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INDICES FOR FAMILIES OF COMPETING MARKOV
DECISION PROCESSES WITH INFLUENCE

By K. D. GLAZEBROOK

University of Newcastle upon Tyne

Nash obtained an important extension to the classical theory of
Gittins indexation when he demonstrated that index policies were optimal
for a class of multiarmed bandit problems with a multiplicatively separ-
able reward structure. We characterise the relevant indices (herein
referred to as Nash indices) as equivalent retirement rewards/penalties
for appropriately defined maximisation /minimisation problems. We also
give a condition which is sufficient to guarantee the optimality of index
policies for a Nash-type model in which each constituent bandit has its
own decision structure.

1. Introduction. Gittins (1979) defines a simple family of alternative
bandit processes (SFABP) as a discounted Markov decision process (MDP)
with vector-valued state X(¢) = {X,(¢), X,(¢),..., Xy(¢)} at time ¢t € N. Here
X(t) denotes the state of bandit j at ¢. Actions a,, a,, ..., ay are available at
each decision epoch ¢ € N, where a; denotes the choice of bandit j. Upon
choosing action a; at ¢, the state of bandit j changes in a Markovian fashion,
whereas X;(¢ + 1) = X,(¢), i #j. A discounted reward «’R J-{X j(t)} is earned
also. It may help the reader to think of this process in terms of N Markovian
reward streams, each with an on /off switch. The rule is that only one switch
is allowed to be on at any time. Bergman and Gittins (1985) describe
applications of such processes to the planning of pharmaceutical research.
Here bandit j models one of N projects or routes to research success and
action q; is the allocation of research effort to project j. Such an allocation is
assumed to lead to an updating of the status of project j only. The goal is to
choose a policy (i.e.,, a rule for selecting bandits) which maximises total
reward.

In what has proved to be one of the most significant recent contributions to
our understanding of policy structure in stochastic dynamic programming,
Gittins (1979) demonstrated the existence of index-based policies which are
optimal. Hence with bandit j is associated a real-valued function on its state
space, denoted G, such that action a; is optimal at ¢ if and only if

G{X;(1)} = 1rgii)§vGi{Xi(t)}
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and ties can be broken in any way. Interpret G;(x;) as the best reward rate
achievable from further choices of a; when bandit j is in state x;.

Whittle (1980) coined the term Gittins index for these functions and made
several important contributions to the subsequent development of this theory.
In addition to his dynamic programming proof of Gittins’ classical result,

these include:

1. The characterisation of Gittins indices as equivalent retirement rewards.
Hence, in a sense which needs careful definition, Gj( x j) may be thought of
as the smallest reward which would be accepted in exchange for further
opportunities to choose bandit j when it is in state x;.

2. The enunciation of a condition sufficient to ensure the existence of an
index policy which is optimal for a given family of competing Markov
decision processes. Here, the foregoing model is elaborated such that each
bandit has its own decision structure. This work has been subsequently
utilised and developed by Gittins (1989), Glazebrook (1982, 1988, 1991)
and Varaiya, Walrand and Buyukkoc (1985) and has facilitated the analy-
sis of a rich class of stochastic scheduling problems. See Gittins (1989).

Nash (1980) developed the work of Gittins (1979) in an interesting direc-
tion by introducing a multiplicatively separable reward structure, in which
the choice of a; at ¢ earns a reward a'[I1;,; @ {X,(H)}IR {X(#)}. Otherwise
his model was as in the preceding description. He called the resultant
decision processes generalised bandit problems. These are described in detail
in Section 3 where they are referred to as families of competing Markovian
reward processes with influence. The major point of interest in Nash’s model
is that bandits are allowed to influence the returns from their competitors via
influence functions @ ;. The modelling of influence in this way has been found
to be very helpful in the analysis of a range of problems in research planning
and stochastic scheduling; see Fay and Glazebrook (1987, 1989), Glazebrook
and Owen (1991) and Glazebrook and Greatrix (1993). Nash (1980) demon-
strated the existence of index-based policies which are optimal for this class
of processes. The relevant indices (which we shall call Nash indices) modify
Gittins indices to take account of the nature of a bandit’s influence.

Theoretical development of Nash’s work has in the main been restricted to
a special case, namely, where the foregoing indices are always positive. See
Gittins (1989), Glazebrook and Owen (1991) and Fay and Walrand (1991).
As Gittins (1989) and Glazebrook and Owen (1991) point out, this special
case is equivalent to a semi-Markov extension of Gittins’ original frame-
work. Little is understood about the general case of Nash’s model beyond his
original index result.

This paper contributes to the development of our understanding of Nash-
type models with influence along the lines of Whittle’s contribution to the
Gittins framework, as outlined in contributions 1 and 2 listed previously. To
be specific:

1. We characterise Nash indices as equivalent retirement rewards or penal-
ties. See Section 2. An interesting feature here is that to accommodate
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negative Nash indices (as in the general case we must) we need to develop
a notion of an equivalent retirement penalty which is related to a decision
problem in which expected rewards are minimised.

2. We enunciate a condition which is sufficient to ensure the existence of an
index policy which is optimal for a Nash-type model in which each bandit
has its own decision structure. We call such a process a family of compet-
ing Markov decision processes with influence. This work is the subject of
Section 3.

The ideas of the paper are illustrated in Section 4 by an account of how the
results of Section 3 relate to one of the simplest kinds of families of competing
MDPs of real interest.

2. Nash indices. We now describe in more detail the individual objects
of choice (referred to previously as bandits) in the Nash model and how
indices are associated with them. We shall use [{X(¢), t € N}, R, @, a] to
denote what we shall term a Markovian reward process with influence where
the component parts of this process are:

1. {X(¢), t € N} a Markov chain whose state space () may be finite, countable
or continuous.

2. R: Q —» R*, an associated reward function which is bounded.

3. }Q: Q — R™, an associated influence function which is bounded.

4. a €[0,1), a discount rate.

Following Whittle (1980), we introduce the retirement reward M € R,
interpreted as a penalty if M < 0. If M > 0, we denote by P(x, M) the
stopping (or retirement) problem: Choose 7, a stopping time on {X(¢), ¢t € N},
to maximise

=1
(21) R(x,7,M)2E| ) o'R{X(t)} + a"Q{X(7)}M|X(0) = x|.
t=0

Hence, prior to retirement, rewards are accumulated by the process in a way
determined by the function R. At retirement, the reward M is subject to
influence through the function Q. Standard results in the theory of Markov
decision processes [see, e.g., Ross (1970)] imply the existence of a stopping
time 7 attaining the supremum of R(x, 7, M), which is deterministic, station-
ary and Markov. Call the maximised value R'(x, M).

If M < 0, denote by P%(x, M) the retirement problem: Choose 7, a stop-
ping time on {X(¢), t € N} to minimise R(x, 7, M). We can again assert the
existence of a deterministic, stationary and Markov stopping time which
attains the infimum. Call the minimised value R%(x, M).

If we set Q(-) = 1 in P!(-, M), then we obtain precisely the set of retire-
ment problems considered by Whittle (1980) in the context of Gittins indexa-
tion. The novelty here is the introduction of the minimisation problems
P2%(-, M) as a means of accommodating negative Nash indices.
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To take the analysis further we require the following definition.

DEFINITION 1. The influential set of states ® C () is given by
0 = {x € Q; 3 7, positive-valued, such that
E[a"Q(X(1)}IX(0) = x] > Q(x)}.

Further, for any x € ® we write T'(x) for the set of positive-valued, determin-
istic, stationary and Markov stopping times satisfying E_[ a"@{X(7)}| X(0) =
x] > Q(x).

Hence from any state x € 0, some further continuation of the process may
be made in such a way that the retirement term in (2.1) exceeds the
equivalent present value MQ(x) when M > 0 and is below it for M < 0. It
should be clear that in the problem Pl(x, M), M > 0, any x € ® must be a
continuation state, that is, an optimal stopping time need never choose to
retire in x. We also see that in Nash’s model any process currently in a state
lying in its influential set plainly has a special status, because appropriate
additional choices of that process will lead to an enhancement (in expecta-
tion) of the returns from other processes. Note that if @ is a constant
function, then ® = ¢. Note also that because all stopping times discussed
henceforth will be deterministic, stationary and Markov we shall omit this
qualifying phrase throughout the paper.

We develop the notion of Nash indexation of a Markovian reward process
with influence as follows.

DEFINITION 2. The Nash index N: Q - {R\ 0} U {0*,07,} for process
[{X(), t € N}, R, Q, a] is defined as follows:

(i) If x & O, then

(2.2) N(x) =inf{M; M > 0 and R'(x, M) = MQ(x)}.
(i) If x € O, then
(2.3) N(x) = inf{M; M < 0 and R*(x, M) = MQ(x)}.

If the condition specified on the r.h.s. of (2.2) is satisfied for no M > 0, we
write N(x) = o and if for all M > 0, we write N(x) = 0. If the condition in
(2.3) is satisfied for no M < 0, we write N(x) = 0". No other cases are
possible.

Hence for noninfluential states, the Nash index is an equivalent retire-
ment reward. It is (uniquely) that retirement reward for which both retire-
ment and nonretirement are optimal for the maximisation problem P! For
influential states, the index is an equivalent retirement penalty, defined now
with respect to the minimisation problem P2

From Definition 2 it is not difficult to recover the characterisation of Nash
indices given by Nash (1980) himself. This is Lemma 1.
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LEMMA 1. The Nash index N: Q - {R\ 0} U {0*,07,} for {X(2), t €
N}, R, Q, ] is as follows:

() Ifx & O, then
(24) N(x) = sgg{R(x, 7,0)(Q(x) — E,[a"@{X(7)}IX(0) = x]) '},

the supremum in (2.4) being taken over the set of positive-valued stopping
times.

(i) Ifx € O, then
(2.5)
N(x) = sup {R(x,7,0)(Q(x) - E[a"@X(1)}IX(0) =x])'}.

reT(x)
In (2.4) and (2.5), we take +,/0,0/+,0/— and 0/0 to be », 0", 0~ and 0%,
respectively.

ProOF OF LEMMA 1(ii). Suppose that x € ® with 0 > N(x) > —c. Follow-
ing Ross (1983), it is not difficult to show that over M < 0, R*(x, M) — MQ(x)
is decreasing in M. Hence from (2.3), 0 > M > N(x) = MQ(x) = R*(x, M)
and so for all positive stopping times 7 € T(x), MQ(x) < R(x,, M). Follow-
ing some simple algebra we conclude that

0>M=>=N(x)=M
> R(x,7,0)(Q(x) — E,[«"Q{X(7)}IX(0) =x])™", reT(x).

Also from (2.3), M < N(x) = MQ(x) > R?(x, M). Hence there exists a
positive stopping time 7 satisfying MQ(x) > R(x, r, M). Because M is nega-
tive, from (2.1) we deduce that any such 7 must satisfy E [ a"@{X(7)}| X(0) =
x] > Q(x), that is, must be a member of T'(x). Following some simple algebra
we conclude that for some 7 € T(x),

(2.6)

(2.7) M <N(x) =M <R(x,7,0)(Q(x) — E,[a"Q(X(7)}|X(0) =x]) "

Lemma 1(Gi) follows immediately from (2.6) and (2.7) for the case being
studied. N(x) = 0~ and all cases which fall under Lemma 1() may be dealt
with similarly. O

To summarise, Nash indices for influential states are negative. For nonin-
fluential states with positive indices the Nash index is a maximised ratio of
reward earned up to some stopping time to the extent to which (discounted)
influence declines. In the simple case with @ constant, the index (now a
Gittins index) has a simpler interpretation as a maximised reward rate.

ExaMPLES. It may assist the reader to refer to Fay and Glazebrook (1987,
1989) and Glazebrook and Greatrix (1993) for some examples of Markovian
reward processes with influence and their associated indices. Fay and
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Glazebrook (1987, 1989) discuss models relevant to research planning for
which the associated Nash indices are always positive. In the stochastic
scheduling models of Glazebrook and Greatrix (1993), the nature of influence
is such that negative indices do occur.

We now generalise the notion of Nash indexation to the case where
the Markov chain {X(¢),¢# € N} in process part 1 has an associated deci-
sion structure. We introduce {[ X(¢); A{X(¢)}, t € N],R,Q, a} as a Markov
decision process (MDP) with influence as follows:

1’. X(¢) is the state of the process at ¢ € N. The state space () may be finite,
countable or continuous.

2'. A(x) is the finite action set for state x € (). In the MDP with influence, at
every decision epoch ¢ € N, an action a from A{X(¢)}is taken. A policy 7
is any rule for choosing actions which is a function of the history of the
process to date.

3. R: O XA()—> R" is a bounded reward function. Should action a €
A{X(t)} be taken at decision epoch ¢ € N, a reward «’R{X(¢),a} is
earned.

4’. If action a € A{X(¢)} is taken at time ¢ € N, then the Markovian transi-
tion law P(:|x, a) yields the distribution of X(¢ + 1) conditional upon the
event X(¢) = x.

5. @: Q0 - R" is a bounded influence function.

6'. « €[0,1)is a discount rate.

To develop Nash indices for such a MDP with influence, we again intro-
duce the retirement reward M € R. If M > 0, we denote by P3(x, M) the
retirement problem: choose 7, a policy for the MDP and 7, a stopping time on
the MDP under 7, to maximise

7—1
R(x,m,7,M) 2 E, | ¥ o«'R[X(t),n{X(2)}] + «"Q{X(7)}M|X(0) =x]|.
£=0
As before, we may assert the existence of deterministic, stationary and
Markov 7 and 7 attaining the supremum of R(x,w,7, M). Call the max-
imised value R*(x, M). As with stopping times, we shall henceforth assume
that policies are always deterministic, stationary and Markov and shall drop
the qualifying phrase.

If M < 0, denote by P*(x, M) the retirement problem: Choose 7, a policy
for the MDP and 7, a stopping time on the MDP under 7, to minimise
R(x,w,r, M). Again, we may assert that the infimum is attained and call the
minimised value R*(x, M). We develop Definition 1 as follows:

DEFINITION 3. The influential set of states ® C () is given by

® = {x € Q; 3 policy 7 and 7, a positive stopping time
on the MDP under 7, such that
E, [a"Q{X(7)}IX(0) = x] > Q(x)}.
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Further, for any x € ® and policy 7, write T, (x) for the set of positive
stopping times on the MDP under = (if any) satisfying E, .[a’@Q{X(7)}
X(0) = x] > Q(x).

We may now develop the notion of Nash indexation of a MDP with
influence as follows:

DErFINITION 4. The Nash index N: Q — {R\ 0} U {0*,07,} for process
(X(); AAX()}, t eN],R, @, a) is defined as follows:

@) If x ¢ O, then

(2.8) N(x) =inf(M; M > 0 and R3(x, M) = MQ(x)}.
(i) If x € O, then
(2.9) N(x) =inf(M; M < 0and R*(x, M) = MQ(x)}.

As in Definition 2, we may obtain the values 0* and © when x ¢ ® and 0~
when x € 0.

The proof of Lemma 2 is along the lines of that of Lemma 1 and will not be
given.

LEMMA 2. The Nash index N: QO — {R\ 0} U {0", 07, } for ([ X(¢); A{X()},
teN],R,Q, a) is as follows:

@) Ifx & O, then

N(x) = sup{R(x, m,7,0)
(2.10) 7
*(Q(x) — E, .[a"@(X(r)}1X(0) ==]) '},

the supremum in (2.10) being taken over all pairs (m, 1), where 7 is a policy
and T is a positive-valued stopping time on the MDP under .
(i) Ifx € O, then

N(x) = sup {R(x,w,T,O)
(211) 7, 7€T, (x)
%(Q(x) - E, [aQ(X(r)}IX(0) =x]) ),

the supremum being over all pairs (mw, 1) with v € T, (x). The same conven-
tions regarding zeros in the numerator and /or denominator of the expressions
in (2.10) and (2.11) apply as before.

Before concluding this preliminary discussion of Nash indices for
Markovian reward and decision processes with influence, we need to make
some observations concerning the stopping times and /or policies which attain
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the suprema in Lemmas 1 and 2. To do that in a natural way, we need to
introduce a total ordering on the range of the Nash index function, namely
{R\ 0} U{0*,07,}. This ordering, described in Definition 5, reflects how
preferences between Markovian reward processes with influence are deter-
mined by ther Nash indices. To summarise, Nash indices with negative
indices (i.e., in influential states) are always preferred to processes with
positive indices. When a collection of indices have the same sign, larger
values are preferred.

DEFINITION 5. The Nash index preference ordering = is a total ordering
on the set {R\ 0} U {0*,07,%} such that if Xy, X9, Y1, Y9 are any real num-
bers satisfying x; <x, <0 <y, <y,, then

07>y =2, 202y, >y, =0".

The strict version > of the ordering is such that for any reals x, x5, ¥;, ¥y
satisfying x; <x, <0 <y, <y,, then

- +
0 Xy Xy = o>y, >y, > 07,

Lemma 3 describes the stopping times on {X(¢),t € N} attaining the
suprema in (2.4) and (2.5) in terms of the Nash index preference ordering.

Lemma 3. () If M > 0, then R x, M) = R{x, #(x, M), M}, where

(2.12) #(x, M) =inf[¢; ¢ > 0 and N{X(¢)} < M].
(i) If M <0, then R*(x, M) = R{x, *(x, M), M}, where
(2.13) #(x, M) = inf[¢; ¢ > 0 and N{X(¢)} < M].

(i) If M =0, then R'(x,0) = R{x, 7(x,0%),0}, where #(x,0") is as in
(2.12) with M = 0% and R*(x,0) = R{x, #(x,07), 0}, where #(x,07) (= 0a.s)
is as in (2.13) with M = 0~.

(iv) The suprema in (2.4) and (2.5) are satisfied by 7(x), where

(2.14) 7(x) = inf[¢; ¢ > 0 and N{ X(¢)} < N(x)].

() Results ()-(iv) all hold with < replaced by < throughout. These are
the only choices for the stopping times concerned.

Proor. (ii) Refer back to the proof of Lemma 1. We saw there that in
P*(-, M) with M < 0 it is optimal to stop in some state y if N(y) < M. If
X(0) = «x, then #(x, M) is simply the first decision epoch at which the process
is in such a state. The proofs of (i) and (iii) proceed similarly.

(iv) Suppose that x & ® and N(x) > 0. From (), RYx, N(x)} = R[ x, ,
H{x, N(x)}, N(x)] = R{x, 7(x), N(x)}. The latter equality follows from (2.12)
and (2.14) by noting that #{x, N(x)} = #(x) and that in PY{x, N(x)} both
stopping and continuing are optimal at ¢ = 0. Invoking the continuity of
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RY(x, M) over M > 0 we now deduce from the characterisation of N(x) given
in Definition 2 that

Q(x)N(x) =R'{x,N(x)} = R{x,7(x), N(x)}
(2.15) =R{x,7(x),0}
+E;(x)(a;(x)Q[X{fT'(x)}]IX(O) ==x)N(x).

Solving for N(x) in (2.15) we are able to infer that 7(x) attains the supre-
mum in (2.4). Other cases are dealt with similarly.

(v) Close examination of the proof of Lemma 1 yields the conclusion
that < may be replaced by < throughout and that any other choice of the
respective stopping times is suboptimal. O

In proceeding from Lemma 3 to an equivalent analysis for MDPs with
influence it is plain that we have a much more substantial problem because
now all suprema (infima) are over choices of policies for the MDP as well as
over stopping times. A crucial simplifying step in the development of the
theory is to consider cases where in the retirement problems P3(-, M) and
P*(-, M) there exists a single policy which attains the relevant supremum
(infimum) for all choices of M. Because such a policy will be optimal for
P3(-,0), it will inter alia be optimal for the MDP with respect to the usual
discounted criterion over an infinite horizon. “Optimal” is used in such a
sense in Definition 6.

DEFINITION 6. Optimal policy # is dominating for ([ X(t); A{X()}, t €
N], R, @, a) if:

(i R3(x,M) = sup, R(x,#,7,M), x € Q, M > 0, and
(i) R*(x, M) =inf, R(x, 7,7, M), x € Q, M < 0.

If a dominating policy exists we say that the MDP with influence satisfies
Condition D.

The simpler idea of a dominating policy for families of competing MDPs
(i.e., without influence) was first given expression by Whittle (1980). Note
that Condition D is by no means guaranteed. See Example 3.13 in Gittins
(1989) for an instance where it fails in a simple Gittins index case. However,
we shall see later in the paper important examples where Condition D is
satisfied. Lemma 4 follows trivially from Lemma 3 and the observation that
an MDP with influence together with a prespecified policy 7 for choosing
actions is simply a Markovian reward process with influence. Use the nota-
tion N(ar, x) for the resulting Nash index as a means of emphasising the
dependence upon the choice of policy.
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LEMMA 4. If # is dominating for (X(¢t); A(AX(t)}, t € N}, R, Q, o), then
we have the following:

G If M > 0, then R¥(x, M) = R{x, #,7(x, M), M}, where 7(x, M) is a
stopping time on the MDP under 7 defined by

(2.16) #(x,M) = inf[t; ¢ > 0 and N{#, X(t)} < M].

Gi) If M < 0, then R*(x, M) = R{x, 7, 7(x, M), M}, where 7(x, M) is a
stopping time on the MDP under 7 defined by

(2.17) #(x, M) =inf[t; ¢t > 0 and N{#, X(t)} < M].

Gii) If M = 0, then R3(x,0) = R(x, 7, 7(x,07), 0}, where #(x,0") is as in
(2.16) with M = 0" and R*(x,0) = R{x, #r,#(x,07), 0}, where 7(x,07) (=0
a.s.) isas in (2.17) with M = 0",

(v) The suprema in (2.10) and (2.11) are satisfied by {7, 7(x)}, where 7(x)
is a stopping time on the MDP under 7 defined by

(2.18) #(x) = inf[t; ¢ > 0 and N{#, X(¢)} < N(x)].

(v) Results (1)-(iv) all hold with < replaced by < throughout. These are
the only choices for the stopping times concerned.

(vi) N(x) = N(ir, x) = N(m, x) V 7, x € Q. If no dominating policy exists,
we still have N(x) = N(7,x) V 7, x € Q.

If we combine Lemma 4(vi) with (i) and (ii) we see that the stopping times
7(x, M) in (2.16) and (2.17) can be characterised as

#(x,M) =inf[t; t > 0and N{X(¢)} < M].
Similarly the stopping time 7(x) in (2.18) is given by
#(x) = inf[¢; ¢ > 0 and N{X(¢)} < N(x)].

3. Families of competing MDPs with influence. In Section 2 we
described the individual objects of choice in a Nash-type model and the
indices associated with them. We now describe in detail the model obtained
when N MDPs with influence are brought together in the way outlined
briefly in the introduction. The idea is that to form a family of competing
MDPs, each MDP is provided with an on /off switch, the rule being that only
one can be switched on at a time. A policy for the family will have to specify
both how to choose which MDP to switch on and how to choose an action for
that MDP. We use the expanded notation {([ X;(¢); A{X,(¢)},¢ e N, R, Q;, a),
1 < i < N} or, more usually, the abbreviated form {(MDP,, @,), 1 <i < N} to
denote a family of competing MDPs with influence, this being a discounted
MDP with the following special features:

1. Its state at time ¢ € N is X(¢) = {X(¢), X,(2), ..., Xy(¢)}, where X ()
denotes the state of MDP, at time ¢, which must lie in the general state
space {);, 1 <j < N. Hence the process state is simply the vector of the
states of the constituent MDPs.
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2. A(x) is the action set for x € XJN=1 ; and is given by
N
A(x) = UA(x)),
j=1

where A(x;) is the action set (assumed finite) for MDP; in state «x;,
1 <j < N. In summary, at each decision epoch a single action is taken for
one of the constituent MDPs. A policy is a rule for choosing actions which
depend only upon the history of the process to date.

3. The decision epochs are the natural numbers N. Should action a €
A j{X j(t)} be taken at ¢ € N, then the Markovian transition law for
MDP, P,(‘|x, @) say, yields the distribution of X, (¢ + 1) conditional upon
the event X(#) = x independently of the states and histories of MDP;,
i # j, at ¢. Under this scenario, X,(¢ + 1) = X;(¢), i # j, that is, only the
state of MDP; changes.

4. The expected reward earned should action a € A {X;(¢)} be taken at ¢ is
given by

(3.1) /| [ex )R {x,(1).a)
where each R;: Q; X A(-) > R" is a bounded reward function, each @;:
Q; - R* is a bounded influence function and « € [0, 1) is a discount rate.

5. An optimal policy maximises the total expected reward earned during
[0, o).

Note that the constituent MDPs interact only through the influence func-
tions; see (3.1). Hence the rewards received upon activating an MDP are
influenced by the states of the other MDPs in a multiplicative manner.

An important special case both in its own right and for the development of
the theory is where

(3.2) |A;(x)]=1, =x€Q, 1<j<N.

Hence there are no choices of action within MDPs, only between them. This is
plainly equivalent to bringing together a collection of Markovian reward
processes with influence (as described in Section 2) into a family by provid-
ing each one with an on/off switch as before. Nash (1980) only studied this
class of models and called them generalised bandit problems. To be consis-
tent with our other terminology, we shall refer to a family of competing
Markovian reward processes with influence. We shall use the expanded
notation ({X,(¢),¢t € N}, R,, Q;, @], 1 <i < N) or, more usually, the abbrevi-
ated form {(MRP,, @,), 1 < i < N} in the obvious way. The action set for such
a family is (a,, a,,..., ay), say, in all states, where a ; denotes the choice of
MRP..

Tﬁe central theme of the paper is the status of policies for families
of competing MDPs (MRPs) with influence which choose between the con-
stituent MDPs (MRPs) offered on the basis of their Nash indices. The
following definition introduces a central concept. Note that N, denotes the
Nash index for MRP, with influence function @;,1 <i < V.
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DEFINITION 7. Any policy 7 for {MRP,, @,), 1 < i < N} satisfying
N
m(x) =a; = Ni(x) = N(x)), j#i, xe€ Xa,
j=1
is a Nash index policy.

Such a policy uses the Nash index preference ordering to choose between
MRPs on the basis of their indices. If two or more MRPs share the same index
value, then a Nash index policy may choose any of them. In none of the
results in the paper does it matter how such ties are broken. When we refer
to some specific Nash index policy we shall assume that some tie-breaking
rule is in force. The following result is a restatement of Nash’s (1980) main
result.

THEOREM 5 [Nash (1980)]. Any Nash index policy is optimal for {( MRP;,
Q,),1<i <N}

To take our ideas further, consider now the family {(MDP,, @,), 1 <i < N}.
We shall suppose that each MDP, is provided with a policy 7; for choosing its
actions. Equivalently, denote by {(MDP, 7,,Q,), 1 <i <N} the family
described in special features 1-5 with the restriction that the action set
A(x;) ={m(x)}, x; € Q;, 1 <j < N; that is, actions within MDPs must be
chosen according to policies 7, 1 <j < N. This construction reduces the
family of competing MDPs to one of competing MRPs with influence because
within MDPs choice has been eliminated. From Nash (1980) we deduce that
optimal policies for {(MDP,, 7;,,), 1 <i < N}, choose within MDPs (neces-
sarily) according to the 7;, 1 <j < N, and between MDPs according to Nash
indices N/(m;,-), 1 <j < N. We shall use the notation N(w,7,,...,7y) =
N(mw) to denote such a policy; that is,

{N(m)}(x) =a €Ay(x;) =a=m(x;) and
N
N;(m;, x;) = Ni(m;, x;), J#i, x € ><19j.
j=
The following is an immediate consequence of Theorem 5.

COROLLARY 6. Any Nash index policy N(w) is optimal for {( MDP;, m;, ,),
1<i<N}L

Corollary 6 asserts the optimality of N(w) for the family {(MDP, @,),
1 < i < N} for the constrained problem in which actions for MDP, must be
chosen according to policy #;, 1 <i <N. Our primary interest, though,
concerns when there exists some choice of the ;, 1 <i < N, such that N(w)
is globally optimal. Theorem 7 states that the existence of a dominating

policy for each constituent MDP with influence is sufficient to guarantee this.
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THEOREM 7. If each (MDP,, Q,) satisfies Condition D with optimal policy
7r; being dominating, then N(%) = N(7r{, 7ry,..., 7y) is optimal for the family
{(MDP,,@,),1 <i < N}.

Proor. Fix initial state x € X JN= 1 ©; and initial choice of action a € A(x).
By standard dynamic programming arguments it is enough to show that

N
(3.3) #{x,aN(®)} <#{x,N(®)}, a€A(x), «x€ JZ<1 Q.

In (3.3) the notation % (x,w) is used for the total discounted reward over
an infinite horizon earned from policy 7= applied to the family {(MDP,, @,),
1 <i< N} when X(0) = x. Further aN(#) is used for the policy which
chooses action a at ¢ = 0 and thereafter operates N(4). Note that there is a
trivial way of extending the system state to ensure that aN(#) is determinis-
tic, stationary and Markov. By an argument due to Gittins [(1989), page 60] it
is enough to establish that

#(x,aN(#)) <#(x,N(%)), a<cAlx),
for those x € X ;V=1 Q; satisfying
(3-4) Ni(x;) = Ni(x;), J#i.

Now fix x and suppose w.l.o.g. that Ny(x,) = Ni(x,), j # 1. Fix a € Ay(x,).
We shall further suppose that (in an obvious notation) N,(a7, x,) = N,(x)),
J # 1. This latter condition will be removed subsequently.

We now proceed to develop formulae for %{x, N(#%)} and Z#{x,aN(#)}.
To this end, consider the application of policy N(#,,...,7y) = N(4) to
{(MDP, @,), 2 <i < N)}. Denote by RYx', N'(#),¢,0} the total expected
reward up to time ¢ from initial state x' = (x,,...,xy) € Xj.vzz Q; and by
X1(¢) the state of {((MDP,, @,), 2 < i < N} under policy N'(#) at ¢. We further
develop the sequence {¢,, t;, t,,...} of random times as follows:

t =0,
{NY(®)}(xh) = (x;) =t = inf[t; t > 0and N{X;(¢)} < ]Vi(xi)]’
(N EHX () = #{Xy(8)} = 4
= inf[¢; ¢ > ¢, and N{X;(2)} < N{X;())}].
and so on. For general n € Z*,
(N'(#HX (¢t 1)) = T X (2, )} =t
= inf[t;t > ¢, ; and N{X,(2)} < N{X,(¢,_1)}].

Corresponding to the sequence {¢,, ¢, t,,...} we have the sequence {M,, M,,
M,,...} of Nash indices for the MDP chosen by policy N'(#) at times
to,tq,ta,..., respectively. Plainly, by Lemma 4(vi), for all n € N,

(NI(mHX (1)} = m{ X (8)} = M, = N{X,(2,)} = Ni{ 7y, X,(2,)}-
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We also use the notation

T1—1

Ry(xy,m,7, M) =E771,1'1 Z atRl[Xl(t)’Trl{Xl(t)}]
t=0

+an QX (1) }M1X,(0) = x, |.

Last, we use 7,(#;, M) for the stopping time on MDP, under policy #,,
defined by

#1(#, M) = inf[t; ¢ > 0 and N,{#,, X,(t)} < M|
=inf[¢; ¢ > 0 and Ni{X,(¢)} < M].
The stopping time 7,(a?;, M) is defined similarly. If M < Ni(x,) for some
J # 1, then the assumption N (a#rq, x,) = Ni(x;), j # 1, implies that for such

an M, 7,(a7r,, M) may be characterised as the stopping time on MDP under
policy a7r; satisfying

#1(afry, M) = infl¢t; ¢ > 0 and Ny{X,(¢)} < M].

With these preliminaries, a modified version of the accounting exercise
used by Gittins [(1989), page 62] yields

%{x,N(%)} = Z En[Rl{xl,ﬁ'l,’?1(%1,Mn),Mn}]
(3.5) o
XE, at”jl:[l Qj{Xj(tn)} - at"+1Jl:[1Qj{Xj(tn+1)} .

Note that in (3.5), E, is an expectation operator conditional upon ¢, and
X'(¢,). We have an equivalent expression for %{x, aN(4)} obtained by replac-
ing 7, by afr; throughout (3.5). We now consider two cases for M,.

CasE 1. M, <O0or M, = 0".In this event it is clear from the fact that #,
is dominating for (MDP;, @,) [Definition 6(ii)] together with Lemma 4 that,

conditionally upon ¢,,
(3 6) R‘ll(xl, Mn) =R1{x1, %1’%1(%1>Mn)?Mn}
' < R\{x,,af,, #(af, M,), M,)}.

In (3.6), Ry refers to problem P*, defined in terms of (MDP,, ,). Further,
if we regard t,, , — t, as a stopping time on {(MDP,, ,), 2 < i < N} with ini-
tial state X'(¢,) which achieves the Nash index M,, then it is clear from
Lemma 2(ii) that

(3.7) thi1 = b, € Tya{ X1(2,))-
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It follows simply that
(38) En at" an{Xj(tn)} - atnﬂ 1_.[ Qj{Xj(tn+1)}
J#1 J*1

CASE 2. M, >0 or M, = 0*. For this case, the dominating nature of 7,
leads via Definition 6(i) and Lemma 4 to the conclusion that, conditionally
upon ¢,

R}(x,, M,) = Rl{xl’ y, T( 71, M), Mn}
> Rl{xl, awy, (a7, M,), Mn}.

In (8.9), R? refers to problem P32, defined in terms of (MDP,,Q,). Also,
because the Nash index M, is positive, we conclude that

(3.10) Tyiaf X' (8,)} =
and hence that

(311) En atn];l:.EQj{Xj(tn)} - at"+1J1:.EQj{Xj(tn+1)}

(3.9)

It is now an immediate consequence of (3.5) (together with its analogue for
air;) and (3.6), (3.8), (3.9) and (3.11) that
(3.12) F{x,N(#)} >R#{x,aN(#&)},
as required.

We now remove the condition N(a#, x;) = N(x;), j+# 1, as follows:
According to the policy aN(#), actions are chosen for the respective
MDPs according to policies ary, 7, ..., 7y. Abbreviate the notation N(a,
7g,...,y) for the corresponding Nash index policy to N(a#). From
Corollary 6,

(3.13) #{x,N(aw)} >H{x,aN(w)}.

Now consider the family {(MDP,, @,), 1 <i < N} under policy N(a#). Let
7, denote the first decision epoch at which N(a#) chooses action a for
(MDP,, @,). If no such time exists, 7, = ». In an obvious notation,

#{x, N(a )}
(3.14) =%{x, N(a®),[0,1,)} +#{x, N(af),[7,, =)}
=% x,N(a®),[0,7,)} + Z{x,aN(&),[m,, *)}.

Equation (3.14) signifies that from 7, + 1 onward, pohcy N('rr) is followed.
Now, by the characterisation of N(a) and 7, we must have

Nyfar,, Xy(7,)} = N{X;(7,)}, Jj+1,as.
Hence from the foregoing argument up to (3.12) we may conclude that
(3.15) (x, N(&),[m,,%)} 2 5{x, aN(#), [7,,%)},

namely, that we improve N (aw) by choosing actions accordmg to N(#) from
7, onward. However, such a policy always chooses actions for each (MDP,;, @,)
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according to its dominating policy #,. By Corollary 6, such a policy can be no
better than N(4). Hence from (3.13)—(3.15) we deduce that

Fx,N(®)} >#{x, N(as))} > % x,aN(H)},
as required. This concludes the proof. O

We have in Theorem 7 an appropriate generalisation of Whittle’s (1980)
result for families of competing MDPs in the absence of influence.

4. Families of stoppable bandit processes with influence. As an
illustration of the material in Section 3, we discuss one of the simplest classes
of families of competing MDPs with influence of practical interest. In doing
so, we generalise results for families of stoppable bandit processes due to
Glazebrook (1979, 1982) and discussed by Gittins (1989). Such processes (i.e.,
without influence) had been used by Bergman (1981) to model his buyer’s
problem. In these families, the objects of choice are decision processes with
two actions available in each state, one of which (the “stopping” action)
results in no change of state. To be explicit, by a family of N stoppable bandit
processes with influence we mean a family of competing MDPs with influence
{MDP, @,), 1 <i < N}, as in features 1-5 of Section 3 with the following
special features:

1. IAj(xj)I =2,x;€0;,1<j<N.We write Aj(xj) = {aj, bj} and call action
a; “continue j” and action b; “stop and invest in j.”

2. Plxjlx;,0) =1, x; € Q;, 1 <j <N. Hence the application of the stop

action b; leaves the state of j unchanged.

3'. We write, for any x; € Q;,1 <j <N,
R;(x;), a=a;,

(4.1) Bilxp@ =) L (x)(1-a)>0, a- ;.

As Gittins [(1989), page 63] points out, the preceding process could
be a suitable model for an industrial research project. Each (MDP,, @)
would model one of N possible routes to success in the project. The stop-
ping action b; corresponds to a decision to stop research and exploit the
information gained in route j.

Note that should a stationary policy choose action b; at time ¢ in state
X(¢) (and hence, in light of feature 2, choose b; at all subsequent decision
epochs), the total reward earned during [¢, ) is

(4.2) at[iI;[jQi{Xi(t)}] w{ X ()}

Interpret the quantity in (4.2) as a return from investing in j, influenced by
the current states of the non-j options. Usage of “optimal” in Definition 8 is as
in Definition 6.

DEFINITION 8. The investment set S ; € Q) for MDPj is the set of states for
which action b; is uniquely optimal.
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The following definition represents an appropriate development of
Condition G described by Glazebrook (1982) to accommodate influence.

DEFINITION 9. The stoppable bandit process with influence (MDP, @,),
described in features 1'-3’, satisfies Condition G’ if and only if

(4.3) Mj(xj) = Qj(xj)zvj(xj)’ xXj & Sj'

For stoppable bandit processes (i.e., without influence), the corresponding
(simpler) Condition G has been commented upon and further analysed by
Gittins (1989), Glazebrook (1979) and Glazebrook and Fay (1990). Our key
result is the following theorem.

THEOREM 8. For any stoppable bandit process with influence, Condition
G’ « Condition D. There exists a dominating optimal policy 7; for (MDP;, Q;)
satisfying Condition G’ such that

. a;, % &8;,
(%) = b, x; €8

J?

Proor. (i) Condition G’ = Condition D. Consider two cases in turn:
(a) M > 0. Problem P3(-, M) for (MDP,, @) is solved via dynamic pro-
gramming optimality equations:

R(x;, M) = max(MQ,(x,), u(x;), B;(x;)
+aE|R¥{X;(1), MIX,(0) = x;,a,}]),

in an obvious notation. From the characterisation of the Nash index
(Definition 4), if M = N. ~( x~) then

R¥(x;, M) = MQ(x)—supR(x

(4.4)

T, M)

J? J’

for any policy 7; (and hence for 7).
Now cons1der the case M < Ni(x;) = M< N(x,). Suppose that 7(x;) =
but that 3 7, 7 such that

(4.5) Rj(x;,m, 7, M) > pi( %) = @;(x;) Ni(%)).

The equation in (4.5) follows from (4.3) and the characterisation of #; in the
statement of the theorem. However,

Ry(x;,m;,7, M) = R;(x;,m;,7,0) + E,,j,,[ @’ Q{X;()}IX;(0) = x;| M
< (Q(x)) — E,, [ a"@{X,(1))IX;(0) = x;]) Ny(m;, x,)
(4.6) +E, .[a'Q{X,(n)}IX;(0) = x;|M
< Q;(x; )max{N( m;, %;), M} < Q;(x;)max{N,(x;), M}
= Qj(xj)Nj(xj) = /-Lj(xj)'
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In the succession of equations and inequalities leading to (4.6), we utilise
Lemma 1, Lemma 4 and Condition G’'. However, in (4.5) and (4.6) we have
now obtained a contradiction. Hence we conclude that under G', if M > 0,
then

M < N,(x;) = R}(x;, M) = supR (xj, 75,7, M),

J? J’

as required. This completes (a).
(b) M < 0. In this event, it is plainly never optimal to choose b, in the
dynamic program

Ri(x;, M) = min(MQ(xj), wi(x;), Ry(x,)
+aE[RY{X,(1), MIX;(0) = x;,a,}]).

If M > N(x;), an optimal choice is retirement, earning MQ,(x ). If N(x;) >
M, an opt1mal policy for P*( x;, M) for (MDP,, @;) chooses a; up to T(x M )
(see 2.16) and then retires. However, trivially from G’ and the characterisa—
tion of 7,
Ni(x;) >M = N;(x;) <0 or Ni(x;)=0=7;(x;)=a
Hence we conclude that under Condition G, if M < 0, then
R}(x;,M) = 1nfR (xj, 7,7, M),

J? J’

as required. This completes (b) and hence the proof of (i).
(ii) Not Condition G’ = Not Condition D. Not Condition G’ = 3 x; (S Sj
such that @;(x,)N,(x}) > u,(x’) > 0. Consider two cases.

(a) N,(x}) > 0. Following Lemma 4(vi), 3 #; with 7/(x}) = a; satisfying

Q;(x) Nj(mj, ) > m;(xj) > 0.
Following steps similar to those yielding (4.6), we can assert the existence of
M > 0, satisfying MQ(x}) < u;(x}), such that for the stopping time 7’
achieving N/(7/, x/),
R(xj,mj, 7', M) = R,(x},m

(4.7) = (@(%) - B, [ Q{X;(+))IX;(0) = )] ) N;(m), 2)
+En [ @ Q{X;(7)11X;(0) = x| M > pi(x)).

7,0) + E, [a"Q{X,(v)}IX,(0) = xj| M

J? J’

Hence from (4.7), no optimal policy (i.e., choosing b; in state x’) can solve
P3(M) for any such M. Therefore, no optimal policy dominates and Condition
D cannot hold.

(b) N,(x’) <0 or N(x%) = 0". Following the discussion of (iXb) it is clear
that no optlmal pollcy (1e choosing b; in state x’;) can solve P4(M) for
M < N;(x"). Hence no optimal policy dommates and Condition D cannot hold.

This concludes the proof of (ii) and of the theorem. O

The following is an immediate consequence of Theorems 7 and 8.
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COROLLARY 9. If each (MDP,, Q,) satisfies Condition G', then N(%) is
optlmal for the family of stoppable bandlt processes with influence {(( MDP;, @,),
1 <i < N}, where

a;, x, €8,

mi(x;) = x;,€8,,1<i<N.

i’

ExampPLES. Consider now a family of N stoppable bandit processes with
influence as a model of an industrial project in which (MDPj, Qj) models one
of N possible routes to success. Each such route has two phases: an explor-
atory research phase and a development phase. This is modelled by writing

— 1 2 .
Q;=0; U Q3, 1<j<N,

where X;(0) € Q}. So long as X/(¢) remains within Ql the research phase of
route j is in progress. The development phase begins as soon as X(¢) enters
02 Our assumptions about other aspects of this model reflect the 1deas that
1nﬂuence is most likely to be an important issue during exploratory research
and that investment returns are likely to be negligible until development
starts, at which point they will begin to increase.

To reflect this, we allow @;, R; and the transition law under a; to be quite
general during the research phase but require

During the development phase, R; and the transition law under a; are again
quite general, although note that regressing back to a state in ﬂl is not

allowed after entry to 92 However, we shall assume that
P[Q{X;(t + 1)} = Q{X,()}IX;(¢) = x,0a;] = x€0? 1<j<N,
Pl u{X,(t + 1} = u{X,()})|X;(¢) =x;,0;] =1, x€0Q}, 1<j<N.

It is not difficult to show that, under the foregoing assumptions, each
(MDP;, ;) satisfies Condition G’ and hence N(7r) is optimal. The optimal
policy N(4r) will first give effort to routes in influential states (i.e., with
negative indices) which have the potential to enhance the returns from other
routes. Following this, it will then allocate effort on a reward rate basis, as
measured by the Nash indices N(ir;, ). As routes enter upon development,
the investment options (b,) will present an increasingly attractive reward
rate alternative. The first route to enter its investment set under policy N()
will be the one in which investment takes place.

REFERENCES

BERGMAN, S. W. (1981). Acceptance sampling: The buyer’s problem. Ph.D. dissertation, Yale
Univ.

BERGMAN, S. W. and GITTINS, J. C. (1985). Statistical Methods for Planning Pharmaceutical
Research. Dekker, New York.

Fay, N. A. and GLAZEBROOK, K. D. (1987). On the scheduling of alternative stochastic jobs on a
single machine. Adv. in Appl. Probab. 19 955-973.



1032 K. D. GLAZEBROOK

Fay, N. A. and GLAZEBROOK, K. D. (1989). A general model for the scheduling of alternative tasks
on a single machine. Probab. Engng. Inform. Sci. 3 199-221.

Fay, N. A. and WALRAND, J. C. (1991). On approximately optimal index strategies for generalised
arm problems. J. Appl. Probab. 28 602-612.

GITTINS, J. C. (1979). Bandit processes and dynamic allocation indices (with discussion). J. Roy.
Statist. Soc. Ser. B 41 148-177.

GITTINS, J. C. (1989). Multi-Armed Bandit Allocation Indices. Wiley, Chichester.

GLAZEBROOK, K. D. (1979). Stoppable families of alternative bandit processes. JJ. Appl. Probab.
16 843-854.

GLAZEBROOK, K. D. (1982). On a sufficient condition for superprocesses due to Whittle. J. Appl.
Probab. 19 99-110.

GLAZEBROOK, K. D. (1988). On a reduction principle in dynamic programming. Adv. in Appl.
Probab. 20 836-851.

GLAZEBROOK, K. D. (1991). Competing Markov decision processes. Ann. Oper. Res. 29 537-564.

GLAZEBROOK, K. D. and Fay, N. A. (1990). Evaluating strategies for Markov decision processes in
parallel. Math. Oper. Res. 15 17-32.

GLAZEBROOK, K. D. and GREATRIX, S. (1993). On scheduling influential stochastic tasks on a
single machine. European J. Oper. Res. To appear.

GLAZEBROOK, K. D. and OweEN, R. W. (1991). New results for generalised bandit processes.
Internat. J. Systems Sci. 22 479-494.

NasH, P. (1980). A generalised bandit problem. J. Roy. Statist. Soc. Ser. B 42 165—169.

Ross, S. M. (1970). Applied Probability Models with Optimization Applications. Holden-Day,
San Francisco.

Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming. Academic, New York.

VARAIYA, P., WALRAND, J. C. and Buyukkoc, C. (1985). Extensions of the multiarmed bandit
problem: The discounted case. IEEE Trans. Automat. Control AC-30 426-439.

WHITTLE, P. (1980). Multi-armed bandits and the Gittins index. JJ. Roy. Statist. Soc. Ser. B 42
143-149.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF NEWCASTLE UPON TYNE
NEwcASTLE UPON TYNE NE1 7RU

UNITED KINGDOM



