a+6®/2x Z =
J(u*;0) cosh(68) j;)e c(Y,;) cosh(6Z,) dt

e—a(TA-r,,)q)(YTAT ’gr%/\f ) + fTAT"e_“tc(Y,‘) dt
n n O
TATh
(7.7) =0y, 6) + [ 7By dt

TAr, _ u “ “
+[O e [ DY, &) + u,B,(Y,, £4)] dvi, as,,
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where T > 0 is a constant,
7, £ inf{t € [0,), |Y,| > n or |¢*| = n}, n=1,2...,
and the process
Bl & 3®,,(Y,, &) + c(Y,) — a®(Y,, &)
+u[0,.(Y:, &) + 0 tanh(66) @, (Y, &)]
+ u?[%q>§§(}§,§tu) +0 tanh(0§t“)fl>§(Yt,§;‘)]

is nonnegative, by virtue of (7.5). If we now take expectations in (7.7) with
respect to P}, that of the stochastic integral is 0, and we obtain

TATn - ul ,—a T u
(7.8) <I>(y,§)sE;f0 Mg “tc(Y;) dt + Ef[e T WD (Yp 4, , 540
VneN.

Suppose that the cost function c¢(-) satisfies, instead of (5.2), a polynomial
growth condition of the type 0 < c(y) < K1 + |y|"),V y € & for some v > 0.
Then ®(y, ¢) satisfies a similar growth condition [instead of just (7.3)], and we
have

0 < Ef[e T ™® (YL, ,Ef . )] < a(T)
& KEf|e A (1 + Iyl + 0T + max W) |.
0<t<T

Thus, letting n — « in (7.8), we obtain

®(y, ¢) < E;foTe_‘”c(Yt) dt + a(T)
(7.9)
= [fe~Ere(Y,) dt + a(T).
0

Finally, letting T — » in (7.9) and observing that lim,_, . a(T) =0, we
conclude

(7.10) ®(y,&) = [:e—afE;kc(Y,) dt < fome“”E,“c(Y,) dt, Vuew,
which proves (7.6) in this case.

For a general c(-) as in Section 5, introduce the sequence {c,(-)},<n Of
functions

C(y), 0<y<k,
cu(y) 2 {c(k) + ' (k)(y — k), y >k,
c(—y), y <0.

These functions are even, convex, strictly increasing on (0,x), of class
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CYZ) N CH#\{—FE, k}) and increase monotonically to c(-) as £ ~ ». Recall-
ing Remark 5.3(ii) and denoting @, = @§* as in (3.19), we obtain the analogue

Qk(y’ f) ® ®

A —_— L = —at Ik —altpu
Q% 6) & e ~ L Era(T) di < [[e Ble(Y)dt,  VheN,
of (7.10), for every u € %. Now (7.6) follows by letting £ ~ « and using the
monotone convergence theorem. O

REMARK 7.2. The assumptions on ¢(-) in Theorem 7.1 can be weakened. In
~ fact, in the Bernoulli case (6.9), we have

(7.6") J(u;0) = J(u*;0), Vue%,

for any even, convex function c(-) satisfying an exponential growth condition
at infinity.

Indeed, (7.6’) can be established first for piecewise-linear, even, convex
functions c(-) with a finite number of linear segments; this can be done by
smoothing the corners of ¢(-) to obtain a sequence of functions {c,(-)}, < that
satisfy the conditions of Theorem 7.1 and decrease pointwise to c¢(-), and then
taking limits and appealing to the dominated convergence theorem. Any even,
convex function c(-) that satisfies an exponential growth condition at « is the
pointwise limit of an increasing sequence of even, convex, piecewise-linear
functions; this may be used to complete the proof of (7.6) in the general case.

The control u* of (6.17) does not belong to %,, the class of strictly
admissible control processes [recall (2.18)]. It can be shown, as in [2], that

(7.11) inf J(u;0) = inf J(u;0) =J(u*;0)
ue, uew

and that

(7.12) no control process in %, can be optimal.

For a general symmetric distribution u on the random variable z, the
function F(¢, x) of (6.6) and the expected discounted cost /(u) of (6.5) become,
respectively,

(7.13) F(t,x) = 2[0°°e—92t/2 cosh(8x)u(d6), J(u) = 2/:J(u;0)p(d0).
It follows then from Theorem 7.1 that
(7.14) J(u) = J(u*) = 2/:J(u*;0)p(d0)
holds for any u € %, thus proving the optimality of u* in this class.
, 8. Semigroup and ramifications. In this section we construct the

Markov semigroup associated with the diffusion process (Y'¢, Z*¢) of Prob-
lem 2.1 and Theorem 2.3, for (y,£) #+ 0. We then use the fact that the
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resolvent V&(y, £) in (3.1) of this semigroup is continuous at (y,¢) = 0 for
continuous functions g: %2 —» % [a consequence of (3.27) and of the explicit
formulas (3.19)-(3.23) for Q¢], to extend the semigroup to (y, £) = 0. This
methodology allows us to produce a weak solution (Y *° Z%?) to Problem 2.1
for (y,£) = 0.

Let C(%2?) denote the space of continuous functions ¢: #% - % which
admit a limit ¢,, £ lim, ,, ., ¢(y, ) at », and define
(8.1) C(#?) & (¢ € C(#?), $.. = 0}.
Both C(#2) and C(#2) are Banach spaces under the sup-norm ||¢|l. We wish
to associate to the operator L of (3.6) a strongly continuous, positive, conserva-
tive, contraction (i.e., Feller) semigroup (T,),. ,, acting on continuous func-
tions g: #% — . See [5], Chapter 1, for definitions of the semigroup concepts

used in this section.
The natural candidate for this semigroup is given as

(8.2) (T.8)(y,¢) £ Eg(Y?5, ZY ),
but this is well defined only for (y,¢) # 0. We intend to show that this
definition extends to 0 and that, in fact, (T,),., acts on C(#?). This latter
space is a likely candidate on which to define (T,), . , because V& € C(#?) for
every g € C(#?); this can be checked easily from the explicit representation of
Theorem 3.4.

Let us recall the notation 2 of (3.7), and introduce the space

(8.3) 2,2 (¢ e 20 C(#), L, € C(2Y)).

THEOREM 8.1. The linear operator L: 9; — C(R?) of (3.6) is closable; its
closure L is conservative, and generates a strongly continuous, positive, con-
traction semigroup (T,),., on C(#?). This extends to a Feller semigroup
(T);. o on C(R?) by the definition T,f=f, + T(f - f.), for fe C(#?). If
g € C(#?) and (y, £) + 0, then (8.2) holds.

In proving Theorem 8.1 we shall use heavily the fact that @#(y, ¢), our
candidate for (\] — L) 'g, g € C(%#?), is represented as in (3.27) on %%\ {0},
and that Q4(+) is continuous on %#? (in particular, at 0) for every g € C(%?),
by virtue of its explicit representation (3.19)-(3.23). We shall deal first with
the closability of L.

LemMA 8.2. The closure L of L (as in Theorem 8.1) exists, and generates a
strongly continuous, contraction semigroup (T,),. , on C(%#?).

Proor. By the Hille-Yosida theorem (cf. [5], Chapter 1, Theorem 2.12), it
, suﬂjces to check that: .

(i) Range(AI — L) is dense in C(%#?), for some A > 0.
(i) L is dissipative, that is, AL = L)$ll = Mlol, ¥V ¢ € 21, A > 0.
(iii) 2, is dense in C(%2?). '
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To prove (i), for any given g € C(#2) N C%(#2), A > 0 denote by Q¥ € 9
the solution to (3.5) given by Theorem 3.4. It is easily seen that Q¢ € C(%?).
Thus, Q% € 9, and (Al — L)Q% = g, whence A(f'(<9?2) N C¥#?) c
Range(AI — L). Therefore, Range(AI — L) is dense in C(%#?).

For (ii), let us take arbitrary ¢ € 9;, A >0 and set g £ (Al — L)¢. It
follows from (8.3) that g € C(#2), and from Proposition 3.2,

¢(y,¢) = Efme_’\tg(Yty’f, Zy*)dt on Z*\{0}.
0
From this, and the continuity of ¢, we obtain

LR PN
ol < Xllgll— x”()t - L)¢|.

Finally, in order to show (iii), it suffices to prove that Z; is dense in
C2(#?). With an arbitrary ¢ € CA(#?), we create a sequence {fJ;_, of
C*-functions f}: #— & such that

1_ (- . oy _ | 6(0,0), ¥l <1/n,
72— ’O)Hnmo and - f(7) {¢>(y,0), lyl > 2/n;

similarly, we choose C2-functions f2 #— %# with

2 400, )| — o [6(0,0), I <1/n,
77 =900, ) 752 0 and £i(E) {¢>(0,§), &l > 2/m.

With these functions, we define

$(0,0), lyl <1/n,lél <1/n,
s | (), lyl < 1/n, ¢l > 1/n,
U(y,€) =
() f2(é), lyl > 1/n,1él < 1/n,
0, otherwise.

Also, for any given n > 1, let p,: %% — [0, 1] be a C*-function with

£) = 0, lyl = 2/n and |¢| = 2/n,
P, €) = 1, lyl <1/norlél <1/n.

Then ¢, 2 (1 —p,)¢ + p,¥, belongs to CH(#?) and satisfies (¢,),, = 0 on
the axes. It follows that ¢, € 9, and |, — ¢l < lp, (&, — $)I <
sup{lo(y, &) — ¥, (v, 6l; Iyl <1/n or ¢l <1/n} -, .0, from the uniform
continuity of ¢. O .

Proor oF THEOREM 8.1. First, we have to show that the semigroup (T,), . ,
of Lemma 8.2 is positive and conservative. The continuity of the map g — Q¢
(with respect to the sup-norm topologies) gives (Al — L) '%g=Qs VY ge
C(#?). Because Q4 = (A — L) 'g >0 if g >0, it follows that (T,),., is
positive. To prove that (T}),  , is conservative, let ¢,(y, £) 2 r(ly|*> + (1 /n)I¢l?),
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where r: %, — [0,1]is a C2-function with
_ {1, 0<sx<1
(ORE P iy

and check that bp-lim,, _, (¢,, L¢,) = (1,0).

Second, we note that the extension of {T)},., from C(%#?) to C(Z?) is
standard (cf. [5], Chapter 4, Lemma 2.3). Finally, for any g € C(#2), A > 0,
we have

E[ e Ta(y.£)dt = @y, 6),  V(r,6) €
and from Corollary 3.7,
f:e‘”Ttg(y,f) dt = f:e‘”Eg(W’g, Zy)dt, Y (y,¢&) € R°\(0};
thus, (8.2) follows for every g € C(#2), (y,£) # 0. O

Let (T)), . o be the semigroup of Theorem 8.1; there exists a strong Markov
process {Y¢ ZY9), t > 0} corresponding to (7T}),,,, with sample paths in
D(0, ); .@2) and with (Y4, Z3€) = (y,8), V (v, &) € R? (cf. [5], Chapter 4,
Theorem 2.7). We may, and shall assume that (Y, Z7¢), t > 0} is the
coordinate process on the canonical space D([0,x); %2) prov1ded with the
measure P, ,; then, in fact, this process is strong Markov with respect to
{£,,), where &, = 0((Y,(w), Z(w)), 0 < s < ¢) is the canonical filtration.

We should hke to show that P, , is supported by C([0,x); #?), for every
(y, &) € B2 This is obvious for (y, £) # 0, for then (Y* ¢ Z¥¢) is equal in law
to (Y€, Z»¢). We need only worry about the case (y, £) # 0. But notice that
for y # 0, f€ C(#) and &y, &) = f(y), we have

E[ e Mf(y+W)dt = E[ e (7€) dt = @1(3,£), V>0,
0 0
where W is Brownian motion, and because @#/ is continuous:
Ef e Mf(W,) dt = E[ M%) dt, VA >0.

It develops that for each ¢ > 0, Y,O'O~ is a normal random variable with mean 0
and variance ¢; similarly for Z° Therefore, limt Lo(1/DP[Y > >
1Z%° > ] =0, V £ > 0, which 1mp11es that P,, is also supported by
C([0, «); #?) (cf. [5], Chapter 4, Proposition 2.9). In other words, {(Y,%°, Z2°),

t > 0} admits a version with continuous sample paths.

Proor ofF ProposiTiON 3.7. By [9], Proposition 5.4.6, or [5], Chapter 5
Proposition 3.1, in order to prove existence it suffices to show that
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(Y,%°, Z%9), . , is a solution to the following martingale problem:

M/ = f(Y,%°,Z%%) — £(0,0) — f ‘LAY, 290 ds, &, 0<t <o,
0

(8.4) is a martingale for every f € Cy with %, = &,,, where {} is the
augmentation under P,, of the canonical filtration on
C(0, «); #?).

Let fe Ci(#?) and take 0 < s < t < . Then, using the Markov property of
(Y20, Z%9), we have

E[M/1%; ] = ~£(0,0) - ['LA(¥2°, 20°) du
0
+ E[f(fto’o, Z‘to,o) —/th(YuO’O’Zz?’O) du

- B| (56, 205) - [ L9, 22

- £(0,0) — /:Lf(};uo,o’ ZL?’O) du.

50,0 50,0
Y>0, Z; ]

(8.5)

(y,6)=(¥20, 200

Now, when (y, ¢£) # 0, we know by Itd’s rule that
~ .. t—s ~ ~
E[f(Y )—/0 Lf (Yt zz’f)du] =f(5,€),

because (Y ¢, Z7¢) may be replaced by (Y?-¢, Z”¢).

We also have IP’[(Y0 0 Z%% = (0,0 =0 for any s > 0, because we already
know that Y,>° and Z% o are normal with mean 0 and variance s. Thus, from
(8.5) we learn that

E[MAZ, | = f(7.0°, 20°) - £(0,0)) - [ Lf(¥.0°, Z8°) du = M/, as.,
0

if 0 <s<t<oo By letting s|0 and exploiting the contlnulty of f and
(Y%° Z%9) we obtain EIM/|F]1=0=M{ Thus, {M/,F, 0 <t <} is
indeed a martingale, and the existence proof is complete.

To prove uniqueness, let (Y%° Z%°) be any solution to the martingale
problem for (y, £) = 0. From (8.4),

- 1 - '
(B(F0%) = () = 5 [0 (E20) ds, 70 1 < o)

is a martingale for every h € CO(.@) therefore, Y%° and Z%° are {%}-
Brownian motions, and (¥%° Z%°) spends zero time at the origin. Now
consider an arbitrary bounded measurable function g: %% - %, and notice
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that for any s > 0, A > 0, we have

Ef /\t YOO ZOO)dt_Ef ~/\t YOOzOO)d

- Ef e—)«tg(fvto,o,z"to,o) dt

=E[e'“foe )"‘g(};sqrg’zsoﬂ&) du
. —AS * v 1€ 7 ¢
—As ” —Au ¢ o
e E[E/;) € g(Y"y 2 )duy=?s°’°»f:230’0]

I

e—/\sEQg(szo,o’ Z‘so,o);
we have used Lemma 5.4.19 in [9], the uniqueness-in-law for the martingale
problem starting away from the origin, and (3.27). Now let s |0 in

® —at (V0,0 50,0 [’ -x,(v0,0 50,0 —As 50,0 750,0).
Efo e™Mg(¥,0, Z0°) dt _Efoe g(Y20, Z00) dt + e EQE(Y.20, Z2°);

the continuity of (Y %°, Z%°) and the continuity at the origin of the function
Q¢ for any bounded, measurable g: %% — % (cf. Corollary 3.6) lead to

Efwe'“g(f'to’o,zto’o) dt = Q4(0,0), VA >0.
0

In other words, the distribution of (Y,%°, Z%°) is uniquely determined, for
every t € [0, «); from Proposition 5.4.27 in [9], it follows that uniqueness-in-law
holds for the martingale problem, and thus also for Problem 2.1, correspond-
ing to (y,£) =0. O

APPENDIX

9. Proofs of selected results. In this section we give the proofs of
Propositions 4.5, 5.1 and 5.2.

ProOF oF ProPOSITION 4.5. For simplicity of notation, we suppress in this
proof the subscript from @,. Recall from the proof of Corollary 3.6 [in
particular, (3.31)] that M#, N& € C[0,»). Next, from (4.22) we obtain, for
s> 0,

cosh(svV21 )N4(s) — M2(s)
sinh(sv2A )

G4(s)

- sinh(S\/ﬂ) '

Q,(s,0 +) = (N¥)(s) =v2a
(9.1)
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Letting s | 0 and using (3.29) and (3.30), we obtain lim, ,@,(s,0+) = 0. We
prove the other statement of (4.27), lim,  ,Q,(0+,s) = 0, in a similar man-
ner.

To establish (4.28) and (4.29), we first use (4.25) to observe that

M5(s) — N8(s)

i
sli% s sinh(sv2A )
1 ® Fé(u) — Gé(u
=lim—tanh(i\/2/\)f (%) (x)
si0 S 2

73
5 9 sinh(u\/2_)\)sinh2(§\/2_/\)

(9-2) [A Fé(u) — G8(u) 4
Y u
27 4 sinh(uy2A )sinhz(gvmt )

du.

u
I Fé(u) - Gg(u)]coshz(-z—/2_X)
= y/2A
/;) sinh3(ux/ﬁ)

It follows from (4.21) and some calculation that

MY (s A
[M#]"(0) = lim——[ I(s)
sl0

S

= lim|v2A (cosh(s\/ﬂ) - 1)Mg(S) + M#&(s) — N&(s)

540 s sinh(sv21)
(9.3) Fo(s)
s sinh(sv21 )
B » F&(u)cosh(uv21) — G4(u)
= zAfo b (2T du — g(0,0).
Likewise,
[Ne]'(0) = lim L1 )
(9.4) e .
B © G&(u)cosh(uy2r) — F&(u) B
_ 2A[0 S (720 du — g(0,0).

Then, using (4.21), (4.22), (9.3) and (9.4), it is not difficult to establish that
lim, , @, (y,0+) = lim, J[N&]" = [N]"(0) and 'lim, , @0+, &) =
lim, | [M#]"(¢) = [M4]"(0), so that M#, N¢ € C?[0,«). On the other hand,
the identity @,,(0+, ¢) = 0 and (4.14) yield

Qee(¥,0+) = 2AN8(y) — (N)'(y) — 28(y,0)

—3 2AN4(0) — [N€]'(0) — 2g(0,0) = [M*]'(0),
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which completes the proof of (4.29). The proof of (4.28) is completed by a
similar argument.

Finally, we wish to show that @ € 2. It suffices to show that @ and its ﬁrst
and second derivatives extend continuously from I'; to its boundary dI'; =
{€0,¢), £ > 0} U {(y,0), y = 0}. In fact, it is easily seen that @ and its deriva-
tives up to order 2 extend continuously to T’} \ {0}. Checking continuity at the
origin is the only part that requires some work. We shall use the following
lemma, which will be useful later as well.

LEmMMa 9.1. (a) Assume that h € C(T,) and consider two functions
M, N € C[0,©), with M(0) = N(0) (not necessarily equal to M" and N*,
respectively). Define

sinh(£/21)
sinh[(y + §)\/2_)\]

U(y,¢) £J"(y,€) + M(y +§)
(9.5)
sinh(yv22 )

smh[(y + £)V2A |

N(y +¢)

for (y,¢) € T, \{0}. Then lim, .o U(y, £) = M(0). Hence, U extends contin-
uously to I.

(b) Assume in (4.34) that h € CY(T; \{0}) and that M, N € C*0,»). Then
U e CNT,\{0)) and, for (y,¢) € (T;\{0D),

U _ sinh(&/21) 0
(3, 6) =J™(y,6) + Sinh((y + £)v2r) U,(0+,y +§)
(9.6) )
sinh(yv21) Uy +£0+).

" sinh((y + £)v2a) 7

A similar formula holds for Uy, £).

ProoF. It is easy to see that lim ;¢ ¢/ h(y, £€) = 0. Thus, part (a) follows
easily, because M(0) = N(0). On the other hand, (9.6) is intuitively clear from
(4.3) because, in the case of sufficient higher-order differentiability,

%[(Uy)yy + (Uy)gg] —(U)),e t hy = {\Uy in [.

For the rigorous proof, one computes U,(y, ¢£) explicitly using the Cl-assump-
tions on A, M and N, and simply checks (9.6). O

To complete the proof of Proposition 4.5, first observe that, because M#(0)
= N4(0) [see (3.30)], Lemma 9.1(a) implies @ € C(T)). By (9.6), (4.17)i) and
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the identity @,(y,0+) = [N¢](y), we have

o sinh(y\/E)T) -
(97) Qy(y’g) =dJ (y’ 5) + sinh((y +§)M)[N ](y +§)’

(v,¢) e T, \{0}.

Hence, because of (4.27), Lemma 9.1(a) applies again to show @, € c). A
similar argument works for @, and thus @ € C Y(T)). Next, we may again
apply (9.6) to (9.7) to get

sinh(§\/ﬁ)
sinh[(y + £)v2A | @y

s1nh(y\/2—)t—) '
smh[(y + 5)1/2—)\]

for (y, £) € T\ {0}. Now (4.28) implies @,, € C(T). A similar argument shows
Q. € C(T'), and then Q,, € C(T}) because of (4. 14) which implies

Que(¥,€) = 3[@yy(9,€) + Qee(7,6)] +8(3,€) — Q(y,¢), inTy.
This completes the proof of Proposition 4.5. O

Q,,(y,€) =Jd&(y, &) + 0,y +¢)

Q,,(y +£,0)

Proor oF PROPOSITION 5.1. From the even symmetry of @ in both y and ¢,
it clearly suffices to show that U is positive in I',. However, from Lemma 9.1,
(9.6) and (4.17)(ii), we find

sinh(yv22 )
sinh((y + £€)V21)
where g(y, ¢) = c(y)cosh(6¢). However, @ € I, and hence @,(s,0+) is of
class C! for s > 0. This allows us to apply (9.6) again, and compute Q g(y, )

from (9.8). Since @,,(y,0+)=10,0<y <, and @,(0+,£) =0, 0 <¢ <,
we obtain

(99) ng(y, g) = ngf(y’ g)

But g,,(y, £) = 0c'(y)sinh(6¢) is positive in (y > 0, £ > 0), and thus the same
is true for U(y, &) = Q,,(y, £). O

(9.8)  Qy,¢&) =J5(y,¢) + Q,(y +£0+),

ProoF oF ProprosiTION 5.2. From Lemma 9.1 and the equation (9.9)
representing U, we have

. e N sinh(£/21)
e(r,§) = I (y,6) + sinh((y + £)v21)

sinh(y\/ﬁ)
’ sinh((y + £)V24)

U (0+,y + £)
(9.10)

Us(y + £,0+),
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whereas from (9.9), the definition (3.18) of J# and a change of variables:

2 inh(yv2A +
T
(9.11) Xsinh(8(y + é —u)) du
sinh(§1/2_)\_
" sinh((y + £)v21)

Differentiating in (9.11), we obtain

f sinh(2v2A )c'(u) sinh(8(y + &€ — u)) du

1
E\/g[sinh((y + E)V20 )U(,¢) + V24 cosh((y + §)\/ﬂ)U(y,§)]

= Sinh(y\/ﬁ)fy+§c’(u)[m cosh((y + & — u)V2) )sinh(0(y + & — u))
Yy
(9.12) +0sinh((y + £ — u))V2X )cosh(8(y + £ — u))] du

+ 6 sinh(§\/—27)j;)ysinh(u\/§)\—)c’(u)cosh(()(y +&—u))du

+V2A cosh(évV2A )fy sinh(v2A )¢'(u)sinh(6(y + £ — u)) du,
0
whence

U/(y,0 sinh(%V2A )¢'(u)sinh(6(y — u)) du,
(013 U0 Smh(y m) J sinh(uVZX )¢’ (u)sinh(6(y ~ u))

U,(0,¢) = 0.
Since U,(y, 0) is differentiable in y, Lemma 9.1 may be applied again in (9.10),
to obtain

s1nh(§\/_2_)«—)
Use(9,§) = J&55(3,6) + sinh((y + 5)1/2—/\_) Vel 00,7+ 8)
(9.14) cinh(V2T)

+ Sinh((y + £)/2) Ue(y + £,04).

If we combine this with the expression (5.6) for U, and note that 62 8ye = Byeees
we obtain .

sinh(&V2A )W(0,y + &) + sinh(yV21 )W (y + &, 0)
sinh((y + £)V21)

Thus, in order to determine W in the positive quadrant, we have only to
compute its values on the axes. Differentiating in (9.12) with respect to ¢ and

(9.18) W(y,¢) =
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evaluating along the axes, we get

(9.16) U,e(0+,£) = 0
and
1 /A
5‘/; sinh(yv21 )U,,(y,0+)
42
(9.17) = s1nh(y\/§/\_) f ¢'(y — u)sinh(uV21 )sinh(8u) du

+ 2\/2_A[yc”(y — u)sinh((y — )V2A )sinh(8u) du.

This proves that U,(y,0+) > 0 for y > 0. Hence, W(y,0) = U,(y,0+) —
0%U(y,0+) = U, (y,0+) >0 for y >0, and W(0, ¢) = U§§(O+ &) -
0%U(0+,86) =0 for &> 0. It follows from (9.15) that W(y, ¢) > 0 in T, as

claimed. O
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