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THE POPULATION COMPOSITION OF A MULTITYPE
BRANCHING RANDOM WALK

By M. BramsoN,! P. NEy2 anp J. Tao?

University of Wisconsin—Madison

We consider a multitype branching process in which particles move
according to probability laws that depend on the type of a particle. The
composition of the population, namely the proportions of numbers of
particles of different types, varies over the region of motion. In this paper,
we study the growth rate and population composition of the process
throughout its domain of supercriticality.

1. Introduction. A branching random walk (BRW) is a model of a popu-
lation multiplying in accordance with a Galton-Watson (GW) branching pro-
cess and moving in some space X (typically Euclidean) according to a random
walk. The process {Z"(I') = the number of particles in the set I' at time n;
n=20,1,...} has been extensively studied (see, e.g., [1]-[3], [6], [7], [9], [16],
[23]), as have such quantities as the range of the process (the convex hull of
the locations of the particles, see, e.g., [8], [10], [11]). For a brief historical
survey, see [20].

In the multitype BRW, there are d > 1 types of particles multiplying in
accordance with a multitype GW process and moving according to probability
laws that depend on the particle type. The object of study is now the distribu-
tion of the number of particles of the various types throughout the space X at
time n. The total number of particles in a particular set grows (or decays) at
an exponential rate depending on the set, and the population composition,
namely the proportion of particles of the various types, also varies throughout
the space. This population composition is the principal objective of our study.

To focus on the principal ideas in a simple setting, we limit ourselves to
motion on the one-dimensional lattice I = {0, + 1, + 2,...}. We also assume
an aperiodicity condition to be specified later. More general spaces will be
considered in [22]. Thus for any x € R, we consider

Z!([x]D = the number of type ,j particles at the point
“integer part of x”’ at time n, descended from a
type i ancestor at time 0.

We typically abbreviate Z/((x]) as Z[x].
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576 M. BRAMSON, P. NEY AND J. TAO

Our main result says that subject to moment and regularity assumptions,
(1.1) brVne @z an] - u;(6,)W;(6,) as.asn - w,

where A*(a) and (u6,),...,u46,)) are a rate function and eigenvector
coming out of a large deviation analysis and W,(6,) is a random variable which
is a martingale limit. The term b} is bounded above and away from zero and
incorporates the slight dependence in n due to taking integer parts. Of course
an immediate corollary is that on the set {W,(6,) > 0},

Zi’;[an] uj(oa)
Z}lan] u,(6,)

(1.2)

8.,

which describes the above-mentioned population composition.
In the case of a single particle type, the above result reduces to

(1.3) b*VneN@nz an] —» W(4,).

This was proved by Biggins [9] under a logarithmic moment condition which is
a natural extension of the familiar hypothesis EZ!log Z' <  in branching
theory. A similar result for nonlattice R?-valued random walk was proved by
Uchiyama [23]. A related result for the first- and last-birth problem for a
multitype age-dependent branching process was also studied by Biggins [5].

Here is an outline of the paper: Section 2 introduces notation, definitions
and hypotheses and gives a summary of results. Section 3 gives a little
background on positive kernels which will be needed later. Section 4 intro-
duces some martingales that play a central role in our proofs and also proves
some technical lemmas. Section 5 proves the main result.

2. Notation, definitions, hypotheses, results. The process under study
is defined in terms of a family of point measures on I equal to the integers,
namely

(Z;j(x);i,i=1,...,d;x €I}.
The interpretation is that

Z, (x) = the number of first generation offspring of type j,
located at x € I, which are produced by a ‘‘ parent”
of type i located at the origin 0.

An nth generation type i particle located at the point y € I produces (n + 1)st
generation type j offspring according to a random measure equivalent to
Z;i(-) translated by vy, independently of the history of the process up to
generation (time) n and of other particles existing at time n. Thus the process
is spatially homogeneous and the history of motion of a single particle consists
of independent but not identically distributed increments.
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We introduce the following notation:

Z[(x) = the number of type j particles located at x € I at
time n, given an initial type i particle located at 0
at time 0,

ZrM) = Y, Z!(x) foranysetT CR,
xel’'nl
Zij(r) = ZLIJ(F),
Fix a € R throughout. Since we will frequently take x = [an], we abbreviate
X =2Z![an].
Define the expectations

J
For each n = 1,2,..., {m},(-)} is a matrix of measures. Define m7};(x) and
m7[x] analogously. Also let

and write

m;;=m}; and M = the matrix {m,}.

Note that m7; = (M"), ; is the (i, j) entry of M". For a matrix {a;;; i, j =
1,...,d}, we will denote the ith row by

a;=(a;1,---,8;4)-
We will say that the sequence of matrices of measures {m},(-); i,j =
1,...,d; n=1,2,...} is irreducible aperiodic if
(2.0a) M = {m,;} isan irreducible, aperiodic matrix
and

the smallest lattice supporting the measures m7;(-)

(2.0b) for all i and n is the integer lattice.

We will assume that:

HD. {m},(-)} is an irreducible aperiodic sequence of matrix-valued mea-
sures. ‘

Note that (H1) excludes the cases where m7;(-) is periodic or nonlattice.
‘This assumption is made to simplify notation when employing the local central
limit theorem in Lemma 3.1. Analogous versions of Lemma 3.1 and the
theorem hold in the periodic and nonlattice cases as well, after the usual
modifications.
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In the proofs we will have to argue on the states of the process at suitable
intermediate times between 0 and n. This necessitates a regrettably compli-
cated notation. We set

Z l"(k x) = the number of type j’s located at x at time n,
descended from the kth type e at time /.
When x = [an], we again abbreviate
X, (k) = 2.7 (k;[an]).
Also set
Z; (k) = X Z;}(k;x)
xel
and
Y;?(h) = the location of the hth type j at time n,

descended from the type i ancestor at time 0
(h=1,2,...),

Y/"(k,h) = the location of the hth t&pe j at time n,
descended from the kth type e at time /.

In all the above notation, superscripts denote time, subscripts denote type,
quantities on the main line denote location (e.g., x) and counting variables
(e.g., k, h).

Let

%, = the o-field generated by the process up to time n
so that all the above quantities are measurable.

We write ¥ =(%,, n=0,1,2,...). Also, we introduce the following trans-
forms:

Zi’;‘(e) = Ze:le""ZJ(x) Zij(e) = Zilj(e)’
x

m?j(a) = Zle"xm’i‘j(x), mij(e) = ﬁ"ij(e)’
xE

M(6) = the matrlx{ U(B)}

Let 2={0 € R: m,;(9) < fori,j=1,...,d}

(H1) implies that ‘M (6) is also 1rreduc1ble and aperiodic for 8 € 9. It then
has a maximal (real) eigenvalue, which we denote by A(8). Let A(8) = log A(6),
p = M0) and u = X(0)/p = AN(0). Note that p is the maximal eigenvalue of M.
We will also see that u can be interpreted as the ‘““mean drift” of the process.
Associated with the eigenvalue A(6), the matrix M(6) will have left and right
eigenvectors

u(0) = (uy(0),...,uqy(0)) and v(8) = (vy(0),...,v4(0)),
normalized so that ©,;u ;(6)v,(6) = 1.
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We assume the following further hypotheses. Recall that a is (so far) an
arbitrary fixed point in R.

(H2). p> 1.
(H3). 9 contains a neighborhood of 0.

(H4). A(60) = a has a solution 0, € In 9. (This solution will necessarily be
unique.)

(H5). E(ZAL-j(Ga))”0 < o for somep,>1 fori,j=1,...,d.

Sometimes we will write
A =/\(0a)7 uizui(aa)’ vizvi(aa)‘
We set
A*(x) = sup(x6 — A(9)).
0

It is easy to check that A*(-) is convex and that A*(a) = a6, — A(4,). From
hypothesis (H3) one can show that the level set {x: A*(x) < 0} is a closed
bounded interval, say [a,, a,]. Thus A*(x) < 0 for x € (a,,a,) and A*(x) > 0

for x € [y, a,l% and since p > 1, u € (a,, a,). It is well known (see, e.g., [17],
page 1269) that

1
(2.1) ,}TL;IOg m};[an] = —A*(a)
and
: 1 n *
(2.2) ,}T}n;log m?;([an,»)) = —A*(a) fora > pu.

On account of (2.1), m7 [an] grows exponentially with rate —A*(a) > 0 for
a € (ay, a,). Hence we call the interval («, @) the domain of supercriticality
of the process.

We will assume that:

(H6). a is such that A*(a) < 0, that is, a is in the range of supercriticality
of the process. For definiteness we also take a > . (This implies 6, > 0.)

We define
(23) bzn = ma—i(oa)exp{oa([an] - an)}/vi(oa)7

where 0;(6,) > 0 will be specified later [in (3.23)]. (The exp{‘} term arises from
evaluation at [an ] rather than an for Zi’;[an] below.)



580 M. BRAMSON, P. NEY AND J. TAO

Our main result is:

THEOREM. Assume (H1)-(H6). Then fori,j=1,...,d,
(2.4) lim b7Vn e @z an] = u;(6,)W,(6,) a.s.
Here Wi(6,) = lim, , W,(8,) is the limit of a martingale sequence to be

defined later, with W(6,) > 0 on the set of nonextinction of the branching
process Z™.

An immediate consequence is:
COROLLARY. On the set {Z™ + 0},
Z}[an] u;(6,)

(25) Zilan]  ua(0,)

a.s.,

fori,jk=1,...,d.

3. The expectation matrix. We have defined m,(x) = EZ, (x). Also
recall that

m; (T') = the expected number of type j’s in a set I' C R,
produced by a type i parent.

For each i,j =1,...,d, m () is a measure on R and M(T') = {mij(I‘)} is a
matrix of measures. Such objects are central to the study of Markov-additive
(MA) processes and much has been written about them (e.g., [13], [17], [18],
[21]). In this section we summarize some facts about the asymptotic behavior

of m7;(+).
An MA-process is a Markov chain {(X,,S,,); n = 0,1,...}, where X, is an
ordinary Markov chain (with state space {1,...,d} in our case) and S, is an

‘“additive” component whose increments (S, ; —S,) have a distribution
depending on X, and X, ,. We assume S, = 0. The distribution of this
process is determined by a so-called MA-kernel, which is just a matrix of
measures

(3.1) {p;(");i,i=1,...,d},

with {p, ;(R)} a stochastic matrix. We will assume that {p, ()} has support on
the lattice I — a, a € R. This is done to compensate for translation by a, while
centering our MA-kernel. Define

d
(3.2) pizj(x) = Z Z pik(y)pkj(x -y)
k=1yel-a
for x € I — 2a and then define p[(-) by induction. This has the interpretation
(3.3) pi(x) = P(X, =j, 8, = xI1X, = i}.
When the support of {p,;()} €I — a, the support of {p/,(-)} €I, =1 — an. In
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analogy to (2.0) we will say that {p[;(-)} is irreducible aperiodic if
(3.4a) { pii(R);i,j=1,...,d } is an irreducible aperiodic matrix
and

for p, () supported on I —a (a = 0 is allowed), I is the
(3.4b) smallest lattice J such that J — an supports pi(-) for all i
and n.

The following result is a useful local limit theorem about p;(x).

Lemma 3.1 (Nagaev [18]). Suppose that {p, ;(-)} is supported on I — a and
is irreducible aperiodic. Assume that

3.5 lx®p, (x) <o fori,j=1,...,d,
ij
xel;
and
{pij(lR)} has invariant probability measure w = (mq,...,m;),

which is centered so that

d d
(3.6) Z Z > 7Tixpij(x) =
i=1j=1zxel
Then
. X
(3.7) lim fg}o oVnpli(x) - Trjﬁo(m) =0,

where ¢(-) is the standard normal density. Here o > 0 is an appropriate
second moment determined by {p, ;(-)}.

Nagaev’s proof uses a spectral argument on the matrix of Fourier trans-
forms p; (¢) = [p,;(dx)e’*. It is similar in spirit to that of the standard local
limit theorem for sums of i.i.d. random variables. When {p, ;(-)} is periodic or is
nonlattice, there are corresponding limits in the usual manner of local limit
theorems.

We will need a large deviation version of this result for {p, ;(-)} supported on
I. Define the transform matrix

{ﬁij(e)} = { Z eoxpij(x)}’
xel
and let p(#), 1(6) and r(@) denote, respectively, its maximal eigenvalue and
associated left and right eigenvectors. Let
eoxpij(x)rj(o)

(3.8) Pij(x;9)= p(0)7.(6) y by

j=1,...,d, 0 = R.
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Then this is another MA-kernel and p,;(R;0) is a stochastic matrix with
invariant measure
{t.(0)ry(0);i=1,...,d}.
Let m;(6) = 1(6)r,(6) and normalize so that ¥ 7,(6) = 1. [Note that 7,(0) = =,.]
Iteration of (3.8) gives
0x n. . 0)
(3.9) pl(x;0 =M, i,j=1,...,d,0 € R,
S50 = =)o)

n=12,....

Clearly p(6) < « if and only if p,;(f) <« forall i, j = 1,...,d. Let Z(p) =
{6: p(9) < x}. Fix a point a € R and assume that

(3.10) p'(0) = ap(8) has a solution 6, €In 9(p).
It is easy to check that
d d
(3.11) XXX Tri(oa)xpij(x;oa) =a.
j=1li=1xel
Let
D;j(x;0,) =p;;(a+ x;0,)
(3.12) e"a(‘”x)pij(a +x)r;(6,)

= , i,j=1,...,d.
p(ea)ri(ea)

This is a centered MA-kernel [in the sense of (3.6)] on I. Iteration gives

elaer*Dpi(an + x)r;(6,)

pli(x;0,) = p
(313) p (aa)ri(oa)
— pnl(a)+6 xrj(e") n
= o ;;(EZ;IHj(an +x),
where
(3.14) I(a) = sup[6a — log p(0)] = 6,a — log p(86,).
0

- It can also be shown that 6, = I'(a).
Now applying (3.7) to p/(x;6,) and noting (3.11), we have the following:

LEmMa 3.2 (LD local limit theorem). Assume that {p,;(-)} is supported on
I and that (3.4) and (3.10) hold. Then foralli,j=1,...,d, we have

lim sup ai\/rTe"I(“)”I/(")p{‘j(an + x)
no©xel,

V(f3.15) . _ri(f)a)lj(a")‘P(ff;’T)

Here o, = 0,(8,) > 0 is again a second moment parameter.

= 0.
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The above results on the stochastic MA-kernels { pi”j(-)} can easily be
converted into corresponding statements about general nonnegative kernels.
We do this for {m7};(-)} in Lemma 3.3, which is the analog of Lemma 3.2.

Recall that

mi(0) = 3 e"m;(x), i,j=1,...,d,

xel

with maximal eigenvalue A(6) and eigenvectors u(8),v(0), where {m, (-)} is
supported on I. Let

e m;;(x)v;(0)
A(B)vi(0)
From the definition of the eigenvalue A(6),
h;;(0)v;(6)
L L my(xi0) = £ L DU
LT = A(0)u:(0)

namely m;;(x;6) is a stochastic MA-kernel even if m,;(x) is not. Letting
6 = 6, as in (H4), we can define the centered stochastic kernel

i,j=1,...,d.

(3.16) m;;(x;0) =

)

efalan +x)m'i'j(an + x)vj(ea)
A (0,)v;(6,)

This is the analog of pl(x;6,) in (3.13). Recall that m(0) = {m(0); i =
1,...,d} = {u(6)v(6)} is assumed normalized to L #; = 1 and is then the

invariant probability measure of {r2,,(6)}. We can substitute m?7,(x;6,) into
Lemma 3.1 to obtain the following analog of Lemma 3.2.

(3.17) m(x:0,) =

Lemma 3.3. If {m;(-)} satisfies (H1)-(H4), then

(3.18) lim sup

n—o
xel,

on L (x30,) — m(%)«p(;xﬁ)i - 0.

Substituting (3.17), this says that

lim sup |oVne @ % m" (an + x)

n—o® yer

(3.19)

—uj(ea)vxeaw(aij; )i _ o,

Here, o; = 0,(6,) > 0 is a second moment determined by m,,(-;6,). Taking

13

x = [an] — an, it also follows that

(3.20) lim b2Vn e @ m? [an] = u;(6,),

n-—o
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where b is defined in (2.3). For our purposes, b can be thought of as being
“almost constant in n.”

4. Martingales and preliminary lemmas. We first introduce
T ,Z(0)v;(8)

(4.1) WO) = S

LEmma 4.1. If 0 € 9, then {(W™(6); n =0,1,...} is a martingale with
respect to .

The proof is analogous to that of the well-known single type case. Just

A

decompose Zi';+k(0) according to the number, type and positions of particles.
Then evaluate E(Z]:**(9)|%,), and apply the definition of eigenvector.

13

CoroLLARY. If 6 € 9,

(4.2) lim W,*(6) = W,(0) existsa.s. fori =1,...,d.

W.(6,) is the limiting quantity appearing in the theorem.
We next demonstrate:
LEmMMA 4.2. Assume (H1)-(H6). Then foralli =1,...,d,
(4.3) sup E|W;"(6,)[" <
n
for some p > 1.

We will use Lemma 4.2 in the proof of Lemma 4.3 and Proposition 5.1. The
following corollary will also be used.

CoroLLARY. EW(6,) = 1.
Note also that it is immediate from (4.3) that
N P
(4.4) E(Z1(6,)) <cB"
for appropriate ¢ <o, B <wandalli,j=1,...,d,n=1,2,....

Before starting the proof of Lemma 4.2, we will express W;"*'(9) in a
convenient form. Note that

L L5 eMi My, (6)

A*(0)v;(6)

W(0) =
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So one has
4z e 0,(0)
W-n+1(0) — E Z E eoYe'J‘.,"'*-l(k,h) J
' e=1j=1k=1 h=1 X +1(6)v,(0)

ve(g)an;;(k)] eo(Ye'}'"“(k,h)—l"i'é(k))vj(o)
Jj h

"L L [A"w)v,-(e) A(0)v,(6)
Denoting the terms in brackets by A,(k) and ¢,(k), respectively, we can write

Wrrie) = 1 Zk:Ae(k){e(k),

where

A,(k) are & measurabler.v.’s

and

{.(k) are conditionallyi.i.d., given %,.

ProoF oF LEMMA 4.2. The following proof is an adaptation of its single
type version in Neveu [19] and Joffe [14]. Define var, X = EX? — (EX)” for
X > 0. Then by the lemma in Section 3 of Neveu [19], one has for X,Y
nonnegative and independent, that

(4.5) var,(X+Y) < var, X + var, Y, l1<p=<2.
Applying (4.5) yields
var, [ W 1(8)| %] = var,| T T A(B)(k) ?]
e k

< X var,(A.(k){.(R)|F,)
e,k

= Zk(Ae(k))pvarp({e(k)IZ)

Let var,({ (k)| #,) = c,. This is independent of k. By (H5), ¢, <  for § = 6,
and p < p,. Thus by the martingale property and the definition of var,,

’ E[(ufin+l)p'9;] — (W) = E[(Winﬂ)p|‘9;] _ [E(Winﬂlz)]p

(46) <Y cez;: (A(F))".
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Taking expectations of both sides gives

B(W*) - W) < e, B[ T (4,0’

ePOYe®yp(g)
- L ceE[Z ;
e

x AP"(0)vP(6)

(4.7) i p0)v2(6)

AP (0)vf(0)
[A(pﬁ) "(vé"(@) v;(pb) ) i (pb)v.(pb)
AP(8) | \vP(8) v.(pf) | A"(pO)v,(ph) -

- Ye

=Xe

e

Letting
v?(8)v,( pb) ;
T () (pe) T )

this is at most

n

5 m},(po)v.(po)
. A(pO)u(po)

A(p0)
| A% (0)

For 6 = 6,, p < p,, one has ¢ < .
The sum in this last expression equals 1 since A(p6,) and v(pd,) are an
eigenvalue and eigenvector for {/2,,(p6,)}. Thus we conclude from (4.7) that

A(p8,) 1"
AP(6,) |

(4.8) E(W""Y(6,))" — E(W"(6,))" < c[

We wish to show that
(4.9) A(p6,) < AP(6,) for some p > 1.
Then (4.3) will follow upon summing (4.8) over n. To check (4.9), write
f(a) = Mab,) — A*(6,).
Since f(1) = 0, it is sufficient to show that f'(1) < 0. But
F(1) = [6,X(ab,) — A*(6,)log A(6,)],,_,
X(6,)
A(6,)
= AM0,)A*(a) <O,
since A*(a) < 0 by (H6). This proves Lemma 4.2. O

= )‘(Oa) Ba ' - log )‘(Oa)

Note that in the proof of Lemma 4.2, one actually needs to use p-variances,
rather than just variances [even if one strengthens (H5)], on account of (4.9).
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CoNVENTION. From now on, we take p < p, sufficiently close to 1 so that
(4.3) holds.

The following inequality will be used in the proof of Proposition 5.1 and is
an immediate consequence of Lemma 4.2.

LEmMMA 4.3. Assume (H1)-(H6) and suppose there are at least k type r
particles at time . Then

(4.10) E“Xﬁ;‘(k) Hz ] < ceN(apn) —pl(ga)epan,-’r(k)’ ¢ < o,
ProoF. Abbreviate A(6,) = A. Since X'*(k) counts only particles at an, we
a rj
see that

E“eo‘,aanJn(k)|”|$ }

zl (k) i
in
< E Z eoaYrj (k, k) 92
(4.11) h=1
! ! P
. e9aYr (R, R) =Y, (k)
= PoaYLr(k) (n_l)P
=e A E % 7 %

Now, the term under the expectation in the last expression is bounded in
distribution by a constant times [W,"~%(8,)I’. Hence (4.11) is

< c'ePla¥iO)\n=LPE| W r=!(g,) |p
for some ¢’ < «. By Lemma 4.2 this is
!
< cePla¥h((n=Dp
(4.12)

— cepanil,(k)e—pnA*(a))‘ —lpenpaoa

for some c. Cancelling e"?®% from (4.12) and the left side of (4.11) yields
(4.10). O

Let g; denote the extinction probability of the Galton-Watson process
Zl = L e1Zii(x).

LEmMMA 44. P(W(6,) > 0)=1—gq;.

Proor. The reasoning is essentially the same as for nonextinction in the
Galton-Watson case. Decomposition based on the processes emanating from
. the first generation shows that -
d Z.

A 1 A _
4{5(6,) =p Y X eO“Y“’(k)Ze"j Y85 %),
e=1k=1
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where Z »~%(6,, k) are iid. copies of ZAe”j‘ (6,). Multiplying through by

e

A~™(0,)v,(6,)/v(6,) and letting n — o« yields

d p,(6,) Z

(4.13) Wi(8) =p A7M(6.) X =
i e=1Vi(02) £=1

where W,(0,, k) are i.i.d. copies of W,(6,). Thus W(6,) = 0 corresponds to

W,(6,;k) = 0 for all e and k. Letting f(-) be the generating function of Z,,

r,=P(W(6,) = 0 andr = (ry,...,r,), we conclude from (4.13) that r satisfies
r = f(r). Since r; <1 by Lemma 4.2, r = q. O

1
eeuYze(k)m(oa; k) ,

Finally, we will need the following lemma in the proof of Proposition 5.1.

LEmMmA 4.5. For any fixed 6 > 0,

zj
(4.14) P{ Ldj U {¥:2(h) 2 (ao + B)n}} <e "

j=1h=1

for some § > 0. [ Namely, the probability that any particles are located to the
right of (a, + 8)n is small.]

Proor. The left side of (4.14) is
< T P{UY5(h) > (a+ 5)n)
j h

=E zd; ZrP{Yr(1) = (ag + 5)n}}
Jj=1

= Z m’i‘j([(a0 +8)n,®)).

By (2.2), this is

< ce—(A*(a0+8)—8')n

for any &’ > 0 and appropriate c. Since A*(a, + 8) > 0 by definition of a,, the
conclusion follows. D

5. The asymptotic behavior of Z)larl. In this section, we prove our
main result:

THEOREM. Assume (H1)-(H6). Then fori,j=1,...,d,
(5.1) lim 67vVn e @"Z [ an] = u;(6,)W,(6,) a.s.,
where b? is as in (2.3) and W(8,) is as in (4.2).

Note that on account of Lemma 4.4, W;(6,) > 0 on the set of nonextinction of
{Zz"}.
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In the proof, we will sometimes abbreviate frequently used notation. Namely,
we write

ui=ui(00), Ui=vi(9a), i=1,...,d; A=A(0a),
and
(52) X1 =2 [an],  XU(k) = 2 (ks [an]).

The proof of the theorem is divided into two propositions. The idea is to first
show that X is close to its conditional expectation with respect to % at a
suitable time [/ < n, then to show that this conditional expectation converges
to the asserted limit as [,n — « appropriately. The choice of [ will be as
follows: take 0 < @ < § and ¢ = 0,1, ..., and then define

(5.3) [=1I(n)=[t*] whent3®<n < (¢t+1)>°

We now state Propositions 5.1 and 5.2. The proof of Proposition 5.2 below
follows closely the lines of the argument for the single type case in Biggins [9],
where the choice of I(n) in (5.3) is employed.

ProposITION 5.1. Assume (H1)-(H6). Then
(5.4) VneN@n| X — E(XIF )| -0 as,
asl,n — o, with [ as in (5.3).

PRrOPOSITION 5.2. Assume (H1)-(H6). Then
(5.5) prvn e @nE( XS, ) — u,(6,)Wi(6,)| >0 a.s.,
as l,n — o, with [ as in (5.3).

Combining these two facts yields
(5.6) |brvn e @nxr — u (8,)Wi(8,)| - 0 as.

But W/(6,) » W.(8,) a.s. by (4.2), and hence the theorem follows from the two
propositions.

Proor orF ProprosiTION 5.1. Let
or(X7) %) = E(| x5 - E(Xp 7 )[|#), 1<p<2
We first show: )

Part 1. There exist constants ¢ < © and i > 0 such that
(5.7 PleN@rrgP (X1 F, ) 2 ce™™} < ce™ .

We will then use (5.7) to prove:
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PArT 2. For sufficiently small " > 0, there is an n” > 0 such that
(5.8) P{eA*(a)n|Xi'; - E(X/j|7 )| > e_”’l} <ce ",

The conclusion of Proposition 5.1 follows from (5.8). Namely, by adjusting the
constant 1’ in (5.8), one obtains

(5.9) P<\/77€A*(a)”|Xi'} _ E(X;jl'% )l > Ce—n'l} <ce ",

Since [ = l(n) ~ n%/3, 0 < a < %, application of the Borel-Cantelli lemma to
(5.9) then yields Proposition 5.1.

Proor or PART 1. The idea behind the proof is to control the growth of the
p-variance of X/ as n — . The p-variance should be well-behaved, since
large numbers of independent random variables X'!*(k), k = 1,.. le,,
being summed in the branching process. One needs to be careful w1th large
individual Yl ° (k) though, which can increase the p-variance. It is easy to show
that large Y. (%), as given by ¢ [(5.11)], only occur with small probability
[(5.12)]. The contribution of the smaller terms given by . can be controlled
using Lemma 4.3 to give a bound in terms of W;(8,) [(5.13)]. Application of
Lemma 4.2 reduces this to (5.7).

We first rewrite o”(X/}| %)) as

or(x51%; ) = B(| x5, - B(x519 )| 7 )
d Z, i
—E{ Zlkzl[xrl;(k) - E(xI2(k)| 7 )| 9;}-

We apply the von Bahr-Esseen inequality [4], which states that if &,,...,¢&,
are independent random variables with E[¢,] = 0and S, = £}_,&,, then

n
E[IS,F] <c ¥ E[l&)]
k=1
for a suitable constant ¢, 1 < p < 2. Applying this gives the upper bound
(5.10) ey ZE{|X£;(k) - E(xi (k)| 7 )| ‘9?}
r k
Decompose this sum into A, + B, where A, is the sum (5.10) over the set

(5.11) F={(k,r): YL(k) < (a, + )1},

8 > 0 to be chosen later, and B, is the sum over .°. An upper bound for B, is
immediate from Lemma 4.5, namely

(5.12) P{B, > 0} <e=® for some & > 0.
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We proceed to bound A,. Note that la + b’ < 2|al’ + 2/bl° and apply
Jensen’s inequality to obtain

E(|X,%;(k) - B(xk)F )| ) <4E(| X B[] ).
By Lemma 4.3, this is
< ce~N(@pn) —plopo Y (k)
for another choice of ¢. We therefore have

AleA*(a)p"' < CZ A*plepoayilr(k)
7

1

-1
=cY ()(lef?aYir(k))p (A_leeayi[r(k))’
7

which, since 6, > 0,

< c()\~zeea<ao+6)z)p~1 Z & E A~ Lgba¥hih)
r vz k

for another appropriate c. This
= cexp((p — 1)(8,31 + [8,a0 — A(8,)])}W(6,).
Now note that
f(6) = 6a, — A(6)
is increasing in 6 at 6 = 6,. So for appropriate n; > 0, n, > 0,
b.a0 — A(0,) < (0, + m)(ao — mg) — A(6, + my)
sgp[ﬂ(ao —m3) — A(6)]

IA

AN(ay, —my) <0,

the last inequality following from the definition of a,. Plugging this in above
gives

(5.13) A eN@pn < co=(P=DYLWI(g )

for sufficiently small y.
Let y; = (p — 1)y/2. Then by (5.13),

P{AeN@Pn > g7nl} < Plee” P W!(9,) > e "'}

(5.14)

e
- PUW/(8,) > — .

But
E\W (0,)f ¢
< — L

P(W(6,) > M) s —
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for suitable ¢ by the Chebyshev inequality and Lemma 4.2. This implies
P{W!(8,) = e"/c} < c’e mP!
for appropriate ¢’. Therefore
P{A, e @Pn > e~nl) < femMiPL,

Combining this with (5.12), we see that there exist constants ¢ < ® and n > 0
such that for all [, n,

P{eX@Pn( A, + B)) = ce™™} < ce™ .
Together with (5.10) this implies (5.7) and Part 1.

Proor oF PART 2. Define the sets

F= {eA*(")P"a-P(X[;I.% ) < ce"’l},

G = {" | Xy - B(X}1F; )| 2 ),
and decompose P(G) = P(GF) + P(GF°®). By (5.7),
(5.15) P(GF°) < P(F°) <ce ™.
Note that since F € &,

P(GFI#, ) = E(15151 %, ) = 1E(161 %, ) = 15P(GI 5, ).
By the Chebyshev inequality, this is
D n
d (X |.7 ) < ce® n)l

( e~ A*@n —nl)P -

(5.16) <1

the last inequality following from the definition of F. Now choosing 7’
sufficiently small, (5.15) and (5.16) imply (5.8) and Part 2. This completes the
proof of Proposition 5.1. O

Proor oF ProOPOSITION 5.2. In Proposition 5.2, we wish to show that
E(X| %), after suitable renormalization, is approximated by the martingale

I(G ) as n — o with I ~ n®/. The approach is to first decompose E(X/}| %)
as in (5.18) according to its behavior before and after time [. The terms
corresponding to the interval [, n] are centered here by subtracting a(n — 1).
These terms are then compared to appropriately centered normal densities
[(5.20)]; by Lemma 3.3, the approximation will be close. After some further
computation, the randomness in the centering is shown to become insignifi-
cant as n — « [(5.28)]. Getting rid of this randomness produces the martingale

wi(e,).

ParT 1. Recall the centered stochastic kernel defined in (3.17):
' m7i(an + x)v;(6,)
' UNER — plalan+x) Y J\"a
(5.17) mu(x,ea) e X(8,)0.(6,)
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We first express E(X/%|%7) in terms of this kernel. Namely,
d Z

L ZIE(X:;<k>|9s)

E(XS)

Z ([an] - zlr(k))

_ _y! _ Ur . _
— BT K e ten onni(,) T (y! - YA(R):0,)
r k J

where y' =[an] — a(n — 1) €I,_, and B, = e®@"~[*"D (When an € I, one
has y' = al and B, = 1.) This

V2 v, efa¥ir®)

(5.18) = Neny ¥~

b" % U; A(6,) mr (vt - Yi(R);6,),

where b" is given in (2.3) and o; = 0y(6,) in (3.18).

ParT 2. We next show that

1 «
Joo | bV — e E( XG5 )
(5.19)
v, eoY,!,(k)
—-uJXr:Z o AI(G) -0 as.,

as I,n — o, where [ is as in (5.3). Since the sum in (5.19) is just the
martingale W;/(8,), this implies

bV e @O B(X5) 57 ) — u, Wi ()] > 0 as.

which is Proposition 5.2.
To prove (5.19), note that by (5.18) and the triangle inequality, the left side

of (5.19) is

o-i vr eoaYiIr(k) .
< ;' n_lz §_ )ll(O) mﬁj—l(yl_yvir(k);oa)
J r 4 a

i et 10
v, A(8,) “i® oyvn —1

N O N
NORMET Y Vor ||

(5.20) 2R

+Z§

i
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Now Lemma 3.3 yields

sup
yeIn !

and hence

! !
o y — Yi(k)
—Vn —1m* Yy' = YL(R);0,)) — u | ———o>
v n mlj (y zr( ) a) u‘;go( 0',' n '—l

J

(5.21) <A,

where A, — 0 as & - ». Also note that |p(x) — ¢(0)| < cx2. Applying this fact
and (5.21) to (5.20), we see that the LHS of (5.19) is

8, Y/ (k) L_YL(k))
(5.22) <Y Y ﬁe)m ) [An_, + (_y(T——Z)%}?))—

r kUi a

with another choice of c. Let
v ee Yilr(k)

Rl(n:l) = CA”‘ZZr % v; )‘l(ea)

and
eo Y,,.(k)

c
- - k

oD Ty way ¢ )

Thus (5.19) < R(n, 1) + Ry(n,l). Note that R(n,l) = cA,,_lW,-l(Ga). Recall-
ing that [ ~ n*/3, that A, — 0 as £ — » and the corollary of Lemma 4.1, we
see that

Ry(n,l) =

R,(n,l) >0 as.asn — o.

It remains to show that R,(n,l) — 0 a.s. To this end, note that

ER,(n,l) = f)u(e )(y ') mt,(dy)

(n_l lrlv

(n_l) T Z S ) (dys,),

(5.23)

where a, = [an] — an. This is
c'l

T n-—-1

. for appropriate c’, since the above second moment is finite. Thus

(5.24) Z ER,(t3,[t*]) <¢ f Lt a[]ta] < o,
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Also, note that Ry(n,!) is decreasing in the first argument. So for n, = (¢,)3,

P| sup Ry(n,l) > ¢

nx=n,

< P[supRz(t3, [£]) > e,

t=t,

and it suffices to show the right side approaches 0 for any ¢ > 0 as ¢, — .
This, however, follows from (5.24), in conjunction with the Chebyshev inequal-
ity and the Borel-Cantelli lemma. Consequently,

Ry(n,l) -0 as.asn — .

This proves (5.19) and completes the proof of Proposition 5.2. O
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