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PRECISION CALCULATION OF DISTRIBUTIONS
FOR TRIMMED SUMS!

BY SANDOR CSORGO AND GORDON SIMONS

University of Michigan and University of North Carolina,
Chapel Hill

Recursive methods are described for computing the frequency and dis-
tribution functions of trimmed sums of independent and identically dis-
tributed nonnegative integer-valued random variables. Surprisingly, for
fixed arguments, these can be evaluated with just a finite number of arith-
metic operations (and whatever else it takes to evaluate the common fre-
quency function of the original summands). These methods give rise to
very accurate computational algorithms that permit a delicate numerical
investigation, herein described, of Feller’s weak law of large numbers and
its trimmed version for repeated St. Petersburg games. The performance of
Stigler’s theorem for the asymptotic distribution of trimmed sums is also
investigated on the same example.

1. Introduction. Trimmed sums of iid (independent and identically dis-
tributed) random variables appear in many contexts. Applied statisticians
use them to improve estimators when the parent distribution has a heavy
tail. [See, e.g., David (1981), pages 158-163, and for a list of relevant refer-
ences, see Stigler (1973).] Probabilists, who have studied them extensively,
have clearly documented the heavy influence, in some settings, of the largest
observation(s). [Extensive reference lists can be found in a recent book edited
by Hahn, Mason and Weiner (1991).]

We are concerned here with describing effective recursive methods for com-
puting the frequency and distribution functions for trimmed sums of iid non-
negative integer-valued random variables. Not only do such methods exist,
but, as we shall see, there exist methods that can be fully implemented with
just a finite number of arithmetic operations. The model for this is provided
by the convolution-based recursion for untrimmed sums

€)) P{S,=s}=) P{X=Fk}P{S,_1=5—F},
k=0
and by the simple sum
(2) P{SnSS}=ZP{Sn=k}, S=0,1,2,...,
k=0

where S, := X1 +-.- 4+ X, is the sum of n iid random variables distributed
as X. Both sums (1) and (2) contain just a finite number of terms.
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Turning to trimmed sums, let S, (m) denote the same sum but with the m

largest summands excised, m < n, that is, let

Sn(m) = Xn,1+Xn,2+"’+Xn,n—m, m=0’1’2’°”’n’
where X, ; < X, 2 <--- < X, , denote the order statistics for X, Xo,..., X,
so that S, (0) = S,,. [Throughout, Sy := 0 and S,(n) := 0.] While, clearly, the
distribution function P{S,(m) < s} can be obtained by a finite sum, as in (2),
the frequency function P{S,(m) = s}, for m > 1, cannot be computed via a
simple analogue of (1).

Consider the special case m = 1. A simple recursion in n, described in The-
orem 3 below, requiring nothing but finite sums, links the functions P{S,(1) =
$, Xnn=1},8t=0,1,2,..., n > 1. However, this approach leads to an infinite
sum

3) P{S,(1) = s} =3 P{Sa(1) = 5, Xy =1},
t=0

Fortunately, this shortcoming can be finessed with an application of the fol-
lowing theorem.

THEOREM 1. For integersn>m >0and r >s >0,
(4) P{Sa(m) =5, Xpp <7} = Z(—l)k( ’ )[1—F(r>]kP{sn_k(m—k> — s},
k=0
where F(r) .= P{X < r} is the distribution function of X.

Combining (3) and (4), for the case m = 1, leads to the finite sum: for
integersn >1land r >s >0,

(5) P{Sy(1) =)= 3 P{Ss(1) = 8, Xpp = t} + n[1 — F(r)1P{Sn_1 = s}.
t=0

The same trick works for a general m < n. For instance, for n > m = 2 and
r>s=>0,

P{Sn(2) =5}
(6) =Zr: zv:P{Sn(z)=s’Xn,n—l =u,Xn,n =U}
v=0 u=0
nll - FIPIS,a(D) =5} - "D 01 - PP PS5 = 5).

We readily concede the point to any critic who would argue, at this point,
that it is possible, with proper care, to throw away an infinite number of small
summands without introducing a substantial amount of error. This is true, but

we would make three rejoinders:

1. Precise computations are more easily achieved when the issue of truncation
does not arise (or is circumvented).
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2. The exercise of “proper care” with a formula like (3) requires more memory,
than with (5), to accomplish comparable accuracy. This can be a significant
issue.

3. Recursive methods tend to propagate errors. Thus the “proper care” suffi-
cient to handle the case n = 10, for instance, might not be adequate when
the same calculations are extended to n = 100.

We have used the methods described herein in various settings. Based on
considerable experience, we feel quite confident that they yield excellent re-
sults, when performed with double precision arithmetic, even when n assumes
values in the low thousands. For example, we have obtained essentially iden-
tical results when using equation (5) with various values of r, the free choice
of which is a potential means for checking accuracy. However, a careful error
analysis has not been made.

The presence of mixed signs on the right of (6) can be overcome, in order to
avoid potential losses of computational accuracy, by applying (5) to the next
to last term in (6) to obtain

P{S.(2) =5} =3 3 P{Su(2) =8, Xnn1=u, Xnn=0)

v=0 u=0
) +nll— F()]Y P{Sua(1) = 8, Xn1no1 = ¢}
t=0
+ ﬂn—z_-l—)u — F(r)2P{S,_s = s}.

Everything on the right side of (7), other than the factor 1 — F(r), can be
evaluated without subtracting terms of positive sign. (A check of the recursion
described in Theorem 3 below is required to verify this assertion.) Formula (7)
is also a simple consequence, for the case m = 2, of Theorem 2 below, which,
in a sense, inverts (4).

THEOREM 2. For integersn>m >0and r > s> 0,

(8) P{Su(m) =5} = 3 (’,: )[1 P P{Sup(m — k) = 5, Xn_pno <7
k=0

Section 2 gives a proof of Theorems 1 and 2, and describes in Theorem 3 a
recursion for general m > 1, which yields intermediate probabilities such as
P{S,(1) =s, X,, =1t} and P{S,(2) =s, X,,-1 =u, Xp, =} in (5) and
(7). Section 3 discusses some illustrative applications, which are of relevance
to an ongoing study by the authors of the “St. Petersburg paradox.”

2. Theory. Here, we assume the notation appearing in the Introduction.
We begin with the proofs of Theorems 1 and 2. Then we describe in Theorem
3 an essential recursion, for general m, which, with the recursion in either
Theorem 1 or 2, leads to a general scheme, in the spirit of (6) or (7), for
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computing P{S(m) = s}, for any integer s > 0, with just a finite number of
arithmetic operations.

PROOF OF THEOREM 1. There is really nothing to prove when m = 0; (4)
reduces to P{S, =s, X, , <r} = P{S, = s}, which is obvious when r > s.

For fixed integers n > m > 1and r > s > 0, let A; = A;(n,m) denote the
event A;(n,m) .= {S,(m) =s, X; >r},i=1,...,n Then, by inclusion and
exclusion,

P{Sn(m) =S, Xn,n > r}

=p{i=C)1A,~} =§=jl<—1)k—1 {ﬂALJ}

S0 (rlfe)

Z(—l)k‘l( Z )P{X,- >r, 1 <i <k, and the sum of the
k=1

H

I

n — m smallest among X.1,..., X, equals s}

(~1)* 1( )[1—F(r)]kP{sn W(m — k) = s},

Ms

k=1

where the assumption that r > s is essential for the fourth equality. Since the
probability P{S,(m)=s, Xp»,>r}=P{S,(m)=s}—-P{S,(m)=s, Xp, <
r}, we see that the desired probability P{S,(m)=s,X,, <r}is

P{S, (m>_s}+2< 1 ( )[1 F(r)]*P{Su_s(m — k) = 5}

- i<~1>k( i )[1 — F(r)]*P{Sui(m — k) = s},
k=0 k

proving the theorem. O

PROOF OF THEOREM 2. While this theorem can be viewed as a corollary of
Theorem 1, with (8) following from (4) by a direct combinatorial calculation, it
is more instructive to present a straightforward probabilistic argument. The
statement is trivial if n = m. Fix n > m >0and r > s > 0, and let K, (r)
denote the number of X; > r, 1 <i < n. Then

P{Su(m) = s} = 3" P{Su(m) = 5, Kn(r) = k}.
k=0

Now, for 0 < k& < m, introduce the events By, :={X; >rforn—k <i <n}
and C}, := {the n — m smallest among X1,..., X, psumtos, X; <rforl<
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i < n— k}. Since there are (2‘) ways of choosing exactly % of the X;’s to exceed
r, 1 <i < n, and thereby making K,(r) = k, we have

P{S,(m) = s, Ku(r) = k}

= (Z)P{Bk NCr} = (Z)P{Bk}P{Ck}

n
= ()= FOIPPISs-atm =) = 5, Xocos 1)
The two equations together complete the proof of (8). O

To proceed, we need some additional notation. For fixed n > m > 1, let
X,(m):= (Xn,n—m+1’ ceey Xn,n)

When X, (m) = ¢, then ¢ = (¢1,...,t,), where 0 < #; < ... < ¢, are some
integers. Given such a ¢, let ¢ denote the smallest (the first) component of ¢,
let {t} denote the set of integer values appearing in ¢, without repetitions,
and, for integers j and &, with 0 < j < ¢t and % € {t}, let t[ j, k] denote the
vector formed by augmenting ¢ from the left with the integer j and deleting
one of the %’s appearing in ¢. Thus, t[ j, k2] remains an m-dimensional vector
with the same properties as ¢. Finally, for a given ¢ = (¢1,...,¢n) as above, set
{t}, :=1{0,1,2,...,t — 1} and let us agree that {¢t}, =Jif £ = 0.

Clearly, X, € {th U{t} and X,,-m € {0,1,2,...,t} = {t} U {¢} when
X ,(m) = t. Furthermore, to handle an incoming new observation X, at time
n, we claim that for n — 1 > m, if X,(m) = ¢, then

(Sp-1(m), Xp_1(m))

) {(Sn(m)_Xn, t), if X, e {t},

(Sn(m) _Xn,n—m,t[Xn,n—m, Xn]), if X, e {t}
The first of these is obvious because a value of X, € {t}, ={0,1,2,...,¢ -1}
cannot be in {¢}, -and hence X,_;(m) = X,(m) = ¢, and, for the same
reason, the difference in the trimmed sums S,(m) — S,_1(m) must be X,.
However, when X, € {t}, the new observation X, is trimmed at time n,
or, optionally, can be trimmed if it and some previous random variable are
both equal to ¢. If X, is trimmed, the smallest member of X,_;(m), namely,
Xn-1,(n-1)-m+1 = Xn,n—m, must be deleted from the trimmed set at time n, be-
cause X, is trimmed instead of it, and so X, ,—n, is a term in S,(m), and hence
Xn-1(m) = t[ X n-m>» Xn]l, and the difference Sp(m) — Su_1(m) = Xupm-
Notice, for the optional case, that S,(m) —S,_1(m) is Xpp-m =t = X, and
t[ X nn-m, Xn]=t[t,t] = {t}, so that either form of (9) can be used.
. Understanding an empty sum as zero, using the indices j and k to represent
the values of X, ,_, and X ,, respectively, and noting the independence of the
vector (S,_1(m), X,—1(m)) and X,, we are led to the following recursion.
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THEOREM 3. For integersn > m > land t,, > --- > t; = t, s > 0, with
t=(t1,...,tm),

P{S,(m)=5,X,(m) = t}
t—1

a0 = S P{X = k}P{Su_1(m) = s — b, Xn_1(m) =t}
k=0

t
+ 3 P{X =k} P{Sn1(m) =s— j, Xna(m) = t[j, k]}.
ke{t} Jj=0

PROOF. If X,(m) = t, the observation X, is confined to the set {¢},U{t} =
{0,1,2,...,t —1}U{¢t}. The values X, = k € {t}, = {0,1,2,...,t — 1} give rise
to the first sum on the right-hand side of (10):

P{Sx(m) =5, Xyn(m)=t, X, =k}
=P{X = k}P{S,_1(m) =s—k, X, 1(m) =1},

in accordance with the first case in (9). The values X, = k € {¢} give rise to
the double sum on the right-hand side of (10) as follows:

P{S,(m) =s, Xn(m)=t, X, =Fk}

t
= ZP{Sn(m) =s, Xp(m)=t, X, =k, Xn,n—m =Jj}

=0

t
=Y P{Su(m)=s, X, 1(m)=t[j, k], X, =k}
j=0

t
=Y P{Sua(m)=s—j, Xp-1(m) =t[j, k], Xn =k}

=0

t
=P{X =k}) P{S,1(m)=s—j, Xp_1(m)=¢[],kl},
Jj=0

in accordance with the second case in (9). This establishes (10). O

3. Applications to the St. Petersburg game. The context of the St.
Petersburg paradox is a game, based on a sequence of fair coin tosses, in
which Peter agrees to pay Paul X = 2% ducats, where £ is the number of tosses
required to produce the first head, so that P{X =2*¥} =2*% k£ =1,2 .... The
simple fact that Paul’s expected winnings, E(X), is infinite provides the basis
for the paradox. For as Nicolaus Bernoulli, who posed the problem in 1713,
wrote in 1728 to his younger cousin Daniel, “... there ought not to exist any
even halfway sensible person who would not sell the right of this gain for forty
ducats.” [The original numbers of ducats are doubled here and everywhere in
our discussion to conform with a more convenient payoff scheme used by many
subsequent writers. The translation from the Latin is taken from Martin-Lof
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(1985); we like it better than the standard form in the English translation of
Bernoulli (1738), where Daniel cites Nicolaus’ letter. See Jorland (1987) and
Dutka (1988) for recent historical accounts.]

3.1. Laws of large numbers. Despite the attention of many well known
mathematicians, stretching over a quarter of a millennium, a significant math-
ematical treatment of the subject did not occur until Feller (1945) addressed
the topic, arguing that the question of “Paul’s fair price” only makes sense
when one considers a sequence of independent St. Petersburg games, with
payoffs X, Xo,... distributed as X, and asks what a “fair price” would be
for playing n such games. Addressing this issue, he showed [see also Feller
(1950)] that

Sy
nLogn

where S, :== X; +---+ X, and Logn denotes the base 2 logarithm of n. Sub-
sequently, Chow and Robbins (1961) showed that the convergence in Feller’s
law cannot be upgraded to almost sure convergence. Indeed, it can easily be
shown that P{X, > cnLogn infinitely often} = 1 for every ¢ > 0. On the
other hand, the authors [Csoérgé and Simons (1994)] have shown for every
m > 1 that

— 1 in probability as n — oo,

Sn(m)
nLogn

These facts suggest that p,(e) := P{S, > (1 + &) nLogn} might go to
zero quite slowly with n, and its trimmed analogue, p,(m,¢) = P{S,(m) >
(14 &) nLog n} might converge to zero more rapidly when m > 1. This conjec-
ture is investigated numerically for m = 1 in Figures 1 and 2, which contain
overlying plots of p,(¢) and p,(1, ¢) for ¢ = 0.25 and & = 1, respectively.

The plots in the untruncated case are based on the simple recursion ap-
pearing in (1) and (2), made somewhat easier to compute by the fact that the
index £ in (1) is restricted to integer powers of 2. Frankly, we were initially
surprised that this simple recursion could be run out to n values well into the
thousands, with.high accuracy maintained, and without major difficulties.

— 1 almost surely as n — oc.

The calculations for m = 1and n = 1,..., N proceed as follows: Beginning
with
_ _ oty _ Li0y(s) o
P{S1(1)=s, X11=2"} = —or t>1, and P{S1(1) = s} = I(s),
where I{g}(s) =0or 1 as s > 1or s =0, one computes P{S,(1) =s, X, , =2}
and P{S, (1) = s} successively for n = 2,..., N with the recursions

t—1 1
P{S,(1) =s, Xnn = 2t} = Z EEP{Sn—l(l) =8§— 2k’ Xn1n-1= 2t}
k=0

1< . .
+ EgP{Sn_l(l) =s-2/, Xp_10-1=2},
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for the integers 0 <s<r,0 <t < |Logr], and

|Logr] n
P{S,(1)=s}= t=ZO P{S,(1)=s, X,,=2"}+ WP{Sn—l = s},
for 0 < s < r, where | x| := max{k =0,£1,42,...: &k < x} is the usual integer

part and, below, [x] := min{k = 0,4+1,42,...: & > x} is the upper integer
part of x € R. Then

re(n)
pa(l,8) =1—P{S,(1) < (1+¢&)nLogn}=1- Y P{S,(1) =s},
s=0

where r.(n) := [(1+ &) nLogn].

In order to do all the required calculations for n up to N, with just one set of
recursions, one must work with a single r > r,(N). Here, N = 4096 = 22 for
Figures 1 and 2, resulting in r.(N) = 61,440 and r.(N) = 98,304 for ¢ = 0.25
and & = 1, respectively.

While these calculations were carried out with good accuracy, a substantial
memory burden was encountered that required the storage of approximately
(14-£) N(Log N)?2| double precision numbers: about 0.7 million when & = 0.25
and about 1.2 million when ¢ = 1.

The horizontal axes in Figures 1 and 2 are expressed in units of Logn,
rather than n, in order to draw attention to empirical evidence indicating a
link between the values of p,(g) and p,(1, ) and the location of n between

=
=]

0.1

0.0

Log n

FiG. 1.
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consecutive integer powers of 2. Theoretical support for this link is provided
by the fact that the distribution functions of (S, — nLogn)/n and (S,(1) —
nLogn)/n are asymptotically approximated, as n — oo, by the distribution
functions of certain infinitely divisible random variables and their “trimmed”
analogues, respectively, chosen on the basis of the value vy, := n/2M0e"1 1/2 <
vYn < 1. This is described in a forthcoming book by the authors.

Evidence of slow convergence to zero of both p, (&) and p,(1, ), and espe-
cially of p,(¢), is apparent in Figures 1 and 2. By methods outside the scope
of the present paper, we can prove for every fixed ¢ > 0 that
(11) 1< lirrtniolgf [eLogn] p,(e) <limsup [£Logn] p.(&) < 2.

- n—oo
Also, we have sufficient grounds to conjecture, but for the time being cannot
prove, that for every fixed £ > 0,

1
(—rn—+—1)! < llrILI_l)IEl.}f[g LOg n]'"+1pn(m, 8)
12) . 1
<l L m+l gy (m £) < ﬂ

< lﬁilp[s ogn]™" pa(m, &) < CESN
Notice that (12) reduces to (11) when m = 0.
Figure 3 below provides numerical evidence, for four different values of ¢,
supporting the truth of (11), and it strongly indicates that the influence of the

asymptotics arises quickly when ¢ is relatively large, and more slowly when
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it is small. Moreover these graphs suggest that neither bound in (11) is tight.
Working with the two values of £ for which we have data, we see evidence in
Figure 4 that supports our conjecture in (12) for the particular case m = 1.

3.2. Asymptotic distributions: Stigler’s theorem. One of the basic difficul-
ties with the St. Petersburg game is that there is no limit theorem for the
asymptotic distribution of Paul’s cumulative gain S, in the usual sense. This
is because P{X > x} = L(x)/x for any x > 2, where the oscillating func-
tion L(x) = x/2108% ¢ [1,2) is not slowly varying at infinity, and so the St.
Petersburg distribution is not in the domain of attraction of any (stable) distri-
bution [cf. Gnedenko and Kolmogorov (1954), page 175, or Corollaries 1 and 3
in Csorg6, Haeusler and Mason (1988a)]. One is, therefore, tempted to trim
the largest gains to see how Stigler’s (1973) theorem works in this s1tuat10n
that is, to look at the trimmed sums S,{B8} := S,(n — |Bn]) = ZLB"J X, for
a fixed number B € (0,1). As is heuristically clear, it turns out below that B
has to be restricted to [1/2,1).

For B € (1/2,1) define

3
0'2(3) = SLog(1-B)] (1 - |Log(1— B)J)2 -
B+ (1—B)Log(1—p)

(B) = — ,
P V3—(1-p){[1-Log(1-B)2+2}
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2.4

1.2 1.6 2.0

(¢ Log n)® P§S,(1) > (1+¢) n Log n}
0.8

0.4

FiG. 4.
and set also
2 a2 _ a(B)r(B) B 2 oy 2 B—ripB)
s*(B) :=c°(B) —2 5 +1—/3 and v(B)._U(B)———l_B .

For some g > 0, let ¢;2(-) denote the N(O, q?) density function and let ®(-) be
the N(0, 1) distribution function. If 6(¢) := 1+ (Log¢) — 2(Logt) ¢ > (0, where
(y) = y — Ly] is the fractional part of y € R, and — 4 denotes convergence in
distribution as n — oo, Stigler’s theorem for Paul’s ordered winnings can be

stated as follows:
CASE 1. If B €(1/2,1) and —Log(1 — B) is not an integer, then
1 Bl 1
Vi[5 X5 Lo g 400 - B | 0 o812,
j=1

where Z is a standard normal random variable.

CASE 2. If B € (1/2,1) and —Log(1 — B) is an integer, then

1 84 1 max(0,—Z,)
— X in— L - 2 Wg = Z+ — ! ’
ﬁ[nFZl in—Log =2 | o Wy = 0(B) —

where (Z,Z.,) is a bivariate normal vector with zero mean vector, variances
E(Z?) =1 and E(Z?2) = B and covariance r(B). The density function gg(-) of
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Wg is given by

gp(x) = ¢02(ﬂ)(x)¢<% x)

B—o(B)r(B)VI—B )
+"’s”’”(x)¢( a-pspup =) *<F

CASE 3. For B =1/2 we have

1 lr/2]
l:n Z Xjn_l] —>g9 W1/2 —max(O Z),

Jj=1

where Z is standard normal, so that the distribution function Gi/2(-) of W12
is
0, x <0,
Grz(x) = { ®(x), x> 0.

Here Case 3 follows directly from a half-sided version of Stigler’s (1973)
theorem, or from Theorem 1 in Csérgé, Haeusler and Mason (1991) as applied
to — X, while the statements in Cases 1 and 2 were derived from the general
“quantile” variant of Stigler’s theorem in Theorem 5 of Csorgd, Haeusler and
Mason (1988b) [cf. Csorgé and Dodunekova (1991)]. [Since (1/2) = 0, Case 3
may be viewed as a special case of Case 2, the latter formally extended for
B = 1/2. Of course, W12 does not have a Lebesgue density.] By an elementary
combinatorial argument one can verify that

LBn] 1 n n
(E ximnm) - £ 5 (0)

j=1 k=1Bn]

1 Bn-1l
=1-— > ( ) for all fixed B € (0, 1),
2n = \k

and n > 1/8. Then, letting n — oo and using the symmetry of Pascal’s triangle,
we see that P{ ZLB”J X;.=2Bn]}—> 0if Be(1/2,1),

ln/2] 1 1 "2 n 1 1
ZX’"‘ztzJ} stz 2 ()3 6=

k=|n/2|

and P{ ZLBnJ X;n =2|Bn]} - 1,if B € (0,1/2). The first of these relations
explains the lack of an atom in the limiting distributions in Cases 1 and 2,
the second justifies the presence of it in Case 3, while the third shows that for
B € (0,1/2) the trimmed mean becomes asymptotically degenerate. In fact,
an ad absurdum argument based on a joint application of both theorems in
Csorg6, Haeusler and Mason (1991) to — X again, also shows that when B8 €
(0,1/2), the trimmed sum S,{8} = Zw X, j» has a degenerate asymptotic
distribution for arbitrary determlmstlc centering and norming sequences.
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The issues of computing for S, (m) for m > 1 are similar to those for S,(1).
Roughly speaking, increasing m by 1 increases the memory requirement by a
factor of (m +Log r)/(m + 1) for a given n. For n = 100 we were able to go up
to m = 4 without substantial memory problems; larger m’s were possible for
a smaller n.

Let us write, in obvious notation, the Stigler approximations for the
trimmed St. Petersburg sums in all three Cases 1-3 as P{(S,{B} — nc{B})/
Vn < x} ~ Gg(x), for all x € R except for x = 0 for the case B = 1/2 in
Case 3. With selected values of n and B, Figures 5-14 illustrate some typical
findings for the accuracy of the resulting approximations for the distribution
function

F, p(s) := P{S,{B} < s} = P{S,(m) < s} =~ H, g(s)
= Gg((s—nc{Bp})/vVn),

for all s € R except for s = nc{1/2} = n in Case 3, where m = n — |Bn].
Figures 5-10 are for the normal approximation from Case 1, Figures 11 and 12
for the Case 2 approximation and Figures 13 and 14 illustrate the case 8 =
1/2 in Case 3. Quite naturally, the general picture is that all three types of
approximation improve on the right tail if 8 is kept fixed and n grows and if
n is kept fixed and B decreases.

Figures 5 and 6 are typical examples for large 8 and — Log(1— ) not an in-
teger. The approximation is excellent for middle values of s and, by necessity,
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far out in the tails. For intermediate values of s, the Stigler approximation of
the distribution function is too large. The overall effect suggests that a bet-
ter approximate distribution for the distribution of S,{B8} should be that of
a random variable which is stochastically a little bit larger than the approxi-
mating normal here. Indeed, the proof of Stigler’s theorem in Csérgé, Haeusler
and Mason (1988b) shows that the normal approximation neglects a nonneg-
ative term which asymptotically vanishes when 8 is a continuity point of the
underlying quantile function (and does not when B is a discontinuity point,
resulting in a Case 2 approximation). Figures 7 and 8 clearly show that while
the normal approximation improves on the right tail as the trimming becomes
heavier, it deteriorates on the left tail; in a more pronounced fashion, of course,
when n is smaller.

Figures 9 and 10 illustrate the deleterious effects of having — Log(1 — 8)
close to an integer without using the additional term: Compare Figure 9 with
Figure 12 and Figure 10 with Figure 13. Stigler (1973) himself has already
discussed this possibility.

Figures 11 and 12 illustrate two examples for which —Log(1 — 8) is an
integer with 1/2 < B < 1. Both approximations look very good. The advantage
of having B farther from 1 can be seen by comparing these figures (n = 40 for
both).

Figures 13 and 14 illustrate two examples of 8 = 1/2. It can be observed
for both that the (limiting) Stigler approximation is exact for s < n. While
the advantage of having n twice as large in Figure 13 is apparent, the quality
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TABLE 1
Four measures of accuracy (Ar,Ay,Ar and A) for the examples in Figures 5-14

Figure 5 6 7 8 9 10 11 12 13 14
nm 606 1004 4016 408 404 2512 4010 405 2412 126

B 0.9 .0.96 0.6 0.8 0.9 0.52 0.75  0.875 0.5 0.5

Ag 0.0763 0.0371 0.1030 0.0901 0.0899 0.1587 0.0420 0.0274 0.0000 0.0000
Ay  0.0656 0.0516 0.0627 0.0754 0.0850 0.4207 0.0532 0.0365 0.5000 0.5000
Ar  0.0321 0.0670 0.0447 0.0295 0.0448 0.0537 0.0177 0.0217 0.0435 0.0713

A 0.0701 0.0653 0.0042 0.0757 0.0819 0.0009 0.0084 0.0187 0.0005 0.0067

of the approximation can still be seen in Figure 14 to be good for n as small
as 12.

Figures 10-14 suggest that using a “continuity correction” is in order: The
continuity correction in the present context calls for the replacement of a
Stigler approximation of the form H, g(s) by H, g(s+ 1), that is, shifting the
variable s one unit to the right. Numerical evidence supporting the use of this
continuity correction is provided in Table 1.

Corresponding to Figures 5-10 and setting D, g(s) := |F, g(s) — H, g(s)l,
the first three rows of Table 1 give Az := Ar(n, B) = sup{D, g(s): Hppg(s) <
0.2}, Ay = Ap(n,B) = sup{D,g(s): 0.2 < H,g(s) < 0.8} and Ap =
Ar(n,B) = sup{D,g(s): H,pg(s) > 0.8} to numerically assess the maximal
deviations on the left, middle and right sections of the distributions, where
we use the 0.2 and 0.8 quantiles of the approximating distributions to avoid
ambiguity. The last row contains the respective values of A := A(n,B) =
sup{|F,g(s)—H,pg(s+1)|: s=n—m,n—m+2,n—m+4,...} toindicate the
global effect of the continuity correction, respectable everywhere and rather
dramatic for Figures 10-14. The size of A(n,8) appears to be a good (one-
dimensional) summary of the intrinsic quality of Stigler’s approximations for
the distribution of heavily (or proportionally) trimmed St. Petersburg sums.
Of course, with trimming like this, all of Paul’s excitement of playing longer
series of St. Petersburg games is gone!
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