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EXTREMAL CHARACTER OF THE LYAPUNOV EXPONENT
OF THE STOCHASTIC HARMONIC OSCILLATOR

By Mark A. PINSKY

Northwestern University

We give a formula for the quadratic Lyapunov exponent of the har-
monic oscillator in the presence of a finite-state Markov noise process. In
case the noise process is reversible, the quadratic Lyapunov exponent is
strictly less than that for the corresponding white-noise process obtained
from the central limit theorem. An example is presented of a nonreversible
Markov noise process for which this inequality is reversed.

Introduction. Many authors have studied the asymptotic behavior of the
solution of the stochastic differential equation

x"(t) + (y +eN(t))x(t) =0,

where y > 0, ¢ > 0 and [N(¢): ¢t > 0] is either a white-noise process or a
centered function of an ergodic finite-state Markov process [1, 2, 6]. The latter
model is referred to as the real-noise-driven oscillator process.

The Lyapunov exponent is the exponential growth rate, defined as

AMey) = lig(%)_llog[x’(t)z +yx(2)7].

For the models studied here the Lyapunov exponent depends neither on the
initial conditions (x(0), x'(0)) nor on the sample realization of the noise process
[N(¢): t = 0]. Our interest in this paper is to compare the effects of white noise
versus real noise for a general Markov dependence. This will be accomplished
by means of an expansion in the parameter ¢ | 0.

Lyapunov exponents have appeared in a number of applied areas in the
recent past. Perhaps the most basic of these is stochastic stability theory,
where we study the temporal exponential growth /decay of solutions of linear
stochastic systems which generalize the damped random oscillator equation
x"(t) + Bx'() + (y + eN(#))x(¢t) = 0 of which the current model is a special
case. A general reference for these equations of stochastic stability is [2].
Another source of interest in Lyapunov exponents lies in the field of random
media where the Lyapunov exponent gives the rate of spatial exponential
decay of the solution of the Schrédinger equation with random potential.
These developments are covered in [2], [3] and [4]. The connections between
stochastic Lyapunov stability and the subject of random evolution is described
in the author’s recent monograph [7].
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Our goal in this paper is to obtain asymptotic expansions of the Lyapunov
exponent of the form

A(e,v) =eAy(y) + O(e%), €10,

where Ay(y) is the so-called quadratic Lyapunov exponent, which will be
computed for both the case of white noise and real noise. In order to make a
meaningful comparison between the two cases, we will define below the notion
of associated white-noise process. This is a formal derivative of a Wiener
process whose variance parameter is obtained from the central limit theorem
for Markov chains [5], applied to the real-noise process.

1. Formulation of results. We begin with a finite-state Markov process
[£(2): ¢ = 0]. The transition matrix and infinitesimal matrix are defined by

pi;(t) = Prob[£(¢) = jlé(0) =i], 1<i,j<N,
qi; = ling(pi,-(t) -6,)/t, 1<i,j<N.
tl

We assume that the state space [1, ..., N] consists of a single ergodic class
with no transient states. It follows that zero is a simple eigenvalue of @ = (g; )
where the unique (up to a constant) right and left eigenvectors are displayed as

Q1 =0, 7@ = 0.

The invariant distribution = = (1) is obtained as the limit of the transition
matrix for large time: 7; = lim, ,,, p, ;(®), 1 <i <N, where the convergence is
exponentially fast. The Markov process is said to be reversible if we have
identically

™q;; = T4, 1<i,j<N.

Reversibility is equivalent to the statement that for any ¢, < -+ < t, and

any p-tuple i,,...,17,,
Prob[é(¢)) =iy,...,&(2,) = i,] = Prob[£(t,) = iy,..., &(t;) = i

Any Markov process with N = 2 states is reversible, but there exist nonre-
versible processes with N = 3 (see the final section of this paper).

The “real noise” is introduced into the oscillator equations by means of a
real-valued function F(¢) # 0, which satisfies the condition that ¥ , F(i)m; =
0. The real-noise-driven stochastic oscillator process is defined as the solution
of the stochastic initial-value problem

x"(t) + (v + eF(&(2)))x(¢) =0, x2(0) = x4, x'(0) = x,,
"where vy, ¢ > 0. The real-noise Lyapunov exponent is defined as

Areal(g y) = }iTnO:(2t)_llog[x’(t)2 +yx()?].
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The white-noise-driven stochastic oscillator process is defined as the solu-
tion of the stochastic initial-value problem

x"(t) = (y +ew'(t))x(t) =0, x(0) = x4, x'(0) = x,.

Here [w(?): ¢ > 0] is a Wiener process with Ew(¢) = 0, Ew(t)? = ot, where

ot = 2["B[F(¢(1) F(£(0))] dt.

The formal derivative process [w'(¢): ¢ > 0] is, by definition, the associated
white-noise process. The second-order differential equation is interpreted rigor-
ously as a system of It6 stochastic equations (see Section 2). The white-noise
Lyapunov exponent \*"*(g, y) is defined by the preceding formulas as in the
case of real noise.

THEOREM 1.1. Suppose that [£(t): ¢t = 0] is a finite-state ergodic Markov
process on the state space [1, ..., N1 with.invariant distribution m = (1;) and
F # 0 is a function on the state space with mean zero: E_F = YN | F(i)m;, = 0.
Then the preceding Lyapunov exponents have the asympotic developments

eal(e y) = e50(y) + O(&%), €0,
/\white(g,,y) — ez)t‘g’hite(y) + 0(83), £ lO,

where

1 =
N5 (v) = o | cos(2/y¢) E[F(£(2) F(£(0)] at > 0,

4
o o? 1l
M) = 5= o [o E[F(£(t))F(£(0))] dt > 0.

If either @ is reversible or vy is sufficiently large, then we have the strict
inequalities

0 < AF(y) <APPHe(y).

This result can be interpreted as providing an upper bound for the quadratic
Lyapunov exponent of all Markov-driven oscillator processes with the same
asymptotic variance parameter. It will be shown (see Proposition 4.2) that in
an appropriate ‘white-noise limit” we have lim A% = AP, In the final
section we present an example of a nonreversible Markov process for which the

‘inequality is reversed. The precise statement is:

ProposiTION 1.1. There exists a nonreversible Markov process with N = 3
for which 0 < A%hi(y) < Afgal(y),
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2. White-noise Lyapunov exponent computation. In this section we
give a self-contained treatment of the computation in the white-noise case.

The stochastic oscillator process is obtained as a solution of the system of
It6 stochastic equations

dx, = x5 dt, dxy = —yx,dt + ex;dw = —yx,; dt + ex;°dw,

where [w(?): t > 0] is a Wiener process with mean zero and variance o2¢ and
the small circle indicates Stratonovich multiplication. This process is most
conveniently studied by introducing logarithmic polar coordinates (p,6)
through the equations

x//y = e’ cos, Xy = e’ sin 0.
We first solve the Stratonovich system
df = —/y dt + eh(6)°dw, dp =€q(8)°dw,
where h(6) = cos?0//y and q(8) = sin  cos 6/y.
This defines a diffusion process on R? with the infinitesimal generator
L= —ya/30 + (ec)*(h(6)3/30 + q(6)a/dp)>.
To obtain the quadratic Lyapunov exponent, we introduce the function
I(p,0) = p + 5%7,(6),
where J,(0) is a 27-periodic solution of the equation
~Vy 9J,/80 + 50%h(0)q'(6) = A,
and A, is to be determined. This equation has a solution if and only if the

constant A, is determined by
2

13)1 2 . o
Az—(g)gfo o*h(0)q'(6)d0 = .

The solution oJ, is then obtained as J,(8) = o%(sin 26 + % sin 46)/8y>/2. Sub-
stitution of this function into the generator yields the inequality |LJ — A,e?|
< const. £%. Now we can apply Itd’s formula for stochastic integrals to the
function J(p(2), 6(2)):

p(t) + e2J,(0(t)) = const.+ M(t) + ftLJ(p(s),O(s)) ds,
0
where M(¢) is an Itd stochastic integral of a bounded function, hence
lim,,., M(t)/t = 0. Dividing by ¢ and taking the limit we have

limsupp(t)/t < Aye® + const. &%,
tToo

g liminfp(#)/t > A,e? — const. &*.
t1oo

These inequalities give the required information on the quadratic Lyapunov
exponent in the white-noise case.
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3. Real-noise Lyapunov exponent calculation. The real-noise model
is defined as follows. @ = (g,;) is an N X N matrix which defines a continuous
parameter Markov process [£(¢): ¢ > 0] on the state space [1,..., N]. We
specifically assume that this process has a single ergodic class and no transient
states. In terms of the @ matrix this implies the properties

N
q;;20,i#j, Y q;; = 0, zero is a simple eigenvalue of Q.
j=1

The invariant distribution is written 7 = (), solution of the equation
Zf’:miqij =0 for 1 <j < N. This can be obtained as lim,,,, e'@ where the
convergence is exponentially fast. Denoting by II =1 ® 7 = (m;), we have
[3le*® — | dt < . In particular we may define the inverse operator

H=HO- ["(e9-1)dt,
0

which satisfies QH = HQ = II — I. The inner product is denoted {v,w), =
X mow;.

We note for future reference a very simple fact about the bilinear form
defined by a @-matrix.

ProposiTION 3.1.  For any vector v = (v;) we have the identity

1
(Qu,v), = — 2 Z"Tiqij(vj - vi)z'
i,J

In particular {Qu,v), < 0 with equality if and only if v = const.(1,..., D7.

Proor. The identity is a straightforward calculation using the definition of
7 and the properties of . If (Qu, v),, = 0, then all of the terms in the sum are
zero. By the ergodic properties of @ we conclude that v; — v; = 0 and the
result follows. O

The stochastic oscillator process is the solution of the equation
x"(t) + (y +eF(&(2)))x(¢) =0, t>0, x(0) = x4, x'(0) = x,,

where F(i) is a real-valued function on the state space satisfying
N 7 F@G) = 0.

This is most conveniently analyzed through the polar coordinates p, 0
introduced in Section 2 by solving the equations

0'(t) = —fy + %F(&(t))cos’(@(t)),

p(t) = %F(ﬂt))sin(0(t))008(0(t))~

The triple (p(t), 8(), £(¢)) is a Markov process on the space R X [1,..., N1
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with infinitesimal generator
= (Q — Vv 9/36) + (e/Vy ) F(£)cos®0,/06 + (e/Vy )F(£)sin 6 cos 6/dp.

In order to find the quadratic Lyapunov exponent in this case we construct a
function of the form

J(p,0,¢) =p +efi(0,8) + 3f5(6, §),

where the functions f(6, £), f5(8, £) are smooth 2m-periodic in 6 and satisfy
the equations

(8.1) (@ — Vv 3/36) f, + F(£)cos 0sin 6/y/y = 0,
(3.2) (Q_ \/;6/30)]”2+F(§)cos206f1/30/f=hz

for some constant A,. Conditions (3.1) and (3.2) are equivalent to the asymp-
totic statement that LJ = 1,2 + O(¢?), ¢ | 0.
To solve (3.1) and (3.2) we introduce the resolvent operators

H® = ["(e® — e ™Fdr, i=vy=1.
0

It is immediately checked that these satisfy the equations (@ — in\/; DH®™ =
Im-r

The solution of (3.1) is then obtained by writing sin 6 cos 8 =
(1/4i)[e*® — e~2] to obtain

—f1(6,§) = T[(H@)F)(g)em (H(—Z)F)(g)e—zio].

Computing directly we have
cos® 0 df, /00 = (2 + e + e‘2i0)(§)(e2i"H(2)F + e 2 HC2R),

We substitute this in (3.2), multiply by the invariant distribution m(¢), inte-
grate over (0, 27), sum over ¢ and use the orthogonality relations for e‘*? to
obtain

1
Ay = §[<H(2)F, F), + (H"?F, F),].

This can be written more directly by noting that IIF = 0 and thus
(H®™F,F) = [(e'?F, F),e""V7 dt; hence

Ag = /\real('y) = —[ cos 2t\/—)<etQF F>)_ dt.

4. Comparison of the real-noise and white-noise results. We are
now in position to complete the proof of Theorem 1.1. In terms of the
preceding resolvent operators the quadratic white-noise Lyapunov exponent is
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expressed as

2
Aghite( ) = g _ i(H(O)F Fy.
8'y 4Y 2 )

while the quadratic real-noise exponent is written
1
Agal(y) = 8—[<H<2>F, F), + (HC?F,F),].
Y

Letting u; = HYF we have
(@ —24Vy)u;=-F, j=0,+1,+2,....

From the definition of H, it follows that u ; and u_; are complex conjugates.

The positivity of A5*!(y) follows from the equivalent representation
8y ()
={ug+u_y, F),
= —(1/2) (s + u_, @Qup + u_y) — 2iy (ug — u_y)),)

=(-1/2Xu, + U_g,Q(uy+u_y), + i\/y(u2 tU_g, Uy — U_g)r.

The first term is nonnegative from Proposition 3.1. The second term is also
nonnegative, which can be seen by writing u, = A + iB, u_, = A — iB. The
equations Qu , , = -l_-Zi\/; u , o, — F immediately imply that

Q(uz —u_y) = 2y (uy + u_y).
Therefore,
20y Cuy + u_y,uy - U_gdr =(@Q(ugy — u_g),uy —u_y),
= (Q(2iB), 2iB),

>0
by Proposition 3.1, from which we obtain A¥®(y) > 0. If equality occurs, then
from Proposition 3.1 we must have u,+u_,=c(1,...,1)T and B =

cy(1,..., 17 for constants ¢, and c,. Applying @ to the first of these, we see
that —2F + 4\/; B =0, hence F is a constant, which must be zero by the
normalization, a contradiction. Therefore A%2i(y) > 0.

In order to establish the inequality AF2(y) < A3Pte(y), we first note the
following identity.

LEMMA 4.1. The function U = uy — 3(u, + u_,) satisfies the equation
: (Q2;+ 4y)QU = —4yF.

Proor. Direct calculation using the preceding equations for u, ug, u_,
yields the result. O
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Using this we can write the difference of the Lyapunov exponents in the
form

1
16y2

The second term in the bracket is clearly negative. If @ is also reversible, then
the first term may be written as (@(QU), QU ),. to demonstrate its nonpositiv-
ity. In the general case we may choose y sufficiently large so that the matrix
Q3 + 4yQ has positive off-diagonal elements, hence is the @ matrix of a
Markov chain, from which the nonpositivity follows, which proves the theo-
rem. O

) 1
Avghlte(,y) _ Aléeal(Y) = E<U’ F) = - [<Q3U, U)r + 4y{(QU, U>11] .

Finally, we give the white-noise limit of the real-noise Lyapunov exponent.

ProposiTION 4.2. Suppose that the parameters of the real-noise-driven
oscillator process are rescaled according to the transformation

Q F

Let the resulting real-noise quadratic Lyapunov exponent be denoted by
N5 2(y). Then we have lim, o A5 °(y) = X§M%(y).

Proor. Replacing @ by @/6% and F by F/8, we have to consider the
expression

/ " cos(2ty/y (' P'F /5, F/8), dt = ) " cos(2t5%/y ){e*®F, F), dt.
0 0

When & | 0 we can apply the dominated convergence theorem to conclude that
limg, o A5 °(y) = (1/47)[5{e'®F, F), dt = A3M*(y). O

5. A counterexample. We present an example of a three-state, nonre-
versible Markov chain for which the preceding inequality fails to hold. This
example has been contributed by Stafford [8].

Let @ = (g,;) be defined by the coefficients

-2 1 1
@=|1 0o -1 1|
1 0o -1
This matrix defines an ergodic Markov chain with 7 = (1,1, 2). For a given
nonstochastic harmonic oscillator with spring constant y > 0, let the noise
process be defined by the column vector F = (28 + 12y, —4 — 20y, —12 +
4y)T. Clearly we have L3_,m F(i) = 0, as required.
. PROPOSITION 5.1. For this choice of Q, F we have {(Q* + 4yQ)U,U ), >
0 for y <1/11. In particular the quadratic Lyapunov exponents satisfy
/\‘;al('y) > /\‘ghite('y).
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Proor. Let v be the vector v = (1, —3,2)7. It is immediately computed
that

-12 8 4
QK= -4 o0 4
8 -4 -4

and that (Q3%v,v), = 2 > 0. Further direct computation shows that (@3 +
4yQ)v = —F and that the null space of @3 + 4yQ consists of multiples of the
constant vector (1, 1, 1)7. From the analysis in Section 4, the required solution
U in Lemma 4.1 satisfies the equation (@3 + 4yQ)U = —4yF. Therefore the
difference U — 4yv is a multiple of (1,1, 1)7 and we have

(@ +4yQ)U,U), = —4y(F,U),
—4y(F,4yv +¢(1,1,1)7)
= —4y(F,4vyv),
((Q° + 4yQ)v,4yv),,
= 4'y<(Q3 + 4yQ)v, U)w

But a short calculation shows that (@2 + 4y@)v, v), = 2 — 22y. Therefore if
¥ < 1/11, then this expression is positive and we have reversed the inequality,
proving that A2l(y) > A%hite(y). O
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