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RATES OF CONVERGENCE OF MEANS FOR
DISTANCE-MINIMIZING SUBADDITIVE
EUCLIDEAN FUNCTIONALS'

By KENNETH S. ALEXANDER

University of Southern California

Functionals L on finite subsets A of R? are considered for which the
value is the minimum total edge length among a class of graphs with
vertex set equal to, or in some cases containing, A. Examples include
minimal spanning trees, the traveling salesman problem, minimal match-
ing and Steiner trees. Beardwood, Halton and Hammersley, and later
Steele, have shown essentially that for {Xj,..., X,,} a uniform i.i.d. sample
from [0,11¢, EL(X,,..., X,)/n@~Y/? converges to a finite constant.
Here we bound the rate of this convergence, proving a conjecture of
Beardwood, Halton and Hammersley.

1. Introduction. In [8], Steele introduced subadditive Euclidean func-
tionals, a class of real-valued functions on finite subsets of R¢. In several
examples of interest, the functional L({x,,..., x,}) is the minimal total edge
length for a class of graphs with vertex set equal to, or in some examples
containing, {x,,..., x,}. Examples include Steiner trees and the traveling
salesman problem (TSP). In addition, minimal matching, triangulation in the
plane and minimal spanning trees (MST’s) are not quite subadditive Eu-
clidean functionals, but can be handled by similar methodology ([9]-[11]).

One main result about such functionals (see Steele [8], [9], [11] and
references therein) is that there is a constant B = B(L,d) such that for
X,,..., X, iid. uniform in [0, 1]¢,

(1.1) imL({Xy,..., X,})/n@ V4=8 as.

From Steele’s methods, it is easily seen that also

(1.2) li'rtnEL({Xl,..., Xn})/n(d—l)/d - B.

The question we examine here is, how fast is this latter convergence? In [1],
Beardwood, Halton and Hammersley conjectured for TSP, and implicitly also
for MST and Steiner trees, that at least in the Poissonized version of the
problem,

|EL({X,,..., Xy}) — Bnt=V/¢| = O(n@~2/%),  d=2,
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DISTANCE-MINIMIZING EUCLIDEAN FUNCTIONALS 903
when N, is Pdisson(n). We will show that in fact, for minimal matching, TSP,
Steiner trees and MST, one has for some positive Ci(L’ d),

Bn@-b/d — C p@-2/@d-0) < EL({X,,..., X,})
(19) < Bn@-W/d 4 C,pd-2/4d,
Note in particular that for dimension d = 2,
|EL({X,,..., X,}) — Bn'/?| stays bounded as n — .
For TSP with d = 2, Rhee [6] showed that for some K, K, > 0,
Bn'/? + K, <EL({X,,..., Xy }) < Bn'/? + K,.

Rhee and Talagrand [7] showed that for TSP and Steiner trees with d = 2,
for some constant K,

P[|L({Xy,..., X,})) - EL{X1,..., X,})| > t] < Kexp(-t?/K), ¢>0.

Thus this same result is valid when centering at Bn!/? instead of at the
expectation.

In order to obtain (1.3), we will have to restrict our class of functionals
somewhat more than did Steele in [8]. Our main purpose is to include
minimal matching, TSP, Steiner trees and MST. These are examples of
distance-minimizing functionals, defined as follows: Let

g, ={{i,j}:1<i<j<n}.
We call L distance-minimizing if it satisfies:
(A1) For each n there is a set &, C 2%» such that either

(1) L({xy,...,%,}) = min Y |x; —x
" GE?n(i,j}eG ' J

or
(i) L({x,...,x,})= inf min min Y |x, —xl,
MM x4y, %, €ROGES, ; heq
with the infimum achieved for every choice of {x,,..., x,}.

The latter case includes, for example, Steiner trees. Here 2%» denotes the
collection of all subsets of &,. We call the additional vertices x,,4,..., x,,
Steiner points. It is clear that the minimum is achieved for fixed m and/or n.
A subset £, of 2%~ is permutation-invariant if for every permutation o of
{1,...,nland G € g,,

{{o(i),a())}:{i,j} €G} €%,.

Note that since L is a function of the set {x4,...,x,}, rather than of
the sequence (x,,..., x,), &, must be permutation-invariant. Given the set
{x4,...,x,}, some Steiner points «x,,,...,%, if in case (ii) of (Al), and
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Geg,, we call
G = {[xi, xj]: {i,j} € G}

an allowable graph on {x,,..., x,}. Here [ x, y] denotes {tx + (1 —¢t)y: 0 < ¢
< 1}. Thus the set of allowable graphs cannot, in an obvious sense, depend on
the locations or the labeling of the points x,,...,x,. Therefore, minimal
triangulation length (see [10]), for example, is excluded.

Our second assumption is:

(A2) The functional L is scale-bounded for all dimensions; that is, for each
k > 1 there exists K, such that if {x,,..., x,} <[0,1]* X {0}~ * in R?, then
L{xy,...,x,) < K,n*-D/k

This is closely related to (A6) of [8].

The lower bound in (1.3) is easy and is essentially implicit in Steele’s work
[8]. Lower bounds are closely related to the following: Suppose we have
d1s301nt finite subsets A and B of R?, and corresponding allowable graphs GA
and Gz. What minimal total length of edges must be added to tie G, and Gy
together to create an allowable graph on A U B? This minimum length is an
upper bound for the quantity L(A U B) — L(A) — L(B). We will use the
following assumption:

(A3) The functional L is simply adjoining; that is, there is a constant
Cs(L, d) such that for A, B, G, and Gy as above, at most C, edges must be
added to G, U G to create an allowable graph on A U B.

For minimal matching, TSP, Steiner trees and MST, at most one edge
must be added, and its length is bounded by diam(A U B). This is what
underlies the fact that these functionals are subadditive (cf. (A5) in [8)]),
which, in turn, is roughly what gives rise to the lower bound in (1.3).

Upper bounds, by contrast, are related to superadditivity. Suppose we have
a finite subset A = {x,,..., x,} of a rectangle in R¢9, and an allowable graph
G on A. We then split the rectangle into two adjacent rectangles R and S
using a hyperplane H. If all the broken edges, that is, those passing through
H, are deleted, what minimum total length of edges must be added on
average to the remaining two graphs to “patch” them, that is, to create a
separate allowable graph in each of B and S? This minimum length is an
upper bound for the quantity E[ L(A) + L(B) — L(A U B)] and is related to
the expected total length of the broken edges and/or to the expected number
of broken-edge endpoints. In the non-Steiner case (i) of (Al), this expected
number can be bounded by r, and for the Steiner tree by 2n. Using Steele’s
. arguments (see, e.g., (2.2) and Lemma 4.2 in [8)]), this leads to a weaker upper
bound than in (1.3):

(1.4) EL({X,,..., X,}) < Bn@~V/¢ 4 C n@-2/@-D



DISTANCE-MINIMIZING EUCLIDEAN FUNCTIONALS 905

for the Steiner tree, minimal matching and TSP. One of the major tasks in
improving (1.4) to (1.3), then, is to get a better estimate on the expected total
number of endpoints in H and/or total length of the broken edges.

Before formulating all this more precisely, let us consider this patching
procedure in some examples. Let /(e) denote the length of an edge e and
I(E) =¥, gl(e) for E a set of edges. Given a graph G and a subset U of its
vertices, let

Gly = {[x,y] eGi x,ye U},
dgU = {[ x, y] €G:xeU,yeU}.

Consider first minimal matching in dimension d = 2. The allowable graphs
are those that are maximal subject to having degree at most 1 for each vertex.
Thus vertices are paired off, with one extra unattached vertex if n is odd.
Suppose we have a finite subset A = {x,,..., x,} of some rectangle in R2, an
allowable graph G representing a matching on A and a line H which splits
the rectangle into two subrectangles R and S; see Figure 1(a). For each edge
e which crosses H, that is, e € J5(A N R), let z, denote the point where e
meets H and let x, denote the endpoint of e in R.

One can create a matching on A N R by the following four-step procedure.
First replace each edge e crossing H with [ x,, z,]. Second, pair off all (or all
but one) of the points z, in H and add in the corresponding edges, with the
pairing done so as to minimize the total length of the added edges; see Figure
1(b). Third, if z, and z,. are paired in this way, replace the three segments
[x,,2,]I[z2,,2,]and[z,, x,] with [ x,, x,.]; see Figure 1(c). Fourth, if |A| and
|3g(A N R)| are both odd, and the originally unmatched vertex in A isin R,
one must add an extra edge, which we will call a leftovers edge, of length at
most diam(A) to connect the originally unmatched vertex in A to the
unmatched vertex in d3(A N R). Let Fy denote the set of edges added to

-1 .
A/\

s

/
Xg (l)\'

Zeqy oxg

(@) ©

Fic. 1. (a) Rectangle R, edges meeting R and points z, (circles); (b) matching in H (heavy lines)
and corresponding edges of form [x,, x,] (dashed lines); (¢c) final matching of A N R, with
leftovers edge [ x 1), x,].
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Glcanr) by this four-step procedure, that is, the edges of form [x,, x,]
together with the leftovers edge, if any. Here |F| denotes the cardinality of a
finite set F. We have

(1.5) lx, —x, | <|x, — 2, + 12z, — 2| + |2, — x,.].

Summing this inequality over all edges [z,, z,.] and adding the leftovers
edge, we obtain

I(Fg) <I({[x.,2.]: e € 96(A N R)})

+ L({z,: e € 95(A N R)}) + diam( A).
If we start with the graph G N R produced by the first of the four steps, the
second through fourth steps reduce its length by (({[ x,, z,]: e € d5(A N R)}),
since the edges {[ x,, z,]: e € d5(A N R)} are removed, but also increase it by
I(Fg), for a net increase of at most L({z,: e € d5(A N R)}) + diam(A). The

latter sum is bounded, uniformly in n = | A|, by twice the length of H N (R U
S). This and the analogous fact for S imply that

L(ANR)+L(ANS)-L(ANn(RUNS))
is bounded uniformly in n and in A with |A| = n,

(1.6)

(1.7)

a strong form of superadditivity which leads readily to the upper bound in
(1.3), using the arguments in [8].

Our four-step patching procedure—truncate edges crossing H, add in the
edges of an allowable graph on the set of crossing points z,, replace each
added edge [ z,, z,.] with the corresponding edge [ x,, x,.], then add /delete a
small number of additional edges—can be applied to other functionals as
well. For TSP, the allowable graphs are self-avoiding loops which visit every
vertex. In dimension d = 2, the graph G N R consists of one or more disjoint
connected paths; roughly, the edges [z,, z,.] are used to connect these paths
into a single path. The differences from minimal matching are roughly the
following; see Example 3.1 for a more complete description.

1. In the second step, one first constructs a self-avoiding loop path y of
minimal length visiting all sites 2z, in H, then constructs a loop path « in
y U (G N R) which traverses each component of G N R exactly once and
each edge of y at most twice. The edges [ z,, z,.] which get added in our
second step are those which are in «, with two edges from z, to z,, added
if[2,, z,.] is traversed twice by .

2. As a consequence, the net increase in length in steps two and three is at
most 2L({z,: e € d5(A N R)}, which is bounded uniformly in n = |A| by
20(HN (R US).

3. In the third step, a single edge of the form [«x,, x,.] may replace several
edges of the form [ z,, z,.]. -

4. In the fourth step there is no leftovers edge. Thus (1.7) is valid for TSP as
well. This entire procedure for TSP, including the existence of the path «,
is described in the proof of Lemma 2 of [1]; see also [5].
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Our four-step procedure is also valid in dimensions d > 3 for both minimal
matching and TSP, but a significant complication arises: the length L({z,:
e € d5(A N R)}) of the allowable graph in the hyperplane is no longer bounded
uniformly in A and/or n. In fact, this length depends very much on the
number of sites z, in H, that is, on the number of edges which cross H. From
(A2) we know that

L({z,:e € 35(A NR))) <K, y|{z.: e € a,(A N R)}[“" 77,

If A is a “typical” uniform random sample of n points from R U S, then [z,:
e € d5(A N R)}| is of order n@ 1’4 Thus we would hope to show that,
roughly, in place of (1.7),

(1.8) E[L(ANR) +L(ANS) —L(AN (RUS))| = O(nd-2/4),

which would lead to the upper bound in (1.3), but we must overcome the
problem of “atypical” samples A in which too many edges cross H.

For MST (see Figure 2), an additional difficulty arises in all dimensions. In
the second step, we add the edges of an MST T of the set of all vertices z, in
H. In the third step, for each edge [z,, z,.] in T' we replace the three edges
[x,,2.] [2,,2,] and [2,, x,] with [x,, x,.]. When the inequalities (1.5) are
summed, the number of appearances of a given term |x, — z,| in the sum is
the degree deg,(z,) of z, in T. This degree is bounded by some constant D,
in dimension d, as observed by Steele [10]. In the fourth step, there is no
leftovers edge, but one may need to delete some edges [ x,, x,.] to make the
resulting graph a tree. Hence instead of (1.6) we obtain

I(Fp) < )Y degp(z,)lx, —z|+ L({z,: e € 95(A N R)})
(1.9) ec€ds(ANR)

<D, ,I({[x,,2.]: e € 956(A N R)}) + L({z,: e € 5(A N R)}).

Unlike TSP and minimal matching, the first term on the right side of (1.9) is
not cancelled out by the removal of the edges {[x,, z.]: e € ds(A N R)}. Hence
to bound the net increase in length in steps two and three, we must be
concerned with not only the number of edges crossing H, but also with the
total length of these edges. As there are typically of order n‘®~1/? such edges
when A is a uniform random sample from R U S, and the typical edge has
length of order n~!/¢, this total length should typically be of order n(¢~27/4¢
leading us to hope that (1.8) is again valid. Again the difficulty is “atypical”
samples A in which edges crossing H are too numerous or too long.

We will at times need to split finite sets A not only using a hyperplane H,
but also more generally into A N R and A N R° for some subrectangle R of a
rectangle containing the whole set A. Further, when it exists, the set of
* Steiner points in the allowable graph on A needs to be split as well. The
natural split of Steiner points is according to location in R versus R¢, but we
will need a different split for (2.20). Therefore, we formulate our assumption
on L in terms of general splits of A and of the Steiner points, as follows.
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Fic. 2. (a) Rectangle R, edges meeting R and points z, (circles); (b) spanning tree in H (heavy
lines) and corresponding edges of form [ x,, x,.1 (dashed lines); (c) final tree spanning A N R.

(A4) L is patchable, that is, for some constants C,(L, d), given finite sets
B C A, given an allowable graph G on A with vertex set denoted V, given a
split V=V’ U V" into disjoint subsets with V' DB and V" DA\ B and
given a distinct point z, € e for each edge e € J5V', there exists a set Fp of
edges [each with both endpoints in B in the non-Steiner case (i) of (A1)] such
that:

G {{x,yl € G: x,y € V'} U Fy is an allowable graph on B;
(i) I(Fg) <Csi({[x,2.]:e=[x,y] € 95V', x € V'})
ii
+ C¢L({z,: e € 9gV'}) + C; diam(B).

The points of V' \ B and of V" \ (A \ B) are, of course, the Steiner points.
If the constant C; in (A4) is 1, we say L is efficiently patchable. In this case,
which we have shown includes minimal matching and TSP, the first term on

the right side of (A4)(ii) is cancelled out by the reduction in total length when
the edges of 95V’ are deleted.

REMARK 1.1. By taking limits, one sees that if (A4) is true as stated, when
it is true without the requirement that the z,/’s be distinct for distinct e,
provided that, in constructing allowable graphs, coinciding z,/s are inter-
preted as distinct vertices in the same spatial location. We will tacitly use
this interpretation henceforth. This is equivalent to extending the domain of
L in (A1) in the obvious way to multisets, that is, sets in which each element
has a multiplicity. In (A4)(ii), {z,: e € 9d5V'} must be interpreted as a multi-
set. ’

The main tool in the proof of Lemmas 4.2 and 4.3 of [8], and the analogous
result for Steiner trees, is essentially the observation that TSP, minimal
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matching and Steiner trees are efficiently patchable. As we have mentioned,
for TSP this fact is implicit in Lemma 2 of [1]. We have shown that MST is
patchable, but with Cy > 1. Thus for MST we will (roughly) have to bound the
total length of the edges which cross the boundary of a rectangle.

The problem of “atypical” samples in which edges crossing a dividing
hyperplane are too numerous or too long will be attacked roughly as follows.
The arguments in [8] establishing (1.1) involve subdividing a cube of side ¢,
containing a random set of vertices, into a grid of m? cubes of side t/m. We
will instead use a grid of only (m — 1)¢ cubes of side ¢/m. This grid can be
moved around while remaining entirely inside the cube of side . Averaging
over the locations of this grid eliminates this atypical-samples problem,
thanks to some elementary integral geometry; see (2.7) and (2.11). For large
m, the price paid for reducing m is minimal.

As was done for some results in [1] and [8], we will first prove something
like (1.3) for a Poisson process rather than a uniform sample. Let II(R)
denote the set of sites in R c R¢ of a Poisson process of unit intensity, and
I1,(R) similarly for a Poisson process in [0, 1]? with intensity r. Note that

(1.10) L(IL,(R)) =, r~YeL(II(r/R)) for R c [0,1],
where =, denotes equality in distribution. Let

(n) = EL({Xy,..., X,})
and let N, be a Poisson(n) r.v. independent of {X,..., X,}, so that
(1.11) EL(11,([0,1]7)) = Eyy(N,), n=1.

The sequence of values {EL(II ([0, 1]%)), n > 1} for the Poisson process
can thus be thought of as a smoothed version of the original sequence
{EL({X,,...,X,})), n > 1}). We will obtain an analog of (1.3) for the Poisson
process:

(1.12) Bré-v/d — ¢y < EL(IL([o, 1]9)) < Brd=D/d 4 Cyrt=2/4,

To obtain (1.8) from this requires “desmoothing.” For the result (1.2) without
error terms, such desmoothing was done, for example, for MST by Steele in
[11] using Abelian and Tauberian theorems. Here we will rely more on brute
force, making use of the properties (A1)—-(A4) of the functionals of interest,
along with the following assumption.

(A5) L has bounded graph degree, that is, there exists C,,(L, d) such that
every vertex of every allowable graph which achieves the minimum in (A1)
has degree at most C,,.

~These will be shown to imply
(118) |EL({X,,..., X,}) — EL(1L,([0,1]%)| = O(n(@-2/@d-1y,
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In (A5), one can change “every allowable graph” to “some allowable graph”
if either L is efficiently patchable or (1.17) remains true when the graphs are
restricted to those satisfying the degree bound.

We can now formulate our main results. Let Z({x, ..., x,}; L) denote the
set of allowable graphs G for which the corresponding G achieves the
minimum in (A1).

THEOREM 1.1. Suppose the functional L on finite subsets of R? (d = 2) is
distance-minimizing and simply adjoining. Then for some C4(L, d),

(1.14) B =B(L,d) = lim EL(IL,([0,1]%))/r@~/? exists

and

(1.15) Bré-1/¢ — ¢y < EL(11,([0,1])).
If also L is scale-bounded for all dimensions, and either
(1.16) L is efficiently patchable

or L is patchable and for {X,, ..., X,} uniform in [0, 114,

(1.17) E( inf ¥ l(e)z) _ O(n(d_Z)/d),
GeAUXy,.... X5 0) ye G

then for some Cy(L, d),
(1.18) EL(H,([O,l]d)) < Brd-1/d 4, p@d-2/d,

When Steiner points are allowed, (1.17) is typically valid, as the sum of
squares can be made arbitrarily small by adding vertices to break up edges
into smaller edges, provided the resulting graph is also allowable.

Theorem 1.1 and (1.13) immediately yield the following theorem.

THEOREM 1.2. Suppose the functional L on finite subsets of R? (d > 2) is
distance-minimizing, is simply adjoining, is scale-bounded for all dimen-
sions, has bounded graph degree and either is efficiently patchable or is
patchable and satisfies (1.17). Then for X, ..., X, uniform in [0, 11¢, for some
positive C,(L, d),

Bn@-1/d _ 0 p@-2/C@-) < EL({X,,..., X,})

(1.19) < Bn@-1/d 4 C,p@-2/d,

2. Proofs. Following [8], for fixed m we divide the unit cube into m?
cubes of side 1/m, and label these Q,...,Q,:. We also define

o(u) = EL(H([O,u]d))
and
Hi(t) = {y e R%: ¥y, = t}.
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Throughout our proofs, ¢;,c,,... denote constants which depend only on L
and d, and C,,C,,... are the constants specified in the introduction. “Rect-
angle” or “cube” will mean a product of left-closed, right-open intervals. Note
that, if R is a rectangle of maximum side length s with faces S;,...,S,,; and
A is a finite subset of JR, then by (A2) and (A3),
2d

2.1) L(A) < Y sK,; ,|AN S|4 2/¢"D 4 (2d — 1)Cyd"/?s

. i=1

< 01|A|(d_2)/(d_1)8~
LEMMA 2.1. Let R be a cube in R? of side t, consisting of 2*? cubes

Q.,...,Qqra of sidet /2%. Let A be a finite subset of R<. Suppose L satisfies the
hypotheses of Theorem 1.1 and G is an allowable graph on A. Let

F = {e € G: e crosses dQ; for some Qi}.

Then there exist disjoint F,..., Fo:a and positive constants 6,,..., 8qra such
that F = UF,

2kd
(2:2) Y 831 < 24tk
i=1
and
2kd
Y L(ANQ)
i=1
(2.3) »
< L(A) + (Cs — 1)I(F) + ¢y Y |F|@2/@ D5 | o 9Dy,
i=1

It is important that d — 1, and not d, appear in the exponent in the last
term of the latter inequality. That is, we do not allow an error term as large
as ¢yt per cube @;, as would follow from (A4) if we removed the @;’s one at a
time from R, patching what was left after each removal.

Proor oF LEMMA 2.1. Let us first consider A € R and & = 1. We first split
R into two halves R’ and R” with a hyperplane H and let F; be the set of
edges broken by the split, that is, those which have one endpoint in each half.
(For specificity let us say that the splitting hyperplane is part of the upper
half) For e € F, let z, be the point where e intersects H. Let

F;={[x,2,]:e=[x,y] €F,,x €R'},
F={[z2,,y]l:e=[x,y] €F,,y €R"},
let V be the set of vertices of G andlet V' ==V N R', V" := VN R". By (A4),
(A2) and (2.1), .
.L(ANR)Y+L(ANR")
<L(A) + (Cs — 1)(I(Fy) + U(F})) + 2C5L({z,: e € Fy}) + c4t
< L(A) + (Cs — 1)I(Fy) + cgl Fy|“9™2/€¢ "Dt 4 ¢,t.
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Repeating this entire splitting procedure on A "R’ and on A N R", and
continuing through 2¢ — 1 splits, we obtain

24 2d_1 241
LLANQ) <L(A) +(Cs—1) ¥ UF) +c;5 L IF|" 2 Deg,
i=1 i=1 i=1

+(2¢ = 1)eyt,

where F, is the set of edges broken by the ith split and §, =1 for all
i<2¢-1

For k& = 2 this entire procedure can be repeated on each of the 2¢ cubes of
side t/2, with additional iterations for general k. This yields

okd okd _1
YL(ANQ) <L(A) +(Cs—-1) Y I(F)
i=1 i=1
(24) by 2kd_1
te; Y |F@™P/UE s e, Y 28,
i=1 i=1

where t5; is the maximum side length of the rectangle which is divided by
the ith split. For each 0 <j < k£ — 1, there are (2¢ — 1)2/¢ values of i < 2*¢
— 1 for which 8§, = 27/. Therefore

2kd_1 2kd_1

Y §,=2@"Dk_1 and Y &¢°!=292F-1),
i=1 i=1

and the result follows for A C R.

If A ¢ R, one additional split preceding the above procedure is needed,
separating R from R°. Letting F,:« denote the set of edges with exactly one
endpoint in R, for e € Fy:« let z, be the point where e exits R. Let 8y == 1.
Using (A4) and (2.1),

L(ANR) <L(A) + (Cs — 1)I(Fyra) + cglForal @ 2@Vt 4 ¢ 1.
This, with (2.4) applied to A N R, gives (2.3). O

PROOF OF THEOREM 1.1. It follows from the fact that L is simply adjoining
that for ,¢ > 0,

25) L(r([o,t + £]%)) < L(11([0,£]%))
. +er(¢ + )|T1([0, 2 + £]*\ [0,£]7)],
so that, taking expectations,

(2.6) o(t+ &) < o(t) +cgtle for0<e<t.
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Steele’s proof in (2.1) of [8], with our (2.6) replacing Steele’s monotonicity
assumption, yields the existence of

B = lim o(t)/t?.

Because of (1.10), this is equivalent to (1.14).
Suppose that m = 2* for some & > 0. We claim that for some c,,

L(1([o,]%)) < ri L(T1(¢Q,)) + com®™1¢.

We proceed by induction on %, assuming validity for m = 2%~ '; k = 1is clear.
Dividing [0, ¢]¢ into (m /2)? cubes of side 2¢/m, then dividing each of these
into 2¢ cubes of side t/m, we obtain from the simply adjoining property and
the induction hypothesis:

)»

L(m([o,¢]%)) < ,m L(TI(1Q;)) + (m/2)29C;d /22t /m + co(m/2)" 't

IA
3
&

L(TI(tQ;)) + (2C5dY? + ¢ /2% 1 )m?~1¢

-
Il
[

3

< Y L(II(tQ;)) + com®™'t,
1

i

provided that we let cy == 4C;d"/2. After taking expectations, for u =¢/m
this gives (2.2) of [8]:

o(mu)/(mu)? < o(u)/u® + cqu™@ .

By (1.10), letting m — » and setting u = r*/¢ yields (1.15).
Suppos- 10w that L is patchable and scale-bounded for all dimensions. We
may ass .ne the @; are numbered in such a way that

(m-1)¢

U Q =1[0,(m-1)/m]".
i=1

Let G be an allowable graph on II(0,¢]¢) which minimizes L. The key
observation is that .

ftl{e € G: e crosses Hi(s)}lds
0

(2.7) t )
= ¥ [ e crosses sy d5 < U(G)  for each i
) i

ecCG
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Fix &, let m == 2% + 1 and suppose u € R¢ with 0 < u; < 1/m for all i < d.
Note u + Q; € [0,1]? for all i < (m — 1)%. By Lemma 2.1 and Hélder's in-
equality, for some decomposition of F := {e € G: e crosses d(t(u + Q,)) for
some i < (m — 1)% into disjoint F; U --- U F,,_;« and some §; satisfying
(2.2),

(m-1)°¢

.=Zl L(I(¢(u + Q))))
L(11([0,¢]%)) + (C5 — DIU(F)

(m-1)¢
+cy Y |F|4=2/@- Dt + comd=1t
i=1
(2.8)
< L(11([0,£]%))

m-—1

+(Cs — 1) i Y l({e € G: e crosses H;(t(u; +j/m))})
i=1 j=0

(m—1)¢ 1/(d-1)
) |F|@=2/@=D 4 ¢ pd=1g,

+ czt( Y 8t
i=1

From (2.2), the third term on the right side of (2.8) is bounded by

m-1

a @-2)/@-D
clotml/(d_l)( Y ¥ |{e € G: e crosses H;(¢(u; +j/m))}|)
i=1 j=0

)(d—2)/(d— 1)

d [m-1
< cpotmV@ DY ( Yy I{e € G: e crosses H,(t(u; +j/m))}|
=\ %

Taking expected values in (2.8) therefore yields

(m — 1)%o(t/m)

d m-1
<o(t)+(Cs—1 Y Y El({e € G: e crosses H,(t(u; +j/m))})
i=1 j=0
(2.9) + ¢potm!/ @D
1 @-2/d-1)
X Z El Y | e € G: e crosses H(t(u +J/m))}|
i=1 Jj=0
+ cgmd1t.

We now average this inequality over u; € [0,1/m] for each i <d. The
average of the ith summand in the third term on the right side of (2.9) is,
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using (2.7),

du;

12

1 ) d-2)/(d-1)
m[ Mg ( Z e € G: e crosses H;(t(u; +j/m))}|)

< [me [ e e

(d-2)/(d-1)
(2.10) e crosses H,(t(u; +j/m))}|dui)

1 3 (d-2)/(d-1)
< (mE[ I{e € G: e crosses Hi(tu)}ldu)

0
< ¢ m(@-2/@-Dyd-2,

Suppose now that L is efficiently patchable, so that the second term on the
right side of (2.9) is 0. Then (2.9) and (2.10) give

m —1)%e(t/m) < o(t) + c;ymt®=! + comi=1t.
( ¢ 12 3
Letting s = ¢/m, this becomes

(m=1)"¢(s) @(ms) e, ¢
a gd = et — t -
(ms) S S

m

Letting &, or equivalently m, approach =, setting s =r'/¢ and applying
(1.10) yields (1.18).
Alternatively, suppose that (1.17) holds. Observe that

fl({e € G: e crosses Hi(s)})ds = ). l(e)f ¢ crosses H sy A8

ecCG

< Y I(e)”

ecG

(2.11)

It is easy to see that (1.17) implies its analog for the Poisson process:

(2.12) E( inf Y z(e)z) — O(r@-2/dy,
' Ge, (0,114 L) ,cq

We may assume G is always chosen so that the sum in (1.17) is within 1 of its
infimum over all allowable graphs. The average of the ith summand in the
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second term on the right side of (2.9) over u; € [0,1/m] is therefore, using
(2.11),

-1
mE[Ol/m rjgo l({e € G: e crosses H,(¢(u; +j/m))}) du;

= mEfOll({e € G: e crosses Hl(tu)}) du

< mt-lE( > l(e)2).

ecG
Substituting this, (2.10) and (2.12) into (2.9), we obtain
(m —1)%e(t/m) < o(t) + cl3mt_lE( Y l(e)2) + c;pmt?Tl + egmlt.
ecG

Setting s = t/m and using (1.17) rescaled by ms, this becomes

d d

m — 1)%¢(s) < o(ms) + cpyam?s(ms)? 2 + cyms?=1 + cgms,
14 12 3

and (1.18) follows as in the efficiently patchable case. O

Here is the monotonicity result needed for desmoothing the sequence
{Ey(N,)}.

LEMMA 2.2. Under the hypotheses of Theorem 1.2,
ek @"2/@-D for 1 <k <n@d /4

cikn=4, forn@-V/d <k <n/2.

[dr(n £ k) — Yp(n)] <

PROOF. Let us first show that
(2.183)  ¢p(n + k) < ygy(n) + czk@"2/E@"D forl <k <n@ 1/

Fix such n and £ and let {X,,..., X,,,} be an iid. uniform sample from
[0, 1]¢. Since L is a function only of the set {X,,..., X, ,,}, we may assume
these points are relabeled by increasing dth coordinate, that is,

(X1)g < = <(Xpir)a-
Define 7 € [0, 1] by
1-7=(X,11)a
By (A3),
EL({X,,...., X, ..})
(2.14) <EL({X,,...,X,})
+ EL((X,,1}) + EL({Xs 5., Xy 4)) + 2C5d"/2,

Now given 7, {X;,..., X,} is an ii.d. uniform sample from [0,1]¢"! x [0, 1
— 1), as is {X,,9,...,X,,;} from [0,1]971 X [1 — 7,1]. Multiplying each
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(X));,i < n,by (1 — 7)~* gives an ii.d. uniform sample from [0, 1]%. It follows
that

(2.15) EL({Xy,..., X,}) < ¢y(n).
(2.16) L({X,.4}) = 0.

Let Y; denote the projection of X; onto [0, 1]¢-1 >< {1, forn+2<i<n+
k. Let GY be an allowable graph on {Y,,,,...,Y,,,} with vertex degree
bounded by C,, and let Gy be the allowable graph on {X, o,..., X, 1}
obtained by replacing each Y; with X;. [In case (ii) of (A1), any Stemer points
are not moved.] By (A5),

(2.17) 1(Gx) <1(Gy) + Cyokr.
It follows using (A2), Er < k/n and k < n@~1/¢ that
EL({X, 19, Xor)) < Ky 1R@2/@=D 4 €, REr < ¢, b@~2/@-D,

This and (2.14)—(2.16) prove (2.13).
Next suppose n@ /¢ <k < n. Define y> 1 by & = yn@~1/% Iterating
(2.13) [y] + 1 times gives

dp(n + k) < gy (n) + eys([v] + D)(n + &)

(2.18)

< yy(n) + cgkn~t,  p@ V4 <k <n/2.
Next we will show

(2.19)  Yu(n — k) < gp(n) + ¢ ok @ 2/E@D forl <k < pd- /4,

Let A ={X,,...,X,} be an ii.d. uniform sample from [0, 1]¢, relabeled as

above so that (Xl)d -+ <(X,),. Define (X)), = 0 and (X, ); == 1. Let G
be an allowable graph on A which achieves the minimum in (A1) and let V
bethesetofvertlcesofG Fixi<n—Fk+ landlet B, = A\(X},..., X;,,_1}

and 7; == (X;,,); — (X;);. Let E; be the set of edges which have X as one
endpomt and let E’ be the set of edges in E; which have the other endpomt

outside {X;,..., X;,,_,}. Let z, =X, if e GEJ* for some i <j<i+£k— 1.
(These z, are not necessarlly d1st1nct—see Remark 1.1.) By (A4), with
V/ = V\{Xn z+k 1} and V" = {Xt’ L+k 1}
i+k—-1
(220) L(B;)) <L(A)+(C5—-1) Y UE}F)+CeL(W,) +Cy,
Jj=i

where W, c {X;,..., X;,,_1}. [Actually W; may be a multiset—see Remark
1.1—but the multiplicities of the elements are bounded, by (A5).] Analogously
to (2.17),

(2.21) L(W)) < cok@™2/@-D 4 Cyikr;.

Let X =X, — 7, gd for i + k <j < n, where ¢, is the dth coordinate vector,

and let B} = {X ooy X;_1, X*4,..., XF). Then given 7;, because of ex-
1 i—1 +k n i
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changeability of uniform spacings, Bf is an iid. uniform sample from
[0,1]¢7! x [0,1 — 7;]. Further,

(2.22) L(B¥) <L(B;).

Multiplying the dth coordinates of the points of B} by (1 — 7,)"! gives a
uniform sample from [0,1]¢ and increases edge lengths in any allowable
graph on B} by a factor of at most (1 — 7;)~'. Hence

(2.23) Y(n —k) < (1— 1) 'E(L(B¥)|7;) as.
If 7, < 1/2, then
(1-7)'<1+27.
Hence averaging (2.23) over the event [7; < 1/2] gives
(224)  yy(n — k) <E[(1+27)E(L(B})|r)] /Pl < 1/2].

Since 1 + 27; is an increasing and E(L(B})|7;) is a decreasing function of 7;,
since Er, = k/(n + 1) and since P[7; < 1/2] is exponentially small in n, this
and (2.20)-(2.22) imply

g (n — k) < (1 — exp(—cgon))  E(1 + 27,) E(L(B}))
< (1 — exp(—cyon)) (1 + 2k/n)

i+k-1
(2.25) X[%(n) +(Cs— 1DE| Y UE;)| +cyk@ /@D
j=i
+cook?/n + Cq|.
For n —k+1<i<n, a similar argument with {X,,..., X,, X,,...,

X, 1_1-,} in place of {X;,...,X;;p_1), with 7,:=1— X))y + (X hn-1a

i

and with W, split into two parts yields (2.25) for these i as well, provided we

13

evaluate the summation index j mod n when j > n.
Since & < n¢~Y/4 we have

Y (n)k/n <K kn V¢ < K k@=2/C@-D and k*/n < k(d-2/@=D
Because of this and
n i+k-1 .
E( DY l(Ej)) < 2kEL(G) = 2Ry (n),
i=1 j=i
averaging (2.25) over 1 < i < n shows that
U (n — k) < (1 — exp(—cgon)) (1 + 2k/n)
(2.26) X [u(n)(1 + cask/n) + coyk@=2/@D]
< Pp(n) + cppk@™ /@D
as desired.



DISTANCE-MINIMIZING EUCLIDEAN FUNCTIONALS 919

Analogously to (2.18), it follows from (2.19) that
(227)  yYy(n — k) < yy(n) + cigkn™ /¢,  p@-Vd < p <p/a,
The other inequalities implicit in the lemma statement, specifically
Yp(n) — sk @"2/@-D 0 for1 < k < p@-V/d,
Y(n) — cigkn~1/9, for n@~V/d <k <n/2,

are consequences of (2.13), (2.18), (2.19) and (2.27). O

Y(n £ k)=

As mentioned in the introduction, Theorem 1.2 is an immediate conse-
quence of Theorem 1.1 and (i) of the following result.

LEMMA 2.3. (i) Under the hypotheses of Theorem 1.2,
[91(n) = Egy(N,)| = O(n@-ve-0),
(i) If also

(2.28) lér(n + 1) — gy (n)| = O(n"V/9),
then
I‘PL(n) - E‘/’L(Nn)| = O(n(d_z)/@d))-

(iii) If also Y, is monotone increasing [but not assuming (2.28)], then for
some Cy; > 0,

yr(n) = Brld=/d — €\ n@=D/Cd) (log n)"/?,

Note that (2.28) is satisfied if for some C;, > 0 and all {x,,..., x,, ;},
(2.29) IL({xl,..., %pi1}) = L({x1- s 2,))] < CIZ?;i’?Ixi =Xl

PrOOF OF LEMMA 2.3. (i) From Lemma 2.2 and (A2),
I¢'L(n) - E‘/’L(Nn)l <c;;EIN, - n|@72/@D Clsn_l/dEan - nl
(2.30) + K n4"Y4P[N, < n/2]
+ KdE(Nrfd_l)/dl[N,,> 3n/2])'

Since (N, — n)/n'/? has exponential tails, the last two terms approach 0.
Since E|N, — n| = O(n'/2), part (i) follows from Hélder’s inequality.
(i1) In place of Lemma 2.2, under (2.28) we have

|yp(n £ k) — y(n)| < coekn /¢ forl <k <n/2.

This yields (2.30) without the first term on the right side, which implies (ii).
(iii) Fix n and let j == [2n'/2(log n)'/2], where [-] denotes the integer part.
Then )

) Eyy(N,_;) < ¢(n) +_E(¢'L(Nn—j) - ‘//L(n))l[N,,_,> nl
(2.31) < y(n) + e B(N,_; —n) " 2Py,

-1/d
+ 016n / E(Nn—j - n)l[Nn_j>n].
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It is easily checked that since N,_; is Poisson(n — j),
E(N,_;j = n)ln, >n < E(Nooj = (2 = ))iw, 5 m
=(n —j)P[Nn_j = n]

<(n —j)P[N,_; =n — jlexp(—j*/4n)

< cyyn /2

so that by (2.31),
(2.32) Eyy(N,_;) < ¢(n) +o(1).
Further, by Theorem 1.1,
Eyi(N,_;) = B(n —j)(d_l)/d —Cg
> Brl@7V/ ¢ — cyn™1/% = Cy
> Bnd-brd _ czgn(d'z)/“(log n)1/2,

which with (2.32) proves (iii). O
3. Examples.

ExampLE 3.1 (Traveling salesman problem). Here the allowable graphs
are self-avoiding loops which visit every vertex. Properties (A1)(i), (A3) and
(A5) are clear. Property (A2) can be found in [2], [3] or [12]. Property (A4) is
essentially the content of Lemma 2 of [1]. Specifically, given a closed loop G
through all of a finite set A of vertices and B C A, choose a point z, in each
edge e € dgB which connects a point of B to a point of A\ B. We now cut
the path at each z, and discard the portion with vertices in A\ B. What
remains is a collection of paths, which we call chords, each starting at some
z, and ending at another. Let P be a self-avoiding closed loop through these
endpoints {z,: e € JgB}. The proof of Lemma 2 of [1] shows that there exists
a closed path I' which traverses each chord exactly once and each edge of P
at most twice. The path T’ will contain segments of the form x —» z, » -+ —
z, =y, where x € B is an endpoint of e, y € B is an endpoint of e’ and all
the unnamed middle vertices are from {z,: e € J5B}. Each such segment can
be replaced with the single edge [ x, y]. The result is a self-avoiding closed
loop with vertex set B. Letting Fj be the set of all such [ x, y] gives (A4) with
C;=1and C; = 2.

It is easily checked that (2.29) holds, so from Theorem 1.1 and Lemma 2.3,

Bn@-v/d — ¢ n@-2/@d < EL({X,,...,X,}) < B¢~ V/4 4+ Cyn@-2/4,

ExamPLE 3.2 (Minimal spanning trees). Here L(A) is the minimal total
edge length among all trees with vertex set A. As observed by Steele [10], in
any optimal tree, no two edges emanating from the same vertex make an
angle of less than 60°, so that (A5) holds. Properties (A1)(i) and (A3) are clear,
and (A2) follows from the same result for TSP.
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Suppose that we have a minimal spanning tree G with vertex set A, a
subset B C A and a point 2z, in each edge e € J3B. Let 9, B = {x € B:
[x,y] € G for some y A\B} Let P be a minimal spanning tree of {z,:
e € J;B}. For each edge [ze, z,]in P, there are points x,, x,. of d, 3B which
are endpoints of e and e’, respectlvely Let F# be the set of all such edges
[x,, x,]. Then Ff is a graph which spans ’GB Since the vertices of P have
deg‘ree at most C,,, we have

I(F§) <Cy({[x,2.]: e =[x,y] € 9¢B, x € B}) + L({2,: e € 35B}).
By deleting some edges from Fj, we can obtain a set Fy of edges such that
{{x,y] € G: x,y € B} U Fy is a tree which spans B, and (A4) follows.

We have not established efficient patchability, but it is not needed because
(1.17) follows from Lemma 2.2 and the remark following in [11].

Clearly, adding a point x,,, to{x,,..., x,} adds at most min; _ ,|x; — x,, I
to the value of L. If «x,,, is removed from {x4,...,%,,,), the vertices
formerly connected to x,,, can be connected instead to an x; which mini-
mizes |x; —x,,,| Thus, using (A5), (2.29) holds, so by Lemma 2.3 and
Theorem 1.1,

Br@=D/d — ¢ n@=2/@D) < BL({X,..., X,}) < Bn@ V4 4 C,n@-2/d

ExamMPLE 3.3 (Steiner trees). Here L is again the length of the minimal
spanning tree, but with Steiner points allowed. It is readily checked (see [4])
that optimal trees have at most n — 1 Steiner points, so that the infimum in
(A1) is always achieved. Property (A3) is clear, and (A2) and (A5) follow from
the same result for minimal spanning trees.

In the notation of Example 3.2, for Steiner trees we can let Fy =P U
{[x,2.) e=[x,y]l € 95V’, x € V'} to establish (A4) with C;=Cs=1 Asin
Example 3.2, (2.29) holds, so Lemma 2.3 and Theorem 1.1 give

(3.1) < Bnd-1/d 4 0, pld-2/d,

ExXAMPLE 3.4 (Rectilinear Steiner trees). These are Steiner trees in which
all edges must be parallel to the coordinate axes. This is equivalent to
replacing the Euclidean norm in (A1) with the L' norm. The proofs of all our
results remain unchanged for the L' norm, since it is equivalent to the
Euclidean norm. Thus (8.1) is valid for rectilinear Steiner trees as well.

ExampLE 3.5 (Minimal matching). Minimal matching was described, and
efficient patchability established, in the Introduction. Properties (A1), (A3)
and (A5) are obvious, and (A2) follows from the same result for TSP. Thus by
Theorem 1.2,

Bn(@=V/d — ¢ n@=2/CE-D) < BL((X,,..., X,}) < Bn@-D/d 1 Cynd-2/d,
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