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OPTIMAL CONTROL AND REPLACEMENT
WITH STATE-DEPENDENT FAILURE RATE:
AN INVARIANT MEASURE APPROACH!

By ARTHUR C. HEINRICHER AND RICHARD H. STOCKBRIDGE

University of Kentucky

Stochastic control problems in which the payoff depends on the run-
ning maximum of a diffusion process are considered. Such processes
provide appealing models for physical processes that evolve in a continu-
ous and increasing manner and fail at a random time. The controller
must make two decisions: first, she must choose how fast to work (this
decision determines the rate of profit as well as the proximity of failure),
and second, she must decide when to replace a deteriorated system with a
new one. Preventive replacement becomes an important option when the
cost for replacement after a failure is larger than the cost of a preventive
replacement. Single-cycle and long-term average criteria are used to
evaluate the control and replacement decisions.

We model the process via a martingale problem formulation. This
enables the long-term average control problem to be rephrased as an LP
over the invariant measures of the process. We identify the invariant
measures corresponding to each control and replacement decision and
determine the optimal solution using an iterative scheme.

1. Introduction. This paper is concerned with the following optimal
control problem: A process increases randomly in time until it fails, at which
time the process is renewed and the cycle repeats. Failure is also random and
its rate depends on the level of the process. A profit is earned while the
process is running, but a cost is incurred when the process is renewed. The
controller has influence on the system in two ways. First, she decides the
drift rate of the process; higher drift rates improve the profit rate but also
increase the rate of failure. Second, she can decide to renew the process
before failure at a cost that is less than the cost incurred at failure. Her task
is to obtain the maximum long-term profit rate.

Intimately related to this long-term average control problem is a single-
cycle control problem in which the controller seeks to maximize the total
profit obtained during the first cycle. In the companion paper Heinricher and
Stockbridge (1993), the single-cycle problem is studied in depth using dy-
namic programming, and the relationship between the single-cycle and long-
term average problems is briefly discussed. An important aspect of the paper
is that failure occurs according to a nonstandard state-dependent rate and
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only when the process increases. This localizes failure to a subregion of the
state-space.

This paper concentrates on the long-term average problem using an invari-
ant measure approach. The process is modelled via a constrained martingale
problem developed by Kurtz (1990); the nonstandard failure mechanism is
easily represented by a constraining operator on the subregion in which
failure may occur. The problem is then reformulated as a linear program over
the space of invariant measures of the controlled process. The key to this
approach is the characterization and identification of the invariant measures
through the basic adjoint relation (7). The paper also demonstrates how the
single-cycle problem can be solved from knowledge of the invariant measures.

Invariant measure methods have some advantages over dynamic program-
ming. Modelling the dynamics of the process via a martingale problem allows
milder conditions on the coefficients of the problem in order to establish
existence of solutions. It is also not necessary to require the control processes
to be renewed along with the state process. In comparing this approach with
the standard method of passing to the limit with discounted problems, the
present approach has the advantage that the long-term average problem can
be studied directly in terms of the invariant measures of the process. One
present disadvantage is that only existence of the optimal controls is deter-
mined; they are not obtained directly in feedback form as with dynamic
programming. (This difficulty will be overcome in the near future in joint
work with T. Kurtz.)

This linear programming approach has been studied extensively in dis-
crete settings, for example, Manne (1960), Derman (1962), Wolfe and Dantzig
(1962), Denardo (1970) and Pittel (1971), and has been extended to continu-
ous time with general state and control spaces by Stockbridge (1990) and
Heinricher and Stockbridge (1992). A similar convex programming approach
has recently been used on finite-horizon problems by Fleming and Vermes
(1989); the measures involved are not the invariant measures of the process.

The paper is organized as follows. Section 2 formulates the model and the
objective functions considered throughout the remainder of the paper. Section
3 then reformulates the long-term average criterion as an LP over the
invariant measures of the process and in Section 4, these measures are
identified, parametrized by the control and replacement policies. Section 5
shows how the single-cycle problem can be solved using the invariant mea-
sures. This is used in Section 6 to obtain the solution to the long-term
average problem. One limitation to the solution in Section 6 is that it is given
in terms of the optimal long-term average value A*. This limitation is
overcome in Section 7 using a A-maximization technique [extending a method
in Taylor (1975) and Aven and Bergman (1986)] and an illustrative example
is presented.

2. Formulation of the model. We begin by defining the notation used
throughout the paper. For this purpose, S represents various subsets of R4
or R? X 72 (for several values of d) that will be identified when used. é(s)
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denotes the space of continuous functions on S vanishing at infinity, C,(S)
denotes the space of continuous functions on S having compact support,
C?%1(S) denotes the space of functions that are twice continuously differen-
tiable in the first argument and continuously differentiable in the second
argument (here, S c R?), Dg[0,~) denotes the space of functions from [0, )
into S which are right continuous and have left limits, 2(S) denotes the
space of probability measures on S, .#(S) denotes the space of finite mea-
sures on S and #(S) denotes the collection of Borel sets of S. For measures
Ms 4y on S, pu, = p means [fdu, — [fdu for all bounded, continuous func-
tions f. '

2.1. Dynamics of the system. The dynamics of the process are formulated
as solutions of Kurtz’s constrained martingale problem [Kurtz (1990)] which
identifies the behaviour of the process in different regions of the plane. We
define the process for all times ¢ > 0 in order to study the long-term average
reward; the single-cycle reward is obtained by considering the process up to
the time of the first jump (renewal).

In this application, we choose a level A at which a planned replacement
will automatically occur once the process reaches it but unplanned replace-
ment due to failure may occur at any level y < A. So define E, = {(x, y)):
—o <x <y, 0 <y < A} as the region in which the running max is constant
while the diffusion operates (there is no possibility of failure), E; = {(x, y):
x =y, 0 <y < A} as the region in which the diffusion operates, the running
max increases and failure occurs according to a state-dependent rate k(y),
and E, = {(x, y): x = A, y = A} as the region in which the process instanta-
neously jumps to the origin (a preventive replacement occurs). Let E = E, U
E, U E,. In addition, we append to the process components (n and r below)
which count the number of failures and the number of preventive replace-
ments; let N ={0,1,2,...}.

It is important to observe that we are restricting the model to require
failure only when the diffusion is at its running maximum. This is a
nonstandard failure mechanism which nevertheless makes sense; failure
should be a result of increased “wear.”

Let 9, = (¢ € C(E X N2)): ¢(-,-,n,r) € C>(E) V n,r} and define the
following operators on 2, in each region:

Ad(x,y,n,r,u) =f(x,y,u)b.(x,y,n,7)
+i0%(x,y,u) . (x,y,n,7) VY (x,y,n,r)€E; X N2,
B, ¢(x,y,n,r) =d¢,(x,y,n,r)
+k(3)[6(0,0,n +1,r) — ¢(x,5,n,7)]
' Y (x,y,n,r) €E, XN2,
Blzq&(x,y,n,r) = ¢(0,0,n,r +1)
—¢(x,y,n,r) V(x,y,n,r) €E, X N2
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We assume the controls take values in a compact set U C R and that the
coefficients satisfy the following conditions:

CoNDITION 1. f and o are bounded, continuous functions on E X U.

CONDITION 2. There exists a constant « such that
O<a<f(x,y,u),o(x,y,u) V(x,y,u) €EXU.

CONDITION 3. k is nonnegative, bounded, continuous with [gk(y)dy =
+ o,

DEFINITION 2.1. An E X N? X U-valued process {(x,, ¥, 1,7 Udkiso
taking values in Dy, y2y[0,%) is a solution of the (controlled) constrained
martingale problem for (A, E,, B,, E,, B,, E,) if there exist a filtration {#}
and nondecreasing processes A, and A, such that:

(@) {(x,, ¥,, nyy 1y )y s o 18 {F;}-progressively measurable.
(b) For i = 1,2, [§ xg(x,, ¥,)) dA,(s) = A(2).

(c) A, is a counting process.

(d) For each ¢ €2,

t
¢(xt’yt’nt’rt) _LA¢(xs’ys’ns’rs’us) ds
t
e = [Bub(xes yimsmaosri) dAy(s)

t
= [Bad( i, oy ) dho(s)
is an {#}-martingale.

A U-valued process {u,};., is said to be admissible if there exists a
solution of the constrained martingale problem in which {u }, . , is the control
component.

REMARK 2.2. Existence of a solution to the constrained martingale prob-
lem for (A, E,, B,, E,, B,, E,) is established by Kurtz [(1990), Section 2]
when the control process is constant, u, = u, ¢ > 0. Theorem 3.1 provides
existence of solutions for a larger collection of control processes.

REMARK 2.3. Choosing ¢(x, y,n,r) =n and approximating by elements
of @, it follows from (1) that n, — [{k(y,) dA(s) is a local martingale.
Similarly, choosing ¢(x, y, n; r) = r implies that r, — A,(¢) is a local martin-

, gale.

2.2. Decision criteria. In this paper, we consider two decision criteria: the
long-term average reward obtained subject to replacement costs; and a



384 A. C. HEINRICHER AND R. H. STOCKBRIDGE

single-cycle criterion in which the controller seeks to maximize the total
expected reward until the process fails or a preventive replacement occurs
(excluding the cost for replacement).

2.2.1. LONG-TERM AVERAGE CRITERION. Let A be bounded and continuous
on E X U and let R, denote the cost for replacement after failure and R,
denote the cost for a preventive replacement. We assume 0 < R, < R,. The
long-term objective is to maximize

1 .
(2) liminf—E[fth( Xy, Y5 Ug)ds —Rin, — R2rt]
0

too ¢

over the admissible controls {u,},. , and preventive replacement levels A. In
light of Remark (2.3), it is clear that the objective can be written as

(3) liminflE[fOth( x,,9,,u,)ds — leotk(ys) dr(s) — RZ/\Z(t)].

too 1

The benefit of this representation of the objective function is that the count-
ing processes {n,},. , and {r,},, , of the number of replacements do not enter
the computation of the value; the only components of the process involved are
{(x;, ,, u)}; 5 o and the “local time processes” A; and A,.

2.2.2. SINGLE-CYCLE CRITERION. Define
(4) ¢ A 7(A) =inf{t > 0: (x,,5,) = (0,0)}.

Since the first renewal of the process can result from a failure or a preventive
decision (the process reaches level A before it fails), { A 7(A) represents the
minimum of the first time of failure and the time the process reaches level A.
Let 4 be as above. The single-cycle objective is to maximize

LA T(A)
(5) E[[OA R(%,,y,,u,) dt

over the collection of admissible control processes {u,},., and replacement
levels A.

2.3. Dynamics revisited. Since both the long-term average value and the
single-cycle value of a solution {(x,, y,, n,, r;, u,)}; o of the constrained mar-
tingale problem can be obtained from the {(x,, y,,u,)},,, process and the

"“local time” processes A; and A,, it is advantageous to represent the dynam-
ics of the process so that the processes {n,}, . , and {r,},. , are not involved. To
do this, restrict the domain @, to the subset @ = C>(E); that is, to those
elements of 2, which are functions of only x and y. Then the operators take
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the form:

Ad(x,y,u) =f(x,y,u)d,(x,5) +30%(x,y,u),.(x,5) V(x,9) €E,
B d(x,y) = ¢,(x,5) +E()[¢4(0,0) — &(x,y)] V(x,5) €E,,
B2¢(x’y)=¢(0’0)_¢(x’y) V(x,y)€E2.

Throughout the remainder of this paper, we make this restriction on the
domain and refer to the process {(x,, y;, u,)};» as a solution of the con-
strained martingale problem. [In fact, it is possible to start by defining the
martingale problem on the domain 2 and extend it to &;. We have adopted
the present approach since it provides an intuitive explanation of the objec-
tive function (3).]

It will be necessary to compactify the space of control processes in order to
characterize the invariant measures for the solutions of the constrained
martingale problem and to identify optimal solutions. We therefore define a
relaxed solution to the constrained martingale problem as follows:

DEFINITION 2.4. An E X (U)-valued process {(x,, ¥,, 7,)};. o taking val-
ues in Dy, uq)[0,%) is a relaxed solution of the (controlled) constrained
martingale problem for (A, Ey, By, E,, B,, E,) if there exist a filtration {7}
and nondecreasing processes A; and A, such that:

(@) {(x;, ¥, )5 o is {F}-progressively measurable.
() For i = 1,2, [{ xg(x,, ) dA(s) = A(2).

(c) A, is a counting process on E,.

(d) For each ¢ €2,

B(x009) = [ [ Ad(x0r v w)m(du) ds = [Br(,-5,) dhi(s)
_j;)tBZ(ﬁ( Xg—» ys—) d)‘Z(s)

is an {#}-martingale.

3. LP reformulation of the long-term average criterion. This sec-
tion shows how to compute the long-term average value in terms of the
invariant measures of the process, and identifies the basic adjoint relation-
ship which characterizes these invariant measures. We fix the replacement
level A < o throughout this section.

3.1. Characterization of invariant measures. We are interested in the
limits of occupation measures of the controlled process as ¢ — « so we restrict
attention to a collection of times which are bounded away from 0.
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Let {(x;, y;, u,)}; . ¢ be a solution of the constrained martingale problem for
(A, Ey, B,, E,, B,, E,). Define the occupation measures { #’},.; on E X U by

1 ¢
wd(T) = -;E[fo)(r(xs,ys,us)] ds VIez(ExU).

Note that for each ¢, u? is a probablhty measure. The collection of measures
{1}, ., is tight since E X U is compact and is, therefore, relatively compact.
Thus there exist weak limits, as ¢ — «, which are probability measures on
E x U.

In a similar manner, define the occupatlon measures {uj},.; and {u?},.,
on E, and E,, respectively, by

Wh(H) = lE[ [ s ans)|  vHea(B),

WA = B[ [ 0200 )]

Since A,(#) is a counting process for the number of visits to (A, A), u? has
mass of size E[A,(¢)]/t. These masses have a finite upper bound, say L,
since the drift f and the diffusion o are bounded above and hence the
expected passage time from (0, 0) to (A, A) is bounded away from 0. There-
fore, there exist weak limits of {u?},., as t - o,

We now show the existence of weak limits of { u}}; . ;. Define

O’ x < 2
(6) 6(x)=1{1+10(x+1)°+15(x+1)*+6(x+1)°, -2<x<-1,
1, -l=<x

and ¢(y) = [J exp{/?k(v)dv}dz. Let ¢(x,y) = 0(x)y(y), (x,y) € E, and
note that ¢ €. Also note that 0 < ¢(x, y) < ¢(A, A) < = for (x, y) € E, and
¢(x, y) = ¢(y) for x > —1;in particular, ¢(y, y) = y(y) for all y € [0, A]. It
now follows that on E,

Bl¢(y’y) =1,
Byp(A,A) = —¢(A,A)
and
0, x< —-2,x>= -1,
$(9)[(30(x + 1) +90(x + 1)* + 60(x + 1)*)a?(, y,u)
Ad(x,y,u) =

+(30(x + 1)° + 60(x + 1)° + 30(x + 1)*))f(x, ¥, u)],
—-2<x=< -1

and that A¢ > —3L,y(A) on E, where o2 < L,. Thus using this ¢ and the
fact that {(x,, y,, u,)},, ¢ is a solution of the constrained martingale problem,
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we have
E[d)(xO’yO)] =E[¢(xt’yt) - _/:Ad)(xs’ys?us) dS

~[(Bib(x,- 3,-) dM(s) = [[Bad(xims yio) dh(s) |-
The above observations imply
E[M(8)] = E[ (., 3)] — E[d(%0, 30)]
—E[f()tAcﬁ(xs,ys,us) ds] + ¢(A, A)E[Ay(2)]

< ¢(A,A)(1 + 3Lyt + E[Ay(2)])-

It then follows that, for ¢ > 1, uX(E,) < ¢(A,A)1 + 3L, + L,] and that
{ul), . is relatively compact.

Let {¢,} be a sequence, ¢, — », such that there exist measures wu®, u! and
p? with p? = p® w; = p', and uf = u® as k — o Then since
{(x,,y,,u;)),»o, is a solution of the constrained martingale problem for
(A,E,, B, E,, B,, E,), for each ¢ €2,

1
0= t_E[d)(xtk’ yt,,) - d’(xo: yO) - ftkAd)(xs’ ys7us) ds
k 0
_fth1¢(x5’ ys) d/\l(s) - fthZ(ﬁ(xs’ ys) d/\Z(s)
0 0
1
= B[94 30) = #(x0,30)] ~ [Ad(x.y,0) dus

~ [Byé(x,y) dul, — [By(x,y) dul,.

Letting £ — «, we obtain

(7) JAddp® + [Bipdu' + [Bypdp? =0 Voeg.

The relation (7) is a necessary condition which the invariant distributions
of solutions must satisfy. The following theorem of Kurtz shows that (7) is
sufficient as well.

THEOREM 3.1. Suppose u° € #(E X U), u' €#(E,) and u* €#(E,) sat-
isfy (7). Then there exists a stationary relaxed solution {(x,, y,, )}, o Of the
constrained martingale problem for (A, E,, B,, E,, B,, E,) satisfying

E[ xr( %, yt)”t(rz)] = u’(Ty X Iy)
for all T; € B(E) and Ty, € B(U).
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PrOOF. The proof is essentially an application of Theorem 4.1 of Kurtz
(1991). O

3.2. Long-term average value computation. Again let {(x,, y,,u,)},. o be a
solution of the constrained martingale problem for (A, E, B,, E,, By, E,)
and let {¢,} be a sequence, ¢, — «, such that

,ggr;—kE[f A0 7302) ds = Ry ["R(3) dA(5) = Ryt |

~ timint 1B (. 3100,) ds = Ry ['5(2.) dA(s) = Ron0)]

t—x

For some subsequence of {¢,} (w1thout loss of generahty, say the ent1re
sequence) there exist measures u°, u! and u? with Mt = u, '“'tl. = u! and
/""t = u? as k — . Then the long-term average value (3) for the process
(%, ¥, u)),» o equals

fEXUh(x, y,u) du’(x,y,u) — leE E(y) dul(y) — Ry u2(A,A).

3.3. LP reformulation: Long-term average problem. Combining the char-
acterization of the invariant measures with the computation of the long-term
average value, we obtain the following LP problem:

Maximize

| h(x,y,u) dp®(x,y,u) - R, [ k(y) du'(y) — Ry u*(A,4)
ExXU E,
subject to

| Ad(x,y,u)du(%,y,u)
EXU

+f_31¢(y,y)dul(y) +f Byd(y,y)du?(y) =0 Voeg
B, E,

and
wWePExU), uet(E), unct(E).

4. Identification of the invariant measures p°, p! and p? . The
previous section shows that the invariant measures for the constrained
martingale problem are characterized by the basic adjoint relation (7). It is
obvious that different choices of controls and replacement levels will produce
different invariant measures. In this section, we identify the measures u°, u'
‘and u? (parametrized by the control and replacement level) which satisfy (7).

Again, let A be a fixed replacement level, 0 < A < », and u°, u' and u?
satisfy (7). Define u% € 2(E) to be the state marginal of u°,

(82) uy(G) = W(GXU) VG eB(E)
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and v: E X 2(U) - [0, 1] to be the regular conditional distribution of u given
x and y; that is, v satisfies

(8b) w’(T) = fEfUXF(x,y,u)v(x,y,du)u%(dx,dy) VI e®(ExU).
Note that v(x, y, ) € 2(U) for u)-almost every (x, y). Intuitively, v acts as a
relaxed control by determining the distribution on the control space U
corresponding to each state (x, y). (This intuitive statement is not rigorously
established by Theorem 3.1. However, it will be proven in forthcoming work
with Kurtz.)

The measures u°, u! and u? will be determined in terms of the conditional
distribution » on the control space U and the replacement level A.

To determine the invariant measures, we begin formally. Suppose that u

has a density p(x,y) and u! has a density p(y). Define the “averaged”
coefficients

flx,y) = fo(x,y, u)v(x,y,du) and 6%(x,y) = fUaz(x,y, wv(x,y,du).

Then for each ¢ €2, (7) can be written as

1
0= /OA/L[U[f(x,y,um(x,y) + gaZ(x,y,u)%(x,y)]
Xv(x,y,du)p(x,y) dxdy
+/(f[¢y(y,y) + k(¥)($(0,0) — $(¥,¥))] B(¥) dy
+[¢(0’0) - d’(A’A)] l-"2(A’A)

- 1
- fo“/_ym[f(x,ym(x,y) + §A2(x,y)¢xx(x,y)]P(x,y) dxdy

+f0“[¢y(y,y) + k(2)(6(0,0) — ¢(¥,))] B(») dy

+ [¢(0,0) - ¢(A’ A)] /""2(A’ A)
Integrating by parts shows that this expression

- 1
= fOAf_ym[f(x,y)p(x,y) - -2'% ~2(x,y)p(‘x,y))]dgt(x,y) dx dy
al _,
+f0 593 9)p(y, ) 6:(y, ¥) dy

+f [4,(5,9) +E(¥)($(0,0) — ¢(5,5))] 5(¥) dy

+[¢(0,0) — $(4,4)] (4, 4).
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Adding and subtracting ¢,(y, y) in the appropriate place gives
Ay | o= 19 s
= fo f_ flx,y)p(x,y) — -2—3:(0' (x,y)p(x, y)) ¢.(x,y)dxdy

1
+ 155 (:9)p(3 N[.(3,9) + 6,(3 )] &

A
*,
+[CR(N[6(0,0) = 6(3, 7)1 5(y) dy

+[¢(O’O) - d’(A’A)] ﬂZ(A’A)

and using the fact that ¢,(y,y) + ¢,(y,y) = (d/dy)$(y, y), another inte-
gration by parts leads to

1
B(y) - 562(y,y)p(y¢y)]¢y(y,y) dy

y | - 1
= fOAf_w[f(x,y)p(x,y) - -2—%(&Z(x,y)p(x,y))]@(x,y) dx dy

+fOA
1d

_LA[EE(gz(y,y)p(y,y)) + k(y)ﬁ(y)](b(y,y) dy
1

1
ply) - géz(y,y)p(y,y)]%(y,y) dy

1
+ 2538, 8)p(8,8)$(4,4) — £5%(0,0)p(0,0)$(0,0)

+f0Ak(y)ﬁ(y) dy $(0,0) + [$(0,0) — ¢(4,4)] u?(4,4).

Considering the first three items, the densities p and p should satisfy

3 1

®) flx, 1) p(2,9) — 3o (522, 9)p(%,2)) = 0,

(10) p(y) —36%(y,y)p(y,5) =0,
1d

(11) E(y)D(y) + ggy-(&z(y,y)p(y,y)) = 0.

Observe that the p and p which satisfy these conditions will also clean up
the extra terms since

A (1 d
fok(y)ﬁ(y) dy = —fOAggy- 2(y,y)p(y,y))dy

1
7%(0,0)p(0,0) — Z5*(4,4)p(4, 4).

N =
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Thus these formal calculations show that the left-hand side of (7)

—f I [f(x y)p(%,y) - ——(aZ(x y)p(x, y>>] b(x, ) dxdy
+fA

"f [2 dy a3y, y)p(y, y))*-k(y)p(y)]¢(y y) dy

1
ﬁ(y)--&z(y,y)p(y,y)}m(y,y)dy

1
# (w08, ) - 58,0008, J18(0,0) - 4(8, 0)]

The p and p which satisfy (9), (10) and (11) have the form

2¢ 2f(t,
(12) p(x,y) = T;Z(—x’y—)eXp{_foyk(v) du} exp{_fxy&%((t,_‘g_ dt}
Vx<y,0<y<A

and
(13) ﬁu)=0wﬂ—ﬁuwdﬁ VO<y<A.

Fix C =1 in (12) and (13) and let K be the normalizing constant for the
probability measure u3:

K- [ [y O

y2 { s
X exp {—fx &—];‘ii’—‘;l))dt} dxdy]

Note that this means the solution p is an unnormalized density for uy. With
wu? defined to have point mass at (A, A) of size

307(A,4)p(A, ) = Kp(A)
=Kexp{—f0Ak(v) dv} ,

the basic adjoint relation (7) is satisfied for every ¢ €2.

Observe that the integration by parts computations are valid with these
choices of p and p. Thus we have identified the invariant measures given by
densities. The next theorem proves that all the invariant measures have
-densities of this form.

Observe also that the dependence on the conditional distribution enters
through the averaged coefficients f and &2. In addition, note that p and u?
only depend on » through the normalizing constant K. This shows that the

(14)

-1

(15)
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failure mechanism is not affected by the control and allows the optimization
procedure to separate the control and replacement decisions.

THEOREM 4.1. Let u°, u! nd u? satisfy (7) and py and v be defined by
(8a) and (8b), respectively. Then 3 has density p given by (12) and u' has
density p given by (13).

ProOF. Using the conditional distribution » provided by u’, and p and p
given by (12) and (13), respectively, define the measures iy € 2(E) and
i' €#(E,) to have (unnormalized) densities p and p, respectively. Define
the measure @’ € #(E x U) by

2°(T) =K/fXr(x,y,u)v(x,y,du)p(x,y) dxdy VI e®(EXxU).
B'U

Also define the measure i to have point mass given by (15); denote this
positive constant by M. Then (u°, u!, u?) satisfies the basic adjoint relation
(7) by assumption and (&°, 1!, &*) satisfies (7) by construction.

Let A¢(x,y) =f(x, y)o (x,y) + 1/2)6%(x, y)$,,(x,y) and let M de-
note the mass of u?. M is positive since A < . Then, for every ¢ €9, (7)
implies

[Ad(x,9) du(x,9) + [ Bid(y,¥) d'()
E E,
~M[$(0,0) — $(4,4)]

= MM 0,0 A, A
=~ [#(0,0) — ¢(A,A)]

(16)

M.
—ﬁ[fEAcb(x,y)dﬂ%(x,y) +[EIBI¢>(y,y) di(y)|-

Fix a,, ay, by, by € R such that a; < a, < b, < b,; that is, such that G =
[a,,a,] X [b;,b,] C E. Define I; to be the indicator of the set G. The idea is
to solve the system

Ap(x,y) =I;(x,9) VY (x,y) €E,
Bié(y,y) =0 VOo<y<A,

for ¢* and use this in (16) to show that the measures u$ and 1% agree on the
set G and hence are the same since a,, a,, b,, b, are arbitrary. The difficulty
is that ¢* €92 so it is necessary to approximate. ~

Let f,, 0,,1, € C>X(E) be chosen such that as n - », f, > f, 0, > &2
, and I, — I; and such that for each n, the support of o, properly contains
the supports of f, and I,, and o, > &2 on the supports of f, and I,.
Recalling the definition of 6 in (6), define

x -y
£(x3) = 0( =)
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and note that ¢, €92 and £,(x,y) - 1 as n - » for all (x, y) € E. Define

¥, by
x z 2 22 n Z,
(%, y) =[Ofom1n(w,y)exp{—fw—l%dt} dw dz
V(x,y) €E,

where I (x,y)/0,(x,y) and f,(x,y)/0,(x, y) are defined to be 0 when both
numerator and denominator are 0. Define

C.(y) = Ly[k(z)wn(z,z) - %;ﬁn(z,z)]exp{/;yk(v) dv} dz V0<y<A

and finally define ¢, €2 by

(17) ba(2,¥) = &(x, ) [¥(x,9) + Co()]  V(x,y) €E.
Observe that

&2(x,
Ad’n(x’y):gn(x’y)—o_(L:—g%In(x’y)
2
+§n(x,y)[f(x,y)— ((x’y) ,y)]—(x y)

2

1
+ —"2(x Y5, § —(x,9) + (=, y)i(x y)}

X[9n(x, y) + Ca(9)],

B¢y (y,) =0
and {A¢,} is uniformly bounded and converges to I; as n — «. Thus using
¢, in (16) we obtain

Kp(G) = lim [ Ag,(x,9) duf(x,9) + [ Bido(7,5) di'(y)

lim —[fAd),,(x y)did(x,y) +f B¢, (y,y) did'(y)

n—w

M G
_MME( )

Since this holds for every rectangle in E,, uy = (M/M)j% and since both uf

and fi) are probability measures, it follows that M = M.
Similarly, to show that u' = fi!, approximate the solution of the system

Ap(x,y)=0 V(x,y) €E,
Bi¢(y,y) =1I,5(y) VO<y<A. O

5. Single-cycle criterion. We postpone further examination of the
long-term average criterion to consider the single-cycle problem; its solution
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will play an integral part in the solution of the long-term average problem. In
this section, we show how to determine the single-cycle value using the
invariant measures.

Recall that ¢ A 7(A) is defined to be the first time of renewal and the
objective is to maximize the total reward obtained up to time ¢ A 7(A). We
begin by establishing an equivalence between this single-cycle problem and a
related long-term average problem.

Let r* denote the unknown optimal single-cycle value. Then for every
control process {«,}, . , and replacement level A > 0,

(18a) E[*"Ch(x, 3, u,) dt < 7*
0

and equality is achieved by an optimal decision policy ((u}),. ,, A*). Rear-
ranging the inequality (18a) and dividing by the positive value E[ { A 7(A)],
it follows that

E/{A T(A)h( Xpy Vo Uy) dt —r*
0

E[¢ A 7(A)]

for every control and replacement level policy. The left-hand side of (18b)
represents (via a renewal argument) the long-term average value of a process
that is renewed whenever failure or preventive replacement occurs and for
which the cost of renewal is r*. Sections 3 and 4 show that this long-term
average value can also be represented as

Ay
(19) K,,’Aff fh(x,y,u)v(x,y,du)py’A(x,y)dxdy—KV’Ar*,
0 /-'Uu

where the dependences of the density p(x, y) of (12) and the normalizing
constant K of (14) on » and A have been indicated with subscripts. Observe
that inequality (18b) becomes

(20) KV,AfAfy fh(x,y,u)v(x,y,du)p,,,A(x,y) dxdy — K, ,r* <0
0 /-’y

and, by inverting the previous rearrangement, (18a) takes the form

(21) Y] [ r(x, 3, w)v(x, 5,du)p, (%, ) dxdy < r*
0 /—’U ’

for every pair (v, A), with equality achieved by an optimal pair. Correspond-
ing to an optimal pair (v*, A*) is a stationary relaxed control (7;),,, and
stationary process (x}, y}),. , which achieves the maximum long-term aver-
age value 0 and therefore, the optimal single-cycle value r*. Thus (7}, A*) is
optimal for the single-cycle problem as well, and it is sufficient to optimize
over stationary solutions of the constrained martingale problem. The single-
cycle problem is equivalent to the unconstrained optimization problem: Maxi-
mize

(18b) <0

LAfjmeh(x, y, w)v(x,y,du)p, A(x,y) dcdy

over conditional distributions » and preventive replacement levels A.
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6. Solution of the LP. In this section, we use the identification of the
invariant measures (parametrized by v and A) to also rewrite the LP problem
for the long-term average value as an unconstrained optimization problem.
This optimization problem has the advantage that the solution can be readily
determined but has the disadvantage that it requires a priori knowledge of
the long-term average value. The difficulty will be overcome in the next
section.

Let A* denote the optimal long-term average value and let p, denote the
density (13). Define

A(v,A) = KV’A/E/Uh(x’ y,u)v(x,y,du)p, A(x,y) dxdy

= K, Ry [ B(9)B(y) dy — K, sRo 5u(8)
1
and observe that the second integral can be explicitly computed, yielding

A(v,A) = KV,A/’fh(x,y,u)v(x,y,du)p,,,A(x,y) dx dy
E'U
(22) \
+K,,’A(R1—R2)exp{—f k(v)dv} - K, ,R,.
0

Note that Theorem 3.1 implies A(v, A) is the long-term average reward for
some solution of the constrained martingale problem and thus for every
conditional distribution v and replacement level A,

(23) A(v,A) < A*

and equality is obtained by an optimal pair (¢v*, A*). Taking into account the
value of K, , given by (14), the inequality (23) can be rewritten as

/;A/-y fU[h(x, y,u) — X]v(x,y,du)p, \(x,y) dxdy
(24) -
+(R; — R;y)exp {—Aﬁk(v) dv} <R,.

REMARK 6.1. Observe that the first term corresponds to a single-cycle
problem having reward rate 2 — A*.

REMARK 6.2. In this form, the conditional distribution » only affects the
first term, so v* of an optimal pair (v*, A*) maximizes the value of the
integral. As a result, »* must also maximize the value of the integral for any
A < A*; otherwise, replacing v* on 0 <y < A by a conditional distribution
that is optimal on 0 <y < A will improve the value. In fact, there is nothing
special about the value A* in this argument. Thus, we can separate the
maximization into two steps: maximizing the first term of (24) with respect to
v taking A = » (so that v is defined everywhere), and then maximizing the
entire expression in (24) over the replacement level A with the optimal »
from the first step.
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7. »-maximization. We address the issue of determining the optimal
long-term average value A* by extending the “A-minimization” technique for
optimal stopping to our control and replacement problem. This method
establishes a relation between A* and the failure cost R, and provides an
iterative scheme to produce a sequence of values A, converging to A*. Note
that this method is a maximization technique since the original problem is to
maximize the long-term average reward.

In the previous section, A* was assumed to be known and we optimized the
left-hand side of (24). The fact that the value of the left-hand side is less than
or equal to R, for every conditional distribution, replacement level pair (v, A)
and equal to R, for an optimal pair is observed but never used. This relation
plays a central role in the identification of A* in this section.

We consider a family of objective functions of the form (24) in which the
parameter A replaces A*. Define

(25) J(v,850) = [ [ [h(x,5,u) = \|v(x,5,du)p,,u(%, y) dxdy

and
(26) R(A) = (R, — R,)e /8*wdv,

The following proposition relates the parameter A to the optimal value A*
through a comparison of J(v, A; A) + R(A) with R;.

ProPOSITION 7.1.

@) J(v,A; M) + R(A) <R, VYV (v,A) implies A > X*.
() J(v,A; A) + R(A) = R, for some (v, A) implies A < X*.

ProoF. Both parts rely on rewriting (as in the previous section) the
inequalities
J(v,A;A) + R(A) < (=2)R,

in a form which exhibits the long-term average value corresponding to » and
A:
A(v,A) < (=)A

If the first inequality (<) holds for all (v, A), A > A*. If the second inequality
(=) holds for some (v, A), A < A*. O

From this proposition it is clear that the long-term average problem can be
solved using two steps. First, solve the family of maximization problems
(parameterized by A) having objective function J(v, A; A) + R(A). Then, de-
termine the value of the parameter for which J(»,A,; A) + R(A)) = R,
where (3, A,) denotes an optimal pair for the A-optimization problem. The
following iteration method addresses the task of identification of the parame-
ter value assuming that the optimization problem can be solved.

7.1. Iteration scheme. The iteration scheme begins with an arbitrary
choice of conditional distribution v,, say one which puts full mass at a
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constant control, and an arbitrary replacement level A,. Let A, = A(y,, Aj).
The scheme first iterates on the conditional distribution to improve the value,
then iterates on the replacement level and finally computes the value corre-
sponding to the new conditional distribution and replacement level. The
scheme then repeats, if necessary.

THE ITERATION ALGORITHM.

STEP 1 (Policy improvement step). Maximize J(v,; \,); a single-cycle
problem with reward rate 4 — A,. Let v, denote a maximizer.

STEP 2 (Replacement level improvement step). Maximize J(v,, ,, A; A,) +
R(A). Let A, , ; denote a maximizer.

STEP 3 (Value computation). Compute A, ; = A(y,,1,A,,1)-IF A, = A,
then (v,,,,A, ) is optimal. If A,,; > A,, then return to Step 1 with A, ;.

7.1.1. Improvement of the values. We show that the iterative scheme
does indeed improve the long-term average values. To simplify notation, let
E,={x,y): —»<x<y,0<y<A,} and K, denote the normalizing con-

stant (14) corresponding to the pair (,,A,). We compare the values before
and after improvement:

Any1 = A, =K,y . Uh(x’ y’u)”n+1(y’du)pu,,+1(x’ y) dxdy

n+1

+ Kn+ lR(An+1) - Kn+1R1 - /\n

n+1

=Kn+1[f A2, 5, 0) = ]y, du)p,, (%, ) dxdy
+R(A,;1) —Rl]

2Kn+1[fEnxU[h(x,y,u) = A v(y,dw)p, (%, y) dxdy
+R(A,) —Rl]

2Kl [ (G550 = Ay, dw)p, (5,9) dsdy

+R(A,) — Rl]

= 0.

Here, the inequalities follow from optimality of A,,; for the optimization
problem with J(v,, ,,A, A,) + R(A), and optimality of u, ,, for the optimiza-
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tion problem with J(v,A,, A,) [cf. Remark (6.2)], and the final equality
follows from the definition of A,.

7.1.2. CONVERGENCE OF VALUES. The iteration algorithm provides an in-
creasing sequence of values {A,} which are bounded above by the maximum
value of &. Thus, there exists a limiting value A,. We claim that A, = A*.

First, repeat the iteration algorithm once more using A, to determine #,
and A, which are optimal for the problem with parameter A,. Allowing a
slight abuse of notation which is nevertheless clear, let

(27) Mov1 = A%, A).
The algorithm improves values so A,,; > A,. Since (27) implies
J(¥, Au; Auyq) + R(A) =R,

and J(u,A,; A) — R(A,)) is a decreasing function of A, it follows that
J(u, Ay A) + R(A,) > R;.
We now demonstrate the opposite inequality.

J(u, A A) + R(AL)

= [, [#(59:8) = Mluly, du)p(, y) dedy + R(A.)

= /E XU[h(x,y,u) = M) uy,du)p(x, y) dxdy + R(A,)
An - A
X

By the optimality of (v, ,,A, ;) for the A,-maximization problem, this
quantity is

+

Sf [h(x’y’u) _An]Vn+1(y9du)pn+1(x’y)dxdy
E, . xU

A, — A

+ R(An+1) + Kw

=fE

n+1X
/\n = A 4 /\n+1 - An
Kw Kn+1

Since A,,; = A(y,,,,A,, ) implies J(v,,1,A,,1;4,,1) + R(A,, ;) =R, the
last expression becomes

U[h(x’ y,u) — An+1]Vn+1(y’du)pn+1(x’ y)dxdy + R(A, ;)

+

/\n_/\w+An+l_)tn.

=R, +
Rl Kw Kn+1

Letting n — o, the result is established.
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7.2. Simple model: The pure running max. To illustrate the iterative
scheme, we consider the pure running max model introduced in Heinricher
and Stockbridge (1991) in which the reward rate 4 and diffusion coefficients f
and o are functions of only y and «, not of x. The maximization steps can be
explicitly solved for this model.

We place the following additional assumptions on f, 2 and k:

(1) A(y, u) is nonincreasing in y for fixed u.
(i) f(y,u) is nondecreasing in y for fixed u.
(iii) % is an increasing function.

These assumptions have a natural interpretation for applications in con-
trolled wear. The first assumption says that the revenue rate decreases as the
system wears. The second and third assumptions say that a worn system has
higher wear and failure rates, respectively.

For Steps 1 and 2, let A, denote a generic long-term average value given
by either initialization or Step 3 of the scheme.

7.2.1. STEP 1: MAXIMIZE J(v,; A,).

PROPOSITION 7.2. Fory > 0, let
M%w—m_mnumw—u}
f(y,v) weU  f(y,u)

The conditional distribution v, , defined on U by v, , (x,y,*) = v,, (y,*) =
8, . () maximizes J(v,; A,).

U, (y) = min{v e U:

ProoF. For each conditional distribution v, we have

® Ly h(y,u) — A,
J@mur%[wg“ﬁfw Lty (e, 3, duy (5, ) ded

@y [A(3,u,,1(5)) = Al

Using the fact that p, satisfies (9), we obtain

e [h(y;un+1(y))_’\n] 19
B S e R

oo[h(y,un+1(y))—)tn] 1
-,

7*(x,y)p,(x,y))dxdy

o [y () 50y, 7)P(y,7) dy-

Using (10) and (13), we get

_ /oc [h(y, un+1(y)) - /\n] e—jg'k(u)dv dy

(28) o F(¥u.a(y))
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The expression (12) for p simplifies when the conditional distribution is
v,, 1. It becomes

2 ¥
Pnii(x,y) = mexp {fo k(v) dv

F21(3, g9 =) /0 (rs(5)
and direct computations with v,,,; and p,,, produce (28). O

7.2.2. STEP 2: MAXIMIZE J(v,, q,A; A,) + R(A). We rewrite J(v,,,,A; A,
+ R(A)) once more to obtain a better form for optimization:

h(y,u, - A
J(v1,454,) +R(A) = fOA (?(y,;iyl();))
+(Ry — Ry)e /ikwav
A R(y,unii(y)) — A
_'/(-) f(y’un+1(y))
X e I0k@dv gy 4 (R, — R,).
The assumptions on f and A imply (A(y,u,.(¥) — 1) /f(y, u, (y) is
nonincreasing. To see this consider values y; and y, with y, > y;. Then
h(ys, Unii(52)) — Ay < P(y1sUnii(92)) — Ay
(2, uni1(y2)) B F(y1s Uni1(52))
h(yl’un+1(y1)) — A,
f(y1»un+1(y1))

Since % is nondecreasing (A(y, u,, () — A,)/f(y, u, . (y)) — (Ry — RDk(y)
is nonincreasing and it is easily seen that the integral is maximized by
choosing

n e—/gk(v)du dy

= — (Ry — Ry)k(y)

h(y,u,41 —A
(29) An+1 = inf{y: (:;"(y, u (+:)1/()_)')’))

7.2.3. SPECIFIC EXAMPLE. Let A(y,u) =h, f(y,u) =u €[ a, B] with a >
0, o(y,u) =1and

= — (R; —Ry)k(y) <0 .

5 _ [kq, fory <N,
() =&, fory>N.

" Assume that «, B, k,, ks, N, R}, and R, satisfy

R
BR, LB

ko
—(1 - —kN > — > .
(30) kl( ) a(R, — R,) @



OPTIMAL CONTROL: AN INVARIANT MEASURE APPROACH 401

(The weak convergence arguments are still valid for this discontinuous £.)
Initialization: Let vy = 5, and Ay > N. Then

N BRy(1 — e #1N=k:(80=N)y 4 BR e =hiN=ka(8o=N))
° (l/kl)(l - e_klN) + (l/kz)e_klN(]_ — e_klN—kz(Ao—N)) :

STEP 1. Since & — Ay > 0, the maximum is achieved by v, = §,.

STEP 2. The condition (A — Ay)/a — (R; — R,)k(y) < 0 can be rewritten

as
_LRI___ — Ee—kﬂv—kz(Ao—N)
a(Rl _Rz) o
(y) kN (y) kN k{N-k
< - + — ek — o~ k1N —ky(Ag—N)
(1 - o) + T RN(L e )

and the assumptions (30) imply this inequality holds for £(y) = k, and fails
for k(y) = k,. Thus A; = N.

StEP 3. The improved value is A, = h — Bk, R, — Bk Rye ™V /(1 —e —
k,N).

Second iteration: Again A — A; > 0 so v, = §, and a similar computation
to that above shows A, = N. Thus an optimal solution has been reached.
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