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The Ewens sampling formula is a family of measures on permutations,
that arises in population genetics, Bayesian statistics and many other
applications. This family is indexed by a parameter 6 > 0; the usual
uniform measure is included as the special case § = 1. Under the Ewens
sampling formula with parameter 6, the process of cycle counts
(C{(n), Cy(n),...,Cyn), 0,0,...) converges to a Poisson process
(Zy,Z,,...) with independent coordinates and EZ; = 8/j. Exploiting a
particular coupling, we give simple explicit upper bounds for the Wasser-
stein and total variation distances between the laws of (Cy(n),...,Cy(n))
and (Z,,...,Z,). This Poisson approximation can be used to give simple
proofs of limit theorems with bounds for a wide variety of functionals of
such random permutations.

1. Introduction. The Ewens sampling formula with parameter 6 > 0
may be thought of as the measure on ./, the permutations of {1,2,...,n},
whose density with respect to uniform measure is proportional to 6%, where k
is the number of cycles in the permutation. The probability of the set of
permutations having cycle index (a,, a,, ..., a,) € Z} (ie., having a; cycles of
length j, for j=1,...,n)is

n! » (60\% 1
1 P(a...,a,)= -] —1 la,=n},
4 (o, ) 0(n)JI=_Il(J) a;! {z§1 ! }
where Z,={0,1,...} and
Ym=x(x+1) - (x+n—-1), xo=1

This formula was derived by Ewens (1972) in the context of population
genetics, where a; is the number of alleles represented by j genes in a sample
of n genes, and by Antoniak (1974) in a Bayesian nonparametric statistics
setting. The special case 6 = 1 corresponds to each permutation being equally
likely.

We let C,(n) be the number of cycles of size j in an n-permutation. Under
the Ewens sampling formula for fixed 6, the finite-dimensional distributions of
(C(n),Cy(n),...) converge to those of a Poisson process on N = {1,2,...}, as
the following result shows.
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520 R. ARRATIA, A. D. BARBOUR AND S. TAVARE

THEOREM 1. For j=1,2,... let Ci(n) denote the number of cycles of
length j in an n-permutation following distribution P,, so that C(n) +
2Cy(n) + -+ = n. The process of cycle counts converges in distribution to a
Poisson process on N with intensity 6 /j. That is, as n — ,

(Cn),Cy(n),...) = (2, 2,,...)
where the Z;, j = 1,2, ..., are independent Poisson-distributed random vari-
ables with

| @

E(Z;) = -

~

Proor. For integers 0 < [ < m, define
(2) T, =(0+1)Z +(1+2)Z) 5+ - +mZ,,
with T,,, = 0. Choose b € {l1,...,n} and nonnegative integers a,,...,a,
satisfying a; + 2a, + -+ +tbay =a <n. Let Cy(n) = (Cyn),...,Cyn)),
Z,=(Z,...,Zy)and a = (ay,...,a,). It follows from (1) [see also the discus-
sion after (36)] that

P(Cy(n) = a) = P(Z, = a|T,, = n)

3
®) = P(Z, = a)(T,, = n —a)/P(T,, =n),
so the result will follow if we can show that as n — o,
(4) lp(frbn =n- a)/P(TOn = n) - 1.

The probability generating function of T}, is
n n
EoTon =exp(—0 Y l/j)exp(ﬂ Y xj/j).
Jj=b+1 Jj=b+1

If we define g, , = exp(0L%?_,,,1/j)P(T,, = n — a) and f(x) =
eXp(—BZf=1x’/j), then

n
8n-a=[x"""Jexpl0 T x’/j)
Jj=b+1

=[x"""]exp|0 ¥ xj/j)

j=b+1

) b
= [x""*]exp(6 1 xj/j)eXp(—0 2_: xj/j)

(5) Jj=1 Jj=1
= [x"7*1(1 —x) °f(x)

1
= (_’-l__T)!_(f(l)a(n—q) - f,(l)(a - 1)(n—a) + o )
A' b6(6 — 1)

e S —2
0+n—a—1+0(n )|

_ o(n—a) _ b .
= (n—_-a—)—'exp( ngll/J)(l +
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the last two equalities following from Darboux’s method [cf. Wilf (1990),
Chapter 5]. Since

0., n
(6)  P(To,=n) = —exp| -0 ¥ 1/j),
n! jo1
we see that as n — o,
P(Ty,=n—a nlé,_,
(L, ) _ @D (14 0(n7Y).

P(Ty, =n)  (n—a)'g,,
Thus (4) holds, and the proof is complete. O

ReEMARK. This result may also be established by the method of moments
using the results of Watterson (1974); the case 6 = 1 is described in Arratia
and Tavaré (1992a). The present proof is included because the asymptotic
expansion (5) is used later. In the case § = 1, the theorem is due to Kolchin
(1971); see also Goncharov (1944).

In this paper we provide explicit estimates on the distance between the
distribution of (Cy(n), Cy(n),...) and the law of (Z,, Z,, . ..), the independent
Poisson components of Theorem 1. Specifically, for 1 < b < n we will estimate
the distance d)(n) between C,(n) = (C{(n),...,Cy(n)) and Z, = (Z,,..., Z,)
in the Wasserstein [, metric, defined by

(7) dy(n) = inf{: E|Ci(n) - Z;,
j=1

where the infimum in (7) is taken over all couplings of C,(n) and Z, on a
common probability space. In Theorem 2 we prove that

8 ay i (0 . )
<

(8) b(n)_0+n—b 6+n)
and that d¥(n) is uniformly bounded in 7. The use of these estimates to prove
limit theorems for functionals of the cycle counting process is the subject of
Arratia and Tavaré (1992b).

The coupling exploited in the proof of Theorem 2 may also be used to
estimate d,(n), the total variation distance between the law of C,(n) and the
law of Z,, defined by

dy(n) =[|-£(Cy(n)) — £(Z,)|
(9) = sup |P(Cy(n) € A) - P(Z, € A)]
AcZ
(10) = inf P(Cu(n) # Z;).
couplings .

In Theorem 3 we prove that d,(n) — 0 if and only if & = o(n), and that in any
" case, ‘

11 d b9 6+ n )
(11) b(n)S0+n( 0+n-56)/
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For the case 8 = 1, the result d,(n) < 2b/n was proved by Diaconis and
Pitman (1986) and independently by Barbour (1990). When 6 = 1, the bound
in (11) may be much improved. Arratia and Tavaré (1992a) show that if
b/n — 0, then d,(n) — 0 superexponentially fast relative to n /b.

2. The Chinese restaurant process. There are several couplings of
permutations of {1, 2, ..., n} for different values of n that preserve interesting
features of the cycle structure. One of these is known as the ‘“Chinese
restaurant process’’ [Dubins and Pitman, quoted in Aldous (1985)]; a second is
the Feller coupling.

The Chinese restaurant process generates permutations of size 1,2,...
sequentially, as follows. Define independent random variables A,, A,,... with
distributions determined by

0 .
— > J=1,
. 0+1—-1
(12) P(a;=j)={"""
—— =1,2,. -1
0 + i _ 1 b J ) b b l
The sequence A,, A,,... is used sequentially to generate the cycles of a

permutation. The integer 1 starts a cycle. The integer 2 is placed to the right
of 1 (in the same cycle) with probability 1 /(6 + 1), or begins a new cycle with
probability /(8 + 1). Suppose then that the first n — 1 integers have been
assigned to cycles. Integer n starts a new cycle with probability P(A, = n) =
0/(6 + n — 1), or is placed to the right of integer j with probability
P(A,=j)=1/(0+n—1),j=1,...,n — 1. A simple calculation shows that
for any m € ., having k cycles,
ak
P(mr) = —,

( ) G(n)
so that the probability of the set of permutations with cycle index (a4, ..., a,)
is given by (1); see Joyce and Tavaré (1987) and Diaconis and Pitman (1986).
Note that there is an ordering of the cycles produced this way; the first cycle
contains the integer 1, the second cycle contains the smallest integer not in the
first cycle and so on.

The Chinese restaurant process is an elaboration of couplings which gener-
ate only the partition associated with the cycle decomposition of a permuta-
tion. These couplings for the partition structure appeared in several guises.
Bollobas (1985), Theorem 25, discusses the case of uniform random permuta-
tions. Blackwell and McQueen (1973) and Hoppe (1984) address the connection
with certain urn models. Ewens (1972), Hoppe (1984), Donnelly (1986),
Donnelly and Tavaré (1986), Hoppe (1987) and Tavaré (1987) discuss applica-
tions to population genetics, where several approaches to the study of large
cyclés (i.e., those with size comparable to n) are described, albeit in the
language of population genetics. Some other couplings are discussed in Goldie
(1989).
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This coupling has the property that once the integers i and j are assigned
to a common cycle, they remain so for ever after. However, the cycle lengths
themselves change continually. In the next section we describe an alternative
coupling in which cycle lengths remain frozen as n increases.

3. The Feller coupling. Let ¢, &,,... be independent Bernoulli random
variables with distribution given by

0
13 =Pé=1)= ——— =1,2,....
(13) p;=P(&=1) i1
We use the £ sequence in the order £,,¢,_4, ..., &, to construct an n permu-

tation with ordered cycles as follows. Start with 1 in the first cycle. If £, = 1,
we finish that cycle and start the next with the smallest available integer. If,
on the other hand, £, = 0 we choose one of the remaining n» — 1 integers at
random and place it to the right of 1 in the same cycle. Continuing in this way
produces an n permutation with cycles ordered by their smallest integer. In
terms of the independent auxiliary random variables A; defined in (12), we
may define ¢, = 1(A; = i), and on the event {A; < i}, A; specifies which of the
remaining i — 1 integers is used next. Note that to construct an n-permuta-
tion, the Chinese restaurant process uses A;, A,,..., A,, while the Feller
coupling uses the reverse order, A,,..., A,. For any 7 € ./, with & cycles, it
is immediate that P(r) = 8%/ 0,) so that once more the probability that a
permutation has cycle index (a,,...,a,) is given by (1). In this construction,
which elaborates on an idea of Feller (1945), the cycles are built and completed
one by one, in contrast to the Chinese restaurant process. Since the number of
cycles produced by this construction is precisely X 7_,¢;, it follows that

Z Cj(n) = E §j~
j=1 j=1

We can think of the lengths of the first cycle, the second cycle, ... as the
spacings between consecutive ones in the sequence 1,¢,, ..., £;. It follows that
the number C;(n) of cycles of length ; is

n—j
(14) Cj(n) = i§1§i(1 - §i+1) o (1 - §i+j—1)§i+j
+ 5n—j+1(1 - fn—j+2) (1 - fn)~

Since (Cy(n), ..., C,(n)) has distribution (1), it follows from Theorem 1 that
(C(n),Cy(n),...) = (Z,Z,,...) as n - ». Next define C;() to be the num-
ber of j-spacings in the sequence &, &5, ... ; that is,

| (15) Cj(°°) = i E(—¢&q0) (1 - §i+j—1)§i+j-
i=1
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Since EC,(») = 0/j, each C;(») is almost surely finite. In fact, their joint
distribution is easy to find. Since

B¢ jir(1 —&njue) " (1—§,)<6/(0+n—j+1)>0 as n—o

for fixed j, it follows from (14) that (Cy(n), Cy(n),...) = (Cy(), Cy(x),...) <
(Z,, Z,y,...). Thus the C;(«) are independent Poisson random variables with
|ECJ.(00) =0 / J

We have now constructed a coupling of (Cy(n),Cy(n),...) and (Z,, Z,,...)
for all n simultaneously. Before estimating how close the coupling is, we
highlight one aspect that is very useful in applications; for example, Arratia
and Tavaré (1992b) use Lemma 1 to provide a simple proof of the Erdés—-Tur4an
law [Erdés and Turan (1967)]. The proof of Lemma 1 is an immediate
consequence of the definitions in (14) and (15) and is omitted.

LemMa 1. For each nand 1 <j < n, we have
(16) Ci(n) < Ci(») + 1(J, =J),
where the random variable J, € {1,2,...,n} is defined by
(17 L, =min{j>1:¢,,, =1}
ReEMARK. Properties of distributions involving J, are often readily com-

puted using (17) and the independent Bernoulli structure of the {¢;}. In
particular,

P(J,=J) =P(¢,_ji1 =16, juz= "+ =§,=0)
o(n—1N!T'(n—-j+0)
T (n—j)IT(n +6)
_ j[ECj(n)

n

The random variable o/, is familiar in the population genetics context,
where it represents the number of alleles of the oldest allelic type in a sample
of n genes. See Kelly (1977) and Donnelly and Tavaré (1986), for example.

The Feller coupling provides a natural setting for the study of large cycles.
We do not pursue this aspect here [see Ignatov (1981) and Arratia, Barbour
and Tavaré (1992)], but instead concentrate on the behavior of the small

cycles.

4. Upper bounds via the Feller coupling. One use of couplings is to
. obtain upper bounds on distances between probability measures. We begin by

giving upper bounds on d}’(n), and showing that dY(n) is uniformly bounded
in n.
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THEOREM 2. Forall1 <b <n,

18 g b6 n bo(6 + 1)
< <
(18) b(n)_0+n—b( 0+n)_0+n—b’
and if 0 > 1, we also have
bo(0 + 1)
w
(19) dy(n) < marayant

Furthermore, for any 8 > 0,{d¥(n), n = 1,2,...} is a bounded sequence.

Proor. To establish the inequality (18), we use the fact that

Cj(°°) - Cj(n) = X E(L—¢4q) (1 - §z+j—1)§z+j
I>n—j+1

(20)
- §n—j+1(]' - gn—j+2) (=€)

Leaving out the intermediate j — 1 factors from each term,

|E|Cj(°°) - Cj(n)l < X PiDy+j +pn—j+1(1 —Pn+1)

I>n—j+1
1
= 92 Z -
l>n_j+1(0+l—1)(0+l+1—1)
0 n

T 0+tn—j) (n+0)

02 1 0 n
= — Z + -
Jicnojs10+tl (6+n—j) (n+0)
62 0 n

< + - .
6+n—-j+1 (6+n—-j)(n+0)
From this last inequality, we see that

b[EC c 0%b né b
() — C; +
Ell’(w) J(n)|S0+n—b+1 (6+n) (0+n-0>5)

0b
S (o)
0+n-—-2>5 0+ n
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When 6 > 1, we may use (20) and (13) to see that

o !
HEE -Gmls L Grion o)

I>n~j+1

l+j—-2 0
T eFlHj -2 (0 +1+j-1)

0 n—j+1 n
Tt (6tn—j+1)  (6+n)

1 0
<6 X . , +
l>n_j+1(0+l+_]—2)(0+l+]-1) 0+n

62 0
= + .
0+n 0+n
Summing the inequality over j = 1,..., b shows that
b6(60 + 1)
0+n

To show that the sequence d”(n) is uniformly bounded, observe that for
any 1 <b <n,

dy(n) < ¥ E[C;(x) — Ci(n)]

(21)

d¥(n) <

j=1
bO(O+1) 2 n

<7 LY EC(w) + Y EC(n).
0+n—-b 5, 7 jobs1

From (16), the rightmost two terms are at most 1 + 2X%_,  ;EC,(), which in
turn is at most 1 + 2log(n /b). Choosing b = |n /2], it follows that for n > 3,

no(o + 1)
20 +n
which completes the proof of the theorem. O

d¥(n) <1+ +210g( ) - 1+6(6+1)+2log2,

n —
The next result provides an upper bound on d,(n) that is also O(b/n).

THEOREM 3. As n — », d,(n) = 0 if and only if b/n — 0. For all 1 <
b<n,

(22) dy(n) < ,,'Jrn(0+o—+:——7;)'

‘Furthermore, if 6 > 1and 1 <b < n,
| b6(9 + 1)

(23) dy(n) < —5——
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Proor. The following proof of the “only if”’ statement is analogous to the
proof of the corresponding statement in Theorem 2 of Arratia and Tavaré
(1992a) for the case 6 = 1. We will show that if b/n > ¢ > 0 for all n, b then
liminf, . d,(n) > 0. From (10), note that

dy(n) 2 P(To, > 1)

ZP( Y iZi>n)

b/2<i<b
> ( Z; >n)
b/2<i<b
zﬂl’( Y z>-—
b/2<i<b

2
- [P’(Pmsson(ﬂ log2) > — )

If b/n > & > 0 for infinitely many n, we may apply the argument above to an
appropriate subsequence to establish the “only if”’ part of the theorem.
To establish the bound (22), consider the event

= {(Cy(n),...,Cy(n)) = (C(=), .., Cp(=))},
and recall from (10) that
dy(n) <P(E°).

To estimate P(E°), observe that

E> ({§n+1 1} U {fn p+1 = T T £, = 0})
n ﬂ ({fj = 0} U {§j+1 = T 6 T 0})

Now use (13) to see that for any / > 1,

b
|p({fl+1 = =&, = 0} ) ( gl{‘me = 1})
(24) | < ¥ Pl =1)
! v m=1
bo
< —

0+1
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Hence
bo 6 bo

)

n
)S(n+0) (6 +n—0) +j>n(0+j_1) (0 +7)

P(E*

25
(25) n bo bo?

T hi0)(0+n-b)  (6+n)’

which establishes the bound in (22).
To establish (23), note from (19) that when 6 > 1,

bo(6 + 1)
\i4
dy(n) <dy(n) < rprat O

ReMARKS. Comparing the bounds on d, in (22) and (23), we find that the
bound in (23) is sharper for b > 6, and in particular as b —» . When 6 = 1,
dy(n) < 2b/(n + 1), recovering the earlier result of Diaconis and Pitman
(1986) and Barbour (1990).

5. Lower bounds. Lower bounds for distances between probability mea-
sures cannot be deduced from a particular coupling, but require special
arguments, such as the following. We begin by establishing that if 6 # 1, then
ndY(n)/b is bounded away from 0.

The definition of d}/(n) in (7),

b
d¥(n) = inf Y E|Ci(n)-2Z,
couplings j=1
shows that
b
(26) d¥(n) = ¥ |EC;(n) — EZ;|,
j=1

a result that may be used to establish the following lower bounds on d}¥(n),
valid for all 1 < b < n.

THEOREM 4. For all b < n, and for 6 > 1, we have

6(6 —1)b  6(6 - 1)%6(b + 1)
0+n—1 40 +n - 1)°

(27) df(n) =

)

. while if 6 < 1,
(1 — 0)b

(28) dXV(n) > m



POISSON PROCESS APPROXIMATIONS 529

Proor. Watterson (1974) established that

0 n(n—1)--(n—j+1)
(29) [Ecj(n)=j(9+n_j)~-(0+n—1)'

In the case that 6 > 1, we have

EZ, — EC;(n) =; 1- ﬁ(l_e—_ln))

v
.|
—
|
8
—
|
~~
=)
|
—
N
M-
—
5=}
+
S
o~
~——
—_—

(0 -1)j
(6+n-1)
(6-1j  (6-1%
(0+n—-1) 20+n-1)°

V
~
-
|
[¢)
-
|

(30)

v

0
J

0(6 — 1) 0(6 — 1))
0+n—-1 26+n-1)>"

Summing the last inequality over j = 1,..., b completes the proof of (27).
On the other hand, if § < 1 we have

0./ 1-6
IECj(n)—ﬂEZj=; E(1+m)—1

\
.|
M-

Summing this inequality over j = 1, ..., b establishes(28), and completes the
proof. O

Establishing so sharp a lower bound on d,(n) is rather more difficult. We
will derive lower bounds of order O(((n/b)log(n /b))~ ') valid as b, n — ». The
method is based on the following result.
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LeEMMA 2. Let X and Y be nonnegative random variables such that EX —
EY=¢>0and EX"=m, <o for somer > 1. Then

(31) I£(X) —2(Y)| = [(1‘_%1)("%”/“)

Proor. Clearly,
inf || £(X)-2(2)]

Z:EZ=EX—¢

is attained by Z = X*, where X* = X1{X < x(¢)}, with x(¢) chosen so that
EX® = EX — ¢ [randomizing if necessary on the set {X = x(¢)}]. Furthermore,
if W is any random variable such that W > X, and W* is the corresponding
truncation of W, with EW*® = EW — ¢, it is immediate that

Iz (W) - 2(W) | <l|l-£(X) - L(X)].
So choose a random variable W > X with distribution given by
P(W>=w) =min{l,mw™}, w=>=0,

which can be done because of Markov’s inequality. The truncation level w(e)
for W satisfies

¢ =EW — EW* = fwo;)rmrw_(’”)wdw = {rm,/(r — D} [w(e)] "
Observe that
P(We W) =P(W=w(e)) =m,[w(E)] .
This implies that
I2(X) - Z2(Y)| 2[|£(X) - 2(X)|
2| 2(W) - 2(W)]

((r . 1)8 )r/(r—l)
=m,|——— y

rm,

proving the lemma. O

COROLLARY 1. There exists a constant ¢ > 0 such that if X ~ Poisson(\)
and Y is any nonnegative random variable with EY = A — ¢ and 0 <& < e 2,
then

ce

max{\e,log(1/¢)}

I-2(X) -Z(¥)ll =

- ProoF. Observe that if X ~ Poisson(A), then
(32) m,<r"+(xe) .
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Apply the previous theorem with » = max{Ae,log(1/¢)}, and note that

e\ 1/(r=1 e~ re e 1/(~loge—1)
(—) > A ,
r Ae —loge

which is bounded away from 0 for all 0 <& <e 2 and all A > 2/e. O

1/(xe—1)

We will use Lemma 2 and Corollary 1 to establish the following result.

TuEOREM 5. If 0 # 1 and b,n — =, then (n/b)log(n/b) dy(n) is bounded
away from 0.

Proor. Observe first that for any f: N® - R” with r < b,
|£(Co(n)) = £(Zs) || 2| LF(Co(n)) = £F(Zy) |-

In particular, for any L < b,
| 2(Cy(n)) = Z(Zy)| 2| £(Cr(n) + -+ +Cy(n)) = L(Zy + -~ +Zp)|.

First, we treat the case § > 1. We will choose L = |b/e], and use Corollary
lwith X=2Z, + -+ +Z,, Y= C(n) + -+ +Cy(n). In this case,

b 6
(33) A=EX=) —~0, b-ooo
j=L

We may assume that b/n — 0 as n — . A lower bound on ¢ = Z?_L(IEZ -
EC;(n)) may be found from (30), from which it follows that there exists a
constant ¢, > 0 such that ¢ > ¢;b/n for sufficiently large n. To establish an
upper bound on &, note that from (30),

] J 0-1
EZj— lECJ(n) = ;(1 - E(l - m_—l))

0 J 0—1
Jl_10+n—l
9(6 — 1)
0+n—y

It follows that there exists a constant c, such that ¢ < c,b/n for sufficiently
large n. In summary, there are constants 0 < ¢; < ¢, such that ¢;b/n < ¢ <
¢,b/n for sufficiently large n. Since A ~ 6 and ¢ — 0, it follows from Corollary
1 that there is a constant ¢ such that

dy(n) = ce/(~loge),

from which the result follows.
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In the case 0 < 6 < 1, a different argument is required. If ./, c{1,...,n},
the inequality (16) shows that

(34) Y Ci(n) <1+ Y Cix).

jes jes

We will choose L =[b/2] + 1, and use Theorem 2 with X =
Ci(n)+ - +Cy(n)and Y =2Z; + --- +Z,. Note that Y has a Poisson distri-
bution with mean EY = 655_,1/j < 6 log2. Since {C;(«), j > 1} has the same
law as {Z;, j = 1}, it follows from (34) that

m,=EX"

<KY+1)
(35)
<1 +7r) 4+ (1+eEY)”

<(1+r) +(1+elog2),

the last but one inequality following from (32). As in the earlier part of the
proof, there exist constants 0 <¢; <c¢, such that ¢ = Z?=L(IECj(n) -EZ)
satisfies c,b/n < ¢ < c,b/n for sufficiently large n (with d/n — 0). Since
¢ — 0, we may take r = log(1/¢) in Lemma 2 to see that there is a constant ¢
such that d,(n) > ce/(—log ¢), completing the proof of the theorem. O

6. Discussion. The total variation distance between the process
(C{(n),...,Cyxn)) and the process (Z,, ..., Z,) can be expressed in terms of
the total variation distance between two random variables as follows:

dy(n) =||°/(Tob) = Z(TolTy,, = n)||

(36) P(T,,=n~r)

liﬂj’T 1
- 2r=0 ( Ob_r) P(T0n=n) '

Relation (36) is given as Lemmas 1 and 9 in Arratia and Tavaré (1992a) for
uniform measure on permutations and on other combinatorial assemblies. The
extension to the Ewens sampling formula is straightforward. For the case
6 = 1, Arratia and Tavaré (1992a) analyze the above relation to show that
dy(n) decays superexponentially fast relative to n/b — . Theorem 5 showed
that if 6 # 1, we cannot hope for superexponential decay for d,(n) for fixed b
as n — o, The intuitive reason that superexponential decay only occurs for
6 = 1 is that (36) involves conditioning on the event T, = n, where ET,, = 0,,;
conditioning on the event that something equals its mean, which is the case
0 = 1, is qualitatively different from conditioning on something being a fixed
. nonzero number of standard deviations away from the mean, corresponding to
any case with 6 # 1.

In Theorem 6, we provide a lower bound for the total variation distance
dy(n) = | L(Cy(n)) — £(Z,)| that is O(b/n) for fixed b as n — .
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THEOREM 6. For fixed b,
bole — 1]

2 exp

b
_gg

Jj=1

1/j).

liminf nd,(n) >
n—o
In particular, if 6 # 1, then liminf, _, , nd,(n) > 0.

Proor. From (36) we see that

1

dy(n) = 5P(Tyy = 0) AT 2 1)

I]:D(T,On = n)

We will use Darboux’s method once more to estimate P(T,, = n). From (5)
with a = 0, we see that

-1l

n 0 b6(6 — 1)
P(T,, = n) = exp| — | == _— -2
(T, =n) exp( 0j§11/j) o (1+ FRe—] + O(n )),
so that from (6),
P(T,, = n) b6(9 — 1) .
BTy, =n) " a+n-1 100

The proof is now completed by recalling that P(T,, = 0) = exp(~02?=11 /7).
0O

REMARK. One would expect on the basis of Theorem 6 that the correct
order for the lower bound on d,(n) is O(b/n). This has now been proved in
Barbour (1992).

We conclude with a brief discussion of the asymptotic behavior of d,(n).
Equations (36) and (6) show that

d,(n) =P(To, #n)

so that as n — «,

" T(0)n

where vy is Euler’s constant. For other values of n and b, we have computed
d,(n) numerically using (36) and the REDUCE computer algebra program
[Hearn (1987); see Arratia and Tavaré (1992a) for details]. Table 1 gives the
values of d,(n) for n = 10,50, 100,250 and b = 1,|n'/3],|n'/2|.

. Watterson (1987) noted that for small b, C,(n),..., C,(n) are approximately
independent Poisson-distributed random variables. The results of this paper
may be viewed as confirmation and quantification of this observation. These
total variation bounds may be used to prove a functional central limit theorem

d,(n)=1

(1+0(1)),
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TaBLE 1
Exact and estimated total variation distances

6=0.1 6=0.9 6 =11 6 =2.0

8.85% 5 (1.19_,) 3.51_,(1.58_,) 3.96_5(2.07_,) 4.92_,(4.85_,)
1.76_,(2.64_,) 1.30_,(3.34_;) 1.90_,(4.16_;) 1.19_;(1.00_,)
2.67_,(4.48_,) 8.98_,(537_;) 1.24_,(6.24_,) 351_,(> 1)

1

2

3

1 1.66_5(2.23_,) 7.26_,(3.36_,) 8.03_,(4.52_,) 1.06_,(1.15_,)
3 4.64_3(6.96_3) 1.86_3(1.03_;) 2.05_3(1.36_,) 2.69_,(3.46_;)
7
1
4

n =50

1.04_,(1.76_,) 4.06_5(2.52_;) 4.46_,(3.16_;) 5.84_,(8.08_,)

8.21_,(1.11_5) 3.65_,(1.70_,) 4.02_,(2.28_,) 5.36_5(5.86_,)
2.98_5(4.56_5) 1.20_3(6.89_,) 1.32_3(9.14_,) 1.76_,(2.35_))

7.05_5(1.21_,) 2.83_,(1.78_;) 38.12_5(2.29_;) 4.13_,(5.88_))

10

1 327_,(441_,) 1.46_,(6.82_;) 1.61_,(9.20_5) 2.16_,(2.38_,)
6 171_4(2.70_5) 6.94_,(413_,) 7.66_4(5.52_,) 1.03_,(1.43_))
16 4.39_,(7.47_5) 1.78_5(1.13_;) 196_,(1.47_,) 2.62_,(3.81_,)

Table gives exact d,(n) from (36), and (in parentheses) the smaller of the upper bounds
(22) and (23).
*The notation a, means a X 10°.

n = 250

b
b
b
b
b
b
n =100 b
b
b
b
b
b

for the Ewens sampling formula, proved by other methods by DeLaurentis and
Pittel (1985) in the case # = 1, and Hansen (1990) and Donnelly, Kurtz and
Tavaré (1991) for any 6 > 0. For further applications, see Arratia and Tavaré
(1992b).

Acknowledgments. We would like to thank Frank Stenger for teaching
us the utility of Darboux’s method, and Jim Pitman and a referee for sugges-
tions that improved the presentation of the paper.

REFERENCES

Arpous, D. J. (1985). Exchangeability and related topics. Lecture Notes in Math. 1117 1-198.
Springer, New York.

AnTON1AK, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonpara-
metric problems. Ann. Statist. 2 1152-1174.

ARRATIA, R., BARBOUR, A. D. and TAVARE, S. (1992). Process approximations for the large compo-
nents of random combinatorial structures. Unpublished manuscript.

ARRATIA, R. and TAvARE, S. (1992a). The cycle structure of random permutations. Ann. Probab.
20 1567-1591.

ArrATIA, R. and TAvARrE, S. (1992b). Limit theorems for combinatorial structures via discrete
process approximations. Random Structures and Algorithms. To appear.

BARBOUR, A. D. (1990). Comment on ““Poisson approximation and the Chen-Stein method” by R.
Arratia, L. Goldstein and L. Gordon. Statist. Sci. 5 425-4217.

BARBOUR, A. D. (1992). Refined approximations for the Ewens sampling formula. Random

. Structures and Algorithms. To appear.

BLACKWELL, D. and MACQUEEN, J. B. (1973). Ferguson distributions via Pélya urn schemes. Ann.
Statist. 1 353-355.

BoLLoBAS, B. (1985). Random Graphs. Academic, New York.



POISSON PROCESS APPROXIMATIONS 535

DELAURENTIS, J. M. and PrTTEL, B. (1985). Random permutations and Brownian motion. Pacific
J. Math. 119 287-301.

Diaconis, P. and PitMaN, J. W. (1986). Unpublished lecture notes. Dept. Statist., Univ. California,
Berkeley.

DoNNELLY, P. (1986). Partition structures, Pélya urns, the Ewens sampling formula and the ages
of alleles. Theoret. Population Biol. 30 271-288.

DonNELLY, P., KURTZ, T. G. and TAVARE, S. (1991). On the functional central limit theorem for the
Ewens sampling formula. Ann. Appl. Probab. 1. 539-545.

DoNNELLY, P. and TAvARE, S. (1986). The ages of alleles and a coalescent. Adv. in Appl. Probab.
18 1-19.

ERrDOS, P. and TUrAN, P. (1967). On some problems of statistical group theory. III. Acta Math.
Acad. Sci. Hungar. 18 309-320.

Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biol.
3 87-112.

FELLER, W. (1945). The fundamental limit theorems in probability. Bull. Amer. Math. Soc. 51
800-832.

GoLbIE, C. M. (1989). Records, permutations and greatest convex minorants. Math. Proc. Cam-
bridge Philos. Soc. 106 169-177.

GoNcHAROV, V. L. (1944). Some facts from combinatorics. Izv. Akad. Nauk SSSR Ser. Mat. 8
3-48. (See also: On the field of combinatory analysis. Trans. Amer. Math. Soc. 19
1-46.)

HanseN, J. C. (1990). A functional central limit theorem for the Ewens sampling formula. J.
Appl. Probab. 27 28-43.

HearN, A. C. (1987). REDUCE-3 User’s Manual, Version 3.3. Rand Corporation Publication
CP78.

Hoprg, F. M. (1984). Pélya-like urns and the Ewens sampling formula. J. Math. Biol. 20 91-94.

Horre, F. M. (1987). The sampling theory of neutral alleles and an urn model in population
genetics. J. Math. Biol. 25 123-160.

IoNaTOV, Z. (1981). Point processes generated by order statistics and their applications. In Point
Processes and Queuing Problems (P. Bartfai and J. Tomké, eds.) 109-116. North-
Holland, Amsterdam.

JoYCE, P. J. and Tavarg, S. (1987). Cycles, permutations and the structure of the Yule process
with immigration. Stochastic Process. Appl. 25 309-314.

KeLLy, F. P. (1977). Exact results for the Moran neutral alleles model. Adv. in Appl. Probab. 9
197-201.

KoLcHIN, V. F. (1971). A problem of the allocation of particles in cells and cycles of random
permutations. Theory Probab. Appl. 16 74-90.

TavARE, S. (1987). The birth process with immigration, and the genealogical structure of large
populations. J. Math. Biol. 25 161-168.

WATTERSON, G. A. (1974). Models for the logarithmic species abundance distributions. Theoret.
Population Biol. 6 217-250.

WATTERSON, G. A. (1987). Estimating the proportion of neutral mutants. Genetics Res. Cam-
bridge 501 155-163.

WiLF, H. S. (1990). Generatingfunctionology. Academic, San Diego.

RICHARD ARRATIA A. D. BARBOUR
DEPARTMENT OF MATHEMATICS INSTITUT FUR ANGEWANDTE MATHEMATIK
UNIVERSITY OF SOUTHERN CALIFORNIA UNIVERSITAT ZURICH
Los ANGELES, CALIFORNIA 90089-1113 RAMISTRASSE 74
CH-8001, ZURrICH
SWITZERLAND

SiMON TAVARE

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN CALIFORNIA
Los ANGELES, CALIFORNIA 90089-1113



