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PARAMETRIC SIGNAL MODELLING USING
LAGUERRE FILTERS

By B. WAHLBERG AND E. J. HANNAN

Royal Institute of Technology and Australian National University

Autoregressive (AR) modelling is generalized by replacing the delay
operator by discrete Laguerre filters. The motivation is to reduce the
number of parameters needed to obtain useful approximate models of
stochastic processes, without increasing the computational complexity.
Asymptotic statistical properties are investigated. Several AR model esti-
mation results are extended to Laguerre models. In particular, it is shown
how the choice of Laguerre time constant affects the resulting estimates.
A Levinson-type algorithm for computing the Laguerre model estimates in
an efficient way is also given. The Laguerre technique is illustrated by two
simple examples.

1. Introduction. The concept of representing complex systems by sim-
ple models is fundamental in science. The aim is to reduce a complicated
process to a simpler one involving a small number of parameters. The quality
of the approximation is determined by its usefulness, for example, its predic-
tive ability. Autoregressive (AR) and autoregressive moving-average (ARMA)
models are the dominating parametric models in time series analysis, since
they give useful approximations of many processes of interest. The ARMA
model leads to nonlinear optimization problems to be solved for best approxi-
mation, while the special case of AR modelling only involves a quadratic least
squares optimization problem. Hence, AR models are of great importance
in applications where fast and reliable computations are necessary. The
literature on AR estimation is extensive; see, for example, Hannan (1970),
Priestley (1982), Ljung (1987), Hannan and Deistler (1988), Marple (1987)
and Soderstréom and Stoica (1989).

The fact that the true system is bound to be more complex than a fixed
order AR model has motivated the analysis of high-order AR approximations,
where the model order is allowed to tend to infinity as the number of
observations tends to infinity. See Berk (1974) and Hannan and Deistler
(1988) for details. However, aspects such as computational limitations and
numerical sensitivity set bounds on how high an AR order can be tolerated in
practice.

Herein, we shall study discrete Laguerre filter model structures, which
reduce the number of parameters to be estimated without increasing the
numerical complexity of the estimation algorithm. An early reference on the
use of Laguerre networks in estimation theory is Wiener (1956). More refer-
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468 B. WAHLBERG AND E. J. HANNAN

ences on Laguerre series and parameter estimation can be found in Eykhoff
(1974). However, in most of these contributions Laguerre functions are used
in the time domain to approximate the signals, and then in a second step the
dynamics of the system are estimated. See, for example, Hwang and Shih
(1982) and Clement (1982) for some ideas.

Suppose that {y(¢), ¢t = --- —1,0,1,...} is a stationary linear regular
random process with Wold representation

(1) y(t) = ) hge(t—k), h) eR, A =1.
k=0

Here {e(#)} is a sequence of random variables with the properties
(2) Ele(t)l#,_1} =0, E{e(t)2|'7t—1} =0¢, E{e(t)4} <,

where ,_, is the o-algebra generated by {e(s), s <¢ — 1}. The transfer
function

® Hq) = L gt H=) =1

is a function of the shift operator g, ge(¢) = e(t + 1). By ¢! we mean the

corresponding delay operator g le(¢) = e(t — 1). The power spectral density
of {y(¢)} then equals (we have chosen to not normalize the spectral density
with 1/2)

(4) ®,(ei?) = oZlH ('),

We shall assume that the complex function [ H%(2)]™!, z € C, is analytic in
|z| > 1 and continuous in |z| > 1. Then

(5) [Ho(z)]_1 = Y alz7* 2l > 1.
k=0
We shall impose a further smoothness condition on [ H%(z)]"!, namely,
(6) Y B2l < oo, §>0.
£E=0

This condition implies that [H%(2)]"! € Lip(1/2 + &), that is, satisfies a
Lipschitz condition of order 1/2 + 8. Notice that [cf. Zygmund (1968)]

(1)  [H%2)] ' eLip(1/2+8) = Y kadl<eo, 85>0.
k=0
Hence, the condition (6) is more restrictive than the corresponding Lipschitz
condition in (7).
By truncating the expansion (5) at 2 = n, we obtain a nth order autore-
gressive (AR) approximation of (1),
n

(8) AY(q)y(t) =e(t), AN(g)=1+ kZ ahqg*.
=1
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A crucial question is how large an order n» must be chosen to obtain a useful
AR approximation. From (5) and (6) we know that the process (1) can be
arbitrarily well approximated by an AR model (in the mean square sense) by
taking the order n large enough. However, nothing is said about the rate of
convergence.

Assume that H%(z) is a rational function with zeros {z,}, Iz;] < 1. The
error in the AR approximation (8) is then of order 8", where & = max z|.
Hence, zeros close to the unit circle imply a slow rate of convergence and
consequently a high model order n. What sort of processes have zeros close to
the unit circle? An example is a discrete time process obtained by rapid
sampling of a continuous time stochastic process. Assume that the zeros of
the continuous time process equal {Z,}. The corresponding discrete time zeros
will then approximately (for small sampling interval A) be equal to exp(Z;A)
~ 1 + Z,;A; see Wahlberg (1990). Hence, for rapidly sampled continuous time
stochastic processes the rate of convergence of AR approximations will be
very slow. In the limit as the sampling interval A — 0 the discrete time zeros
converge to 1, and consequently the AR approximations fail to converge.

This motivates the investigation of alternative approximations which are
less sensitive to the location of the zeros (the choice of sampling rate). The
problem is that the memory of the delay operator is too short—only one
sampling step. In Section 2 we shall generalize AR models by replacing the
delay operator with discrete Laguerre filters. Properties of Laguerre approxi-
mations are presented in Section 3. In Section 4, Toeplitz forms related to
Laguerre models are studied. The statistical properties of the proposed
estimation algorithm are analyzed in Section 5 and high-order Laguerre
model estimates are considered in Section 6. In Section 7 the estimation
procedure is illustrated by two examples. Finally, Section 8 concludes the

paper.
2. Laguerre model estimates.

2.1. Model definition. The idea of Laguerre models is to replace the delay
operator ¢~* in an AR model by the so-called discrete Laguerre filters

V1 — g? (l—aq)k_1

k>1.

© Lg,a) =~ — |-,

A thorough justification for this choice of filters is given in Section 3. The
motivation is that the introduction of the Laguerre parameter a reduces the
number of parameters needed to obtain useful approximate models.

DEFINITION 2.1. The Laguerre model structure is defined by the equation
(10) 2 y(t) + ayLy(q,a)y(¢) + - +a,L,(q,a)y(t) = e(t),

where the Laguerre filters L,(q, a) are defined by (9), {e(¢)} is a sequence of
random variables with the properties (2) and «, € R.
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Fic. 1. Laguerre network.

REMARK 1. Observe that a Laguerre model simplifies to an AR model for
a=0.

The Laguerre model (10) can be rewritten in the linear regression form
(11) y(t) = o(t,a) 0+ e(2),
(12) e(t,a) = [_ul(t’a)'” _un(t’a)],,
up(t,a) = Ly(q,a)y(¢), k=1,
(13) 0=(a;...a,) €R"
Figure 1 shows the corresponding Laguerre network configuration. Notice

that the regression vector ¢(t,a) is treated as directly measurable in the
network.

2.2. Computing the estimate. Given observations of the process (1),
{y(1)--- y(N)}, we will discuss how to estimate a Laguerre model in the
model set .#. In this section a is assumed to be fixed, while in Section 5 we
shall discuss how to also estimate a as well as the order n.

In many parameter estimation problems a systematic approach to the
estimation procedure is the maximum likelihood (ML) method. One problem
is, however, that in most cases one has to solve a complicated optimization
problem to find the ML estimate. For AR models and on Gaussian assump-
tions it is possible to approximate the ML cost function by a quadratic one
(the least squares cost function) and still obtain an asymptotically efficient
estimate. The same holds for the Laguerre model structure .#. Initial condi-
tions have to be specified when forming ¢(¢, a) from the observations. Herein,
we will use pre- and postwindowing of y(¢), that is, assuming y(¢) =0,¢ <0
or ¢t > N. Using the linear regression structure (11), the least squares esti-
mate of 0 is then given by

' (14) 6= argmin Y, [y(t) — go(t,a)'e]2 =
, 0 t=1

(15) b %t;go(t,a)so(t,a)'] [%t;so(t,a)y(t%
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The normal equations (15) can be solved in an efficient way if the sampled
covariance matrix

1 [’}
(16) N ;lqﬂ(t,a)go(t,a)'

has a Toeplitz structure. For the AR case (a = 0), pre- and postwindowing of
y(t) leads to a Toeplitz structure. In Section 4 we will show that such an
assumption also gives a Toeplitz structure of (16) for the general (a # 0)
Laguerre case. Observe that pre- .and postwindowing does not affect the
asymptotic behaviour (large N) of the estimate 6. Also notice that the
Laguerre model estimation is not restricted to this assumption, and can be
applied using only prewindowing or a forward-backward approach. See for
instance Wahlberg (1988) for details.

2.3. ARMA models with fixed MA part. Laguerre models are theoreti-
cally equivalent to ARMA modelling with a fixed MA part. By adding up the
terms in the model structure (10) to give a rational function, the following
model structure is obtained:

(17 i(g)—y(t) =y.(t,a)e(t), =yc(t,a)=%(t,a)0+e(t),
C(q,a) ‘

(18) A(g) =1+ag '+ +a,q7 ", C(q,a) = (1 - aq'l)n,

(19) #(t,a) = [~yc(t — 1,a) = —yc(t — n,a)],

(20) 6(£10) = Graay (0

(21) 0=(a, - a,).

This model structure corresponds to an ordinary AR model with a fixed
prefilter 1/C(q, a). _

The two model structures .# and .# are theoretically equivalent, since
6 = T9, where T is a nonsingular n X n matrix. However, there are several
practical problems associated with the model structure .Z.

First, since we use a direct delay operator representation we will have
numerical problems for small sampling intervals. By instead estimating the
coefficients of the corresponding 8-operator polynomial, & = (¢ — 1)/A, this
problem is removed. See Middleton and Goodwin (1990) for details.

Second, the model structure .# is not well scaled for large n. The problem
is related to the condition number of the covariance matrix of the regressor
vector. Let

(22)  Tu(a) = E{e(t,a)e(t,a)), T.(a) = E(3(t,a)(t,a)).

The condition number of a Toeplitz covariance matrix is bounded from below
by the ratio between the maximum value and the minumum value of the
corresponding spectral density; see Grenander and Szeg6 (1959). For the
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model structure .# the process {y.(¢, a)} generates the Toeplitz matrix T,(a).
The corresponding spectral density equals |C(e*“, a)| _2<I>y(e“"). Now,
maxw[IC(ei”’, a)l _ZCDy(ei“’)]

. ; —92 : - ®, a# O,
mlnw[IC(e“",a)I <I>y(e“")]

(23)

as n — o, This follows from the fact that the ratio of smallest to largest value
of |C(e', a)|? is [(1 — lal)/(1 + |al)]>*. Consequently, the condition number
of T,(a) tends to infinity as n — . The reason is that the last components in
9(t, a) contain very little new information. The condition number of T, (a)
determines the numerical sensitivity in solving the normal equations to find
the least squares (L.S) estimate of . From a finite-precision arithmetic point
of view it is important to have as well scaled a matrix as possible. As shown
below, it is possible to give bounds on the condition number of T',(a) in terms
of the spectral density of { y(¢)}, while using the model structure .# results in
an ill-conditioned LS problem for large n.

2.4. Generalized AR results. As shown in the preceding section there is a
one-to-one mapping between Laguerre models and ARMA models with fixed
MA part. By instead considering the filtered process {y.(¢, @)}, defined by
(20), the ARMA problem is reduced to finding an AR model of the process
{yc(t, @)}. This observation can be used to generalize AR estimation results
for a fixed model order n to Laguerre models. For example, it is well known
that AR estimates converge to stable polynomials as the number of observa-
tions tends to infinity. See Soderstrom and Stoica (1989) for recent results.
Hence, the Laguerre spectral factor estimate

-1

(20) Ao = |1+ ¥ &l

where 6= (&, - &,)" is defined by (15), will be asymptotically stable (for
large N), since it will have the same poles as the corresponding AR estimate
of {y.(t, a)}. _

The fundamental difference between the two model structures .# and .#
becomes clear when one tries to formulate asymptotic results for high-order
models. As mentioned above, one gets into serious problems when trying to
derive such results for .#, while, as we shall show in Section 6, this can be
done for the model structure .7.

3. The discrete Laguerre expansion. In this section we will give a
> detailed motivation for using Laguerre models. The following lemma provides
an alternative series expansion of [ H%(2)]*.

LeEMMA 3.1 (Discrete Laguerre expansion). Assume the function [ H%(2)]™1
to be analytic in |z| > 1, continuous in |z| > 1 and normalized so that



SIGNAL MODELLING USING LAGUERRE FILTERS 473

[H%©)] ! = 1. Let —1 < a < 1. Then there exists a sequence {a)} such that

Vi—a? (1 —az\* !
( ) , lz| > 1.

zZ—a

@5) [H(2)] =1+ ¥ af
k=1

PrOOF. The bilinear transformation

926 zZ—a w+a
= P=" =
(26) S R T 1Y aw’

(la| < 1) maps the unit disc onto the unit disc. The discrete time system
[H(w + a)/(1 — aw))]"! — 1is thus analytic in |w| > 1, continuous in |w| >

1, and has at least one zero for w = —1/a (since [ H%(»)]"! = 1). Thus
w+a \1! a+w?l =

27 H°( )] =1+ — Sw~ k=D, > 1.

(27) [ 1+ aw V1 — a2 kglakw |wl

Substituting back w using (26) now proves the lemma. O

The filters
28 L _Yi-a® (1-aq)™ E>1
( ) k(q,a’)_ q-a qg—a ) = 4,

which consist of a first order low-pass term and %k — 1 all pass factors are
called the discrete Laguerre filters. All pass filters are favorable in terms of
numerical sensitivity, and are thus often recommended in filter design. See,
for example, Section 8.6 in Lim and Oppenheim (1988) or Dewilde (1982)
for details. The functions {L,(z,a)} are the Z-transforms of the discrete
Laguerre functions {Z,(j, a)},

. 2k_1 E—-1\(l+j—-1 I _20+j—k .
(29) 1,(j,a)=V1—-a® ¥ p 51 (—D)a?tk G E>1.
=0

This set of functions is orthonormal, that is,

(30) % LG Oln(],0) = b =

1 .= . .
(31) [ L, a)L, (e, a) dw =5,

27w _ .

where §,,, is the Kronecker delta. For basic results on discrete Laguerre
functions see Gottlieb (1938) or King and Paraskevopoulos (1977, 1979).
General results on the classical continuous Laguerre functions can for exam-
ple be found in Szego (1939). More recent results related to approximation of
linear systems are given in Mékila (1990a, b). A more control-oriented
discussion of Laguerre models in system identification is given in Wahlberg
(1991).
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Since we work with normalized time, ¢ = 1,2,4... (¢ = ¢,,,./A) and nor-
malized frequency, w € [~ 7, 7] (0 = @A), where A is the actual sam-
pling interval, care has to be taken when interpreting the results to follow for
a Laguerre parameter a close to 1. By relating the discrete time quantity to
its corresponding continuous time counterpart more insight is obtained. A
continuous time pole p is mapped to a = exp(A p) when sampling a stochas-
tic process. Hence, p = (1 — a)/A for small A. In the limit as A - 0, a — 1,
but (1 — a)/A converges to the corresponding continuous time pole p, which
is the interesting quantity here.

Let H%z) be a rational transfer function with zeros {z,}. The rate of
convergence for the Laguerre expansion is determined by the magnitude of
the corresponding w-plane zeros:

zi_a

(32) 1—az’
For w-plane zeros close to the unit circle the rate of convergence will be slow.
To obtain a fast rate of convergence one must choose a close to the dominat-
ing zeros of H%2). If a is too small compared to z;, (z; — a)/(1 — az;) = z,,
which causes slow convergence if z; is close to the unit circle. Taking a too
large, that is, too close to 1 compared to z;, (z; — a)/(1 — az;) = —1, also
causes slow convergence. In case of scattered zeros of H°(z), the rate of
convergence will thus be slow.

To improve the rate of convergence one can use more general orthonormal
sets of base functions (the Kautz functions), corresponding to multiple time
constants. Introducing operators with complex poles will remove slow conver-
gence due to complex (resonant) zeros. This corresponds to replacing the
Laguerre filters L,(q, a) by the Kautz filters

Vi—c?(q—b) [—cg®+b(c—1)g+1]*""

g®+bc—1)g—c| ¢*+b(c—1)g—c | ’

(33) ¥i(q,b,¢) = - Fodd,
V(1 —c2)(1 —b%) [ —cq® +b(c—1)g + 1

q2+b(c—1)q—c_ g +b(c—1)qg-—c | ’

keven, —1<b<1, —-1<ec<l1.

Here, the coefficients b and ¢ should be chosen so that the roots of z2 +

b(c — 1)z — ¢ are close to the dominating complex zeros of the process to be

modelled. The Kautz base functions {¥,(z, b, ¢)} are also orthonormal in L2.

This choice of base functions is useful for modelling narrow-band signals in
_noise. We refer to Wahlberg and Hannan (1991) for more details.

4. Toeplitz forms. It will be shown that the covariance matrix T',(a) of
the regression vector, defined by (22), has a Toeplitz structure (the entries of
the matrix are constant along each diagonal). This observation will be used to
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derive a Levinson algorithm to estimate 6. The following lemma explains the
Toeplitz structure of T, (a).

LEmMMA 4.1. Let L,(q, a) be defined by (9), with —1 < a < 1. Then
(34) E{L;(q,a)y(¢)Ly(q,a)y(8)} = E{3(t - 7)3(2)}, 't=k—},

where the process {y(t)} has power spectral density

35 e +a
(35) N1+ ae” )
Proor.
E{L(q,a)y(t)Ly(q,a)y(t)}
Loem i —i i
= ﬂf_ﬂLj(e “,a)Ly(e”'*, a)® (') do
(36) ) -
T e'*+a
—  (Teai-be [T 4s
27Tf—ne Y 1+ae“”)

=E(3(¢t+ (J - k) ¥(1)},
where the integration variable has been changed according to

37 s_f"a
= - O
( ) e 1 _ aeuo
REMARK 1. The mapping
38 . el® +a
lw _- —_—
(38) ¢ 1+ ae'

is a standard tool in digital filter design to modify the bandwidth of low-pass
filters. For 0 < a < 1, it maps high frequencies onto lower ones. Conse-
quently, this transformation makes the frequency content of the signal {y(¢)}
appear “wider.” We shall show that the transformation (38) improves the
condition number of the I',(a¢) matrix.

By using post- and prewindowing of y(#), that is, assuming y(¢) = 0,¢ <0
or ¢t > N, the sampled covariance matrix

. 1 -
(39) L(a) = &% §1<P(t,a)¢(t,a)'

will have a Toeplitz structure. This can be seen as follows. If
2

2

. 1| X .
(40) 1) = 57| Z o0y
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then

[£] = = Ly(e**,a)Ly(e™**,a)I(e™”) dw
27/ _

(41) )

e® +a
— [T embr|——— | dg,
2 1+ ae’®

[

-

which shows that the above assumptions are appropriate. Notice that the
elements of ¢(¢,a) are known, simple analytic functions of y(¢), t =1+ N
and a, so the infinite sums above can be computed exactly. Since y(¢) is
assumed to equal O for ¢+ > N and the Laguerre filters are asymptotically
stable, the filtered variables u,(¢, a) = 0 exponentially fast as ¢ — «. Hence,
by taking the upper limit in (39) large but finite the errors due to truncation
would be negligible. For large N the effects from truncating the sums will be
small, since the truncation errors are normalized by N.
Let us introduce the following notation:

(42) uy(t,a) =y(2), y(t) =0,t<0ort>N,
(43)  u,(t,a) = L,(q,a)y(t), k>1,y(t)=0,t<0ort>N,

1 ©
(44) ¢ _4(a) = N You(t,a)uu(t,a), j=1l,k=1,
t=1

A 1N

(45) di(a) = N Youo(t,a)ui(t,a), j=1,
t=1
(46)  %(a@) = (di(@) - dy(a)) .
Notice that ¢;_,(a) is the (j, k) element of I'(a). We shall write
c;_p(a) = E{uj(t,a)uk(t,a)},
(47)
d; = E{uy(t,a)u;(t,a)} = E{y(t)u,(t,a)}.

Since a is assumed to be fixed in the algorithm to follow, the argument a will
be omitted in the remainder of this section. The post- and prewindowed LS
estimate is given by the normal equation

(48) £,6,=—%,.

Using the Toeplitz structure of I' and the fact that Y, =G _4 cfn)’ it is
possible to solve the normal equation (48) in a computationally efficient way.

A Levinson type algorithm. The Levinson type recursion for estimation of
6, =(a,; - a,,) (here we have indicated the order n by an extra sub-
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script) is
(49) & ,'=&n—1,j+ &n,an—l,n—j’ &n,0= 1’

(50) Bn,j=Bn-1,j T Bu,nBrn-1,n-j> Bn,0= 1,B,;=0,j>n,
n—1

(51) Bn,n = Z Bn—l,jén—j/&nz—l’

I
- o

(52) &n,n Z Bn—l,jjn—j/&nz—l’
Jj=0

(53) &nz (1 - ﬁnz,n)&n2—1’ &02 = é\0‘
The proof is given in the Appendix.

REMARK 2. The algorithm can be viewed as first solving the standard
Yule-Walker problem

(54) B (Bar- Bun) = —(&1...8,).

The solution to f‘n én = —%,, that is, a general right-hand side, is then
obtained by modifying the Yule-~Walker solution. We refer to Chapter 4.7 of
Golub and Van Loan (1989) for details.

REMARK 3. It seems difficult to find simple lattice procedures. However,
there are connections between the theory given herein and realization theory
based on the Schur algorithm. See, for example, Dewilde and Dym (1981).

5. Statistical properties. Here we shall analyze the special case where
{y(¢)} is generated by a true system (11) with n =n, <%, a = a, with
lagl <1 —-6,8>0and 6= 0°. We assume that & is known, that is, we can
estimate a by optimizing over a € [—1 + 8,1 — 8] for some 8 > 0. Although
no < o« will not in general hold, a value # will have to be chosen in practice;
for such a suitably chosen 7, a system of that order will provide an excellent
approximation to the truth. We use 4,, 6, and 7, for the estimated values.

The Laguerre time constant a can be estimated by minimizing ,2(a) given
by (63) with respect to a, or equally,

1N "
(85) &, =argmin|= ¥ y(1)* - 5,(a) Ty(@) H(a)| =
t=1

a

(56)  a, = arg max[9,(a) T(a) u(a)].
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Given d,, the estimate én is obtained as described in the preceding section,
with a = d@,. We choose 7i to minimize the criterion

nlog N

N b
M may be arbitrarily large. For a discussion of (57) see Hannan and Deistler
(1988).

(57) BIC(n) = log 6,2(4,) + n<M.

THEOREM 5.1. Under the above conditions, i > n, a.s. so that i = n, for
N > N,, where P(N, <®)=1. Also (4,, 8,) - (a,, 0°) a.s. and, indeed,
&, — aol = 2(Qy) a.s., ||0 - 0%, = é’(QN a.s., where Qy =
[loglog N/N1V% and n = A

The proof is given in the Appendix.

REMARK 1. N, is not, of course, a stopping time, that is, one cannot tell
whether N > N, by examining the history of ¢ < N. By #(Qy,) we mean, for
example, that |14, — a,l /@y is a.s. a bounded sequence (N > 3).

Let 7, = [6}(a)’, al]’, where
(58) 6F(a) = arg minE{[y(t) — o,(t, a)'B]z} , for given a and order n.
0
Let

(59)  m(a) = (@) T(a) (@), (@) = %u(a) T (a) '5(a),
where

(60)  TL(a) = E{e(t,a)e(t,a)},  %(a) = —E{e(t,a)y(8)}.

We shall write 7, = [6), 4,]'. For brevity write 7, = #,, and so also for 6,, d,,
no(a), 7o(a) and so on. It will be sufficient to establish a central limit theorem
at A = n, for it can be shown that there is, for every £ > 0, a set ); with
P(Q;) > 1 — ¢, in the sample space of all realizations of {y(¢)}, on which
fi =n, for N > N, < . The same central limit theorem holds therefore for
a, as well as 6,.

THEOREM 5.2. Under the assumptions above, VN (3, — 7,) has a distribu-
tion converging to a multivariate Gaussian law with zero mean and covari-
ance matrix

To(ao) E{po(t, ag) (2, a0)}
=og 2 ’
(61) d ’ E{%(t’ao),‘/’o(taao)} E{‘/’o(t,ao) }
. where ’
(62) bo(t,a) = i<po(;: a)'0, ata=a,, 6=206°,

(63) of = Ele(t)9,,).



SIGNAL MODELLING USING LAGUERRE FILTERS 479

ProoOF. Theorem 5.2 follows directly from Theorem 9.1 and Expression
(9.17) in Ljung (1987). O

Finally in this section we point out the following. Let us consider the
determination of &, by an iteration. Since eventually 72 = n, and since we do
not need to actually determine 4, — but only (sufficiently accurately) the
maximum of 7,(a) — to evaluate &, it is, in principle, sufficient to discuss
n = n,. A natural iteration is

G

where now we use 7j;(a) for the derivative, for notational simplicity.

(64) G = g —

THEOREM 5.3. There is an open interval, I, about a, and a random time
N,, P(T, < ®) = 1, such that if &P € I and N > N, then & — 4 a.s.

The proof is given in the Appendix.

REMARK 2. Of course (64) is used at n = fi but again for N, sufficiently
large we have i = n, so the theorem applies.

6. High-order properties. The assumption that H°(z) can be exactly
represented by a finite order Laguerre model is, of course, not realistic in
practice. To improve the flexibility of the model, the order can be increased.
Hence, it is of importance to analyze the properties of high model orders. In
this section the order is allowed to increase with the number of observations,
that is, we will generalize the high-order AR convergence results of Berk
(1974) to cover Laguerre models.

6.1. Convergence of generalized covariance functions. A fundamental dif-
ference between the AR case (a = 0) and the general Laguerre case is the
behaviour of T7_;11,(j, @)l. For a = 0 this sum equals 1, while for a # 0 we
have to rely on the following bound:

(65) Y 11,(j, @)l < 2ksuplL,(e'“, a)l.
Jj=1 )

This bound follows from the facts that the L'-norm of a kth order stable
system is less than two times the nuclear norm, and that the nuclear norm is
less than % times the L* norm. The corresponding continuous time result is
proved in Glover, Curtain and Partington (1988). The proof of the discrete
time result is similar. For completeness, a brief proof is included in the
Appendix.

Using the above bound the following result is immediate.
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LEMMA 6.1. Let cj(a), é(a), d{a) and d (a) be defined as in Section 2.2.
Under the conditions (2) and 6) we have

(66) sup  16/(a) — ¢;(a)l = #(n(log N/N)"?), a.s,
0<j<(n-1)

(67) sup lcfj(a) —dy(a)l = @(n(log N/N)l/z), a.s.
1<j<n

The proof is given in the Appendix.

6.2. Grenander—Szego bounds. Using Lemma 4.1 and the well known
bound for the eigenvalues of Toeplitz matrices given in Grenander and Szego
(1959), it is easy to establish that

(68) min P (%) <A(l(a))< max & (:i)

—T<OLT 1- -7/ <™ 1+ ae*®
=
(69) min @ (e’®) < A(T,(a)) < max @ (),
—T<w<T -7/ <w<T

where A/(T,(a)) denotes the jth eigenvalue of I’ ' (a). This shows that I',(a) is
well condltloned independently of the order n, provided that the spectral
density satisfies 0 < C; < ®,(e’*) < C,, ¥ w.

The following theorem glves a n-dependent lower bound that may be
better than the one given above, especially if the power spectral density is
small for high frequencies.

THEOREM 6.1. Let T,(a) be defined by (22). For ¢ such that en/m < 1, we
have

(70) (1—éen/m) min ® (e—m-'_—(.z_) < A(T(@)).

—(r—e)<sw<(m—¢) N1+ aet®

The proof is given in the Appendix.

REMARK 1. By restricting the frequency interval to —(7— &) <® <
(7 — &), we can take advantage of the mapping (38). The minimum over this
frequency range may be much larger than the global minimum, since in fact
[due to the mapping (38)] we only search over low and medium frequencies.
The extra price we have to pay is the n-dependent factor in the lower bound,
which decreases as n increases.

. 6.3. Error bounds. In this section we shall derive a bound on the error in
the approximations obtained by fitting an nth order Laguerre model to a
process that may be of infinite order. Since a here is assumed to be fixed, we
shall drop the a argument, wherever it causes no confusion.
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Let H,(e'”) denote the spectral factor associated with 6,. For 6, = 0*
[given by (58)] we write H(e'®) for the corresponding spectral factor. By
we mean (af -+ a?)’, that is, the first n Laguerre parameters of [ H°(z)]!
First, let us give a frequency domain interpretation of H*(e'®). Usmg
H, () = H(») = 1 and Lemma 4.1 it is easy to establish that

E{{y(t) - ¢(t,a)'6,]}
1 = . .
= 5. H(e) 70, (e!) do

L = |H(e'*) — H,(e')]?
(1) T Ef_, |H, (ei*)[?

dw + 1)

1 I .
_%/ HO(e*) " — H,(e*) 1P, (') dow + o

=27Tf

Recall that 6, minimizes (71). Hence, the elements of 6 equal the Fourier
coefficients of the optimal nth order weighted L? approximation of the
function T;_;ale "®*. The weighting function is the transformed spectral
density (35).

Based on the work of Baxter (1963), we shall derive a bound on |16 — 6.

2 ( e®+a

- 2
m)d“"v

Z ake—twk Z a,e —iwk

LEMMA 6.2. Assume that

w+a 17! i 0
7 HO( )] - 0w, 501 < oo
( 2) [ 1+ aw ) kgoakw ké:olak[ ©
Define 62 = (af ... ), and let 6 be given by (58). Then
(73) 16 — 6Fl, <M Y. lafl, forn>r
Jj=n+1
and

sup| HO(e') ! — Hi(e'*) ']

(74) 1+ Ial 1/2 P
S(M+1)( ) Yy Ial forn > #,
1—lal Jj=n+1

Lpith 7 such that

<e<l1
1

(75)

w+a ©
HO Z aOw*
1+ aw k
E=fi+1
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and with

3—¢ ® w+a
1-¢ y( 1+ aw )
For functions ||-|l; denotes the L' norm, for example, [[H%(w + a)/(1 +
aw)l = Zp_oladl.

(76) M=

1

(2]
% 1+ aw 1

The proof is given in the Appendix.

REMARK 2. We have chosen to state the conditions in Lemma 6.2 in terms
of @}. However, it is easy to verify that

0 0 0
aal ~0 ap_1q +aak

Vi-a?’ e Vi—-a®

Hence, Lemma 6.2 can equally well be formulated in the Laguerre parame-
ters. Observe that

(77) a0 =1+ E>1.

(78) Ylal <o o Y & <.
k=1 k=0

REMARK 3. Condition (72) is crucial for the above result. From Kahane
(1956) it is known that in general [[H%(2)]7!|l; < » does not imply that
IH°(w + a)/A + aw))] !} < © (only affine mappings guarantee absolute
convergence). However, the assumption (6) implies that [H°(w + a)/(1 +
aw))]™! € Lip(1/2 + &) and thus that [see Zygmund (1968)] [[ H°(w + a)/(1
+ aw)] 1l < .

6.4. Consistency. We are now able to prove the following result on consis-
tency of the high-order LS Laguerre model estimate.

THEOREM 6.2. Let y(t) be generated by (1) with (2) and (6) holding. Then
for n = n(N) such that n?(log N/N)/? - 0 as N - o,

(79) 16, — 6ll = #(n®2(log N/N)?) a.s.,
(80) 18, — 6l = #(n?(log N/N)"?) a.s.,
and

(81) 118, — 82l = & (n®*(log N/N)Y?) + @( Y laf ) a.s.

Jj=n+1

The proof is given in the Appendix.
The convergence of the variance estimate 6,2 is easy to establish from (81).
It is also straightforward to prove the consistency (uniformly in ) of the
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spectral density estimate
b
Sy 1 -1 A iw A A A !
(82)  [Hy(e)] =1+ ¥ &Ly, a), 8= (& - &,),
k=1

and thus also the corresponding spectral density estimate
(83) b (') = 621H, ()"
Notice that
7 iw -1 : ioy] 1
(B (e)] " = [0 )] 7
(84) . R e
< max |Lk(e“”,a)| (||9n -6+ X |C¥,p|)

Jj=n+1

and
(85) |H,(e*) —H ()| < H, () HO(e)l|[ B, (ei)] " ~[H(e™)] "].

6.5. Asymptotic distribution and variance. Having investigated the
almost sure convergence issues, we now turn to the asymptotic distribution of
the estimates.

Introduce the row vector

(86) W () = [Ly(e'®,a) - L,(e*, a)],
so that the estimate of the inverse spectral factor can be written as
(87) H(e) ' =1+ W, ()6,

Under the assumptions of Theorem 5.2 with a = ay, n > n,, we have

N [H(e'*) ™ — HO(e') "
88 \/t ~ AsN,(0, P,(w;, wy)),
( ) n (ﬁ(ei“’z)_l _Ho(ei"’z)_l ( ( 1 ))

with
2
00 -1 ’ . .
(89) [Pn( w5, w2)]ij = TW(wi)rn(a) W(_wj) ’ i,j=1,2.

Here AsN, means a complex normal asymptotic distribution. In the preceding
results we have assumed that y(¢) is generated by a process with fixed order
n,y, and known a = a,. These assumptions are made to simplify the analysis,
and are of course unrealistic but adequate. The correct choice of a is not
crucial since [H%(2z)]"! can be arbitrary well approximated by an Laguerre
model for any choice of a (la| < 1) by just increasing the order n. By fixing a
and taking n large, we can assume that the model set is flexible enough to
include an good approximation of the true process. These heuristic arguments
can be justified more rigorously by the following observations: Assume that
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¥(t) is generated by (1). Theorem 9.1 in Ljung (1987) then shows that the
covariance matrix in the asymptotic distribution of the error N'/2(9, — 67*)
(for fixed n) should be modified to

(90) T(a) ' Qu(a)T(a) ™,

where

Qu(a) = giianE{[% > ¢(t,a)[H;(q,a)]-1y(t)]

(91) . :

|3 Eetv ol @al ]},
t=1

Compare (139). Now [ H%(g)] 1 y(¢) = e(t) and thus

1= . 1=
92) + gtp(t,a)[H:(q,a)]_ y(t) =+ _thp(t,a)e(t) +4,,

1 = _ _
(93) A= Tt ((Hx(a, 0] 7" = [H(9)] " )y(t).
t=
The matrix I(a) 'Q,(a)T,(a)”! can now be rewritten as

T(a) 'Q,(a)T,(a) ' = ogT,(a)}

(94) +T(a)” ! lim E{NA,X)T,(a)” .
Notice that A, is proportional to the error [H}(q,a)]"! — [H%(q)], which
tends to 0 as n — ». The L? norm of the second term in (94) can be shown to
tend to 0 as n — « under more restrictive conditions on the system and the
moments of the noise e(¢) than have been assumed so far. Since this analysis
is quite tedious we shall not pursue it here.

By letting n — « the frequency domain covariance expression (88) simpli-
fies considerably, as is shown by the following result.

THEOREM 6.3. Assume the spectral density of {y(t)} to be continuous and
bounded away from 0;
(95) ®,(e’*)>26>0, Vo
Then (i,j =1,2)
0 ‘ ifi #j,

96) lim [P,(w,, w,)];; ={ (1—a?) o=l ape
( ) n—)OO[ ( ' 2)]J '»eiwl_al20.02[¢)39(elwl)] ’ lfl =J-

The proof is given in the Appendix.
Theorem 6.3 directly implies the following result for the spectral density
estimate.
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COROLLARY 6.1. Under the assumptions of Theorem 5.2 with a = a,,
n > n,, ®,(e!*) = §21H,(e')I?, we have

N (. . . A . . '
(o) Vo ([0 = @), (e - @, ()
~ ASNc(O’ Rn( W, wZ))’

where
o, if i # J,
_ a2
(98) [R,(o1, w2)],; ~ HZ[“%(““”]Z, ifi =J, w, # 0,
|_i—i1_w;_a—;)24[q)y(eiwi)]2’ ifi=j, w;=0,m,
asn — o,

The result of Corollary 6.1 is unexpected. The factor
(1-a%

Iei"’l _ a|2

(99)

does not appear in the corresponding AR result, given in Berk (1974). This
factor is the square amplitude of a first order low-pass filter with a pole at a
and the gain [(1 + a)/(1 — @)]*/2. This means that the variance for higher
frequencies will be reduced compared to the variance for lower frequencies.
The factor makes sense since we have indirectly assumed [ H%(e’®)]"! — 1 to
be small (by choosing a > 0) for high frequencies. Thus the absolute variance
for high frequencies should decrease. It is also important to remember that
we have normalized the variance by the “order” n, which is closely related to
the choice of a. Taking a too large or too small means that we have to
increase the order n to reduce the bias. Consequently, a cannot be seen as a
direct design variable at this stage.

7. Examples. In this section we shall give two simple examples that
illustrate the advantage of choosing a > 0, that is, using a general Laguerre
network instead of an AR model.

ExaMpPLE 7.1. Consider the continuous time process

(100) v(t) = e.(t),

p+1
where {e(¢)} is a continuous time white noise process, with incremental
variance 0.5 dt. Here p denotes the differential operator. Assume that {v(¢)}
is measured together with additive white measurement noise with variance
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g2, that is,

(101) y(t) =v(t) +e,(t), t=kAE=1,...,N.

The spectral representation of the discrete time process {y(¢)} then equals

q+cf

(102) ¥(t) = e(t),  Efe*(t)} = of.

q+aj
Choosing 0,2 = 8.57 and A = 0.1 gives
(103) c?=-082, a?=-090, of=1.83.

To emphasize the bias effects, the limiting estimates 6,° [given by (71)] and
the corresponding spectral factor approximation H,(e'“) are calculated.
Figure 2 shows the true spectral density together with the approximations
using

(104) [@a=0,n=8], [a=05,n=4], [a=0.75,n=2].

The orders have been chosen via the BIC criterion using a single realization
with N = 10%. By choosing a = 0.82, the system can be described within the
chosen model set. Hence, this choice is not shown in the figure.

To study the variance aspects, the simplified variance expression (96),
which is also asymptotic in the model order, is compared with the more
complicated finite model order variance expression (89). To avoid effects from
under modelling, a = 0.82. The results for n = 1 and n = 5 are shown in

SPECTRUM
10! T —rrTrr

True system
3 a=0,n=8 --- E
a=0.5,n=4 ... |
a=0.75,n=2 -.-

100 L M S A W s P S S AW s PR S SR W
10-2 101 100 10!

normalized frequency

Fic. 2. Example 5.1: Spectral density approximations.
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6 Asymptotic Variances

At
AN

" simplified variance
sk . asymptotic variance, n=1 --- J
\ asymptotic variance, n=5 ...

101 100 101

=)
©

normalized frequency

Fi1c. 3. Comparison of the asymptotic variance expressions (90) and (97), for a = 0.82.

Figure 3. As can be seen, the simplified high-order variance expression is a
reasonable approximation even for moderate large values of n (n = 5). Notice
the influence of the low-pass filter (99), which gives a lower absolute variance
for higher frequencies.

ExaMPLE 7.2. Replace the low-frequency process in Example 5.1 with the
more narrow band process
(105) 0y = 221 e,
v t
where {e,(t)} is a continuous time Whlte noise process, with incremental

variance g,2 dt. The corresponding sampled process can be well approximated
(for small sampling periods A) with the discrete time process

(106) o(t) - Z’("__—) e(t),  Efed(n) = =

See Wahlberg (1988) for details. For g2 =10, 0,2 =1 and A =0.1 the
following discrete time process will be observed

(q + c?)(q +¢3)
(g +ad)’

(108) c?=-084, ¢J=-021, a?=-061, of=2.07.

(107) y(t) =v(2) +e,(2) = e(t),
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In Figure 4 the optimal (w.r.t. @) second order Laguerre spectral density
approximation (a,,, = 0.55) is compared to a second order AR (a = 0) esti-
mate. As we can see the AR estimate is unable to account for the low
frequency behavior of the process, while the Laguerre approximation makes a
compromise between good fit for high and low frequencies. Notice that the
true process has two rather scattered zeros (0.84 and 0.21). Hence it is
difficult to describe the process using one single Laguerre time constant. By
using two Laguerre time constants we can of course expect perfect fit. The
results for fifth order (a,,, = 0.58) models are shown in Figure 5. Here we
obtain very good fit for the optimal Laguerre model, while we still have a
considerable model mismatch for low frequencies using an AR model. This
illustrates the advantage of adapting the Laguerre time constant, instead of

just fixing it to zero as in the AR case.

8. Conclusions. Properties of discrete Laguerre filter representations of
time series have been investigated. By appropriate choice of Laguerre time
constant the number of parameters needed to obtain useful approximations
can be considerably reduced compared to AR modelling. Several results on
AR parameter estimation have been generalized to Laguerre models, such as
asymptotic statistical properties and the Levinson algorithm. The key obser-
vation is that the general Laguerre case can be transformed to the AR case
using Lemma 4.1. This makes it possible to generalize AR results to Laguerre
modelling.

SPECTRUM
10! ——TT T —TTTr

5 True system

3 a=a_opt, n=2 --- k
a=0, n=2 ..

100 v e i
102 101 100 10!

nommalized frequency

Fic. 4. Example 5.2: Second order spectral density approximations.
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SPECTRUM

10t — T — T — T

i True system  _
- a=a_opt, n=5 --- 1
a=0, n=5 .. |

100 L 1 T RS B T W O 0 1 L 1 I S T T . 1 1 I S S T S
102 10! 100 10!

normalized frequency

Fic. 5. Example 5.2: Fifth order spectral density approximations.

More practical experience with Laguerre models is needed before one can
fully evaluate the potential in practical applications. Several promising re-
sults in adaptive control have been reported by Dumont and co-workers; see,
for example, Zervos and Dumont (1988).

APPENDIX
A.1. Derivation of the Levinson type algorithm (49-53). Write
(109) ioﬁn,juj+1(t) =e(?), ﬁn,O =1,
where this is obtaineJd by regressing u,(¢) on the —u;,(¢), j =1,...,n. Then

(50), (51) and (53) follow from the Levinson recursion via the Toeplitz nature
of I, and its symmetry. Next consider the regression

n
Z c’in,juj(t) = é(t)’ &n,o =1,
j=0

n—1
(110) = ) &, u(t)
j=0

n-1
+ C‘in,n Z ﬁn—l,kun—k(t) ’ an,O =1.
k=0
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Here ui@®), j=1,...,n is replaced by ui¢), j=1,...,n—1 and
YrZd Bl Leln k(t) which is the residual from the regression of u,(t)
on —ul(t) u,_4(). This follows from standard arguments for the
Lev1nson recursion; see Hannan and Deistler [(1988) page 212]. Slnce
YE20Bu-1,1Un—1(t) is Toeplitz orthogonal to u)(2),...,u,_4(¢), then @, ; =

nljandsmceﬁn 10—101 = Thusaj= n—1,j +anan1n_J,
as required and &, Bn 1,;% ,/ 6,2 ,. This completes the proof. O

A.2. Proof of Theorem 5.1. All quoted results used here are in Hannan
and Deistler (1988), especially Chapter 5. We shall carry out the proofs as if
the calculations are done in Toeplitz form, that is, with y(¢) =0, ¢ <0 or
t > N. Let

1 N
1) 7G) = 5 Zy(Ox(E+)), with7(j) =0,1il = N,
t=1

(112) r(J) = E{y(¢)y(t +j)}.

Then the following hold:
113)  sup IA(j) — r()| =2(log N/N1?), as.,
0<j<w
114)  sup A() — r()I = 2@Qy), as.; vy =2(log N1°), b < .

0<j<uvy
We shall establish (114) for ¢;(a), cf (), c¢j(a), d(a), where ca) =
Elu;, ((t, dut, a)}, d(a) = E{ut, a)y(t)} but only fOI‘J <M< o, However
results for M i 1ncreas1ng with N that are weaker (and perhaps necessarily so)
are presented in Section 4.1. For example,

(115) d(a) = g:llj(i,a)r(i), di(a) = .;illj(i,a)f'(i),

where the {l (i, a)} are the Laguerre functions, that is, the coefficients in the
expansion of L ;(2,a) in powers of z ~1. For the analogue of (114) we may
truncate the sum over i at c log N for arbltrary large c, so that the remain-
der is @#(N~%), a.s., for any a > 0 (and suitable c), and the analogue of (114)
holds. Now it follows that 7),(a) converges a.s. and uniformly in a to n,(a) =
¥.(a)'T,(a) 'y, (a) with T,(a) = E{¢(¢, @) (¢, @)}, v,(a) = —E{¢(t, a)y(¢)}. For
n > n,, n,(a) has a unique maximum at a = a,, as is easily checked. For
n < ny then sup, nn(a) < no(ay). Thus for N sufficiently large and n < n, 6,

is strictly larger than & a by a fixed amount and BIC(n) cannot be mlmnuzed
for such N, at n < n,. For n > ny, 17, — 79lli = @(Qy). To show this we first
show that |4, — ayl = @(Qy). The proof for the other component 6, of #, is
then relatively straight forward and is of the same nature as that for an
autoregression. Now in much the same way as in Hannan and Deistler
[(1988), Section 6.6], we may show that d#),(a)/da = n,(a) + #(Qy), where
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we use 7,(a) to denote the derivative. Thus since (@) = (a — ay,(a),
|6 - aol < |a - a(}l, then -

d
(116) ‘C'l;'?ln(a) v (6, —ag)m; (@) +2(Qy), @ —agl <ld, —al
Since the left-hand side of (116) equals O, this establishes the last line of
Theorem 5.1 for @, and thus for 6,.
To complete the proof that A — n, we need only to show that, for suffi-
ciently large N, BIC(n) cannot be minimized at n > n,. This is established
by showing that

1 N 2 9
Since (nlog N)/N increases by log N/N as n increases and (log N/N)/

Q% — =, (117) is sufficient to complete the proof of Theorem 5.1.
However, putting e(¢) = 0 for ¢ > N we have

(117) 82 =

12 A2
52 =5 L (9() = o(t,4,) 6,)
t=1
() " 2
-5 X (e(2) + @(t,a0)'(6° = 8,) + (¢(t, a0) = ¢(¢,4,)) 8, »

~
Il
Jun

and the last line of Theorem 5.1 may be used to establish (117). This
completes the proof of Theorem 5.1. O

A.3. Proof of Theorem 5.3. The proof essentially follows Jennrich
(1969). Indeed

(119) (80— dy) = (a5 - do)[l ) ?7"((%))) ]

where |@ — G, < 4% — &,|. We can choose I and N, so that the last factor in
(119) is less than unity so long as aﬁk) is sufficiently near g,. For suitable I
and NO this will be true for 4" since &, will be sufﬁmently near to a,. Thus
162 — 4, < 18P — G,l, and so on, so that aP - a,, as.

A.4. Proof of the bound (65). Let.# be the Hankel matrix with (r, m)th
element [,(n + m — 1, a), and the singular value decomposition (SVD)

k .
(120) #= ¥ ouwfy  w= (m(Du@) ), v = (@Du@) ).

i=1
Then

k
(121) 1,(2j,a) = '¥1 au,(j)v,(j+ 1)
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and consequently
k

Z au;(J)v(J+ 1)|

< Y ollullzliv! s = ):ax/l—vl(l Z
i=1 i=1

where the first inequality follows from the Schwarz 1nequa11ty, and the
second one from [lu,llz = lv;lls = 1. 7 means an upshift in the elements of x.
Similarly, :

foe]

T l(2.a) = %
(122) ' e

=] © k

Y (2 - La) = T | T aun(iu)
(123) - e

< Z aillullzllvlle = Z ;.
i=1 i=1
Hence,
" k
(124) Y 1,.(j,a)l <2 Y o; = two times the nuclear norm.
j=1 i=1

Also #%' <%, where % is the symmetric Toeplitz matrix with (n, m)th
element X7_,1,(i, a)l,(i + |n — m|, a), so that

(125) ol < suplL,(e'®, a).

Thus

(126) Zﬂdbaw<2hn<2kwpp(d“ a)l,
j=1

which proves (65). O
A.5. Proof of Lemma 6.1. Using
cj(a) = Z Z j+1(i, a)l(k,a)r(i — k),

i=1k=1
[oe)

¢i(a) = Z g (i, @) li(k, @) (i — k),

8

(127)

we obtain

le;(a) — ¢;(a)l

IA
h Mg

i 0y 1(ir @) y(B, )l (G~ k) — r(i = B)

IA

(128) supl(i)-— r(i)| £ 1Ly 1(ir @)l T sk, )
i i=1 k=1

. oy LAdel .
<4(j+1) Tl sgplr(z) - r(d)l,
13
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where the last inequality follows from (65) and
1-—a?

1-lal ’
The result (66) now follows from the result (113) in the Appendix. The proof
of (67) follows the same lines, and is therefore omitted. O

(129) ' ILi(e'*, a)l <

A.6. Proof of Theorem 6.1. Let d = (d, - d,), lldllz = 1. Then using

Lemma 4.1 we have
1 7-¢ e . 2 1+ aei® _
(130) d'T,(a)d = E;f—(ﬂ—g) E dje“"(f'l) q)y(————-—) do

=1 ei® + g
131 i o [1E%7) gz - 2 S 1d| 2
> min — - — ; .
( ) —(r—e)<w<(m—¢) Y e+ a 2 T i1 J
But
n 2
(132) (Zldjl) < nldlZ,
Jj=1

which proves Theorem 6.1. O

A.7. Proof of Lemma 6.2. Since I, is the Toeplitz matrix associated
with the spectral density

e’®+a ol o[ €0t @ 2
(133) ‘D(T_) oo H (m—)
and
(134) L(6 — 6F) = E{e(t,a)A(q) y(t)},
where A(q) = X5_, . 127 L,(q, a). Theorem 1.1 in Baxter (1963) implies that
(135) 16, — 631, < MIE{¢(¢)A(q) y(¢)} I, for n > 7,

where M = M/(1®,(Q + aw)/(w + a)lly), with M and 7i as above. Observe
that condition (72) guarantees that Theorem 1.1 of Baxter is applicable. The
right-hand side of (135) can be bounded as

NE{e(t,a)A(q)y(t)}I1
<Y X lod|E{Ly(q,a)y(t)L(q,a)y(t)}]

(136) Jj=1k=n+1
hod w+a
< Y | cpy( ) ,
k=n+1 1+aw 1
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where the last equality follows from

187 ()= ¥ ew e = B(La, @)3() Lig,0) y(1)).

This proves (73). The statement (74) follows directly from (73), using
ILi(e*?, @)l <[(1 + lal)/(1 - |aD]*/2. O

T=—0

A.8. Proof of Theorem 6.2. By definition,

(138) y(t) = ¢(t,a) 60} + [HY(q,0)] '5(2),
which implies
1) G- 0)- 5 L e alHi @] ).
Row j of the right-hand side of (139) equals
(140) d; + f‘, @y, J=1,...,n.
Also, from the optimality o; _6),1:",
(141) d; + ki afc,_;=0, j=1,...,n.
=1

Hence, row j of the right-hand side of (139) can be bounded by

n

n
(142) <Id,—d|+ max & —cl Y lafl
0<k<(n-1) k=1

= (n(log N/N)l/z), a.s.

The last equality follows from Lemma 6.1 and
n =)
(143) Y lafFl <l16F — 62y + 11621 < C X o] < oo,
k=1 k=1

using Lemma 6.2. From Lemma 6.1,

(144) I, = T,lla < sup X le;; — &_,| = @(n?(log N/N)"?).

1<i<n j=1

Consequently, |[I'~!||; is bounded a.s. for large enough N, since (69) implies
that [T 1|l is bounded from above uniformly in 7. To prove (79), we now use

12 1
5 L et o) Hi(g,0)] 7 5()

Vi 3/2(logN 2
o))

16, — 65ll2 < IIT~ Iz

(145) 2
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since ||x|l; < n'/2 max;|x;| for vectors of dimension n. The second statement

in Theorem 6.2 follows from || x|l; < n'/2||x|l; for any n X 1 vector x. Combin-
ing (80), Lemma 6.2 and

(146) 16, — 621, <116, — 61l + 1162 — 61,

yields (81). O

A.9. Proof of Theorem 6.3. Introduce e'® = (1 — ae’®)/(e'® — a); then

ol )

0 _ ’
_n—W( w,)T; 1W( —w,)

(1-a%)

(¢ —a)(e T —a)

(147)

2
Xino_(l eiwl el eiﬁl(n—l))l"n—l(l e—iﬁz_ e e—iwz(n—l)).

From Hannan and Wahlberg (1989),

1(1 el®1 ... eiﬁl(n—l))rn—l(l e %2 ... e—iﬁz(n—l))
n

(148) 0, if ®, # ,,
- e®14+a \| o
NTraem )| > Fo7®

as n — . Substituting (148) into (147) now proves the theorem. O
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