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STEIN’S METHOD FOR COMPOUND POISSON
APPROXIMATION: THE LOCAL APPROACH!

By MALGORZATA RoOS
University of Ziirich

In the present paper, compound Poisson approximation by Stein’s
method is considered. A general theorem analogous to the local approach
for Poisson approximation is proved. It is then applied to a reliability
problem involving the number of isolated vertices in the rectangular
lattice on the torus.

1. Introduction. Let I' denote an arbitrary finite collection of indices,
usually denoted by «, 8 and so on. Let I,, @ €T, be 0-1 valued, possibly
dependent, random variables with EI, = P[I, = 1] =1 — P[I, = 0] and let
W =Y, crl, Assume that there is available a natural local dependence
structure which allows us for each a to define an index set I'¥ designating
those summands other than a which are more closely related to I,. Such a
dependence structure is appropriate if one assumes conditions such as sta-
tionary m-mixing [Leadbetter, Lindgren and Rootzén (1983)] or local depen-
dence [Barbour, Chen and Loh (1992)].

In the Stein—-Chen method for Poisson approximation, this structure is
exploited to give a bound on the total variation distance between .#(W) and
the Poisson distribution with parameter EW, denoted by Po(EW ), expressed
in terms of joint moments of the random variable I, and
(11) S.= ¥ L,

Bery
as in the following theorem [Chen (1975), Arratia, Goldstein and Gordon
(1989), Barbour, Holst and Janson (1992)].

THEOREM 1. With the above definitions, for any choice of the index sets T},
dry (Z(W),Po( 1))

(1) <e(n) T ((EL)® + ELES, + E{(LS,)) + e,(V) T .,
acl acl

where A = EW, ¢(A) = y/2/(eA), cs(A) = A7 — e ) and

(1.3) . = E|E{L, |(I,: B T*)} - EL,]|,

with T® = T\ {{a} U I¥).
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Note that the local approach gives good results only if the structure of
dependence allows us to arrange 7, to be very small for each a €T. The
contribution to estimate (1.2) arising from (1.3) is, for large A, multiplied by a
factor of order A~!/2, as compared with the factor of order A~! multiplying
the remaining estimates.

Note that if there is a tendency for clustering, then the contribution to (1.2)
coming from E{I,S,} can be substantial. In such cases, one is interested in
finding better bounds on the total variation distance. One possibility for
approximating the behaviour of W, when the tendency to clumping is great,
is the compound Poisson family.

In Section 2, we prove an analogue of Theorem 1 for compound Poisson
approximation. In Section 3, it is applied to a problem in reliability theory:
k-out-of-n isolated vertices in the rectangular lattice on the torus.

2. The compound Poisson local approach. The integer-valued com-
pound Poisson distributions of concern here have the form CP(A) =
A(E;.1iN;), where the N, ~Po(A;) are independent for i =1,2,... and
Y;.1A; <®; N is used to denote ¥, ;A;6;, where §; is the unit mass at i. If
A > 0 and A; = 0 for i > 2, the usual Poisson distribution results: see also
Aldous (1989).

Recently, Barbour, Chen and Loh (1992) introduced a Stein equation for
compound Poisson approximation. On the lattice Z*, it takes the form

ig(Jj) — iNg(J+id /
1) Jjg(J) El 8(J +1)
=1, a(J) = CP(M{A} —I[j€A], j=0,

for A c 7%, where CP(A)Y{A} = P[X € A] for X ~ CP(\) and fraZt—> Ris
thus bounded in modulus by 1. Note that Ef, ,(Z) = CP(}\){A} P[Z € A]
for any integer-valued random variable Z and that E f \,a(Z) = 0if Z ~ CP()).
Note also that if g: Z*— R is any bounded function and Z ~ CP(\) with
EZ =%, iA; <, then E{Zg(Z) — ¥,.,i1,8(Z + i)} = 0. By taking the ex-
pectation of the CP equation (2.1) for the random variable W,

(2.2) [E{Wg(W) - ii)tig(W-i- i)} = CP(A\){A} — P[W € A]

i=1
and
dry(Z(W),CP(N))

sup {|CP(N){A} - P[W € A][}

Acz*

= sup {|Ef\ a(W)]}
Aczt

= sup { [E{ng,A(W) — Y ingy (W + l)}‘}’
Acz* i=1

where g, , is the Stein—Chen transform of the function I[-€ A] — CP(A){ A},
that is, the solution g of (2.1). It thus follows that if we can bound the
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left-hand side of (2.2), then we will find the bound on the total variation
distance between #(W) and CP(\).

The most important ingredient of the Poisson local approach is the defini-
tion of the sets of dependence, with I'® containing the indices of indicators
which are strongly dependent on I, and I containing the remaining indices
of weakly dependent indicators. For the compound Poisson local approach,
one has to treat the strongly dependent indicators more carefully to allow for
a-clumps.

So, divide I into four subsets {a}, I'’*, '’ and I’*, where

rys = {,B € I'\ { a}: I, very strongly dependent on Ia},
rre = {B € I'\ {a}: I, very weakly dependent on {Iy, vye{a} U I‘:s}}
and
T2 =T\ {{a} UT* UL
is the set of boundary indicators. Then set
Uu-= Y I, z,=1,+U,

[23

Berye
X, =Y I,
(2.3) Bery
Y,=W-1,-U,-X,= Y I,

BETZ®
w,=W-1,, Woyp=W,-U,=W-1,-U,=X,+7Y,.
Thus Z, can be thought of as the size of the a-clump and Y, should only
depend weakly on Z_.

REMARK 1. Taking I'’* = &, I> =T and I'’* = in Theorem 2 below
turns out to give the same result as Theorem 1: For Poisson approximation to
be good, the a-clump must be negligible, and then I'’* = J is an adequate
choice.

Define

lAgll=sup|g(j+ 1) —g(j)| and ligll = suplg(j)l-
Jj=1 j=1

THEOREM 2. With the above definitions, for any choice of the index sets
I, I'’* and any bounded function g,

[E{Wg(W) - ii)tig(W+ i)}l
i=1

(2.4)
<lagll ¥ ((EL)* + ELE(U, + X,} + E{I,X,}) + lglle,

acel
where N = L2, A, = (1/DX, HII[Z, =i}, D = max, . {I[**} and
d) = Zael"zlirjil_'—lqbai’ with

bai = E|E{LI[Z, = i]l(1,: B € T2¥)} - E{L,1[ Z, = i]}].
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Proor. In what follows, we use an appropriate expression for E{I,g(W)},
which makes E{Wg(W)} close to L7_,iA,Eg(W + i) in (2.2). Observe that

E{I,g(W)} = E{I,g(W, + 1)}

|ITYs1+1
Z IE{IaI[Za = i]g(Wa,U + L)}
i=1

(2‘5) [T2el+1

Y EILI[Z,=i]g(Y, +i)}

i=1
2o+ 1

+ Y HLI[Z,=il(g(Y, +X, +i) —g(¥, +i))}
i=1

Set

~| =

N== Y E{LI[Z,=i]} fori=1,...,D+1,
acel’

>

=0 fori> D + 1where D = max{|[**|}.

acTl

The left-hand side of (2.5) can be rewritten as

D+1
E(Wg(W) — ¥ idg(W +i)

i=1

i

D+1
L ELg(W)} - X irE{g(W+i)}

acel i=1
ITyel+1
Y Y HLI[Z,=i]l(g(Y,+X,+i) —g(¥,+1i))}

ael i=1
IT2%+1

+ 2L [ELIZ, = 8(Y, +9)

acl i=1
~E{LI[ Z, = i]}E{g (Y, + i)}]

Ir2el+1
+ Y Y EILI[Z, =il}E{g(Y,+i) —g(W+i)}.

acl =1
Note that
E{L.1[Z, = i](g(Y, + X, + i) —g(Ya + D))}
<lAglE{L,I[Z, = i1X,}, |E{g(Y, +i) —g(W +i)}|
<llaglE{l, + U, + X,},
and taking ¢,; = EIEH{I,I[Z, = il(I;: B € T,)*)} — HI,I[Z, = i]}| we get
IE{LI[Z, = ilg(Y, + i)} - H{LI[Z, = i]}E{g(Y, + D)}| < gl
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It thus follows that

D+1
I[E{Wg(W) - Y irng(W+ l)}’

i=1

T2+ 1
<lagl S Y E(LI[Z,=i]X,)
acel i=1
Y81+ 1
+lAgh Y Y EILI[Z, =il}E{I, + U, + X,}
acl i=1
T2+ 1
+ligh X ¢u
acl’ i=1

=lagl T ((EL)" + ELE(U, + X,} + E{I,X,}) + ligll,

acl

where ¢ = ¥, X" ¢, .. This is what we wanted to prove. O

REMARK 2. In the compound Poisson local approach, as compared to the
Poisson local approach, there is the extra freedom to chose the I'’® # . The
advantage is that in the compound Poisson error estimate (2.4), there is no
term X, rXge rusIE{I I3}—local clumps do not worsen the approximation, but
are taken care of in the specification of the compound Poisson distribution.
For Poisson approximation, such a term would have to appear.

REMARK 3. As in the Poisson case, the compound Poisson local approach
is easiest if ¢ = 0.

Define
cy(N) = sup sup|g, 4(J + 1) — g, a(J)| = sup lAg, 4,
AczZ*t j=1 Acz*
(2.6)
¢i(N) = sup Suplgx A= sup. ligx, all;
Acz* j=1 Ac

where g, , is the solution of (2.1).
COROLLARY 1. Under the assumptions of Theorem 2,
dpy(Z(W),CP(1))
<cy(M) X ((EL)* + ELEU, + X} + E{(I,X,}) + ci(N) $,

acTl

(2.7)

where N = LP\\5;, A = (1/DE, HIIZ, = il}), D = max, . {I[°} and
d) Zaerz|l"”|+l¢a“ LUlth

boi = E|E{L,I[ Z, = i1l(1;: B e T2*)} - E{1,I[ Z, = i1}
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PrROOF. Let g =g, 4 be the Stein-Chen transform of the function
I[-€ A]-CP(A){ A} Then it follows from Theorem 2 that

dry(Z(W),CP(M)) = sup [P[W € A] - CP(A){A}]

Acz*
D+1
= sup [E{Wg(W)— Y i/\ig(W+i)}|
Acz* i=1

<cy(N) ¥ ((EL)* + ELE(U, + X,} + E{LX.})

acl

+ ci(N) ¢. O

REMARK 4. The bounds known for ¢)(A) and c5(A) in the compound
Poisson case are less good than for the Poisson. For any A = ¥7_;A;4;,

5 EJon| £

ch(N) <

and if iA; \ O, then
1, if A, =20, <1,

ci(N) < 1 9 1
VAL — 2, VA — 22,

l, if)\1—2/\2>1,

and

1 1
: 1A + log™ 2(A; — 2A
a0 = {152 [y 20 20|

as proved by Barbour, Chen and Loh (1992).

Note that to determine the approximating compound Poisson distribution
in Theorem 2, one should compute A; for i=1,...,D+1 and D=
max . {IT’*}. This is not always a simple matter. Sometimes it is possible to
approximate the random variable W by a compound Poisson distribution
determined by a smaller number of A;s, for which the computations are more
tractable. The next theorem is sometimes of help in this respect.

THEOREM 3. For N =XP"\8; deﬁne }\* =Yl A88,1<D + 1, so that
YPHLiN, =EW = X! iAf, A* = )\1 + XPHr i A* =); for j= ., and
A*—Oforj>l+1 Then

dpy(Z(W),CP(A*) < c;(M)| X ((EL)" + ELE(U, + X,)
acel
+[E{IaXa}) + Dil i(i — N + (A .

i=l+1
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PrOOF. Note that, with g* = g,. ,,
|[P[W € A] — CP(A*){ A}

[E{Wg*(W) - i ix;gr(W+ i)}l

i=1

D+1
[E{Wg*(W) - Y iNng (W + L)}

i=1

+[E{Di1i/\,.g*(w +1i) — é iXfg*(W + i)}

i=1 i=1
D+1
< IlAg*ll( Y (([EIa)2 +ELHU, + X} + H{I,X,}) + ¥ i(i—1)A
acT i=1+1
+lg*lle
from Corollary 1 and from the observation that
D+1 l
[E{ Y ihg*(W+i) — Y iXig®(W+ z)}‘
i=1 i=1
D+1 D+1
i=1 i=l+1
1
- Y irNg (W + i)}
i=2
D+1
=|[E{ Y ir(g*(W+i) —g*(W+ 1))}'
i=l+1
D+1
<lAg*l Y i(i — 1),
i=l+1

By taking the supremum over all A c Z*, we get the theorem. O

REMARK 5. As in Remark 4, there are bounds:
C -3}
cy(N*) < {1 A F}exp{ N )t’l"}
1 i=1
and if A} \ O, then
1, if A —2A5 <1,
¢h(A) < ! !
2 —

(2.8) VAT - 243 VAT - 2%

, AT —225>1,

co(A*) < {1/\ + log™ 2( X} —2A’§)]}.

Af — 2% [4(A*; —2X%)
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3. The k-out-of-n isolated vertices in the rectangular lattice on the
torus. Consider a rectangular lattice on the torus with n vertices and
N = 2n edges. Note that it is a 4-regular graph without triangles. Assume
that the edges can be deleted independently of each other with a constant
probability 1 — p = gq.

This structure could represent a multiprocessor, where the vertices repre-
sent different processors and the edges represent connections between them.
Each edge can be up (works, be present in the graph) or can be down (fails, be
deleted in the graph) independently of each other. The system fails if there
are k isolated vertices in the graph. The reliability of the system is equal to
the probability that the system works, which is equal to the probability that
there are less than % isolated vertices in the graph. Can we give a bound for
this probability?

To attack the problem, define I ={1,..., n} to index the vertices of the
graph. Let Ple,, deleted] = g for all «, B € I such that v, and vg are lattice
neighbours; that is, when they are connected by an edge e,p- Let I, =1I[v,
isolated] for « €T and W = £, _I,. With the above definitions P[v, iso-
lated] = g* and EW = ng*. The random variable W counts the number of
isolated vertices in the graph. The reliability of the system is equal to
P[W < k]

In what follows, we find an appropriate approximation to this probability
using the compound Poisson local approach.

Define

I* = {B +# a: v; and v, are lattice neighbours},

rt = {y # a:v, and vz, B €I)° arelattice neighbours}.
Note that having no triangles in the graph means that there are no edges
between vertices in I'’®. Note also that [[[’*| = 4 and |T'®| = 8 are constant for

all vertices v,, a €T
First we compute the upper bound stated in Theorem 2:

¥ (EL)? = ng®,

acl
L ELEHU, +X,)= Y ¥ ELEIL=12n¢5,
acT o€l gerysur)
Z IE{IaXa} = Z Z IE{IaIﬁ} = 8nq8’
acsT acl Berf

from the independence of I, and I, for B € I'’, and ¢ = 0. It thus follows
that

(3.1) Y ((EL)* + ELE{U, + X,} + E{I,X,}) = 21ng®.

acl



LOCAL APPROACH 1185

In the next step we have to determine the approximating compound
Poisson distribution by computing the A;’s. We have to compute

N= T ELIZ, =)

acTl
q4

==~ YP| ¥ L=i-1l,=1| fori=1,...,5.
! ser |perys

For each a €T, because there are no triangles,
Y. I, ~Bi(4,¢®) conditionalon I, =1,

pery
and we get
n 4 i 5—i
ve ey 2y )era-a)

_r( 4 3i+1(7 _ 3\ ¢

- i(i—l)q (-a)
Note that

M=ng*(1-q%)", A =2ng"(1-¢?)’

and

A =0(ng") for3 <i<5.

Thus we can take / = 2 and set
5
Moo= M+ Y ir =EW—2),,
(3.2) i=3
X5 =4y = 2ng"(1 - %),
since 6A; + 121, + 20A; is of smaller order than the bound in (8.1) if ¢ N 0
as n — », -

In the next step we have to show that iA¥ \ 0, so as to be able to use the
bound (2.8) on cy(A*). Note that for 0 < q < 1,

2% 4¢’(1-g°)’

= <1
Mo 1-4g%(1 - g%’
and
(3.3) X — 25 = EW — 4A, = ng*(1 - 8¢°(1 - a*)’).
Note also that
5
(3-4) Y i(i — 1)\, = 12rg™(1 + O(q?)).

i=3

Now, by combining Theorem 3 and (3.1)-(3.4), we are ready to state the
following theorem.
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THEOREM 4. For a lattice on the torus with n vertices, if 0 <q <1 and
XY, A5 are defined as in (3.2), then

dpy(Z(W),CP(X))
1
= ng*(1 - 8¢°(1 - ¢%)’)
< (1 + log* 2nq*)21¢*(1 + O(q?)).

(1 +log* 2ng*)(21nq® + 12n¢'°(1 + O(q?)))

If nq* > u, > 1 is held constant as n — , then

dpy(Z(W),CP(A*)) = o(%).

Note that, for Poisson approximation, if ng* — u., the approximation is
only accurate to order O(n~3/%).
Theorem 4 allows us to approximate the reliability of the system by the
compound Poisson distribution with A¥ and A%. Thus,
k-1
P[W<k]= ) P[X=i] where X ~ CP(\*)
i=0

and the A¥’s are as in (3.2). Let N; ~ Po(A%) and N, ~ Po(A%) be independent
of each other. Then
/2l yxic2i pad

- ‘ZO m—ﬁ—exp(—(/\’{ +A3)).
j-

This observation allows us to state the following theorem.
i TIEI)EOREM 5. Under the assumptions of Theorem 4, if q* is small, for any
= 0,
h=1li/2) pic2) e
P[W<k] = Eo jgo '(7—_—57)—!—].!—9@(_()\’{ +A%)),
where X} = ng*(1 — 4¢3(1 — ¢*)3) and X = 2nq"(1 — ¢®)%.
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