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THE DISTRIBUTION OF THE QUANTILE OF A
BROWNIAN MOTION WITH DRIFT AND
THE PRICING OF RELATED
PATH-DEPENDENT OPTIONS

By ANGELOS DASSIOS

London School of Economics

The study of the quantile of a Brownian motion with a drift is
undertaken. An explicit formula for its density, as well as a representation
of its distribution as the sum of the maximum and the minimum of two
rescaled independent Brownian motions with drift, is given. The result is
used in the pricing of a financial path-dependent option due to Miura.

1. Introduction and statement of results. Let (B,, ¢ > 0) be a one-di-
mensional Brownian motion starting from 0. Let 0 € R*, u € R and define
X, = 0B, + pt (a Brownian motion with drift). The study of the distribution
of

[ exp(X,) ds
0

for some fixed time ¢ is closely related to the so-called (financial) Asian
options. Recent results on this topic can be found in Geman and Yor (1993)
and Yor (1992).

Asian options can be considered as a special case of a more general class of
“look-back” (path-dependent) options and other contingent claims. If the
stochastic process Y, = Y, exp(X,) represents the price of a stock at time ¢,
we are seeking the “no-arbitrage” price [see Harrison and Pliska (1981)] of
the contract A(V;), where A is a known real function, T' is a fixed time and V,
is an F-measurable process, where &, = o{B,: 0 < s < t}. In particular, one
could consider A(v) = [v — ¢]* and take V, to be the median or more gener-
ally an a-quantile (0 < @ < 1) of the process Y,. This option, called “a-per-
centile option” was first introduced by Miura (1992). The study of the pricing
of this option has also been undertaken by Akahori (1994), using similar
mathematical tools, where a generalized arc-sine law is obtained. However,
the result in Theorem 2 is new and is the main result of this paper.

The distribution of the a-quantile of Y, can of course immediately be
obtained from the distribution of the a-quantile of X,, the Brownian motion
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with drift. This will be the object of study of this paper. We define the
a-quantile of X, (0 <s <) as

(1.1) M(a,t) = inf{x: f‘1(Xssx) ds > at}.
0

The aim of this paper is to obtain a representation of the distribution of
M(a,t) in terms of the distributions of the maximum (sup, _, ., X,) and the
minimum (inf, _, _, X,) of X, and thus an explicit formula for its density. At
this stage it should be remarked that lim,_ , M(a,¢) = inf,_,_, X, and
lim, ,, M(a,t) = supy_, ., X,.

The result we will attempt to prove is the following theorem.

THEOREM 1. Let 0 < a < 1. Then M(«a,t) is a continuous random vari-
able. Furthermore, define g(x; a,t) by

(1.2) Pr(M(a,t) €dx) = g(x; a,t) dx.
Then
(1.3) glxsa,t) = [ gi(x —y;at)gy(y; (1~ a)t) dy,
where
1(2\V? (x — pt)®
o\t exp 20%t
(14) gi(x;¢) = _ﬁL_eX(Z/.Lx)l_q) x + pt ts0
2 p 0_2 0'\/t_ ’ )
0, x <0,
0, x>0,
1( 2 )1/2 (x — ut)®
Bl exp| — — 7
(]_5) gz(x;t) ={ o\nwt P 202t
2w 2ux x + ut
+— ® , <0,
2‘*""(02) ( oVt ) *

and ®(x) = [* (27) 12 exp(—y2/2) dy is the cumulative distribution func-
tion of a standard normal random variable.

This theorem leads to the following representation:

THEOREM 2. Let 0 < a <1 and suppose Y, and Y, are two independent
random variables such that
(16) Y,= sup X, inlaw [the maximum of X, up to a time at],
O<s<at

(17 Y,= inf X

, inlaw [the minimum of X, up to time (1 — a)t].
0<s<(-alt
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Then
(1.8) M(a,t)=Y,+Y, inlaw.

We will organize the paper as follows. In Section 2, we state and prove two
results about extremes of X,. They are not mathematically new, but they are
nowhere to be found in the literature in explicit form. In Section 3, we prove
the main results of the paper. Finally, in Section 4, we make some comments
about the results as well as demonstrate how they can be used in the pricing
of an “a-quantile” option.

2. Distributions of extremes.
PROPOSITION 3. Define g(x;t) by
(2.1) Pr( sup X, € dx) =g(x,t) dx.

O<s<t

Then, for all y > 0, x > 0,
&i(x;7) =f e g (x;t)dt
0

2.2
=2 mp{\/—zyu}

oy o
and
1(2\V2 (x — ut)®
o\ 7t exp 202t
(2.3) g1(x;t) = 21 2ux x + ut
- ? exp > -o 01/{ , x>0,
0, x <0.

PrOOF. Let x > 0 and define T, = inf, ({t: X, = x}. It is a well-known
result that the Laplace transform of the density of T, is given by

{ Vel +20% —
exp! —

5 x}, y>0

[see, e.g., Karlin and Taylor (1975), page 362]. This density is defective for
w < 0, since in this case, Pr(T, = a) = exp{—2| ulx/c?}. We therefore have

that
w 1 Vil + 202 —
(2.4) foe‘”Pr(Tx<t) dt=;exp{— - 5 Y Mx}, y> 0.

g

g
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However, the events {T, < ¢} and {sup, _,., ¥, > x} are identical, so

{_ Vel +20% —u

3 x}, y>0.

By differentiating both sides of (2.5) with respect to x, we obtain (2.2). The
density of T, is given by
x { (x — ut)? }
Xp{ — ———s——

0't3/2(277)1/2 € 202t
[see Karlin and Taylor (1975), page 363]. This implies that
Pr( sup X, > x) =Pr(T, <t)

(2.5) fowe‘“" Pr( sup X, > x) dt= % exp -

O<s<t

O<s<t
(2.6) —ft;ex _(x——p,s_)i ds
' 0 os¥2(2m)"? P 20%s
2ux x + ut x — ut
—exp| 2|1 - +1- .
ool 7)1 - o7 ]

This can be verified by direct differentiation of the r.h.s. of (2.6) with respect
to ¢.

So, differentiating (2.6) with respect to x, we obtain (2.3). Alternatively, we
could obtain (2.3) by inverting the Laplace transform (2.2). O

PROPOSITION 4. Define g,(x;t) by
2.7 Pr( inf X, € dx) =go(x,t) dx.
O<s<t

Then, for all y> 0, x > 0,
INEIRD) =f e igy(x;t)dt
0

2.8
(28) VuZ +20% + {\/[.L2+20'2’)'+/.L }
exp x

= 2

oy o
and
0, x>0,
L) - )
(2.9) go(x;t) =( o\ mt P 202t
+ﬁ;-exp(2uzx) ¥t x <0.
o T at )’

ProoF. Define X;* = —X,. Then note that inf,_,_, X, = —supy_, ., X
and X;* is a Brownian motion with drift —u. Replacing X and p with —X
and —pu in (2.2) and (2.3), and noting that 1 — ®(—y) = ®(y) yields (2.8) and
(29. O
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3. Proofs of Theorems 1 and 2. Consider the occupation time L(a, t) =
J61(x, <) ds. Define B > 0, y > — B and suppose f(x) is the bounded continu-
ously differentiable solution of the equation

(3.1) 1= (B+ Y1) f(x) + uf'(x) + (a?/2)f" (x) = 0.
Then the Feynman—Kac formula implies that [see Kac (1951), It6 and Mc-

Kean (1965) and Karlin and Taylor (1981), and for a similar example for the
driftless case, Karatzas and Shreve (1988), Proposition 4.11]

(32) f(x) = E(f: exp(— Bt)exp( —vL(a, 1)) dt | X, = x)
and, since in our case X, = 0,
(3.3) £(0) = E(f:exp(—Bt)exp(—yL(a,t)) dt).
Solving (3.1) we obtain
1 + Y V2 +20%B +u
Bty B(B+7Y)Vur+20% +Vu2+202(B+7)

2 2 2 —
Xexp{ Vil + 0-(5_23-'_7’) 'u(x—a)}, x<a,
1 v Vil + 208 —
B B(B+7) yur+20% +u>+20%(B+7)
V2 +20%B + p

Xexp{— > (x—a)}, x> a.

(34) f(x)=

Setting x = 0 in (3.4) we obtain the double Laplace transform
f(0) = E(j;) exp(—pBt)exp(—vyL(a,t)) dt)
1 Y Vu? =208 +p
B+y B(B+v) \//.L2+2O'ZB+‘//.L2+20'2(B+’)')

2 2 2 —
85) Xexp{_\/u + 0(123+v) ua}’ s,

g

1 v Vil + 208 —
B B(B+7) Ju2+20%B +u2+20%(B+7)

Vu? —20%B +
X exp 5 a;, a<0.
ag

Now, note that
(3.6) yfwfwe_ﬁ‘e‘” Pr(L(a,t) <v)dvdt = E(fme"”e'"’L("") dt).
0 o 0
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Since Pr(L(a,t) < v) =1 for v > t, we rewrite the left-hand side of (3.6) as
me"” ‘e~ 7 Pr(L a,t) <v)dvdt + me"“ me_w dvdt
YL L (L(a,t) <v) YL /

t

® 1
= 'y];) e'B‘j:e_” Pr(L(a,t) <v)dvdt + 5T

This implies that
yfme"”fte_” Pr(L(a,t) <v)dvdt
0

(3.7) 0

(L B+vy

Observing that the events {L(a, t) < v} and {M(v/t,t) > a} are identical and
combining (3.5), (3.6) and (3.7), we obtain

o t 1))
/ e"”fe_” Pr(M(—,t) >a) dvdt
0 0 t

1 \/p,2+20'2[3 + p

B(B+7) Vul +20% + Vu2 +20%(B +v)

. Xexp{_ ‘/M2+20-2(§f+7) _Ma}, @>0
- 1 F_ Vil +20% —
B(B+ ) \/u2+20'23+\/u2+20'2(ﬂ+y)
VF:E;%+M
Xexp{ o a}], a<0.

Setting A =B+ y (A > 0, since y> —B) and ¢ = v + s in the double inte-
gral, we get

© .00 v
f f e Bse~Mv Pr(M( , U +s) >a) dvds
070 v+s

1 \/;L2+20'23 + u

E/{ )//.Lz +20%B + \/;Lz + 202

VuZ + 2020 — }
ar,

(39) Xexp{— 52

- 1[ w+20%B —u

a=>0,

2‘3—): _‘\/[.L2+20'23+\//.L+20'2)t

Xexp{ o

V2 + 2028 + }]
apl, a<0.
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We define the measure G(-;v/(v +s),v +s) by P(M(v/(v +s) <a) =
G(a;v/(v + s),v + s) as in (1.2). Then (3.9) can be rewritten as

o o v o
(3.10) /(; j;) e Pse=w (a’w)dG(a; Ll s) dvds = fa &(x; A, B)dx,
where g(-; A, B) is defined as the derivative of the right-hand side of (3.9)
with respect to a; that is,
g(x;A,B)
| (V20 + u)(E 207 — )
o ?BA V2 + 208 +/u? + 202

'\/[.L2+20'2)t -
Xexp{ — 5 X}, x>0,
T

1 (\/Mz + 2028 + /.L)(‘\/[.L2 + 20 — p,)

o ’BA \/u2+20'2[3 + \/,LL2+20'2A

(3.11)

\/,u,2 + 208 +pn
X exp 5 x}, x<0.
g
We than observe that
(3.12) 8(x; 0, B) = [ £33V éu(x —y; B) dy,
where
. Vil +20% —p Vil +20% —u
(8.13) gy(x;v) = o2y €xpy — ) x 1(x20)’
. V2 +20% + \/p,2+20'27 +u
(3.14) go(x37) = ) exp 2 %120
ay o

which are the same as (2.2) and (2.8), respectively. By the uniqueness of
Laplace transforms, we deduce that

v
(3.15) dG(x; —

,0+s] = e JU x —y;s)dydx,
[ - ) [ ] &y;v)ga(x —y5s) dy

where g,(-;-) and g,(-;-) are as defined in Propositions 3 and 4, respec-
tively. We then conclude that the measure G(- ;v/(v + s),v + s) has a den-
sity g(-;v/(v + s) and

(3.16) g(x; U +s) = f_ g1(y;v)gy(x —y;s8)dydx a.e.

v+s
Setting v = at and s = (1 — a) completes the proofs of both theorems. O
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4. Comments: The price of a quantile option.

1. For p = 0, calculating the convolution (1.6), we obtain

2/( 2\V2 x?

) |-

1-a\V2x

( t) -1, x>0,
(01 g

9 \1/2 x2

E) exp{‘zazt}
a 2 5

—_— — <0.

((1—a)t) | £

This result has also been derived by Yor (1995), where other representa-
tions special to the driftless case are obtained.

2. It is an interesting problem to investigate for which class of processes the
property in Theorem 2 is true. It is of course trivially true for all nonde-
creasing or nonincreasing processes.

3. Using Theorem 1, we can derive the price of an “a-quantile” call option.
Suppose, as in Black and Scholes (1973), that the market consists of the
stock Y, = Y, exp(X,), where the initial price Y, is known and a determin-
istic bond R, = R,e"’, where r is a constant. Then, applying results from
Harrison and Pliska (1981), we see that the “no-arbitrage” price of
[YoeM(®D) — c]* at any time ¢ (0 < ¢ < T') is given by

(4.2) e TTORR[ (YoM — ¢) 7],

x{l_cp

(4.1) g(x;a,t) = 9

g

X

where E* is calculated under the equivalent martingale measure, under
which the discounted price of the stock Y,e " is a martingale. Note, that
YoeM(*T) ig the “a-quantile” of Y,, 0 < s < ¢. Also, (4.2) can be expressed
as

(4.3) e @0 [T Pr[(Yye M D) > 2|7]] de,
c

where Pr* is again calculated under the equivalent martingale measure.
Now, denoting Y, by y and [{ 1y ., ds by I(z,¢), we have

Pre[(YoeM® D) > 2z|7]
=Pr*[M(a,T) > In(z/Y,)%]

t T
(4-4) = Pr*[/(‘) I{XSSID(Z/YO)) ds + j; 1{Xssln(z/Yo)) ds < aTL%]

T
= Pr*[j; 1ix, cinz/vyy 98 < aT — l(z,t)!%],
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where Y, = y, X, = In(y/Y,) and by the strong Markov property of X,

T
Pr*[/; Lix, <inz/ vy ds < aT — l(z,t)lz]

T-t
= Pr* fo Lix, <1nz/ Yo)-In(y, v,y @8 < aT — l(z,t)]

(45)  _pp / "k <1y ay d8 < aT — I( 2, t)]
70 o

=Pr*| M

aT - 1I(z,t) z
T’T -t > ln(;) Li-a-a)T <1z, 1)< aTy

+ 1(l(z,t)< t—(1-a)T}"

Under the equivalent martingale measure, X, is a Brownian motion with
drift r — 0-2/2 and variance coefficient o 2. So

(4.6) Pr*[M(a,t) > d] =/:g*(x;a,t) dz,

where g*(-;-,-) is defined as g(-;-,-) with u =r — 02/2, and the price
of the option is given by

© Lo aT —1(z,t)
e TT-D *(x;——————,T—t)
'/; /;n(z/y)g T-1¢
(4.7) X dx 1(t—(1—a)Tsl(z,t)<aT) dz
+ e"(T't)fwl{l(z, t) <t—-(1-a)T}d=.
(4

For ¢t < min{aT,(1 — a)T} the formula simplifies somewhat to

00 .00 aT -1 z,t
(4.8) e"(T't)/c 'Il.n(z/y)g*(x; —T_—(—t——),T - t) dxdz.

It still presents computational difficulties since all occupation times I(z, ¢)
have to be recorded. For ¢ = 0, however, it simplifies to

e_’wafw g*(x;a,T)dxdz
¢ “In(z/y)
(4.9)

ol

=e T ye* —c)g*(x; a,T) dx.
f e )e*( )

4. The calculations for (4.2) are equivalent to the proof of Theorem 2.1 of
Akahori (1994).
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