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DYNAMIC ASYMPTOTIC RESULTS FOR A GENERALIZED
STAR-SHAPED LOSS NETWORK

By CARL GRAHAM AND SYLVIE MELEARD
Ecole Polytechnique and Université Paris VI

We consider a network in which a call holds a given number of
uniformly chosen links and releases them simultaneously. We show path-
wise propagation of chaos and convergence of the process of empirical
fluctuations to a Gaussian Ornstein—Uhlenbeck process. The limiting
martingale problem is obtained by closing a hierarchy. The drift term is
given by a simple factorization technique related to mean-field interaction,
but the Doob—Meyer bracket contains special terms coming from the
strong interaction due to simultaneous release. This is treated by closing
another hierarchy pertaining to a measure-valued process related to calls
routed through couples of links, and the factorization is again related to
mean-field interaction. Fine estimates obtained by pathwise interaction
graph constructions are used for tightness purposes and are thus shown to
be of optimal order.

0. Introduction. Generalized star-shaped networks are symmetric net-
works in which each call involves a fixed number K of links. This may model
many situations of simultaneous service, for instance, telecommunication or
computer networks, locking of items in databases, parallel computing or job
processing in factories. In the case K = 2 we can imagine that the network
ensures connections through a central hub, hence the term “star-shaped.”

The network consists of n links, all having the same capacity of C
channels. Calls involving subsets of K links arrive according to independent
Poisson processes with rate »,. If each link in the subset has spare capacity,
the call is accepted and lasts an exponential time with mean 1, at the
expiration of which it releases all K channels simultaneously. The call is lost
if at least one of the K links is full.

The global attempt rate for calls seen by a link is assumed to be constant

and equal to v, and thus y, = u/(l."{: 11) = 0(1/n®~1). We could as well treat

a situation where the above equality is replaced by an asymptotic equiva-
lence.

The process of the occupancies of the links is not Markovian because of the
simultaneous releases. We shall introduce the Markov process of the number
of calls on the routes. The birth of calls gives mean-field interaction, while
their death introduces strong interaction, giving rise to intricate hierarchies
as in the realistic Boltzmann equation in Cercigniani [1] and Uchiyama [14],
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Smoluchowski’s theory of coagulation in Lang and Nguyen [10] or annihilat-
ing Brownian spheres in Sznitman [12, 13].

These network models were introduced by Whitt [16] and studied by,
among others, Ziedins and Kelly [17], Hunt [6, 7] and Kelly [9]. All these
authors were principally interested in the properties at equilibrium, for
instance, the stationary blocking probability.

We are interested in the dynamic behavior of the network as the number of
links grows to infinity. The laws of the processes of occupancies satisfy a
propagation-of-chaos result in total variation norm, converging to a limit law
solving a nonlinear martingale problem on path space. The model is a
particular case of a general model studied in Graham and Méléard [5], in
which it is given as an example.

We now investigate the speed of convergence. The main result of the paper
is the convergence of the fluctuations of the empirical processes around the
limit law to a Gaussian Ornstein—Uhlenbeck process which we characterize.
We thus get a precise asymptotic view of the behavior of a fixed subnetwork
as the size of the global network increases.

Some results have been obtained previously. Whitt [16] proved that the
process of the fraction of links with occupancies 0, 1,...,C converges to the
deterministic process of the masses at 0, 1,...,C, of the limit law. This limit
process solves a nonlinear differential equation on the simplex. Whitt [16]
studies its long-time behavior and shows it converges to its unique fixed
point. He conjectures a fluctuation result for a process started at its station-
ary distribution. Hunt [7] proves this result for a network with an initial
state converging to the limit equilibrium point. Qur motivation is not the
same and we start far from equilibrium.

The proof uses the precise pathwise estimates obtained with the random
graphs to show tightness for the processes of empirical fluctuations. This
shows the estimates are of optimal order. The martingale problem for the
empirical fluctuations gives rise to a hierarchy involving high-order empirical
processes corresponding to sequences of links brought into play by the
interaction. We must obtain a single limit martingale problem with unique
solution in order to characterize the accumulation points and thus prove the
convergence, which means we must close the hierarchy. The term correspond-
ing to the drift of the accumulation points is easily closed since only the
mean-field interaction appears in it: the corresponding high-order empirical
processes are easily factored in terms of the basic empirical fluctuations, and
a simple linearization technique takes care of the multiple interaction.

The Doob—Meyer bracket involves a complex term due to the simultaneous
releases. We introduce a measure-valued process to control the releases,
which gives rise to its own hierarchy. The mean-field nature of the interaction
helps us close this hierarchy by the factorization of high-order measures in
‘terms of the low-order ones and thus characterize the limit Ornstein—Uhlen-
beck process.

We then obtain a centered Gaussian convergence result for the empirical
fluctuations of the sample paths somewhat stronger than the finite-dimen-
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sional distribution sense. We thus succeed in proving for this model a
functional central limit theorem by closing the hierarchies in all their terms
and then a fluctuation field result giving insight into the temporal correla-
tions of the processes.

Graham and Méléard [4] investigate fluctuations for a loss network with
alternate routing. The lack of exchangeability and above all the strong
interaction in the birth of alternate calls prevents the closing of the hierarchy
in the drift. The Doob—Meyer bracket involving the simultaneous releases
was successfully closed as above with additional difficulties and precise
estimates because of the local interaction, thus characterizing the Gaussian
martingale part of the fluctuations.

The factorization and linearization in the drift term are easy in any
mean-field model and are purely algebraic. The method of treatment of
simultaneous release is fairly general, is straightforward for mean-field
interaction and can be adapted to different kinds of interaction with a precise
study of the speed of propagation of chaos for each model.

Notation. For integers p and g, (p), denotes the number p(p — 1)

(p — g + 1) of ordered subsets of size g chosen from a set of size p, (f; )

denotes the number (p),/q! of subsets, n is the number of links in the
network, C is the capacity of each link and K is the number of links involved
in a call.

The symbol R" denotes the set of routes {r =i; - ig: 1 <i; < =+ <ig<
n} and R} .., denotes the set {i; - ix €R": ji,...,J, €liy,...,ig}} of
routes 1nvolv1ng the links ji,..., j,. On routes r =i, ::- iy we have indepen-

dent Poisson processes N," = N;".., of call arrivals, of rate v, = v/ (" - i)

The global rate of call attempts seen by a link is ».

The symbol { , ) denotes either martingale Doob—Meyer brackets or dual-
ity brackets between measures and functions, and if needed we mention the
integration variable: {f(x), m(dx)) = [f(x)m(dx). The symbol | | denotes
either the total variation norm or the cardinality of a set, and | |7 denotes the
total variation norm on the set II(D(0,7T1,{0,1,...,C})) of probability mea-
sures on the Skorokhod space.

We study the process of occupancies of the links: for 1 <i < n, X is the
process of the number of occupied channels on link i. The process (X/"); ;. ,
is an exchangeable process if the initial values are, but it is not a Markov
process. We introduce for distinct 1 < i;,...,ix < n the process Y;!.; of calls
involving the set {i;,...,ix}, and thus for any permutation o of {1,..., K},
Y. i =Y, ..., This convention is practical for notational purposes. All
these processes belong to the Skorokhod space D(R*,{0,1,...,C).

The process (Y,"), . z» is Markovian and, for 1 <i < n,

(0.1) Xr= LYY= ¥ Y.,
reR? ig< - <ig
i#(ig,...,ig)

It is easy to write down the generator of the Markov process and the
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martingale problem satisfied by (X}*); ;. ,: For any function ¢,

B(X7(8)) — H(X7(0)) ~ ['|(#(X7(5) + 1) = S(X7())) Lz <o

0.2 X VP EEY Z ]lX,"(s)<C ..... Xt (s)<C
(k-1) 2 ’
ig<

+(B(X7(s) = 1) = (X7(5)))XI(s) | ds

is a martingale. Notice that the release rate for one particle depends only on
its own occupancy and not on which other channels must be released simulta-
neously, and the Y do not appear at this stage. We define ¢*(x) = ¢(x + 1)
— ¢(x) and ¢ (x) = ¢(x — 1) — ¢(x), and the empirical measure

1
(0.3) plon = )y Sy

of the (K — 1)-tuples not containing i. Using this notation, (0.2) can be
written

o(X/'(t)) — ¢(X'(0))

+ 67 (XP(5)) X0 (5)] d.

1. Propagation of chaos and the hierarchy for fluctuations. Propa-
gation of chaos means that a fixed set of links will behave like independent
links following a limit law, as the size of the network grows to infinity. A fixed
subnetwork will then act at the limit as if the links were independent,
allowing various approximations often called fixed-point approximations. If
the limit law is @, we speak of @-chaoticity, and for exchangeable random
variables this is equivalent to the convergence in law of the empirical
measures to @.

In Graham and Méléard [5] this network was an illustrative example and
we considered an initially empty network. Use of the interaction graphs in
Graham and Méléard [3—-5] necessitates independent initial conditions, and
the K links initially connected by a call are somewhat related. This con-
straint vanishes as the number n of links goes to infinity, as seen in the
pathwise propagation-of-chaos result, and we could have a propagation-of-
chaos result for general chaotic initial conditions.

We shall need precise speeds of convergence and thus assume the network
is asymptotically empty for the sake of simplicity. We consider an initial law
for the network which is invariant under permutations of the routes, and this
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exchangeability property is preserved by the time evolution. The X/*(0) take
values in a finite set for which convergence in law or in total variation

coincide.

THEOREM 1.I. Assume that the initial network is exchangeable and

|A(X0),. .. "(0)) — 85"l = O(1/n). Then for given T and q, uniformly for
distinct il, igs If/(X” X”) — P®9; = 0(1/n), where P on D[R*,
{0,1,...,C) is the unique solutzon to a nonlinear martingale problem starting

at 0: For any function ¢,
WD #X) = 6O — [[67(X)rly (1B~ 07(X) X, ] s

is @ P-martingale, where X is the canonical process and PC = P(X,=0C) is
the nonlinear term. Moreover, Z(X",..., X ”) converges weakly to P®" for the
Skorokhod topology on D(R* (0,1, . C})

ProOF. As in Graham and Méléard [3] we can find a set of probability
1 — O(1/n) on which the intial values are zero. We use this to couple the
network with an initially empty network. Then the result follows from
Graham and Méléard [5].

We first prove the chaos hypothesis under which a finite fixed number of
links behaves independently at the limit. Given a finite subset of links, we
construct a random graph describing its past history with the least necessary
knowledge. We devise a coupling between independent graphs that each
describe the past history of a different link of the subset and the global
random graph. We then consider the event that the graphs differ, which is
called a chain interaction and is accurately described in Graham and Méléard
[5]. This pathwise construction uses the Poisson processes N;”..; . The exis-
tence of a chain interaction is expressed in terms of these processes, and its
probability is evaluated and is shown to vanish at the limit. This proves the
chaos hypothesis according to which particles become independent at the
limit.

We then couple the interaction graph for one link with a Boltzmann tree
corresponding to a graph without self-interactions, in which the intervening
links are taken from an infinite supply of independent links. We evaluate the
probability that the tree differs from the graph, and we show the convergence
of the law of the occupancy of a link to that of the same computed on the tree,
which does not depend on n. The constructions are recursive and based on
the notion of direct interaction, which happens When two links are used by
the same call.

This shows P-chaoticity in variation norm with speed of convergence to the
law of the process constructed-on the Boltzmann tree. We only need now to
identify P as the solution to the nonlinear martingale problem (1.1), which
has a unique solution thanks to classical contraction methods. Classical
martingale characterization techniques will enable us to deduce this from a
convergence result on the terms of the martingale problem (0.4). The only
problem comes from wX~ 1" which converges to P®X-1 by usual considera-
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tions on propagation of chaos for exchangeable systems or by the next
theorem. The uniformity result on the choice of the links is very strong and
Graham and Méléard [5] give results for empirical measures without symme-
try assumptions. O

THEOREM 1.2. We assume the initial conditions as in Theorem 1.1. Let J"
be a set of q-tuples of distinct indices with empty intersection, such that
lim, , |J"| = ». Then for measurable bounded ¢,

E ! Y 8 P@qz =0 't 1
DT, H SO n’|J"|}

1 n
quJ

uniformly over T and ||¢llx, and the empirical measure converges to P®? in
law and in probability, for the total variation norm on I1(D([0,T],{0,1,...,C}))
or for convergence in law for the Skorokhod topology on DR,
{0,1,...,C).

Proor.

+ X E(((x1...XD) - (6,P°0))

Qi E g

X(‘f’(Xjr:"“’XjZ) - <¢’1~)®q>)))

o 1 1
using the uniformity in Theorem 1.1. We do not need exchangeability. O

REMARK. We give in Graham and Méléard [5] an explicit value for O(1/n)
for an initially empty network given as q(q¢ — 1)/n times a function of vT
and K. We can state a propagation-of-chaos result for Pj-chaotic initial values
as in Graham and Méléard [3], for a general P, on {0,1,...,C}, but fail to
achieve the O(1/n) we need for tightness of the fluctuation processes.

. We have closed the hierarchy at the first level as if the interaction were
mean-field, which was intuitively expected since the simultaneous releases do
not appear in (0.4). We shall see that at the fluctuation level the strong
interaction due to simultaneous releases will introduce troublesome terms.
Notice that the simultaneous releases appear in the Doob—Meyer brackets of
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the martingales given by (0.4). We define the empirical measure and empiri-
cal fluctuation over path space as

o i (4 =) = 7= 5 (50— )
(1.2) I.Ln = - an, nn =yVvn }Ln - P = - axn - P .

n L Ox: ( )= 77 r o
Theorem 1.2 shows that limn_;x u" =_13. Recall that in the case of exchange-
ability this property is equivalent to P-chaoticity. We now wish to study the
fluctuations associated with this convergence. For this we follow the ideas in
Graham and Méléard [4]:

1. We define the martingale problems satisfied by the processes (u}'), . , and
(n/*),; 5. This starts a hierarchy much simpler than in Graham and
Méléard [4] because of symmetry and the mean-field interaction for births,
but it contains difficult terms due to simultaneous release.

2. We prove bounds which give tightness.

3. We study the limit of the terms in the martingale problem for (%), ,, the
mean-field terms being easy, but not the simultaneous release ones.

We consider the empirical measure and fluctuation over K-tuples of dis-
tinct indices

(13) MK,n — Z 5X." X nK,n — \/;(IJ’K’H _ P@K)

(W&, G-k
and deduce from (0.2) or (0.4) that, for any function ¢,
<¢;/~L£\,> - <¢’IJ’{)V>

(14) _4/(;t[<¢+(xl)V]]'x1<C ,,,,, xK<C?/"'§’n(dx1 de)>

+(¢~(x)x,u!(dx))] ds

is a martingale. By taking limits or using (1.1), the deterministic limit law
(P),., satisfies the evolution equation obtained by replacing u”
by P, u¥" by P®X and the martingale by 0 in (1.4).

ProprosSITION 1.8. For all functions ¢ on {0,1,...,C},

<¢):7’tn> - <¢,"Iév>
(L.5) -] T (2L, <o epecmE(dxy -+ dig))

+(¢>‘(x)x,ns"(dx)>] ds

is a martingale with Doob—Meyer bracket

(1.6) . 2
T () e (1) Y0 2
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We remark that the propagation of chaos gives the asymptotics of the first
term of (1.6), but the second is specific to the strong interaction due to
simultaneous release.

These martingale problems are each the start of a hierarchy, since the
martingale problem for links involves K-tuples of links, and the one for
K-tuples would involve more complex empirical measures and fluctuations
over (K + 1)-tuples,...,(2K — 1)-tuples and so on. Furthermore, the Y pro-
cesses in (1.6) will necessitate the use of a positive bounded measure process,
giving rise to its own hierarchy. In order to obtain a limit martingale
problem, we must close the hierarchy by factoring the high-order measures
(involving long multiples) in terms of the low-order ones.

REMARK. The process (7%),,, takes its values in the bounded signed
measures on the finite set {0,1,...,C} and is canonically isomorphic to the
R¢*1.valued process of its densities (n({0}), ..., n*({C}),, o. The techniques
and compactness criteria we use are thus those in R€* 1. The test functions
for the martingale problems and the evolution equations can be limited to
Loy ]l(l), ..+, Li¢). Using these, the evolution equations can be easily rewrit-
ten as ordinary differential equations on R¢*1.

2. Bounds and compactness. We now use our pathwise estimates to
obtain bounds for tightness results.

THEOREM 2.1. The quantity E({¢,n")?) is bounded for ¢ in #*(D[0,T],
{0,1,...,CY) uniformly in |¢ll., and EC¢y,n%")?) is bounded for ¢ in
Z(D(0, T, {0,1,...,CHE) uniformly in |||l

ProoF. This is a special case of Theorem 1.2. O

THEOREM 2.2. The empirical fluctuation processes (n'),,, are tight in
DR + ,R¢*1) and any accumulation point is continuous.

Proor. It is classical to prove tightness using pathwise bounds and
martingale problems as in Proposition 3.2.3 in Joffe and Métivier [8]. The
boundedness assumptions needed are given by Theorem 2.1 and ¥, ¢ .Y," =
X'=<C. 3

Let 1 denote the canonical process, Q" the law of n" and Q an accumula-
tion point. There are K simultaneous jumps of amplitude 1/ Vn and thus
In? — n| = 2K/ Vn , and for any & > 0, lim, ,,.Q"(sup,, oln, — m,_| > &) = 0.
The set {sup, . om, — m,_| > &} is open; thus Q(sup, . ¢|m, — m,_| < &) = 0 and
accumulation points are continuous. O

REMARK. We likewise see that the empirical fluctuation processes
(n%™), , and those following in the hierarchy are tight and have continuous
limit points.

3. Convergence of the fluctuation process. After a tightness result,
it is classical to prove convergence by uniqueness of the accumulation points.
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We have introduced in Section 1 the martingale problem satisfied by ("), .
and it is natural to show that any accumulation point must satisfy a limiting
martingale problem with unique solution.

A process governing simultaneous release. We need a new notion for the
limit of the product terms, first introduced in Graham and Méléard [4]. We
denote by Y;} the process of the number of calls in progress that involve both
i and j. Naturally Y;7 = X, . R Y." and since each call on a route 1nvolv1ng i
contributes to X; and to K — 1 distinet Y, we have (K — DX, =L, ;.Y
We introduce the process

(3.1) Z axlnyxjn
t#_}
on the set of positive measures on {0,1,...,C}?, and
1 n
wWl-=Fy-~L T ¥
i#] ni; JiJ#i
(3.2) L n
- Y (K-1)X"= (K- 1){x,u"(dx)) < (K-1)C.
i=1

Note that |A"| converges to (K — 1) times the mean value of P and A” can be

considered as a process in the simplex {0 <x;;, ¥, x;; <(K — 1DC} of

R©:L---C¥ Moreover, A converges to zero if X(0) does.
THEOREM 3.1. We take the initial conditions of Theorem 1.1 and assume
that m§ converges to m,. Let P be the solution to the nonlinear martingale

problem (1.1) starting at 0. Then (n"),,, converges in law to the unique
Gaussian Ornstein—Uhlenbeck process such that, for each function ¢,

(p,m,) — {D,mg)

[lra -2 e () L comax))
+v(K - 1)(1-BE) (" (x) 1, .o, B(dx)n,({0,...,C - 1})
(o7 (%) x,m(dw))] ds

(3.3)

is a Gaussian continuous martingale with deterministic Doob—Meyer bracket
. K-1
[ -29)0" (00" Lece. B(ae)
(3.4) +u(K - 1)(1-B) (" (x) 1, ., Bu(dx))?
+(¢™(x)"x,By(dx)) + (¢7® ¢7,A,)| ds,
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where A is the deterministic unique solution to the affine evolution equation
that holds for all o and B on {0,1,...,C}:

(ae pa) = [ (v(1-B) (@' (0)B() Loce + a()8" (N1, cc)
+ta (2)B(y)(x = 1) + a(x)B (¥)(y— 1)
~ \K-2

~a(x)B(¥),A,(dx,dy) )+ v(K - 1)(1 - B)

xCa(x + 1)1, <o Py(de))( B(x + 1)1, o B(dr))] ds

(3.5)

and that describes the limit behavior of the simultaneous releases.

ProoF. Classical martingale characterization techniques show that, for
any accumulation point of (1), o, the limit of (1.5) should be a martingale
with Doob—Meyer bracket given by the limit of (1.6), if these limits exist.
There are two steps in the study of these limits.

The first step consists of closing the hierarchy for the drift term. In
Graham and Méléard [4] we were not able to do this because of the strong
interaction in the alternate routings. In the present situation, the drift is just
mean field, as for spatially homogeneous Boltzmann equations, and can be
readily linearized at the limit. The main point is that the empirical measure
over K-tuples differs very little from the Kth power of the empirical measure.

The second step studies the convergence of the martingale term. We have
seen in Section 1 that an unusual term appears in the Doob—Meyer bracket,
due to the strong interaction introduced by simultaneous releases, which we
must study accurately.

Step 1. A simple factorization is the key for linearizing the fluctuations and
thus expressing the limit of n%" in terms of 7,, which closes this hierarchy.

This is always true for mean-field interaction. The computations are alge-
braic:

Kon _ ®K o
pt = (") = E 5X,"1,...,X,"K nk Ei 5X:;,...,X;tK
iy

(n)k Kigy...,ig)l=K iy,
1 1)
(36) = ( - . > Oxn .. xn
(n)K n |U1,...,iK)|=K ! K
1
T LK Z 5X,"1 ..... Xno
|(i1,...,iK)|<K

and it is obvious that in variation norm, uniformly on the randomness,

| — (u)°F < 2(1 - (:2{") _ o(l)

n

and [n%" — Vn ((u)®X — PK) =01/ Vn). We are thus required only to
consider the limit behavior of the factored expression vn ((u»)®X — P®¥). A
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simple linearization technique does the job:

K . B o
Vi ((w)*F - PoX) = ﬁg(m)“‘“ ® (u' ~P) o Poi!
(3.7) T

K
Z ®K l®nn®f)®i—l

and propagation of chaos then shows that any accumulation point of the laws
of ("), o satisfies the limit (3.3) of (1.5).

Step 2. We study now the martingale term. The first term in the
Doob—Meyer process (1.6) converges by propagation of chaos to

in which we develop the square and use symmetry to get the first term in
(3.4). For simple mean-field interaction, this would be all that is needed, but
we must consider the second troublesome term in (1.6) coming from the
strong interaction due to simultaneous release,

1
(39) ~ X (6 (X2) + -+~ (X1)) ¥ in(s).

i< <ig

We could study directly the measure-valued process

(3.10) — Y Y. b xn,
' 13 13 T B
Ky o ek ¢ *

but at the fluctuation level we only need knowledge of the correlations, and

thus of its marginals A" given in (8.1). We develop the square in (3.9). The
diagonal terms give

R D G o (o

i< <igi€liy,...,ig)
(3.11) =y E ¢~ (X1 L Y
= reR}
1 n
“a L 5 (XY XP = (6 (x) ()
i=1

and converge to (¢ (x)%x, P(dx)) using propagation of chaos, which would
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correspond to independent release. The product terms give

1
L L L (XD (XY,
iy < e <ig i#j
i,j€liy,...,ig}
1
(3.12) ==Y (XN (X') L Y*
T isj reRy

1
= Lo (X))o (XY =<d"® ¢7,A")

i#j

and we only need to know the limit behavior of A". For functions a and B8 on
{0,1,...,C},

Y (t)a(X7(8))B(XP(2)) — Yii(0) a(XP(0)) B(X(0))

[ | V) @ (Xr()B(XP(9)) Lo <c

(x73)

X P ]1X;'2<s)<c ..... X1 (s)<C

ig< - <ig
LjElig, ..., i)

+Y}(s)a(X(s))B" (Xjn(s))]lxj"(s)<c
X ) ]]'Xl';(s)< Crovs XI(8)<C

ig< - <ig
i lig,...,ix)

(3.13) +((Y3(s) + 1)a(X(s) + 1)B(X)(s) + 1)
~Yj(s) (X7 () B(X}(5)))

"X Ixnsy<exme<c )y . ]]'X[;(s)<C ,,,,, X,"K(s)<C)

+Y5(s)a” (X7(5)) B(X}(9)) (X7 (s) = Yij(s))
+Y/H(s) a (X7 (5)) B~ (X} (8))( X/ (5) = Yij(s))

+ ((¥3(5) = 1) XP(s) = DB(X](5) - 1)

—Y5(s)a(X7(s))B(X](5))) Y} (5) | ds

is a martingale M. Moreover, (A7), , solves a martingale problem: If M" is
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the martingale corresponding to {(a ® B,A}), then using (3.1), M" =
(l/n)ziaéjMi’;"

LEmmA 3.2. E(supy.,.r M"(t)*) = O(1/n), uniformly in T, |al. and
I Bl :

ProoF. Because of the Doob inequality we only need to prove EKM")y)
= O(1/n). Naturally EKM")r) = E((M"];), the sum of the squares of the
jumps of M. A jump is either the arrival or the end of a call, and there are
K(K — 1) couples taken from the K links on the route on which this happens;
thus, the size of the squares of the jumps is O(1/n?). The call ends come from
either the calls present at time zero or from calls that arrived afterward.
There is a global capacity of at most nC circuits in the network, and each call
necessitates K circuits; thus, there are at most nC/K calls present at the
start, and their contribution to E(( M "];) isO(1 /n) [actually o(1/n) since the
network is asymptotically initially empty]. The ends of the calls that arrived
afterward contribute at most as much as their arrival, so we now only need to
show that the contribution from call arrivals is O(n), which is the case since

K 1
This proves the lemma. O

there are | 7| routes each with a Poisson stream of arrivals of rate v/ (1’;: 1 )

The process A" jumps as [ M "] except that its jumps are of size O(1/n).
Thus (A}),, , is tight and its accumulation points are absolutely continuous
and have no martingale part. We only need to close the hierarchy implicit in
(3.13) to obtain the deterministic affine evolution problem satisfied by the
limit process (A,),.,. This martingale problem involves the higher-order
measure-valued processes

AK,n=K-1 y V8w wn vn )
(3.14) (n)k [i,j.ig,...,ig}l=K JOXrXP XY, XD
' 1
AK+1’” - Z Yn5 n n n n
JUX XX, Xl
(n)x Wijiig,...,ig=K+1 ! SR A

the first of which vanishes at the limit since its total mass is seen to be
O(1/n) by reasoning as in (8.2): there are not enough routes containing both i
and j for them to be seen at the limit. Instead, AX* 1'* necessitates a delicate
factorization.

LEMMA 3.3. E(a, ®  ® ag,AK*b" — A7 @ PEE-12) = O(1/n) uni-
formly on [O’ T]’ ”aollw,-- L] “aK“m- )

PrOOF. Let w* 1" denote the empirical measure over distinct (K — 1)-
tuples
1

K-1,n
Mmoo = s )y Oxn ... xn -
(n)k-1 Kig,...,ig=K-1
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By Theorem 1.2 and (3.2), E((a, ® - ® ag, A7 ® PEK~1 — A7 @ uK-1n)?) =
o1 /n),

n
AK—(—l,n Y - ,K-1,n
K+ 1M
! ( Y Y8
= —-— ijoxr. XX ,..., X
(3.15) (W& i jiy iel=K+1 T

- Z Z Y. 5X" XPXL, ., X;;{)

i#j [ig,...,igll=K—-1

is bounded in variation norm by

LY,

(3.16) (n)" %)

{ lz,...,iK}: |{i2,...,iK}|=K_ 1,

|{i’j’i2’~~~’iK}| SI{} "

which is O(1/n) uniformly on the randomness using (3.2). This proves the
lemma. O

We now consider (3.13) in light of these results. It is now simple to find the
limiting deterministic evolution equation (3.5), which has a unique solution
that can be made explicit by the method of variation of constants. The affine
part comes from the term involving increases of Y;} and propagation of chaos
(it is the only part left in the limit of the term 1nvolv1ng A%:m), and we use the
following lemma.

LEMMA 3.4. Uniformly for t in [0,T], for i #j, P(Y;}(¢) > 0) = O(1/n),
E(Y;}(¢)) = O(1/n) and E(I(Y"(t))2 YD = o(1/n), and if k # land {i, j}
#* {k 1}, then P(Y;}(0)Y;(¢) > 0) = 0(1/n2) and E(YH(®)Y,(t)) = O(1/n?).

Proor. All the following bounds are uniform for ¢ €[0,T]: (K —
DE(X(#)) = (n = DE(Y;}(¢t)) < (K — 1)C and thus P(Y;}(¢) > 0) = O(1/n).
By developing (X")2 we see that for (i, j, k)| = 3, E(Y"(t)Y (#)) = 0(1/n?)
and thus P(Y"(t)Y 1(t) > 0) = O(1/n?). By developing X ”X " for distinct i
and j, we see that for i, j, %, I}l = 4, E(Y/()Y;}(¢)) = 0(1/n2) and thus
P(Y(®)Y, () + 0) = O(1/n?). Since E(X"(O)) = o(1), P(Y;7(0) > 0) = o(1/n),
which implies that P(Y;}(¢) > 2) = o(1/ n) and if the network is started
empty, P(Y;}(¢) > 2) = 0(1 /n?). Births of Y;} arrive at rate O(1/n) indepen-
dently of the past, and thus for Y;} to reach 2 we must have P(Y;}(0) > 2) or
have both the independent events that Y;}(0) = 1 and that one call has
arrived before time T' or the event of probablhty O(1/n?) of two arrivals or
more. This proves the lemma. O

We finish the proof of Theorem 3.1 by remarking that a continuous
martingale with deterministic Doob—Meyer bracket is Gaussian. O
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REMARK. We can likewise find the limit deterministic affine evolution
problem for the limit of the measure-valued process (3.10).
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