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ON LADDER HEIGHT DISTRIBUTIONS
OF GENERAL RISK PROCESSES

BY MASAKIYO MIYAZAWA AND VOLKER SCHMIDT

Science University of Tokyo

We consider a continuous-time risk process {Y,(¢); ¢ > 0} defined for a
stationary marked point process {(T),, X,,)}, where Y,(0) = a and Y,(¢)
increases linearly with a rate ¢ and has a downward jump at time T, with
jump size X, for n € {1,2,...}. For a = 0, we prove that, under a balance
condition, the descending ladder. height distribution of {Y(¢)} has the
same form as the case where {(T),, X,,)} is a compound Poisson process.
This generalizes the recent result of Frenz and Schmidt, in which the
independence of {T,} and {X,} is assumed. In our proof, a differential
equation is derived concerning the deficit Z, at the ruin time of the risk
process {Y,(¢)} for an arbitrary ¢ > 0. It is shown that this differential
equation is also useful for proving a continuity property of ladder height
distributions.

1. Introduction. In collective risk theory [see, e.g., Gerber (1979) or
Grandell (1991)], the following stochastic model is considered. For each real
a, a continuous-time risk process {Y,(¢); ¢ > 0} is defined by

@(2)
(1.1) Y, (t)=a+ct— Y X,,
‘ k=1
where {®(¢); ¢ > 0} is a counting process whose jump sizes equal 1, {X,} is
a sequence of nonnegative random variables and c¢ is a constant with 0 <
¢ < 4+, The ruin time 7, of the risk process {Y,(¢)} is defined by

(1.2) 7, = inf{¢t > 0: Y,(¢) < 0},
where 7, = @ if Y, (¢) > 0 for every ¢ > 0. Furthermore, the deficit Z, at time
7, is given by

00, if 7, = oo,

z, = { -Y,(7,), if7, <o,

This Z, can be used for describing the severity of ruin [see, e.g., Gerber,
Goovaerts and Kaas (1987)]. In the present paper, our main concern is with
the distribution of the deficit Z,, which is the first descending ladder height
of the risk process {Y,(¢); ¢ > 0}.

The following fact is well known [see, e.g., Asmussen (1987), Theorem
2.3(a), page 206, or Feller (1971), Chapter XII]. Under the conditions that:
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1. {®(¢); t > 0} is a homogeneous Poisson process with intensity A,

2. {X,} is a sequence of independent and identically distributed random
variables with distribution function F,

3. {®(¢); t = 0} and {X,} are independent of each other,

the distribution of Z, is given by
A

(1.3) P(Zy<x)=—[(1-F(u))du; x20,
cJ0

provided that
(1.4) AE(X,) < c.
Note that from (1.3) it follows in particular that

(1.5) P(1y <®) = %E(XO),

which is called the ruin probability of the risk process {Y,(¢); ¢ > 0}.

Recently it was shown that the independence assumptions in conditions 1
and 2 can be weakened to get formulas (1.3) and (1.5). Bjork and Grandell
(1985) [see also Grandell (1991)] proved that (1.5) holds for an arbitrary
counting process {®(¢); ¢ > 0} with homogeneous increments (but not neces-
sarily independent and Poisson distributed) if conditions 2 and 3 hold. In this
case, condition (1.4) has been slightly modified to

(1.6) D®E(X,) <c as.,
where ® = lim, _, (1/¢)®(¢). Asmussen and Schmidt (1992) gave two alterna-

tive proofs for showing (1.3) and, consequently, (1.5) for an arbitrary station-
ary sequence {X,} provided that conditions 1 and 3 hold and that

(1.7) M <c as,

where X = lim, . (1/n)X}_, X,. It should be noted that in (1.7) and, conse-
quently, in (1.4), equality is allowed. Furthermore, Frenz and Schmidt (1992)
extended one of the proofs in Asmussen and Schmidt (1992) to the case where
{®(2); t > 0} has homogeneous increments and {X,} is a stationary sequence
provided, however, that condition 3 holds and that

(1.8) ®X <c as.

Frenz and Schmidt (1992) also showed that a slightly modified version of (1.5)
can be obtained without any independence assumptions. This follows from
the correspondence between the risk process and the work load process of a
single-server queue. Concerning this correspondence, further results will be
given in Lemma 3.3.

Unfortunately, for x < o, the probabilities P(Z, < x) cannot be obtained
in such a direct way from queueing theory. Nevertheless, the question arises
whether (1.3) can also be proved without any independence assumptions.

The main result of the present paper answers this question positively.
Conditions 1, 2 and 3 are not necessary for the validity of (1.3), provided that
the jump epochs 7', of {®(#)} and the jump sizes X, form a stationary marked
point process {(T,, X,)} (Theorem 2.1). The risk processes mentioned before,
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which all satisfy condition 3, are included in our model as special cases. Our
approach, however, is different from those in the previous papers. We first
consider the deficit Z, for a given initial value Y,(0) = a, and derive a
differential equation concerning Z, (Theorem 2.2). In this derivation, we use
some results of the theory of stationary point processes; in particular, the
notion of the Palm distribution and an inversion formula that expresses the
time-stationary distribution by its Palm distribution. Then (1.3) is obtained
by integrating the differential equation, where, now, F denotes the Palm
mark distribution function of the stationary marked point process {(T,, X,)}.
Those results are given in Section 2 and proved in Section 3. We note that,
under conditions 1-3 and (1.4), the related formulas have been discussed in
Dufresne and Gerber (1988a, b) and Gerber, Goovaerts and Kaas (1987) (see
Remarks 2.2 and 3.1). Furthermore, the differential equation is useful for
approximating the probabilities P(Z, < x) when (1.8) fails but (A/c)E(X,)
nearly equals 1, where A is the intensity of {®(¢)} and E, denotes the
expectation with respect to the Palm distribution. This will be discussed in
Section 4.

2. Main results. For a marked point process, we pay particular atten-
tion to the epochs T, where {®(¢); ¢ > 0} has jumps. The X, are the marks of
these jump epochs. In the following, (Q},.7, P) denotes the basic probability
space.

Let {(T,,X,); n=0,+1,...} be a sequence consisting of ordered real-
valued random variables 7, and of positive random variables X, which are
defined on (. We assume that {(7,,X,); n=0,+ 1,...} is a stationary
marked point process; that is,

#{n:|T,| <d} <« as.foreveryd < «
and, for any real ¢, the distribution of the shifted sequence {(T}, + ¢, X,);

n=0,+1,...}is the same as that of {(7,, X,)}. The marked point process
{(T,,, X,)} can be given by the random counting measure ¥ with

W(B X L)=#(n:(T,,X,) €BXL), Be®(R),Le®(R"),
where Z#(R) and #B(R*) are the Borel o-fields on R and R™, respectively.

Let M be the set of all locally finite counting measures on (R X R*, #(R) X
Z(R™")) and # be the o-field generated by all sets of the form

{v:9eM, y([a,b] X [u,v]) =j},
J=0,1,..., —©o<a<b< +x, O<u<v< 4o,

Let {6,; — <t < 4} be a group of shift operators on  satisfying ¥ o 0,
(B X L)=%¥(B +t) X L) for any ¢, where ¥ 0,(&) = ¥(0(w)) for w € O
and B +t = {s: s € R, s — ¢t € B}. Without loss of generality, for example, by
. putting () = M and & = if necessary, we can assume the existence of {6,}

and that it is measurable on (Q,%). Then the stationarity assumption of a
marked point process means that

P(Vo0,€A)=P(VcA) forevery A €.
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We assume that the intensity A = E(¥([0,1] X R*)) of ¥ is positive and
finite. More details concerning stationary marked point processes can be
found, for example, in Franken, Konig, Arndt and Schmidt (1982), Daley and
Vere-Jones (1988) and Konig and Schmidt (1992).

We define the stochastic process {®(¢); ¢ > 0} appearing in (1.1) by
(2.1) O(t) = #{n: T, €(0,¢]} [= ¥((0,¢t] XR")].
The stationarity of the nonmarked point process {7} is equivalent to the
homogeneous increments of {®(¢); ¢ > 0}. Furthermore, it is easy to see that
{X,) is a stationary sequence if {T,} and {X,} are independent of each other;
that is, if condition 3 is fulfilled. However, we emphasize that in the following
we will not use this independence assumption, relying instead on Palm
distributions. Define the probability measure P, on (M, .#) by

Py(A) = X 'E(#{n: T, €(0,1], ¥ 6, €A}) forevery A €.

P, is called the Palm distribution of ¥. Note that, for every A €.#, the
probability Py(A) is the ratio of two intensities. Namely, P,(A) is the
quotient of the mean number of the those points 7, per time unit, for which
the random counting measure ¥ seen from T, has the property A, divided by
the mean number of all points 7, per time unit. Furthermore, P;,(A) can be
interpreted as the conditional probability of the event {¥ € A} given the
condition that ¥ has an atom at the origin. However, one should be careful of
this interpretation because the conditioning event {¥({0} X R*) > 0} has
probability zero [see, e.g., Franken, Konig, Arndt and Schmidt (1982)]. It is
well known that, on the probability space (M, .#, P,), the X, always form
a stationary sequence and that under condition 3 we have Py(X, <x) =
P(X, < x). Thus, in the general case, we put F(x) = Py(X, < x), which is
called the Palm mark distribution function of the stationary marked point
process {(7,, X,)}. This leads us to the following result.

THEOREM 2.1. Let the risk process {Y,(¢)} be defined by the stationary
marked point process {(T,, X,)} via (1.1) and (2.1). Then, the distribution of Z,
is given by (1.3) provided that (1.8) holds, where A denotes the intensity and F
denotes the Palm mark distribution function of {(T,, X,)}.

For proving Theorem 2.1, we use the following interesting result, which is
valid without any balance condition such as (1.8).

THEOREM 2.2. For the risk process {Y,(¢)}, the probabilities P(Z, < x) are
Lipschitz continuous with respect to a and possess right-hand derivatives
(d*/da)P(Z, < x) for which

' (22) d—;P(Za <x)= %(PQ(Z,, <x) —Py(Z,_x,<x,X,<a)
| —(F(a) = F(a +x)))

holds for any a, x > 0, where F(x) = 1 — F(x).
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REMARK 2.1. Let us consider the case of a homogeneous Poisson process
{T,} assuming conditions 2 and 3. For simplicity, we assume that ¢ = 1.
We have P(Z, < x) = P,(Z, < x) by the property of independently marked
Poisson processes that P({(T},, X,); n > 1} € (-)) = P,({((T,,, X,)); n = 1} € (\)).
Therefore, Theorem 2.2 yields

d+
@3) —P(Z,<x) = MP(Z, <x) —P(Z, x,<x, X, <a)
—(F(a) - F(a + x))).

An integrated version of (2.3) has been derived in Gerber, Goovaerts and
Kaas (1987), formula (5) [see also formula (11) of Dufresne and Gerber
(1988a)]. Furthermore, a differential equation similar to (2.3) is given in
Dufresne and Gerber (1988b), formula (5), for the surplus Z; = Y (7, — 0)
immediately before the ruin time 7,. Note that, for x = «, (2.3) is derived in
Feller [(1971), Section VI.5]. Related results are also found in Section XI.7 of
Feller (1971). For some classes of distribution functions F of the jump size
X,, it is possible to solve the differential equation (2.3) explicitly; see, for
example, Asmussen and Schmidt (1992) for F being phase type, Dufresne
and Gerber (1988b) for combinations of exponential distributions and Gerber,
Goovaerts and Kaas (1987) for combinations of gamma distributions and for
constant jump size.

REMARK 2.2. It is sufficient to prove Theorems 2.1 and 2.2 for the case
c = 1. That is, if ¢ # 1, we consider a normalized risk process {Y;* .(¢)}

defined by
1 Cb(t) 1 a

Ya*/c(t) = ;Ya(t) =t - kgl ;Xk + 'g

Let 7, and Z; . be the ruin time and deficit, respectively, and let X be
the nth jump height of {Y; (¢)}. Then, it is easy to see that 7, = 7,
Z,=cZ;, and X, =cX;. Hence, all results of Theorems 2.1 and 2.2 for
¢ = 1 can be transferred to the case ¢ # 1.

3. Proofs. By Remark 2.2 we assume without loss of generality that
¢ = 1 throughout this section.

PrOOF OF THEOREM 2.2. For this purpose, two lemmas are prepared,
which need the following notation. For ¢ > 0 and real a, let

7(¢) = influ > t: Yy(u) — Yy(t) + a <0},
= (Yo(1()) = Yo(2) +a), -if7,(t) <o,

Z (1) =
(1) = 1o, if 7,() = oo,
Note that 7,(0) = 7,, Z,(0) = Z, and
('3.1) Za(u) = Za+T1—u—X1(T1) fOI‘ 0 <u< Tl’

where, if a + T} —u — X, <0, then 7, _,_x(T;) = T; by our definition.
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LEMMA 3.1. For any a, x > 0, we have

+ o0
(3.2) P(Z,<x) =M Po(Ty>u,Zy,q,y x(Ty) <x)du.
0

PROOF. Because

Y, (u)o 0, =u— Y X,°6,+a
0<Tyeo0;<u
=u — Z Xk+a
t<TkSt+u

=Y, (t +u) - Yy(2) +a,
we have
7,00, =inf{u > 0: Y,(u)°6, <0} = 7,(¢) — ¢
and
Y, (7,)° 6, = Yo(7.(2)) — Yo(2) +a,

which imply that Z, - 6, = Z,(¢) for ¢t > 0. Hence, from the inversion formula
for point processes [see, e.g., (1.2.19) of Franken, Konig, Arndt and Schmidt
(1982)], we get

+ o0
P(Z,<x) =M Py(Ty>u, Z,(u) <x)du.

0

Thus, by (3.1), this gives (3.2). O

LEMMA 3.2. The probabilities P(Z, < x) satisfy the Lipschitz condition
with respect to a on R*; that is, there exists a constant 8 > 0 satisfying

(3.3) |P(Z,,, <x) —P(Z,<x)|<8h, (Ya,h=0).
PrOOF. We calculate P(Z,, , < x) — P(Z, < x) by using Lemma 3.1:

A(fo Py(Ty>u, Zy 7, —u-x(T1) < x) du

_j;)wPO(Tl >u, Zgip,—u-x(T1) <%) du)

= /\(foo Py(Ty>u+h,Z, r_y x(T)) < x) du
(3.4) ~h

_[:po(Tl >, Zy g, —y-x(Ty) <) du)

_ A(f_OhPO(Tl Su+h, Zovr,ux(T1) <x)du

_[“’Po(u STy <u+h,Zo,pux(T1) <x) du),
0
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where the first equation is obtained by changing the variable u to ' = u — h.
Note that the first integral of the last right-hand side of (3.4) is obviously less
than A. The second integral is bounded by

T,

fwPo(usT1<u+h)dusE0(f du)sh,
0 (

T,-h)*
where E, denotes the expectation with respect to P, to x*= max(0, x). Thus
we get (3.3) with 6 = 2A. O

Now, we can finish the proof of Theorem 2.2. Because for each realization
of {(T',, X))} the corresponding realization of 7,,,(T,) converges to that of
7,(T)) as u tends to zero from above, Z,, 1 ,,_x(T}) and Z, ., x(T}) con-
verge to Z, . p,_x(T;) and Z,_x(T)), respectively, as u | 0. Hence, we have, by
using the bounded convergence theorem,

.1 0
},lf’éﬁf_hPO(Tl >u+h,Zy gy x(Th) <x)du

0
[_hI(TI >uth,Zgir-y-x,(T1)< 2} du)

= PO(Za+T1—X1(T1) < x),

1
= E;| lim —
O(hlfl(%h

1 »
}lifx(}zfo Po(u<Ty<u+h,Zyoq , x(T)) <x)du

E|tim= (™ 1 d
- 0 hl,{%h Tl—h (Za+T1—u—X1(T1)<x) u

= PO(Za—XI(Tl) < x),
where I denotes the indicator function. Hence, by dividing both sides of (3.4)
by h and letting A tend to zero, from (3.2) and (3.4), we get
d+
d_aP(Z“ <x)= /\(Po(Za+T1—X1(T1) <x) = Py(Z, x(T) < x))
On the other hand, from (3.1), we get
PO(Za+T1—X1(T1) < x) = Py(Z,(0) <x) = Py(Z, <x).

Furthermore, using the identity Z, < 6, = Z(¢) for ¢ > 0, from the invariance
of the Palm distribution P, with respect to the shift 6, [see, e.g., Franken,
Konig, Arndt and Schmidt (1982)], we get ‘

Py(Z,_x(T)) <x) =Py(Z,_x(T)) <x,X; < a)
+ PO(Za—Xl(Tl) <x,X; > a)
= PO(Za—XO(O) <x, X, < a) + Py(a <X, <a+x)
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and, consequently,
+

d
ZoP(Z.<x) = MPy(Z, <x) — Py(Z, x, <x, X, <a)

Thus, Theorem 2.2 is obtained. O

ProOF OF THEOREM 2.1. First we remark that it is enough to prove the
theorem under the condition

(3.5) ®X <1 as.

To show this we can proceed similarly as in the proof of Lemma 1 of Frenz
and Schmidt (1992). For &> 1, let ¥ be the marked point process
{(eT,, X,)}. Clearly, ¥(*) is again shift-invariant and has intensity A/s.
Furthermore, for the limit ®® = lim, , (1/6)%)((0,¢] X R*), we have &
= (1/&)® and, consequently,

P@X <1 as,
provided that (1.8) holds for ¢ = 1. Assume now that Theorem 2.1 is true
under condition ®X < ¢ a.s., which is equivalent to (3.5) by Remark 2.2. Let
{Y{*X(¢)} be the risk process generated by ¥(*). Because

t
Yi(t) =el-- ¥ X,
€ 0<T,<t/e

we get, by applying Theorem 2.1 for {Y,(¢)} with ¢ = &,
A

(3.6) P(2§" <x) = = [(1 - F(w)) du,
€70

where Z§ is the first decreasing ladder height; that is, the deficit at the
ruin time of the risk process {Y{)(¢)}. Let 7§*) = inf{t > 0: Y{*)(¢) < 0} and
Q@ ={w: 7§ (w) = ery(w)}. Because Z{ =1 — &)1y +Z, on Q and
lim, ; P(Q®) = 1, we have lim, | Z§® = Z, a.s. From this and (3.6), we see
that condition (1.8) can be replaced by (3.5) in Theorem 2.1.

Note that (3.5) implies

(3.7) AEy(X,) < 1.

This is proved by using the individual ergodic theorem. Let .# be the
invariant sub-o-field of & with respect to {6,}. Then we have

E(®X) =E(E(¢(Zl)Xk|f)) =E(¢§)Xk) =AE,(X,).
k=1 k=1

Hence (3.5) implies (3.7). See Lemma 2.1 of Miyazawa (1979) for the detailed
calculations. It should be noted that (3.7) is really weaker than (3.5) and that
we do need (3.5) in the following proof.

Let us consider a single server queue with the input {(-7"_,, X_,)}, where
T_, and X_, denote the arrival and service times of the nth customer,
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respectively. Note that {(—7_,, X_,)} is the time-reversed process of
{(T,, X,)}, and hence is stationary, too. Furthermore, the left-hand side of
condition (3.5) is invariant under time reversion. Thus, there exists a work
load process {V(¢)} that is finite and stationary with respect to P under the
condition (3.5). We here assume that V(¢) is left-continuous for all ¢. Define
W, = V(=T_,). Then, {W,} is a sequence of waiting times of customers and
W, = V(0) is finite with respect to P,. For details of these facts, refer, for
example, to Franken, Konig, Arndt and Schmidt (1982). Note that (3.7) is not
sufficient for the finiteness of V(¢) and W,. We will use the following fact in
our proof.

LemMA 3.3. Under condition (3.5), we have, for any a = 0,
(3.8) {(V(0) >a} ={Z, < +}
and, consequently,

(3.9) ‘}1_1)130 P(Z, < +x) = (}1_{1; Py(Z, < +x) =0.

Proor. By the well-known construction for {V(¢)} due to Loynes (1962),
we have

V(0) = sup{ Y X, —uux 0}
{k: —u<-T_,<0}

=sup{ Y X,-uu 20} = —inf{Yy(u): u > 0},
{k:0<T,<u}

where the first equality follows from the left continuity of the work load
V(t) and the fact that V(0) is determined by the time-reversed input
{(-T_,,X_))}. Hence, {Z, < +} = {inf{Y(x) + a: u > 0} < 0} implies (3.8).
Because P(V(0) < +x) = Py(V(0) < +) = 1, this proves (3.9). O

By Lemma 3.2, P(Z, < x) has bounded variation with respect to a on each
finite interval [0, 4], which implies that, as a function of a, the probabilities
P(Z, < x) define a signed measure. Because the P(Z, < x) have right-hand
derivatives,

d* ‘
(3.10) j"ap(za <x)da=P(Z, <x) - P(Z,<x) for0<h <.
0

By Lemma 3.3, the right-hand side of (3.10) converges to —P(Z, <x) as h
tends to infinity. We now integrate both sides of (2.2) of Theorem 2.2 over
[0, A]. Then, the sum of the first two terms of the right-hand side of (2.2) is
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bounded by

A

['Py(Z, <x)da — ["Py(Z,_x, <%, X, < a) da
0 0

h (h—X*
j(; Iz, <y da— ./;) ° Iz, <y da)

h
= \AE I da
O(f(h—xo)+ (Z, < x) )

S AEO(XOI{Z(h_x0)+< +oo})
= /\Eo(XoI(V(O)+X0>h)I(Xosh)) + )‘Eo(XoI(X0>h))»

where Lemma 3.3 has been used to get the last inequality. Using again
Lemma 3.3 we see that the first term on the right-hand side of this inequality
converges to zero as & tends to infinity, whereas the second term does so
because E,(X,) < ® by (3.7). On the other hand, for the last term of the
right-hand side of (2.2) we get

- A\ E,

- A h(F(a) —F(a +x))da
(3.11) f‘)
- —/\fxf'(a) da, h— +x.
0

This completes the proof of Theorem 2.1. O

4. Related results. In Theorem 2.1, if (1.8) fails, the formula (1.5)
remains true in a slightly modified form. It is not difficult to see that, in
general,

P(1y <®) =P(Z, < ®) = E(min{l, %X})

holds. If the stationary marked point process {(T),, X,)} is ergodic, then this
formula simplifies to

P(7y < ®) = min{l, %EO(XO)}.

However, it seems to be much more complicated to determine the distribution
of Z, if the balance condition (1.8) does not hold. It turns out that, in general,
in contrast to the case ®X < ¢, the distribution of.Z, essentially depends
on the whole distribution of the point process {7}, and not only on its
intensity A. )
" In many cases, however, the distribution Z, should converge to that given
by (1.3) if the intensity A converges to c[ E,(X,)]"! from above. Our conjec-
ture is that this continuity property holds for a large class of stationary
marked point processes {(7),, X,)} and that, consequently, (1.3) can be used to
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approximate the probabilities P(Z, < x) when ®X < c does not hold with
probability 1, but (A/c)E,(X,) differs only a little from 1. The following
results show a possible way how to verify this.

THEOREM 4.1. Assume that E(X,) < <. If, for every x >0, the limit
p(x) =lim,_,, P(Z, < x) exists and if

(4.1) p(x) = lim Py(Z, <x|X,) a.s,
then we have
A x— A
(4.2) P(Z,<x) = ;f F(u) du + (1 - ?EO(XO))p(x)
0
and, consequently,

A
s‘l ~ —Ey(X,)

(4.3) sup

O0<x<®

A px_
P(Zy<x) - ;[()F(u) du

PrOOF. Proceeding similarly as in the proof of Theorem 2.1, from (2.2) we
get

h

A
P(Z, <x) —P(Z,<x) = ;Eo(f( I da)

h—Xg)*
_%foh(ﬁ(a) —F(a +x))da

for 0 < h < . Because of (3.11) and our assumptions, for proving (4.2) it
suffices to consider the term

R
E 1, da
o(f(h—xo)+ o) )
min(X,, k)
= Eo(fo me Ly, <y du)

_ Eo(fomin"“"‘)Po(zh_u < xIXO)du)

X
— Eo(I(X0<uo)f0 OPO(Zh_u < x|X,) du)
+ Eo(I(onuo)Lmin(Xo’h)Po(Zh—u <xlX,) du)
for every u, < h. Thus, because E(X,) < «, from (4.1) we get

.
lim E I da| =E, (X .
hl_I}}O o(f(h_Xo)+ (Z, < x) a) o(Xo)p(x)

This completes the proof. O



774 M. MIYAZAWA AND V. SCHMIDT

REMARK 4.1. Note that, within the family of stationary marked point
processes {(T),, X,)} satisfying (4.1), the continuity property (4.3) of the distri-
bution Z, is uniform in the sense that the bound 1 — (A/c)E(X,)| in (4.3)
does not depend on the form of the distribution of {(7},, X,)}, but only on its
intensity A.

Finally, we discuss condition (4.1). For arbitrary 0 < a < «, the event
{Z, < x} can be expressed by the records of the dependent random walk {Y;
n > 1}, where

Yn = Y(Tn) = Tn - Z Xk'
k=1

For showing this we define the ladder epochs 7§ by 7(" = 1,, 7{"* 1 =
7o(7§M) + 7§®, and a new point process {T¥; n > 1} by

Tf = Zy(0),  T§ = Zo(7") + T, T5 = Zo(7§) + T3, ...

and its counting process {®*(¢); t > 0} by ®*(¢) = #{n: T € (0,t]}. Note
that, if ®X > ¢ a.s., 7* and hence T* are finite. However, if ®X > ¢ does not
hold with probability 1, T,* may be infinite. We have

(4.4) {Z, <x} = {T§yr1 — a <}

for 0 < a < »; that is, {Z, < x} means the event that the forward residual
time of the point process {T}*} measured from time «a is less than x. This leads
to the following reformulation of (4.1) in terms of {T}}}.

LEMMA 4.1. The condition (4.1) holds if and only if, for each x > 0,

(4.5) lim P(Tg. 4,1 —a <x) = lim Py(Ts, 1 —a <xlX;) a.s.
a— o ©

a—

Thus, it becomes clear that some mixing property of the original marked
point process {(T,, X,,)} should be sufficient for the validity of (4.1) if ®X > ¢
a.s. For example, an immediate consequence of Lemma 4.1 is that the bound
(4.3) holds for a large class of recurrent marked point processes, where
{(T,, X,)} is called a recurrent marked point process if, with respect to its
Palm measure P,, the pairs (T, — T,_,, X,,) form a sequence of independent
identically distributed random variables. Furthermore, the distribution of a
real-valued random variable is said to be arithmetic if it is concentrated on a
set of the form {0, + §, + 26, ...} for some & > 0.

COROLLARY 4.1. Assume that {(T,, X,)} is a recurrent marked point pro-

cess with AE(X,) > c. Then, (4.2) and (4.3) hold if the distribution of
T, - T, , — X, is nonarithmetic. Furthermore, we have

(4.6) p(x) = mj(‘) Py(Zy > u)du foreveryx > 0.
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PrOOF. From our assumptions it follows that {T)*} in (4.4) is a nonmarked
recurrent point process (or, in other words, a renewal process) that is delayed
with respect to P and Py(-|X,), respectively, where the T, — T)*_; have a
nonarithmetic distribution. Thus, from well-known results of renewal theory
[see, e.g., Chapter XI of Feller (1971)] we get (4.5), and, by Lemma 4.1 and
Theorem 4.1, (4.2) follows. Because T,¥ — T,*_, has the same distribution as
Z, with respect to P, (4.6) is a well-known fact obtained by the key renewal
theorem. O

REMARK 4.2. By (4.6), (4.2) gives the relationship

A x_ C—)tE XO x
(47) P(Zy<x) = ;f()F(u) du + —CEO(—"Z(O)l[OPO(zO > u) du.

We note that, in some cases, Wiener—Hopf techniques can be applied to
determine the distribution Py(Z, < x) and, consequently, by using (4.7), we
can determine P(Z, < x).

REMARK 4.3. In a similar way, we can prove that the formulas (4.2) and
(4.3) hold for further classes of marked point processes. For example, if {T,} is
a Markov renewal process or, in particular, a Markov-modulated Poisson
process, then {T*} is again a Markov renewal process and, consequently, (4.5)
can be proved by using a corresponding limit theorem [see, e.g., Chapter 10.6
of Cinlar (1975)], which implies (4.2) and (4.3).
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