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MARKOV MODELS OF STEADY CRYSTAL GROWTH

By D. J. GATES AND M. WESTCOTT
CSIRO

We consider solid-on-solid models of two- and three-dimensional crys-
tal growth described by Markov rate processes whose states are represen-
tations of the entire crystal surface and whose transitions are captures of
single atoms by this surface or escapes of atoms. Under natural conditions
on the transition probability rates, we prove ergodicity of the Markov
process. This implies the existence of states of steady growth and statisti-
cally stationary surface structure. Microscopic surface instabilities do not
therefore occur under such conditions. For two dimensions, our conditions
are very general; for three dimensions, they are less general.

1. Introduction. Crystal growth may be described by Markov processes
whose states are configurations of the crystal edge or surface and whose
transitions are captures and escapes of particles therefrom ([12]-[15], [17].
[25]). One can give a mathematically exact analysis of steady states of growth
in two dimensions ([8], [10], [11]). Two-dimensional models have important
application to polymer crystallization (e.g., [1], [7], [16], [22]), where the
crystals are flat or lamellar. The polymer chain folds itself into a very regular
zigzag of segments as it attaches to the edge of a lamella. Here the “particles”
are the segments. The analysis in [8], [10] and [11] provides explicit station-
ary distributions, steady growth rates and other quantities for a physically
important class of rates [see (2.9)]. These rates lead to a form of detailed
balance and to the dynamic reversibility of the process.

For more general rates, such distributions are unknown. Then it is natural
to look for more qualitative descriptions of the growth process, such as the
existence of stationary distributions; that is, the ergodicity of the Markov
process.

Previously [12], we gave some rather stringent conditions for ergodicity in
three dimensions. We also gave converse conditions that ensure transience or
null recurrence, implying surface instability. These conditions have simpler
two-dimensional counterparts (Theorems 1 and 2 herein). We shall give some
much weaker conditions that ensure ergodicity (Theorems 3 and 4). The
conditions have a simple physical interpretation: Transitions that tend to
smooth the crystal edge are more likely. So the resulting ergodicity is very
plausible. Two-dimensional models have application to other growth and
aggregation processes (e.g. [3], [4]. "
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Understanding of three-dimensional crystal growth is much more limited.
There are no exact solutions for steady growth analogous to the two-dimen-
sional ones. There is no discrete event Markov model where a stationary
distribution, under net growth conditions, is known [for continuous state
space, such distributions are known, however ([5], [9]). Further, one can
prove [12] that an important class of models has no dynamically reversible
members. So stationary distributions may be quite complex and difficult to
find. These basic deficiencies remain a major barrier to a deeper understand-
ing of the physics of steady growth. Again we resort to finding conditions for
ergodicity (Theorems 6 and 7).

2. Two-dimensional models. For the present, we consider only the
capture of particles by the surface. A particle may be an atom, a polymer
segment, a cell or some other entity depending on the application. A general-
ization, including the removal or escape of particles from the surface, is
discussed in Section 5. Our model is a so-called solid-on-solid model, in which
particles are represented as unit squares that form stacks with no overhangs.
Consecutive columns in the array are labelled 1,2, ..., M and the stack may
be represented by the vector of occupation numbers n = (n,,..., n, ), where
n; is the height of column i. We are interested only in the upper edge or
profile of such stacks, so that stacks differing in absolute height are regarded
as equivalent. The state of the stack may therefore be represented by the
vector of height differences or step sizes h = (hy,..., hy), where h; =n; —
n;_,, and we impose periodic boundary conditions, so that

M
(2.1) hM+i = hi V l and Z hi = 0.
i=1

This is equivalent to growing the surface on a closed curve, which has
mathematical advantages and has negligible effect when M is large, as it will
be in most applications.

The time evolution of the surface is described by a time-homogeneous
Markov process h(¢), t > 0, whose state space H consists of vectors h € Z¥
satisfying (2.1). Assume h(¢) is standard, so it has a @ matrix ([2], Section
I1.2) with typical element g(h,h’), giving the probability rate of the transition
h — h'. Transitions of the surface occur by addition of a particle to one
column, so that

hi—h;+1, hiyy=h -1
if the addition is at column i. This takes the state h to the new state

h=("hy,. ,h+1,h_ - 1,:'. ., hy). So the transition probability rates
q(h, ') are zero unless h' = h’ for some i, when we write

(2.2) q(h, k) = w;(h).



MARKOV MODELS OF STEADY CRYSTAL GROWTH 341

We assume throughout that there is K < « such that 0 < w;(h) < K for
t=1,..., M, h € H. The total instantaneous rate out of h is denoted by

M
(2.3) a() = L wy(k).

ie
Because supy, q(h) < «, h(¢) is stable, conservative and uniquely determined
by @ ([2], pages 154 and 251, Theorem II.19.1 and Corollary 2); that is, it is
regular [23]. Because the w, are positive, h(¢) is irreducible, but because H is
infinite, the existence of a stationary distribution is not assured a priori.

We assume henceforth that

(2.4) w;(h) =w(—h; ki),

where w is positive and bounded. Thus the rates are determined by the local
topography. Our main purpose in this article is to give conditions on w that
ensure the existence of a stationary distribution. First we outline some
previous results. These concern the special case (cf. [10], [11])

BO’ ifx,ySO,
(2.5) w(x,y)={By, ifx<Oandy>0,orx>0andy<0,
By, ifx,y>0,

or, equivalently, if site ; has n = 0,1, 2 neighbor columns higher than itself,
then

(2.6) w;(h) = B,.

Note that 1 + n is the number of interparticle contacts that are made when a
new particle is added. So in this special case, the rates depend only on the
signs of the steps, not their magnitudes. This type of model has been
extensively studied by computer simulation and approximate methods (e.g.,
[13]-[15], [17], [22], [25]). In [12] we proved some results concerning the
ergodicity of a three-dimensional version of this model. In two dimensions
these reduce to the following theorems.

THEOREM 1. If

(2-7) (M - 1)2/30 < Bs;
then the process h(t) is ergodic. For M < 4 it is ergodic provided
(2.8) Bo < By < Bs.

THEOREM 2. If B, > Bs, the process h(t) is transient; if By, = By, it is
null; if By = B, = Bs, then thé process is null recurrent for M = 2,3 and
transient if M > 4.

The proofs of these theorems are simplified versions of those in [12]. We
shall not give details here because they are not our main concern. Note that
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(2.8) is a much weaker condition than (2.7). Just prior to Theorem 4, we show
that (2.8) is, in a sense, close to ergodic for all M.

Besides these general results, we gave some very detailed exact results
([10], [11]) in the case

(2-9) Bo + Bz = 2By, Bo < By < Bq.

This process is ergodic for all M and so may be appended to Theorem 1. But
we also found the stationary distribution and growth rate, among other
things. Note that (2.9) is consistent with (2.8) and suggests again that (2.7) is
excessively strong. We now state our main new result.

THEOREM 3. Suppose w;(h) satisfies (2.4), with

() wlx,y) =w(y,x)V x, .
(i) w(x, y) is nondecreasing in vy for each x.
(ii) w(x, y) is ultimately nonconstant in y in at least one tail, for each x.

Then the process h(t) is ergodic.

Note that (i) and (ii) imply that w(x, y) is also nondecreasing in x for each
y. A related implication can be drawn from (i) and (iii). A proof of the theorem
is given in Section 4.

Condition (i) is a natural form of left-right symmetry, which should be
satisfied in most applications. It might fail if particles have a preferred
direction of approach to the surface. Condition (ii) says that a site with higher
neighbours than another has at least as large a capture rate. Neighbours
represent new interparticle contact for a captured particle. (In physical
theory, energy considerations imply that such contacts are favorable—they
lower energy—and so enhance capture rates.) Condition (iii) says that suffi-
ciently high neighbours give a strict capture advantage or that sufficiently
low neighbours give a strict disadvantage.

The effect of conditions (ii) and (iii) is to give higher rates to transitions
that have a greater smoothing effect on the surface. Smoothing tends to
encourage recurrence of the flat state h = 0. The resultant ergodicity is
therefore rather plausible.

The rates (2.5), subject to (2.8), satisfy (i) and (ii), but not (iii). Suppose,
however, that w(x, y) = w/(x, y) + we(x, y), where w,, is given by (2.5)
with B, < B; < B; and w,, satisfies ()—(iii). Then the process h(?) is ergodic
because w satisfies (i)—(iii). Because wy, can be made arbitrarily small

, compared to the B’s, we can find models, whose rates are arbitrarily close to
the B’s, that are ergodic under condition (2.8) for all M. In this sense, (2.8) is
close to a sufficient condition for ergodicity for all M, not just M < 4.

The conditions of Theorem 2 imply that exposed sites are favoured, and are

directly opposed to the ergodic conditions. (Physical theory says that when
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crystal growth is fast, the limited mobility of particles tends to favour
exposed sites. Surface instability is then observed.)

THEOREM 4. Suppose w;(h) satisfies (2.4) and, for some ¢ > 0,
(2.10) (x+y){w(x,y) —¢c} > asl|x+y|l— o
Then the process h(t) is ergodic.

The proof is given in Section 4, and it differs markedly from the proof of
Theorem 3. The conditions of Theorems 3 and 4 appear technically rather
different. To illustrate their differences and similarities, we consider some
special cases of w(:) that are of physical interest.

CasE A. w(x,y) = ¢(x + y).
CaskE B. w(x, y) = ¢(x) + ¢d(y).
CASE C. w(x,y) =a + ¢(x)Pp(y).

Case A implies that w;(h) = ¢(n;,_; — 2n; + n,;, ), so that the rate of
capture at site ¢ depends only on the second difference of column heights;
that is, the local curvature of the edge. Similar rates have been used
previously in both microscopic models ([5], [9]) and mesoscopic models of
dendrite growth ([19], (4.11) and [20]).

To justify Case B, suppose that neighbour columns independently attract a
particle to site { with probability rates ¢(—h;) and ¢(4;, ;) for left and right
neighbours, respectively. Suppose that capture occurs if either of the attrac-
tion events occurs. Then capture at site i in time dt is the union of
independent attraction events, so that

(2.11) w(h)dt = $(~h,) dt + d(hisy) dt — $(—h)b(hir1)(dr)?,

from which Case B follows. Note that (2.9) is of this form.

Rates of the form of Case C occur in the two-dimensional version of the
well-known process of Gilmer and Jackson [15]. They obtain Case C from
energy equilibrium considerations.

Obviously, Theorem 3 holds in each case if ¢(:) is positive, bounded,
nondecreasing and ultimately nonconstant in at least one tail. Call this
¢ € J. But for Case A, Theorem 4 holds under the much weaker condition

(2.12) for some ¢ > 0, u{¢(u) —c} > as|ul—> .

On the other hand, for Cases B and C, (2.10) is not satisfied by all ¢  J. For
* example, in Case C, choose ¢(:) to be a distribution function with 0 < ¢(u) < 1
for all finite u. For any proposed choice of ¢ > a in (2.10), fix x so that
¢(x) < ¢ —a. Then w(x,y) —c <0 for all y and (2.10) can never hold as
y — o, Examples where (2.10) does hold are in Case B ¢ is skew symmetric
and in Case C log ¢ is skew symmetric.
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3. Three-dimensional models. In the three-dimensional solid-on-solid
model, particles are regarded as unit cubes and are stacked on the unit
squares of a portion of the integer lattice Z2, a large chessboard, say. As
before, we are interested only in the surfaces of such stacks, so that surfaces
differing only in absolute height are regarded as equivalent states. The
centres of the columns (lying on a shifted Z2) are labelled (i,j), where
i=1...,Mand j=1,...,N.If n; ; is the height at site (i, j), we put (note
the labelling is different from [12]),

(3.1) 8i,j=MNi;~Mi—rjy hyj=n;;—n;; 4,

representing height differences between columns at (z, j) and columns to the
west and to the south, respectively. We again assume periodic boundary
conditions, which here become

(3.2) 8ivm, j+n = 8;,; foralli,j,
and likewise for &; ;. It then follows that

Zgi,j =0 forallj,

i

3.3
(3.3) Y h; ;=0 foralli.
J

Conditions (3.2) imply that, effectively, growth occurs on the surface of a
torus. For large M and N, edge effects are expected to be unimportant, so
that this topological device should be innocuous, and it has mathematical
advantages.

With the periodic boundary conditions, the definitions (3.1) extend to all
(i,7). Because the net height difference around any circuit is zero, we have

(3.4) gi,j+hi—1,j_gi,j—1 _hi,j=0’
Then our state space H,; comprises all vectors
(8.5) h={g ;, ,h ;:i=1,...,M,j=1,...,N} € Z"N

satisfying (3.2)-(3.4).

The time evolution of the surface is again assumed to be a time-homoge-
neous standard Markov process h,(¢), ¢t > 0, with state space H; and rates
q,(h, ). Again transitions occur by addition of a particle to one column:

h-h,
where, for some i, j,
g;,j=gi,j+1’ hIl,J=hl,]+1’
’ (36) ! . ’
8iv1,;=8&i+1,;— L, Rijer=hij1— 1,

Whjle other g, ;, and h,; are unchanged. The state h’' defined by (3.6) is
denoted h"/, so g,(h, h’) is zero unless h’ = h*/ for some i, j, when we write
qi(h,h"’) = w, ;(h). We assume throughout that there is K < », such that
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O0<w;h)<Kfori=1,...,M, j=1,...,N, h € H;, and define
M N
qi(h) = by Zwi,j(h)'
i=1j=1

As before, the Markov process h,(¢), assumed standard, is stable, conserva-
tive, regular and irreducible. By analogy with (2.4), we assume henceforth
that

(3.7) w; ;(h) = w(_gi,j’ _hi,j’gi+1,j’hi,j+1)’

where w is positive and bounded, so local topography is again the surface
feature determining rates.
Previously, in [12] we considered the special case

(3.8) w(u) =B, ifn(u) =n,

where u = (u,, u,, s, u,) and n(u) is the number of strictly positive compo-
nents of the vector w. Thus n(—g; ;, —h; j, 8;+1,j» h; j+1) is the number of
upsteps facing site (i, j); equivalently, n + 1 is the number of cube faces
covered when a particle is added to column (i, j) or the number of new
interatomic bonds formed. In [12] we proved the following result.

THEOREM 5. If

(3.9) (MN — 1)2/30 <min(2KB;,4B2,2B3, Bs),

where K = min(M, N), the process h,(t) is ergodic. For M = N = 2, it is
ergodic if

(3.10) Bo < Bz < By-

We also proved transience or null recurrence under different conditions on
the B,. To state our new result, we define u.= u; + u, + ug + uy.

THEOREM 6. Suppose w; j(h) satisfies (3.7) and, for some ¢ > 0,
(3.11) (v){w(u) —c} > asl|u|— .
Then the process h(t) is ergodic.

The proof is given in Section 4. Theorem 6 is a natural extension of the
two-dimensional Theorem 4. We note from (3.7) that u. is typically
(3.12) Ny j+njo1 vy j+ 0 5,0~ 4n; ;,
" which is the discrete Laplacian of n; ; and measures the local concavity of the
surface (cf. [5], [9], [19], [20] agam)

THEOREM 7. Suppose w; ;(h) satisfies (3.7) and ¢(:) is a positive, bounded,
nondecreasing function that is skew symmetric about some level ¢ > 0 and is
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ultimately nonconstant. Then if w has the form
(3.13) w(u) = ¢(u, +u,) + é(u, +u,),

where p,q,r,s € (1,2,3,4) are all different, the process h,(t) is ergodic. The
same holds if w is a positive linear combination of the three distinct cases in
(8.13), not necessarily with the same ¢’s.

The proof is given in Section 4. In Theorem 7, one possible combination is
uy + ug, which is typically n,_, ; + n;,, ; — 2n, ;, a measure of the surface
curvature along a straight line through site (i, 7). Similarly a combination
uy + uy is typically n,_, ; + n; ;_; — 2n; ;, which measures the surface cur-
vature around a corner through site (Z, j). So in all the cases covered by (3.13)
growth is again driven by hollowness of the surface, but now measured by
pairs of neighbours of site (i,j). Perhaps the most physically plausible
combined w is

(3.14) w(u) = ¢p(uy +uy) + d(uy +uz) + ¢(ug +uy) + d(uy + uy).

Here each corner pair of sites makes a similar contribution to the total rate,
and w; ;(h) is invariant with respect to 7/2 rotations of the lattice Z 2,

We make two observations about the proofs of our theorems. First, it is
sufficient to consider the embedded (or jump) chain, defined as the discrete-
time Markov chain whose transitions are the successive state changes in the
original process whenever they occur ([2], page 259 and [18], page 3). It has
transition probabilities

pi(h) = w;(h)/q(h).

Because the w; are positive and bounded, the embedded chain is itself
irreducible and has the same character (ergodic, null recurrent or transient)
as the original process. This is because the process is regular and hence: (i)
chain and process are recurrent or not together ([23], Lemma 4.2(iv)); and (ii)
chain and process are ergodic or not together ([21], Theorem 3).

Second, the proofs are based upon a general theorem of Foster [6] that
involves an unspecified test function or Liapounov function. The success of
the approach is governed by one’s ingenuity in choosing this function; see the
various examples in [12]. This limits the utility of the general theorem and
partly accounts for the incompleteness of our results. We state the general
theorem in the notation of the two-dimensional process.

PROPOSITION 1. The process h(t) is ergodic if we can find a positive
function y(h) such that, for all but a finite number of h € H,

, (3.15) 3(h) = Lpi(h)y(h') <y(h) -1

and such that, for the exceptional finite set,
(3.16) 2(h) <.



MARKOV MODELS OF STEADY CRYSTAL GROWTH 347

The proposition is a simple extension of Foster’s theorem 2 [6] (cf. [24],
Theorem 6.1) and the foregoing statement (ii).

4. Proofs of theorems.

PrROOF OF THEOREM 3. In Proposition 1, we choose

M
(4.1) y(h) = X bt

The same test function was used in [12] to prove essentially the second part
of Theorem 1. Then

(4.2) y(h;) =y(h) + 2(h; — by + 1),
so that
(4.3) %(h) =y(h) + 2 - 2S(h)/q(h),
where

M
(4.4) S(h) = ¥ () (hery = bo)-

To prove (3.15) we need to show that
(4.5) S(h) > 5q(h)

for all but a finite set of h. Because g(h) is bounded, say gq(h) <c, it is
sufficient to show that

(4.6) S(h) > 2¢

for all but a finite set of h. The following lemma is therefore sufficient for the
proof of Theorem 3.

LEMMA 1. For each positive, finite B, {h: S(h) < B} is bounded.

ProOF. To prove the lemma, order the k; as ¢; < -+ <t, and define
T}, = [tj’tj+l]’J= 1,...,M.— 1.

REMARK 1. If h # 0, at least two T} are nondegenerate.

REMARK 2. Because L)L h; = 0, at least one T contains zero, possibly as
an end point.
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Let U; denote the interval between h; and A, ,, from smaller to larger.
Then

M M-1
S(h) = ). w;(h) { )» (¢j+1 — t;)I(U; covers 7})} sgn(h;yy — hy),
i=1 j=1

where I(A) is the indicator function of the event A. So

M-1 M
Sth) = X (.1 t)) { Y. wi(h)sgn(h,;,, — h;) I(U; covers 7})}

Jj=1 i=1

(4.7) -
= X (tj1— 1)V, say,

j=1
where
(4.8) Vi= X w) - ¥ w(h).

k:h,<h,, , lihy 1<h
UkQTi UIQT}

Because Ay, ; = Ay, each sum in (3.8) has the same number of terms and is
nonempty. If we have any T}, U, and U, from the sums in (3.8), then

(4.9 hyshpp1 <t <t 1 <h,, i, h.
From Theorem 3(i) and (ii), we deduce that, for such &, [,
(4.10) wy(h)=w(—hy,hy 1) 2w(—hy, k)

= w(_hl’ hl+1) = wl(h)’
which shows that

(4.11) V,>0, j=1,...,M.

J

So all the summands in (4.7) are nonnegative, whence
(4.12) Os(tj+1_tJ)V]SB’ j=1,...,M.

To use Theorem 3(iii) for w(x, y) ultimately nonconstant in the upper tail,
we express it as follows: Given any & > 0 sufficiently small and any x, y,
there exists b = b(x, y, §) such that

' (4.13) w(x,b) >w(x,y) + 8.

IBy Remarks 1 and 2, there is an index j € (1,..., M — 1) such that tr <0,

t;,1 > 0. Choose any d > 0 and define 7 = min{|¢, d}, so 7 is bounded. Now,
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given any 8 > 0 sufficiently small,

either ¢; ; <b(7,0,6), in which case it is already bounded,

or w;,(h)>w(r,h,, ) [by (4.9) and Theorem 3@i) and (ii)]
> w(r, b) [by (4.9), assumption and Theorem 3(ii)]
> w(r,0) + & [by (4.13)]

>w(r,h; ) + 8 [by (4.9) and Theorem 3(ii)]
>w(—h;, h,, )+ & [by(4.9) and Theorem 3(i) and (ii)]
that is,
(4.14)

<N
v
>

So from (4.12) and (4.14),
0<t¢p,<tp;—-t;<B/3,

and we conclude that ¢;, ; is in any case bounded. A s1m11ar argument proves

that ¢; must also be bounded. Suppose now that J <M — 1 and consider
j= J + 1. We know that ¢;,; = ¢, say, is bounded. Given & > 0, sufficiently
small,

either ¢;, , < b(—t¢,t,98)
or wy(h) 2 w(—¢,hyy,)
>w(—t,t)+ 8
zw(—h;,hq) + 8
= w;(h) + 4.
So as before,
0 < tf+2 - tf+1 < B/5,
whence

(4.15) 0<tp,<t+B/S.

‘Therefore, t;, o must be bounded. We can continue in the same way to prove
that all ¢; for j > J are bounded. To examine the remaining ¢;, consider first
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j= f — 1. We know that tp= —t', say, is bounded below. Given & > 0 suffi-
ciently small,

either [t; ;| < b(-t',t, )
or wy(h) =w(hy,q, —hy)
> w( -t y — h k)
>w(—t,t') + 6
= lf”(hl+17 _hl) +8
=w;(h) + 8,
andAwe conclude, as usual, that ¢t;_; must be bounded. Similarly, all ¢; for
J <J must be bounded.
The preceding proof has assumed that w(x, y) is ultimately nonconstant in
the upper tail. If in fact Theorem 3(iii) holds only for the lower tail, then a

very similar line of reasoning holds, using Theorem 3(i) as above to switch
arguments of w if necessary. Thus in either case Lemma 1 is proved. O

ProoF oF THEOREM 4. We must show that Lemma 1, used in the proof of
Theorem 3, still holds under (2.10). From (2.10) we see that, given any 7 > 0,
there exists K(r) such that

(4.16) (x +y){w(x,y) —c} =7 if |lx +y| > K(7).
Now it is obvious from (4.4) that

M
(4.17) S(h) = '—21 {w(_hi’hi+l) - c}{hi+1 —h;}.

By (4.16), any negative summand in (4.17) has |A,, ; — k;| bounded by K(0),
so the negative terms are all bounded because w is. Hence S(h) < B implies
that, for some positive finite B’,

(4.18) (hl+1_hl){w(_hl’hl+1) _C} SB,, i= 1,...,M.
We deduce from (4.16) and (4.18) that
(4.19) lh; 1 — kil <K(B), i=1,...,M.

Because XX | h; = 0, if h # 0 there is at least one index  such that h; <0,
h;,1 > 0. From (4.19), both %; and h;, ; must be bounded, and we can then
deduce successively that A; ,,h; 3,...,h;_; are also all bounded. This
proves Lemma 1 under (2.10), which immediately gives us Theorem 4. O

PRrOOF OF THEOREM 6. In Proposition 1 we choose

M N
(4.20) y) = £ T (af;+ hL)).
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This is the obvious three-dimensional analogue of (4.1), and was previously
used in [12] to prove Theorem 5. Using (3.7), we can imitate the derivation of
(4.3) to get

(4.21) 2(h) =y(h) + 4 - 25,(h)/q,(h),

where

M N
(4.22) S(h) =) X w; j(h)(8i1,; — &+ hije1 — R j)-
i=1 j=1
Because q,(h) is bounded, it follows as in the proof of Theorem 3 that we
must prove Lemma 1 for S;(h) under (3.11) when w; ;(h) has the form (3.7). A
simple modification of the argument leading to (4. 19) proves that if S;(h) is
bounded, then

(4.23) Igi+1’j_gi,j+hi,j+1_hi’jISK, i=1,...,M,j=1,...,N,

for some finite K.

To complete the proof, we must show that (4.23) implies the g; ; and 4, ;
are all bounded. One approach is to note that the expression inside the
modulus in (4.23) is the discrete Laplacian of n, ,j» which can be regarded as a
convolution equation in the n; ;’s. This can be solved by Fourier transforms to
express n; ;, hence g; ; and h, .j» as a weighted sum of Laplacians, and the
desired conclusion follows. However, the details are messy, so we give an
alternative argument that we shall, in any case, need again.

The n; ; have at least one global minimum, being a finite set. Without loss
of generallty, assume one is at site i = 1, j = 1 and n,; = 0. Then

(4.24) >0, i=1,...,M,j=1,...,N.

z j=
Both g, — g,; and A, — hy; are nonnegative because (1,1) is a minimum,
so by (4.23) both are bounded. Additionally, g4, 215 > 0, 811, £1; < 0, so they
are also all bounded. Hence n,;,n,,,ny 1,7, y are all bounded. Next con-
sider site : = 2, j = 1. Then:

either g3, — g5, and Ay — hy; have the same sign, in
which case they are both bounded, by (4.23);

or the signs are different, in which case one difference is
nonpositive.

Because
831 — 891 = N3 — 2ny + Ny = —2ny,,
hgs — hgy = ngy — ngy + nyy = —2ny,;, both by (4.24),

the boundedness of n, implies that the nonpositive difference is bounded.
Then (4.23) says both differences are bounded. Because g,, is bounded, g3,
must also be bounded. Further, by (4.24),

(4.26) — gy < hgy < ngy + (hgy — hgy),
(4.27) hoy — |hgy + hyyl S hgy < hgy + lhgy — byl

(4.25)
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Equation (4.26) shows that %, is bounded, whence %,, is bounded from
(4.27), and so ng; and n,, are also bounded. Continuing this argument along
the sites with j = 1, we can conclude that

(4.28) &i1,h; 2 and n; , are all bounded for i = 1,..., M.

Now use the same reasoning as j increases through the sites with any fixed i,
because from (4.28), &, , and n; , are both bounded. This shows that, for each
i=1,...,M,

(4.29) h;;+1and g, j,, arebounded for all j =2,..., N.

The desired conclusion follows from (4.28) and (4.29). This establishes (3.15),
except for a finite set of h, for the test function (4.20). Condition (3.6) is
immediate from (4.21) for bounded h, because w; ; is bounded, and the
theorem follows from Proposition 1. O

Proor oF THEOREM 7. For definiteness, we shall prove the case p =1,
g =3, r =2, s =4, whence, from (3.7) and (3.13),
(4.30) wi,j(h) = ¢(gi+1,j _gi,j) + ¢(hi,j+1 - hi,j);
the other cases are similar. Remembering that ¢ is skew symmetric about
¢ >0, let f(u) = ¢(u) — ¢, so f(u) is bounded, odd, nondecreasing and ulti-
mately nonconstant. We choose the test function (4.20), and see easily from
(4.30), (4.21) and (4. 22) that, in this case,

N
Sy(h) = Z Y Af(8iv1,;— 8i)) +(hijor — b
(4‘31) 1 = =1{ +1,j J ( Jj+1 1)}
X(8iv1,j — &i,jt hijer — Ry )
As usual, we must prove that S,(h) bounded implies g; ;, /; ; bounded for all
i, j. We shall need the following lemma.

LEMMA 2. If fis as before and
(4.32) {f(x) +f(»)}(x+y)<B
for some B < o, then:

(a) If x and y have the same sign, then |x|,|y| < c¢(B) < o,
(b) If x and y have opposite sign and one is bounded by D, say, then the
other is bounded by a finite function of D and B.

PrOOF. To prove case (a), suppose x,y > 0. Then for any A < «, either
x,y < A or, because f is nondecreasing,

(4.33) {f(A) +f(O)}(x+y) <{f(x) +f(»)}(x+y) <B by (4.32)
‘and f(A) > 0 for sufficiently large A because f is ultimately nonconstant. So

(4.34) x,y < max [min{ A, B/f(A)}] =c(B) < .

A similar argument using moduli works if x,y < 0.
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To prove case (b), note that because f is ultimately nonconstant, then
given any § > 0 sufficiently small and any u > 0, there is a V(u, ) such that

(4.35) flu+V)—f(u) =6.

Consider x > 0, y < 0. If, say, |yl < D, then either x <D + V(D, §) or,
because f is odd and nondecreasing,

(ase TP HV)=ADNE~1y) = [F(x) + A} (x +9)

< B by (4.32).

So, by (4.35) and (4.36),

(4.37) x <min{D + V(D, §),D + B/8}.

If, instead, x < D, the same argument proves |y| has the bound (4.37), and
similarly if x < 0, y > 0. This completes the proof of Lemma 2. O

To return to the proof of Theorem 7, note from (4.31) and the properties of
f that S,(h) is termwise nonnegative. So S;(h) < B implies that, for i =
1,....M,j=1,...,N,

{f(gi+ 1, — &) T jur — hi,j)}
X(8is1,j — &i,j t Rije1— hi;) <B.
We now proceed as in the proof of Theorem 6, assuming that sitei = 1, j =1
is a global minimum with n,; = 0. So(4.24) holds and g,; — g,; and Ay, — Ay
are both nonnegative. By (4.38) and Lemma 2(a) both differences are bounded,

so we conclude as before that g4, A5, £11, 211> P21, Par1> Ry are all bounded.
Now consider site { = 2, j = 1. Then:

(4.38)

either g;, — g,; and h,, — h,; have the same sign, in
which case they are both bounded, by (4.38) and Lemma
2(a);

or the signs are different.

The same argument as before shows that the nonpositive difference is
bounded, whence (4.38) and Lemma 2(b) say they are both bounded. Proceed-
ing exactly as in the previous proof, we deduce that (4.28) and (4.29) hold
here also, and so the theorem follows from Proposition 1, as before. O

5. Extensions. A Markov model that incorporates escape events can be
specified by transition rates of the form (cf. [8])

(5.1) g(h,i) = q°(h,h) + ¢¥(—h, - k),

where g€ and g% are both transition rates of processes with capture events
only. In [12] we used (5.1) to extend Theorem 5 to include escapes. Theorems
1 and 2 may be extended in similar fashion. To extend Theorem 3, suppose

that (2.2) and (2.4) hold for both ¢ and g% in terms of functions w€(x, y)
and w¥(x, y). Then the process with rate g is ergodic if the functions w® and
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w® both satisfy the condition of Theorem 3, where the inequalities need be
strict for only one w. For example, w” could satisfy the conditions of Theorem
3 and w€ could be a constant, implying that all captures occur at the same
rate, in the manner of Gilmer and Jackson [15]. For further results see [8].

Because small values of h are not critically involved in long-term behavior,
condition (ii) of Theorem 3 can be weakened considerably. It may, for exam-
ple, be replaced by the condition: There is a ¢ > 0 such that w(x, y) < w(x, y')
whenever any of the following apply:

1. x<0and y <c <y
2. x<0Oand c <y <y
3. x>0and y < —c <y
4. x>0and y <y < —c.

Our proof essentially follows Theorem 3, but is substantially longer.
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