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UNIQUENESS OF STATIONARY ERGODIC FIXED POINT
FORA ./M /K NODE'

By V. ANANTHARAM

Cornell University

We view a ./M /K node having K exponential servers of service rate u
as a map on the space of stationary ergodic arrival processes of rate A,
A < Ku. It is well known that the Poisson process of rate A is a fixed point
of this map. We prove there is no other fixed point.

1. Introduction. Networks of quasireversible queues with Bernoulli
routing [8, 15] are widely used as models for performance analysis of computer,
communication and manufacturing networks. This is because they admit
product form stationary distributions which makes the computation of station-
ary performance quantities feasible. Several kinds of queueing nodes are
known to be quasireversible. Perhaps the simplest among these are the FCFS
exponential server nodes ./M/1, ./M/K and ./M /.

We may think of a queueing node in stationarity as a map converting
stationary arrival processes into stationary departure processes (this has to be
appropriately formulated). One of the characteristics of quasireversible nodes
is that they admit Poisson processes as fixed points of the input—output map.
This fact seems essential to the probabilistic understanding of the product
form stationary distribution when such nodes are interconnected via Bernoulli
routing to form networks [14]. Because of the close connection of the existence
of Poisson fixed points with the product form nature of network stationary
distributions it seems to be of some interest to learn if the input—output map
of quasireversible nodes admits any other fixed points, apart from mixtures of
Poisson processes, which are also trivially fixed. This problem has been
floating around the community for some time.

For ./G/» nodes acting on stationary ergodic input processes, Vere~Jones
[13] established the uniqueness of the Poisson fixed point (for a precise
formulation, see [13]). A recent paper of Glynn and Whitt [5] mentions the
related problem of proving that the stationary departure process from a long
tandem of identical . /G /1 nodes fed by a renewal process becomes asymptoti-
cally Poisson as the length of the tandem tends to infinity. For ./M /1 nodes a
natural approach to this problem would be to first prove that Poisson pro-
cesses are the only stationary ergodic fixed points. Another recent contribution
to the study of fixed points of the input—output map of first come first served
queues in a very general setup is due to Bambos and Walrand [3].
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In this paper we prove that Poisson processes are the only stationary
ergodic fixed points of ./M/K nodes, K < ». The proof technique is quite
dependent on the exponential server assumption, so a new idea will be
necessary to study more general quasireversible nodes. Unfortunately at the
moment of writing we are unable to verify the related generally held belief that
the stationary departure process from a long tandem of identical ./M /K nodes
fed with a stationary ergodic process converges weakly to the Poisson process
of the appropriate rate. For a discussion of the difficulty here, see the conclud-
ing remarks.

We will first discuss fixed points of the input-output map of a ./M /1 node.
In Section 2 we review some basics of the theory of stationary point processes
following Baccelli and Bremaud [2] and Resnick [12]. We also introduce the
sample spaces on which we will work. In Section 3 we recall the concept of a
stationary regime for the ./M /1 node fed with a stationary arrival process and
prove the existence and uniqueness of stationary regimes when the arrival rate
is less than the service rate. The proof is a version of the Loynes scheme; see
Loynes [9], Baccelli and Bremaud [2] and Walrand [15] for discussions of this
kind of construction. This construction serves to define the input—output map
of a ./M/1 node of service rate u as a map on stationary ergodic arrival
processes of rate A, 0 < A < u. In Section 4 we introduce a metric on the space
of point processes of rate A relative to a Poisson process of rate u. This metric
was motivated by a similar metric introduced in Anantharam [1] to study the
analogous problem for quasireversible queues in discrete time; the metric in [1]
is a member of a family of generalizations of Ornstein’s d metric [10] intro-
duced by Gray, Neuhoff and Shields [7]. We derive several basic properties of
this metric, which are analogous to properties of the metrics in [7] derived in
[7] and the textbook of Gray [6]. In Section 5 coupling is used to demonstrate
that the input-output map of a ./M/1 node is contractive relative to the
metric introduced in Section 4. This enables us to state and prove the main
result for ./M /1 nodes in Section 6. In Section 7 we indicate the modifications
necessary in the preceding proof to arrive at the uniqueness of the Poisson
fixed point for ./M/K nodes, K < ». Some concluding remarks are made in
Section 8.

2. Preliminaries. In this section we recall some basic concepts from the
theory of stationary point processes. The development and notation closely
follows the discussion in [2]. Statements regarding the topology and measur-
able structure of the spaces we consider are mostly proved in [12], Chapter 3.

Let (R, &) denote the real numbers with the Borel o field. A counting
measure is a measure m on (R, &) such that:

1) m(C)e{0,1,...,} for all C € &.
(i) m(a, d]) < = for all finite intervals [a, b] C R.

The set of all counting measures is denoted by M. Let C.(R) denote the set of
continuous functions on R with compact support. We endow M with the vague
topology, which is the weakest topology under which the maps m — m(f) are
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continuous for all fe C(R). Let .# be the o-algebra generated by the
functions m — m(C) as C ranges over #. Then .# is the Borel o-algebra of
M with the vague topology (see [12], Exercise 3.4.5). (M, .#) is called the
canonical space of point processes on R. It is known that the vague topology on
M is metrizable as a complete separable metric space ([12], Proposition 3.17).

Given ¢ € R, let 5, denote the Dirac measure at ¢. Associated with each
counting measure m € M there is a unique sequence of real numbers
(t,, n € Z) such that

—o< o <t <t <0<t <t < <@

and

m(C) = Y 8,(C)
nez
for each C € &, with the convention that 5, = §_,, = 0. The time ¢, is called
the nth point of m. Note that each ¢, is a random variable on (M, .#).
For each ¢ € R we may define the left shift S, M - M by S,m(C) =
m(C +t), C € #. S, is an invertible measurable transformation of (M, .Z).
Further, the family {S,}, ¢ € R forms a measurable flow on (M, .#), that is:

(@) (¢, m) - S,m is measurable with respect to # X .# and .Z.
(ii) S, is invertible for all ¢ € R.
(iii) 8,8, =8,,, forall ¢, s € R and S, is the identity.

Let (Q, &, P) support a P preserving measurable flow {,}. A stationary
point process is a measurable map N: (Q, &, P) - (M, .#) which commutes
with the flows, that is,

N(6,0) = S,N(w) forallteR.
Let p denote the distribution of the point process N, that is,
P({w: N(w) € A}) = p(A) forall A e .#.

A point process is often loosely identified with its distribution m; when
necessary we will therefore talk of ‘“‘representations” of a point process, when
we actually mean a point process. When (Q, %, P) = (M, .#,n) the point
process is said to be in canonical representation. The process is called ergodic if
p is {S,} ergodic. If P is {6,}-ergodic, the process is said to be given in an
ergodic representation. For a measure m and a function f, we write m(f) for
J/fdm. The rate of the point process p is p(m(0, 1]). Let .#Z5(A) [respectively,
#&(A\)] denote the space of stationary point process (respectively, stationary
and ergodic point processes) with rate A. We note the following:

LEmMMA 1. .#4()\) is compact in the weak topology induced by the vague
, topology on M. .

" PROOF. By a simple application of Markov’s inequality, we can choose K,
N =1,2,... such that for any p € .Z5(\), p({m(—N, N] > Kp}) <27V, The
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set
A={m:m(-N,N] <Ky forall N=1,2,...}

is vaguely relatively compact in M, because sup,, c , m(f) < = forall f < C(R)
(see [12], Proposition 3.16). But w(A) > 1 — ¢ for all p € .#Zg(A), so # () is
tight and therefore relatively compact, by Prohorov’s theorem (see Billingsley
[4], Theorem 6.1). It is easily verified that .Z4(A) is weakly closed, completing
the proof. O

We view our ./M /1 node as specified by its virtual departure process, which
is a Poisson process of rate w. Throughout this paper we will choose to
represent the virtual departure process in its canonical representation. We use
the notation (Q,, 9, m,,{6;}) for the sample space of this canonical represen-
tation, with the virtual departure process specified by the (M, .#) valued
random variable N,. The nth virtual departure point is denoted ¢Z. Further, it
is easily seen that m, is {6;}-ergodic.

Consider feeding the node with a stationary arrival process u, € #Zg(A),
0 < A < u, which is independent of the virtual departure process. Let the
arrival process be represented on (Q,, %, P,,{67}) by the (M, .#) valued
random variable N,. In what follows we may need to use different representa-
tions for the same arrival process. The node and the arrival process can be
represented together on the product space (Q, &, P,{6,}) where Q =, X
endowed with the product o-field ¥ = %, X %, and the product distribution
P = P, X P, and supporting the product flow {6,} = {67 x 0;1}, t €R.

Note that an ergodic u, can be represented by a nonergodic P,, but a
nonergodic p, cannot be represented by an ergodic P,. This is an easy
consequence of the definition of ergodicity. Note that if P, is {6/}-ergodic then
P is {6,}-ergodic.

We will work on the Palm space of (2, %, P) associated to the virtual
departure process. This space is (Q°, & °, P°) with Q° = Q N {¢t§(w) = 0}, the
induced o-field and the Palm distribution. This space admits a P° preserving
transformation 6 given by the restriction of 6,4 to Q0. For the development of
Palm theory, see [2].

3. Existence and uniqueness of stationary regime. It is well known
that one can uniquely specify the input—output map of a ./M/1 node of
service rate u as a map on Z&(A) when 0 <A < pu. This is a consequence of
the existence and uniqueness results for the Loynes problem [9] for this queue,
and falls out of the more general results for G/G/1 queues (see [9], [2] and
[15], Chapter 7 for discussion of these results). Since we need the details of the
construction, we briefly recapitulate it in our setup.

Let the arrival and virtual departure processes be represented by (M, .Z)
valued random variables N, and N, defined on (Q, %, P,{0,}). Let
(Q° F° P° 0)be the Palm space of the virtual departure process. The node is
said to admit a stationary regime if there is a nonnegative integer valued
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P%-as. finite random variable x, on (Q° %, P, 6) such that
(3.1) %90 =xo + N,(0,¢{] — 1(x, + N,(0,2{] > 0).

The reason for this terminology is that with x, = x,°0", (x,, n € 7) is a
stationary version of the queue size left behind by virtual departures. Note
that from a stationary regime on (2%, % °, P9, 9) as above, one can construct a
time stationary right-continuous version of the queue size process on
(Q, &, P,{6,}) by the prescription

%, = 2g O + Ny(25, t] ifed<t<td,).

THEOREM 1. Consider a ./M/1 node of service rate wu, with an ergodic
arrival process u, € #§(A) given by the (M, .#) valued random variable N,
on (Q,, F, P,,{6)). The overall system given on the product representation
(Q, 7, P,{6,}) admits a unique stationary regime.

Proor. For each m € Z we construct a process (x*, n > —m) on the
Palm space of the virtual departure process by

(3.2) x™ =0,
(33) xrrzn+1 = xr’Ln + Na(tg’tle+1] - l(xrrzn + Na(tle’tle+1] > 0)

One thinks of x* as the queue size that would be left behind by the nth
virtual departure if the node were started empty immediately after the —mth
virtual departure. We claim that x**' > x for all n > —m. This is easily
seen by induction on n, starting with the observation that x™'' > 0 =x"_
and then using (3.3). Thus we may define
(3.4) x, = lim x*

m— oo

for all n € Z. Since x,, =x""'0, we have x>, , =x7 6. In particular,

examining (3.3) for n = 0 in the m = o limit and comparing with (3.1) shows
that xj is a stationary regime if it is a.s. finite.

The P°a.s. finiteness of xj is argued easily from the rate condition A < w.
First note that the {6,}-ergodicity of P implies the 6-ergodicity of P° [see [2],
statement (8.2.1)]. Since {xj = »} is a 6-invariant event, it has P° probability
0 or 1. Thus to show xj is P%-a.s. finite it suffices to prove that P%(x§ = ) < 1.

Suppose on the contrary that P°(xj = ) = 1. From (3.3), using x™ < x™*!

and x", ; =x"*10 0, we have

E°%x < Bt = E%" = E%" + A/p — E°[1(x + N,(t2,¢2,,] > 0)].
Hence
, (3.5) E°[1(xp + N,(¢2,t2,1] > 0)] <a/m < 1.

But if x* increases to x* = o, the expectation on the left-hand side of (3.5)
approaches 1, which is a contradiction.
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The uniqueness of the stationary regime can also be argued in a standard
fashion. Assume that %, is another stationary regime. By construction, it is
easy to see that x{ is a minimal stationary regime, that is, %, > x5 P’-a.s.
Since £, is a stationary regime, we have

(3.6) o8 = &g + N,(0,¢f] — 1(%, + N,(0,£{] > 0).
From (3.1) for x§ and (3.6) we get
o — x50 = %, — x5 — 1(%, + N,(0,¢{] > 0)
(3.7) + 1(x§ + N,(0,2¢] > 0)
<Xy — Xp.
It follows that for each 0 < K < = the event {£, — xj < K} is #-invariant. By
the #-ergodicity of P°, there is some 0 < K < o for which P%(%, = xj + K) =

1. Uniqueness of stationary regime will follow if we can show that K = 0.
Suppose on the contrary that K > 0. Then %, > 0, so (3.7) yields

(3.8) K=K -1+ 1(x5+ N,(0,] > 0).
But from monotone convergence, (3.5) yields
E°[1(x5 + N,(0,¢] > 0)] <A/u <1,

which is in contradiction with (3.8). O

We now define the stationary departure process of the node on (Q, &, P,{6,})
by

N,= ¥ 8,4 1(x5°0,q+ N,(2d,¢2,,] > 0).
ne”Z

We next prove that this is a stationary ergodic process of rate A, with a
distribution that is independent of the representation chosen for the arrival
process. This allows us to define the input—output map of the ./M/1 node, as
a map on ME(A). We denote this map by T. Our goal in the rest of the paper is
to prove that the Poisson process of rate A is the unique fixed point of this
map.

THEOREM 2. Let the situation be as in the statement of Theorem 1, and let
us define the M valued function on (Q, &, P,{6,}) by

N,= ¥ 8,2, 1(x5°0, + N(td,22.,] > 0).
neZ
Then N, is a stationary point process. Its distribution w, is an element of

HE(N). The same element of #S(A) results for any choice of arrival representa-
tion (Q,, &%, P,,{62)) for a given distribution u,.

Proor. The sequence Z,,; = 1(xg°0,a + N(t3,¢5.,]1 > 0), n € Z, is eas-

ily verified to be a sequence of {0, 1}-valued marks on the point process N (see
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[2], Section 1.3 for a discussion of marked point processes). It follows that N,
is an (M, .#) valued random variable on (Q, %, P,{6,}) commuting with the
shifts, that is, it is a point process. The rate of N, is E[N,(0, 1]] by definition;
we first verify that this is A. To see this, note that

E[N,(0,1]] = E[N,(0,1]] E°[1(x5 0 8,0 + N,(¢2,¢2,,] > 0)]

by the definition of Palm probability [see [2], equation (2.2.4)]. Since
E[N,0,1]] = u, we need to verify that the second term on the right is A /u.
From (3.3), we have

(39) EO[]. x +N(td td+1] > 0 ] = A/ — EO[ m+1 _ xm]

Since x, increases pointwise to the P°-a.s. finite random variable x% as
m — o, we have x™*! — x™ converging pointwise to 0 as m — «. Further, we
can wrlte

xm+1_x _xm+1 x’rln_ _1( m+1+N( R n] >0)

+ 1(xm ) + N(2d_,, 2] > 0)

m+1 .M
<X, X,_1-

By working backwards in n we then get

x’lln+1_x <xm+l x™ =x’"+1<N(t

—m

t,.].

Thus the variables x*** — x*, m > —n, are uniformly integrable. Since they
converge pointwise to zero, it follows that E l)[x”‘*1 —x] > 0as m = «, so
from (3.9) and monotone convergence, we get

E°[1(x; + N,(td,¢2,,] > 0)] = A/u

—-m—1>

m+1

as desired.

u, is ergodic because the representation N, is ergodic and has distribution
t.. Thus p, € Z5N).

It remains to show that u, does not depend on the representation chosen
for w,. Let (M®, #®,{S®}) be as defined at the beginning of Section 4. We
observe that the map (N,, N,) from (Q, &, P,{6,}) to (M®, .#®,{S®}) com-
mutes with the flows and has distribution u, X m,. Let the Palm space of the
virtual departure process on (M®, . #®, u, X m,{SP}) be denoted
Q8 #° P26, (c for canonical). Let (.QO FO, , P%0) be the Palm space of the
v1rtual departure process on (Q, &, P,{6,}). Then Q,= (N, Ny~ 1(Q9) so that
(N,, N,) can be viewed as a map on Palm spaces. This map commutes with the
shifts, and P is the distribution of P° under this map. The unique stationary
regime constructed on Q% #° P2, 6,) by the Loynes construction when
.composed with (N,, N,) gives a statlonary regime on (Q° F°, P° 6), which,
by the uniqueness in Theorem 1, must necessarily be the unique stationary
regime there. The fact that u, does not depend on the representation of u, is
now obvious. O
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In conclusion, we have proved that for any A < u there is a well defined map
T: .#5(\) - #E(M), which is the input-output map of a ./M/1 node of service
rate u.

4. A metric on arrival processes. In this section we introduce a metric
on #5(A). Let .#5(A, A) denote the space of all probability distributions on
(M®, %(2)) = (M X M, #X #)that are {S®} = (S, X S} stationary and have
rate A in each marginal. Given u,, v, € .#g()), a stationary coupling of u, and
v, is specified by giving a € .#g(A, A) with marginals x, and v,, respectively.
We let N, (respectively N;) be the map from (M®, .#®) to (M, .#) giving the
first (respectlvely, the second) marginal. These are point processes of rate A
under «, having distributions x, and v,, respectively.

We take the canonical representation (Q, &, 7, {62} of the Poisson process
of rate u and let (Q, &, P,{6,}) denote the product of (M®,.#®, a,{S®}
with (Q, &, m,, (6. Let (QO F O, P° 6) denote the Palm space of the virtual
departure process where 6 is the restrlctlon of 6,4 to 0o,

For u > 0, we define

(4.1) B.(1a,v,) = infEO|N,(0, 8] — Ny(0,2{]|.

In effect one considers the expected value of the absolute difference between
the number of arrivals in the first process and the second process over an
exponential time of rate u independent of the coupling and takes the infimum

over all stationary couplings.
The properties of p, relevant to our discussion are summarized in the

following result.

THEOREM 3. The p, distance on #g()) introduced above has the following
properties:
(i) p is a metric.
(i) The infimum in the definition (5.1) is a minimum, that is, there is
stationary coupling that achieves the p distance.
(i) If w,,v, € #EN), the infimum in (5.1) can be replaced by an infimum
over stationary ergodic a. Further, this infimum is a minimum.

Proor. We first prove (ii) and then (i) and (iii). First note that a definition
of p,(1,,v,) equivalent to (4.1) is

(42)  plbarn) = inf [ wexp(~pt)a(| N0, ] = N0, 1]])
This is because the virtual departure process is a Poisson process independent

of the coupled arrival processes. The alternative definition allows us to avoid
* dealing with Palm probabilities. Now, for any y € .#g(A, A),

(43) [ wesp(~ut)y(IN.(0,2] = Ny(0,1]|) dt < [ w exp(~ )2t de
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so for any & > 0, by choosing a large enough T, we can bound the left-hand
side of (4.3) by & uniformly over y. Next, we note that for any 0 < ¢ < T and
L > 0, we have

|N,(0,¢] — N(0,¢]|1(| N,(0,¢] — N;(0,¢]| = L)
< N,(0,T]1(N,(0,T] = L) + N4 (0, T]1(N;(0,T] = L).
We may thus write
(| Nu(0, 2] = Ny(0, t][1(| N,(0, 2] — Ny(0,¢]| = L))
< y(N,(0, T]1(N,(0,T] = L) + N4(O, T]1(N4(0,T] = L)).

For any y € .#g4(), ) having marginals u,,v,, the expectation of the right-
hand side above depends only on the marginals, and can be made arbitrarily
small by choice of L. So for any ¢ > 0, we may choose L so large that

/;)T/-’* exp( _/J't)Y(l N,(0, t] - N;(0, t] |1(| N,(0, t] - N;(0, t]| > L))

<&

(4.4)

uniformly over y € .#5(A, A) having marginals u,,v,. Let
T
f= fo p exp(—put) (| N,(0, 2] — N;(0,¢][)1(| N,(0,¢] — Ny(0,¢]| <L) dt.

Then f is a bounded continuous function on M® with the vague topology,
and we have shown that

(45) y(f) < [:M exp(—ut) v(| N.(0,8] = Ny(0, ][} dt < ¥(f) + 2e,

where the left-hand inequality is obvious. Given u,,v, € .#5(A), let a, €
#g(A, A) be a sequence with

. m exp(— )| No(0, ] = No(0, £]]) dt = Bk v2).

An argument analogous to the proof of Lemma 1 shows that .Zg(A,A) is
compact. Hence (a,,), has a weakly convergent subsequence; let « be the weak
limit of such a subsequence. Clearly a has first (respectively, second) marginal
w, (respectively, v,). Taking the limit as n — « along this subsequence and

using (4.5) gives
[ wexp(—ut)a(|N,(0,4] = N0, ¢][) dt < a(f) + 2
0
= lim a,(f) + 2¢

<P (KgsVy) T 26

for any & > 0. Letting ¢ — 0, and by the definition of p,(x,, v,) as an infimum,
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it must be true that
fo pexp(—ut)a(|Ny(0,¢] — Ny(0,¢][) dt = p(ra>va)-

This establishes (ii).

To establish (i), we need to establish (2) p,(u,,v,) = p,(v,, 1), (b) pﬂ(,ua,
v,) = 0 = u, = v, and (c) the triangle inequality. Symmetry of p“( Ly V) IN 1ts
two arguments, that i is, (a), is obvious. To verify (b), suppose p, (u,,v,) =
Let @ € .#5(A, A) be a stationary coupling achieving p,(u,, va), whose exis-
tence is ensured by (ii). We first claim that «(IN,(0, ¢] — N(0, £]]) is continuous
in ¢. This is because, for any § > 0,

[| N,(0,¢ + 8] — N;(0,¢ + 8]| —|N,(0,¢] — N;(0,¢]]|
< N,(¢,t + 8] + Ny(¢t,t + 8]
and a(N,(¢,¢ + 8] + Ny(¢, ¢t + 8] = 2A8. From

/0 w exp( —ut)a(|N,(0,¢] — N;(0,¢]|)dt =
and the continuity above, it follows that
(4.6) a(|N,(0,t] — N;0,t]|) =0
for all 0 <t < . Now, given any 0 = ¢, <, <{¢, < -++ <¢,, we claim that

(47) (/““a(O’tl]"",/““a(tn 1 n]) ( a(O’tl]""’Va(tn-—l’tn])‘

This is enough to establish the equality of u, and v, (see [12], Proposition 3.4).
Establishing (4.7) is equivalent to establishing

(Na(o’tll""’ a n 1 n]) d(N(O tl] a n 1» n])
which would follow from showing that

(48) a((Na(O’tl]""’Na(tn 1 n]) #* (N(O tl] N'(tn 1 n]))

But the left-hand side of (4.8) is bounded above by LI ;a(N,(¢;_,, l] *
N,(¢;_1, ¢;], which is zero by (4.6).

To establish the triangle inequality, let w,,v,,n, € #s(A). We want to
show

(4.9) Pu(MasNa) < P(BarVe) +Pu(VasMy)-

Let a € .#5(A, M) achieve the infimum in the definition of ﬁﬂ(pa, v,) and let
B € #5(A, A) achieve the infimum in the definition of p,(v,, na) Since
(M@, .#®) is a complete separable metric space with its Borel o-algebra ([12],
Prop031t10n 3.17), it is a separable standard Borel space; see Parthasarathy
[11] for a definition. Therefore a admits a regular conditional distribution
_ relative to the sub o-algebra generated by the first marginal, and so does B
(see [11], Theorem 8.1). From this it is straightforward to construct a jointly
stationary coupling of wu, and n, with the expectation on the right of (4.1)
bounded above the right hand side of (4.9) in a manner similar to the proof of
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Theorem 8.3.1(b) in [6]. Since p,(u,,n,) is defined through an infimum, the
claimed triangle inequality follows.

Finally, we prove (iii). Let u,,v, € .Z$(1), and let a € .#g5(A, A) achieve the
infimum in the definition of p (u,,v,). By appealing to the ergodic decom-
position theorem for separable standard Borel spaces, we can find an
{S®} invariant set E € .#® with a(E) =1 such that for each w € E,
limg ., [§1(S®(w) € G) exists for all G in a countable generating field & for
#®, and the probability distribution a, on .#® generated by these empirical
limits is {S{®} ergodic, and so that for any f € L'(a) we have f € L(a,) for all
w € E and

a(f) = a(a,(f)).

[On the right-hand side above, we get a function w — a,(f) on E and then
take its expectation relative to a.] Since u, and v, are each ergodic, each a,
must have marginals u, and v,, respectively. The function w —
Jow exp(—ut)IN,(0,t] — N;0, ]l dt is in L' (a). Applying the ergodic decompo-
sition shows that the infimum on the right-hand side of (4.2) over ergodic « is
at least as small as that over all stationary « with the appropriate marginals
and that there is some ergodic a achieving the infimum. O

5. Contractiveness of input-output map. Our main result is a conse-
quence of the following:

THEOREM 4. Let p,,v, € #EN), p, # v,. Then
ﬁu(T(/"l’a)’ T(Va)) < ﬁp,(/‘l‘a’ Va)'

Proor. Since p, # v,, by Theorem 3(i), we know that p (u,,v,) > 0. We
construct the stationary ergodic coupling a achieving the minimum in the
definition of p (u,,v,) and take its product with the canonical representation
of the virtual departure process, letting the overall sample space be denoted
(Q, &, P,{6,). Let (Q° F°, P 0) denote the Palm space of the virtual depar-
ture process. On this space we will jointly construct the stationary regimes for
the two arrival processes following the Loynes scheme and a colouring idea.
Before giving the formal details we sketch the idea behind the proof.

Let N2 =N,(t2_,,t?], N¢=N,t?_,,¢t?] and NY = min(N2, N%). Let
NE=N2—-NY and N2 =NZ—- NY. We think of NY “yellow” arrivals as
having arrived in the interval (¢2,¢9, ,]. NF (respectively, N.) is the number
of “extra” arrivals in the first (respectively, second) arrival process in this
interval, which we think of as coloured “red” (respectively, “blue”). The p,
distance between the two processes is seen to be 21 /u — E°NY.

Recall that the Loynes construction is entirely carried out on the Palm
space. We ensure that immediately before a virtual departure point there
cannot be both red and blue customers present in the queue. This can be done
by carrying out a merging procedure immediately before releasing departures
—if there are red and blue customers just prior to a virtual departure, they are
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merged one to one to the extent possible, becoming yellow customers. At a
virtual departure just prior to which there are yellow customers we release
yellow customers. We only release nonyellow customers at a virtual departure
if there are no yellow customers present just prior to it.

After the Loynes construction is completed, in the limit, this colouring
picture results in identifying which of the virtual departure points in the
stationary regime correspond to real departures for both arrival processes and
which correspond to real departures for only one or the other process. Indeed
the Palm version of the former is precisely the points at which yellow cus-
tomers got released. The process of points at which blue (respectively, red) and
yellow customers got released is the Palm version of the departure process
associated to the first (respectively, second) arrival process. (Recall the Palm
space is with respect to the virtual departure process.) The Palm coupling can
be transferred to give a time stationary coupling between the departure
processes. Now, if we consider the expected absolute difference in number of
points of the two departure processes over an exponential interval independent
of these processes, it is obviously no more than the rate of ‘‘nonyellow”
departures. But this rate can be expressed in terms of the Palm stationary
probability that a departure is nonyellow. This can be shown to be strictly less
than the Palm stationary mean number of nonyellow arrivals between virtual
departures, by showing that there is a positive probability that a ‘“‘merge”
takes place just prior to a virtual departure time. This concludes the proof.

We now proceed to the formal details. On the Palm space (Q°, &#°, P°, 9),
for each m € Z we construct (z™, x™, £™, x™Y x™ 8 x™B n > —m) by the
prescription

zm =xm Y =gm R =B gm =gm =0,
Zl =27 + NY = 1(z7 + N > 0),
xp =2 + NI — 1(x + N2 > 0),
£, =& + N - 1(&£ + NF > 0),
(51 xm ) =x7Y + NY + min(x ®, NB) + min(x]®, NJ)

—1(x™Y + N + min(x> %, N2) + min(x> 2, NF) > 0),

,R _ Y

a1 =X~ X0,

B _ zm _ .m,Y

Xpi1r =Xph1 — Xp41
We claim that z™, x™7Y, x™ and %™ are nondecreasing in m for each fixed
n for which they are defined, that is, n > —m. For x;* and £]* this claim
, follows from Theorem 1. We easily establish z"*! > z™ by induction on n,
starting with the observation that z™!' > 0 = z™, . We establish x"*Y >
x™Y also by induction on n, starting with the observation that x™ %Y > 0 =
x™Y Now suppose x™" Y >x™Y for some n > —m. Either NF , =0 or
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N2E | = 0; assume the former. Then from (5.1) we have
xm+1 Y _ xm+1 Y+ NY L + mln(xm+1 R NB )

— (x0T 4 NY, + min(x R NE ) > 0)
=N, + min(x 5, a2 H0Y + NE )

= (N1 + min(x 5, 250 Y + NE ) > 0)
>NY  + min(x,’,"_l,x,'[‘_’f +N2 )

- 1(N," + min(x, x77 + N2 ;) > 0)
=xm™Y

where in the third step we used the induction hypothesis and the fact that for
nonnegative integers a, b, a > b implies a — 1(a > 0) = b — 1(b > 0).

Thus we can define 2, xY x* and £° by taking the pointwise limit as
m — . We can also define x°°’R xy —xp? and x0 B = £2 — x2Y. Clearly x5
is the unique stationary regime corresponding to the first arrival process and
% is the unique stationary regime corresponding to the second arrival process.

We now define stationary departure processes N,, N;, N, and N, on
Q, &, P,{6,}) by

=Y Oyd 1(x0°0d+N(td td+1] > 0)

nez

N; = X 8, 1(%5°0,¢ + Ny(ts,22,,] > 0),

nez

N, = ¥ 8,4, (%576, + NY + min(x5 26,4, NF)

ne”Z

+min(x§ B o0, NE) > 0),

Y 8. 1(25°0,4 + NY > 0).

nez

N, and N; are, respectively, stationary versions of the departure processes
associated to the first and second arrival processes, and each has rate A, as
proved in Theorem 2. The rate of N, is determined by writing

E[N,(0,1]] = E[N,(0,1]]E°[1(25° 6,4 + N > 0)]

and then arguing exactly as in Theorem 2 to conclude that E TiCzy ° 0,2 +
N > 0)] equals E’[N,Y]. Thus

| E[N,(0,1]] = E°[N}]
(5.2) =p(2A /1 = PuMarvs))
=2\ - /*Lﬁ;,c(/"‘a’ Va)‘
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The rate of N, is similarly computed to be
E[N,(0,1]] = wE°[1(&57 0,4 + NY + min(x 2o 6,4, NF)
(5.3) +min(x5 % o 6,4, NZ) > 0)]
= wE°[NY + min(x§ B 0,6, NF) + min(xg R o 6,0, NF)],

where the second equality comes from arguing exactly as in Theorem 2.

The pair (N,, N;) is clearly jointly stationary, and the distribution of N,
(respectively, N;) is T(u,) [respectively, T(v,)]. Further, since points in N,
correspond to points in both N, and Nj, it is seen by definition that

PuT (1), T(v,)) < 24/0 — f:u exp(—ut) E[ N,(0,¢]] dt

=2)/p - 1/uE[N,(0,1]].

Comparing with (5.2) and (5.3), we see that to establish the claim it suffices to
prove that

E°[NJ] < E°[N{ + min(x§ 2, NE) + min(x§ ®, N2)]
or equivalently that
0 < E°[min(x§ 5, NJ') + min(x§ *, NP)|,

that is, there is a positive probability of a merge prior to a virtual departure.
We proceed to establish this.

On O° let A, denote the event {min(x>®, NB) + min(x> 2, NF) = 0}. Let
B denote the event {Ny > 3, N > 0, N2 > 0}. We claim that

BC(A,NA NA,NA".

To see this, it suffices to prove that B N Ay, N A; N A, c AS. This is obvious.
Indeed, if there are at least three arrivals common to the two arrival processes
in (0, ¢{], then there must necessarily be yellow departures at ¢, td and tg. If
there is a red arrival in (¢, £¢] and a blue arrival in (¢, t¢], and there are no
merges in the intervals (¢¢_,t¢], i = 1,2, 3, the red and blue arrival must
necessarily merge just prior to the virtual departure at ¢¢. To complete the
proof, it therefore suffices to show that P°(B) > 0.

P°(B) > 0 follows if we can show that thereare 0 < T, < T, < T3 < T, < T}
and & > 0 such that

a(Na(O’tﬂ >3, Ny(0,4,] = 3, Ny(¢,,t5] > Ny(t3,t5],
(5.4) Nj(ty,ts] > N,(ty,14] .
forall0 <#, <¢, <ty <t,<tswithl|t, — T <8, 1<i<5)>0.

This is because P-independence ‘of the coupled arrival processes from the
virtual departure processes implies their P°independence, and the event

(5.5) {168 — Tyl < 8,168 — Tyl <8, It — Tyl <8, It§ — T5l < &)
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has positive P%-probability. The intersection of the events in (5.4) and (5.5)
therefore has positive P°-probability. Clearly this intersection is contained
in B.

It remains to show (5.4). Now we are working on the space (M®,.#®,
a,{S®)). Since u,#v,, we have a(IN,(0,T]— N;0,T1) >0 for some
T > 0 as can be seen from the formula (4.2) for p,(u,,v,), the fact that «
achieves the infimum in (4.2) and the fact that p,(u,,»,) > 0. Since
a(N0,T] - N40,T)D = 0, we must have a(N,(0,T] > N,0,T] > 0 and also
a(N 0,T] > N,0,TD > 0. Now, lim;_,,a(N(T -68,T+8]>0)=0 and
lim; o a(N(T ~6,T + 8] >0)=0 by a simple application of the Markov
inequality. It follows that for some § > 0, we simultaneously have

a(N,(0,¢] > N;(0,¢] forall |t — T| <8) >0
and
a(N;(0,t] > N,(0,¢] forall |t — T| < 8) > 0.
Now let C; denote the event
{N,(s,s +t] > Ny(s,s +¢t] forall |t — T| <8}
and let D, denote the event
{N;(s,s +¢t] > N,(s,s +¢t] foralllt — T| <8}

U,s2rD, is mapped into itself by {S{, ¢ > 0}. By the ergodicity of a, and
because it has nonzero probability, it has probability 1. There must therefore
be some S > 2T such that a(C, N Dg) > 0.

Let E, = C, N Dg,,. Let T, be such that a(N,(0, T,] > 3, N;0,T,] > 3) >
0. Clearly we can find such T, and we may choose T, > 8. The set U, o1 E
is mapped into itself by {S®, ¢ > 0}. By the ergodicity of a, and because it has
nonzero probability, it has probability 1. There must therefore be some
S; = 2T, such that

(5.6) a({N,(0,To] = 8, N;j(0,To] > 3} N Eg)) > 0.

cause T, > §, it is easily seen that (5.6) implies (5.4), completing the proof. O

6. Main result for ./ M /1 nodes. We are now in a position to state and
prove the uniqueness of a stationary ergodic fixed point for ./M /1 nodes.

THEOREM 5. Consider a ./M/1 node of service rate . Let A < u, and let
Wy € #5(A) be such that T(u,) = p,, that is, u, is a stationary ergodic fixed
point of the input-output map. Then p, = ,.

Proor. We know that T'(,) = ). Suppose u, # m,. Since p, is a metric
by Theorem 3(1), we have p(u,,m,) > 0. By Theorem 8, p (u,,m\) >
pT(uy), T(m))) = p,(pn,, ). This is an absurdity. Hence u, = m,. O
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7. Multiple servers. In this section we indicate the points at which the
preceding proof has to be modified to prove the uniqueness of a stationary
ergodic fixed point for ./M /K nodes, K < .

As a canonical representation of the node we choose a marked Poisson
process of rate Ku. The Poisson process itself is thought of as an overall
virtual departure process. The sequence of marks is independent of the points,
and consists of independent and uniformly distributed {1,..., K} valued ran-
dom variables. The interpretation is that if the mark at a pointis 2,1 < %k < K,
the corresponding overall virtual departure serves as a true departure only if
the total number of customers at the node is at least .. Formally, the node is
specified on a space (Q,, 9, P,,{02)). supporting an (M, .#,{S,}) valued ran-
dom variable N, commuting with the shifts and having distribution 7, (i.e.,
a Poisson process of rate Ku) and a sequence (k,, n € Z) of marks of the
process N,. (k,), that are {1,..., K} valued and are independent and uni-
formly distributed and are independent of the point process. The points of the
overall virtual departure process are denoted (¢¢),. When the arrival process is
given in the representation (Q,, %, u,, {07}, the overall system can be studied
on the product sample space (2, F, P,{0,}) as before. The constructions will be
on the Palm space (Q° 9, P?,0) of the overall virtual departure process.

A stationary regime is a P%-a.s. finite random variable x, defined on
(Q° F° PO 9) with

(7.1) %g°0 = xq + N,(0,¢5] — 1(xo + N,(0,£§] > k).

The proof of the existence and uniqueness of a stationary regime for any
o € #5(N) for any A < Kp is like Theorem 1. For each m € Z we construct
(x™, n>—-m)on (Q° F° P°0) by

(7.2) xm, =0,

(7.3) Xy =%, + Na(tf,ti‘fu] - l(x;rzn + Na(tf,t‘iﬂ] Z kn+1)-

From (7.2) and (7.3), by induction on m > —n for fixed n, we see that x*

increases in m, allowing us to define

(7.4) x5, = lim x*

n
m—©

as in (3.4). Then xj obeys (7.1). The P°a.s. finiteness of xj when A < Ku
comes from taking expectation relative to P° in (7.3), giving

(7.5) E°[1(xp + N,(td,¢2, 1] = k)] <A/Kp < 1.

As before we argue that this implies P°(xj = ©) < 1, and use ergodicity to
conclude that this implies P%(x§ < ©) = 1. To show uniqueness, assume %, is
another stationary regime, that is, it obeys

(7.6) £go0 = £y + N,(0,¢f] — 1(£, + N,(0,2{] = k).

As before one argues there must be some 0 < K < o with P°(£, = x§ + K) =
1. The problem is then to show that K = 0. If K > 0 then P°(%, > 1) = 1, so
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subtracting (7.1) from (7.6) and multiplying by 1(k; = 1) gives
(7.7) 1(ky = 1) = 1(x5 + N,(0,¢7] = 1, k, = 1).

By construction, xj is a function of the arrival process, the overall virtual
departure process up to time 0 and the marks (k,, n < 0). It follows that
{x3 + N0,¢¢] > 1} and {k, = 1} are P’-independent. Taking P°-expectation
in (7.7) and using P%k, = 1) = 1/K > 0 gives

(7.8) Po(xg + N,(0,2§] = 1) = 1.

We will now argue that this is impossible. Since x is P°-a.s. finite, there is
some M < o with P%xy = M) > 0. Also, we have

lim P°(N,(0,3] = 0) = 1.
5—

Hence there is some 6 > 0 with
P°(x§3° =M, N,(0,8] = 0) > 0.

Using the independence of x§ from the overall virtual departure process after
time 0, we have

(7.9) P°(x7 = M, N,(0,8] =0, Ny(0,8] =M + 1) > 0.

But on the event in (7.9) we have x7<6,q + N(t&,t% 1= 0. Thus (7.9)
contradicts (7.8). We must therefore have K = 0, that is, the stationary regime
is unique.

The departure process of the ./M /K node is defined by

N, = Z at‘,{ﬂl(x?)o"etﬁ + Na(tg’ t,‘f+1] = kn+1)'
nez
The fact that this is a stationary ergodic point process of rate A, that is, an
element of .Z¢()), follows mutatis mutandis from Theorem 2 as does the fact
that the same distribution results whatever the representation chosen for the
arrival process. This allows defining the input—output map of a ./M/K node
as a map on Z$(A), A < Ku. We denote this map by T.
We work with the metric py, as defined in Section 4. We prove:

THEOREM 6. Let w,,v, € #5(A), A < Ku, p, < v,. Then
5K/J.(TK(:U'¢1)’ TK(Va)) < I_)K/.L(/*Laf Va) .

This is proved by constructing processes (2, x™, &m xm Y, xmF, 8B,
n> —m)on(Q° F°, P 0), for each m € Z exactly as in Theorem 4 with the
obvious change in the indicator conditions. One also defines (N}, N%, NZ,
n € Z) as in Theorem 4. One shows that z™, x™7Y, x/ and £ are nonde-
creasing in m for each fixed n for which they are defined, thereby defining
(z2,x2, %2, x2Y, x> B x> B n € Z). One defines the point processes N,, N, N,

n
and N, as in Theorem 4, with the obvious change in indicator conditions. Now
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the Palm theory gives
E[N,(0,1]] = E[N,(0,1]] E°[1(25 6,2 + NY = ko°6,,,,)].

One can argue exactly as in Theorem 2 to conclude that E°[1(25° 6,4 + N, >
k,. Dl equals E’[NY], and further that

(7.10) E°[NY] = 2X — Kpupgu(tqrva)-
Similarly one computes

E[N,(0,1]] —Kp,EO[NY-i-mln( 5 Bob,a, N, )
(7.11)
+m1n( ’ °0d NB)]

and
(7.12)  pruTr(ra), Tr(va)) = 2 /Kp — (1/Kn) E[N,(0,1]].

From (7.10), (7.11) and (7.12), we see that proving Theorem 4 boils down to
proving that there is a positive P°-probability that a merge takes place just
before an overall virtual departure, that is, that

0 < E°[min(xj 2, N¥) + min(xy &, NB)].

The proof of this is essentially identical to the proof of Theorem 4; one just
throws in the additional condition that the marks of the first three overall
virtual departures after time 0 on the Palm space are all 1.

Our main result for ./M/K queues now follows. The proof is identical to
that of Theorem 5. We state the result for completeness.

THEOREM 7. Consider a ./M/K node with K servers having service rate p.
Let A < Ku, and let p, € #5(A\) be such that Ty(n,) = u,, that is, u, is a
stationary ergodic fixed point of the input—output map. Then u, = m,.

8. Concluding remarks. It would be interesting to prove that when a
stationary ergodic arrival process of rate A < Ku is put through a long tandem
of ./M /K nodes of service rate u, the stationary departure process converges
weakly to a Poisson process of rate A as the length of the tandem goes to «. In
the preceding notation, to prove this we would have to show that for all
w, € AN, A < Ku, we have T#(u,) — 7, as k > =, where T# denotes Ty
iterated k times. Let W C .#4(A) denote the set of weak limit points of the
sequence (T#(w,), B = 1). W is closed, and hence compact by Lemma 1. It is
easily shown that u, — pg (u,,m,) is a lower semicontinuous function on
#5(A), so on the compact set W, this function attains its minimum at some
fi,. Suppose fi, # m,. Then, by Theorem 3G), pg,(d,,m,) > 0. If we could
show that i, € #$(A), then we would arrive at a contradiction by Theorem 6.
This would show that the only subsequential weak limit point of the sequence
(TE(w,), k= 1) is m,, and it is a simple step to conclude that (T¥(u,)),
converges weakly to m,. The missing ingredient is that it is a priori possible for
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the sequence of ergodic processes (T%(u,)), to have a nonergodic subsequen-
tial limit. Intuitively this seems impossible, but we have not yet been able to
rule it out. Another way to avoid the problem is to show uniform contraction
in Theorem 6, that is, to show that there is some a < 1 with

ﬁK;L(TK(/"La)’ TK(Va)) < aﬁK/.L(l'La’ Va)
for all u,, v, € #5(M).
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