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FLUID APPROXIMATIONS AND STABILITY
OF MULTICLASS QUEUEING NETWORKS:
WORK-CONSERVING DISCIPLINES!

By HONG CHEN
University of British Columbia

This paper studies the fluid approximation (also known as the func-
tional strong law of large numbers) and the stability (positive Harris recur-
rence) for a multiclass queueing network. Both of these are related to the
stabilities of a linear fluid model, constructed from the first-order parame-
ters (i.e., long-run average arrivals, services and routings) of the queueing
network. It is proved that the fluid approximation for the queueing net-
work exists if the corresponding linear fluid model is weakly stable, and
that the queueing network is stable if the corresponding linear fluid model
is (strongly) stable. Sufficient conditions are found for the stabilities of a
linear fluid model.

1. Introduction. The subject of this paper is multiclass queueing net-
works [Baskett, Chandy, Muntz and Palacios (1975), Kelly (1982) or Harrison
(1988)]. The functional strong law of large numbers theorem, also known as
the fluid approximation theorem, is proved for a class of multiclass queueing
networks under work-conserving service disciplines. Furthermore, the fluid
approximation result is used to prove the stability of a class of multiclass
queueing networks under work-conserving service disciplines.

The fluid approximation is proved for open generalized Jackson networks
by Johnson (1983), and for both open and closed generalized Jackson net-
works by Chen and Mandelbaum (1991a). Essentially, all work on a diffusion
approximation implicitly implies a fluid approximation result, although more
assumptions may be assumed. Readers are referred to Glynn (1990) for ref-
erences on the diffusion approximation. The limit of the fluid approximation
is a class of fluid models, which has been used for a wide variety of dynamic
systems [Newell (1982), Kleinrock (1976), Vandergraft (1983), Mitra (1986),
Kosten (1986) and Chen and Yao (1993)]. See Chen and Mandelbaum (1994)
for a survey of fluid models.

There is a lot of literature on the stability of queueing networks. The re-
sults are mostly on Jackson networks, generalized Jackson networks and Kelly
networks, which include primarily single class networks with some exceptions
for restrictive cases. For Jackson networks and Kelly networks, the stability
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638 H. CHEN

is established by explicitly determining the invariant distribution [Jackson
(1963), Baskett, Chandy, Muntz and Palacios (1975), Kelly (1982), among oth-
ers], and for generalized Jackson networks, the stability is established by prov-
ing directly the positive Harris recurrence of the underlying Markov process
[Borovkov (1986), Sigman (1990), Chang, Thomas and Kiang (1993), Meyn
and Down (1994), Baccelli and Foss (1994) and references in their papers].
Recently, Kumar and Meyn (1993) established the stability of a class of multi-
class queueing networks with Poisson arrivals and exponential service times
by constructing a Lyapunov function.

It was widely believed that under the usual traffic intensity condition (i.e.,
the nominal load is less than one at all stations), the queueing network would
be stable under all work-conserving service disciplines. Recently, several exam-
ples have been found that the usual condition is not sufficient for the stability
of multiclass queueing networks. Kumar and Seidman (1990) found a deter-
ministic model which is unstable under exhaustive service disciplines. Rybko
and Stolyar (1992) proved a stochastic (queueing) system that corresponds to
one of the examples in Kumar and Seidman (1990), which is unstable under
a certain priority service discipline, but is stable under FIFO (first-in first-
out) discipline. Recently, Seidman (1993) and Bramson (1994) demonstrated
the instability of FIFO discipline for a deterministic system and a stochastic
system, respectively. Closely related to the stability is the limit theorem for
multiclass queueing networks. It may be expected that the heavy traffic limit
exists when the network parameters are at the boundary between the stable
and the unstable regions (i.e., under heavy traffic condition). Dai and Wang
(1993) constructed a counterexample where the proposed Brownian limit does
not exist, and Whitt (1993) provided a similar example.

In analyzing a two-station multiclass Markovian network, Rybko and Stol-
yar (1992) link the stability of the queueing network to the stability of its fluid
approximation limit. The latter linkage was generalized by Dai (1995), to cover
more general networks, service disciplines and distributions for arrival and
service times. Roughly speaking, Dai (1995) established that stability of the
fluid approximation limit is sufficient for the stability of a multiclass queue-
ing network, thus.providing a general approach to the stability of a multiclass
queueing network. In particular, his result, combined with some earlier results
on fluid approximations, implies the stability of generalized open Jackson net-
works and feedforward multiclass queueing networks.

Our analysis starts with a heterogeneous linear fluid model [introduced
in Chen (1988) and Chen and Mandelbaum (1991b)]. The linear fluid model
is called weakly stable if the fluid (inventory) level remains zero when its
initial level is zero, and is called (strongly) stable if the fluid level reaches
zero in a finite amount of time for any given initial inventory levels. Sufficient
conditions are identified for the weak stability and the stability of the fluid
network under a work-conserving condition. The approach taken is to use
a Lyapunov function analogous to Kumar and Meyn (1993). [The use of a
Lyapunov function for a fluid model can also be found in Dupuis and Williams
(1993).] It is established that the weak stability and the stability of a linear
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fluid model are sufficient for the existence of the fluid approximation and for
the stability of the corresponding queueing network, respectively.

The notion of the stability mentioned above is the positive Harris recurrence
for the underlying Markov process that describes the dynamics of the queue-
ing network [Méeyn and Tweedie (1993) and Dai (1995)]. Some weaker notion
of stabilities may also be of interest, such as Harris recurrence (which includes
both null and positive Harris recurrences) and a pathwise stability [a term
communicated to me by Shaler Stidham; see Altman, Foss, Riehl and Stidham
(1994)]. Pathwise stability means that the long-run average departures must
equal the long-run average arrivals at each station with probability 1. In a
Jackson network, the queue length process is positive Harris recurrent if and
only if the corresponding fluid network is stable, and, in addition, the follow-
ing are equivalent: (a) the queue length process is Harris recurrent, (b) the
queueing network is pathwise stable, (¢) the fluid limit of the queue length
process is zero and (d) the corresponding fluid network is weakly stable. In
this paper, we establish that (d) implies (b) and (c) for a multiclass queue-
ing network under work-conserving service disciplines. [It is obvious that (c)
always implies (b).]

The primary contribution of this paper is to prove the fluid approximation
for a class of multiclass queueing networks (Theorems 4.1 and 3.5) and to
prove stability for a class of multiclass queueing networks (Corollary 5.3 and
Theorem 3.5) [which extends Kumar and Meyn (1993) to non-Poisson arrival
and nonexponential service distributions]. In addition, the sufficient condition
for the stability of multiclass queueing networks in Dai (1995) is simplified
from the stability of a piecewise-linear fluid limit model to the stability of a
linear fluid model (Theorem 5.2).

The paper is structured as follows. In Section 2 we introduce the model
of a heterogeneous linear fluid network, operating under a work-conserving
policy. Then we establish sufficient conditions for the weak stability and the
stability of the fluid network in Section 3. The multiclass queueing network is
introduced and its fluid approximation is established in Section 4. The stability
of a class of multiclass queueing networks is the topic of Section 5. Section 6
concludes with some remarks. Readers may first read through the example in
Section 4.3 that was studied by Kumar and Seidman (1990) and Rybko and
Stolyar (1992) and that motivated this research.

Some notation and conventions used throughout the paper are as follows.
Vectors are understood to be column vectors; the transpose of a vector or a
matrix is denoted by a prime. For a real number x, x~ = min{x,0} and x* =
max{x,0}. The I-dimensional Euclidean space is denoted by %!. When the let-
ter e denotes a vector, it stands for the vector of ones. Vector (in)equalities are
to be interpreted componentwise. All functions are assumed right-continuous
with left limits (RCLL functions). The abbreviation “u.o.c.” stands for “uni-
formly on compact sets.” For a vector u' = (u1,..., ux), the matrix diag(u)
denotes the K x K diagonal matrix with diagonal elements wi,...,ux. The
indicator function of a set S is the function 1g(z) which equals 1 for z in S
and 0 otherwise.
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2. A linear heterogeneous fluid model. The fluid model consists of a
set of J buffers, indexed by j = 1,...,J. Each buffer has an infinite storage
capacity, and buffers are interconnected by pipes to form a network within
which several classes of fluids are simultaneously circulating. (Though “types”
is a better word for fluids, we use “classes” for consistency with the terminology
in queueing networks.) There are K classes of fluids, indexed by £ =1,..., K.
Fluid of class &, hereafter referred to as fluid %, resides exclusively in buffer
J = o(k), where o(-) is a many-to-one mapping from classes to buffers. We
denote by C(j) = {k: o(k) = j} the set of classes that reside in buffer j, and
by C = (cjz) a J x K matrix with c¢;; = 1 when o(k) = j and cjr = 0 otherwise;
the latter is referred to as a constituent matrix. Without loss of generality, it
is assumed that C(j) is nonempty for all j=1,...,J.

The fluid network is described by two K-dimensional nonnegative vectors
Q(0) = (Q#(0)) and @ = (a;), one K-dimensional positive vector wo= (up),
one K x K substochastic matrix P = (p;;,) with a spectral radius less than
unity and the J x K constituent matrix C. Such a fluid network is referred to
as fluid network (a, u, P, C) with initial fluid level @(0). Vectors Q(0), a and
w are referred to as the initial fluid level, the exogenous inflow rate and the
potential outflow rate, respectively. Matrix P is referred to as the flow-transfer
matrix. Thus, axt indicates the cumulative exogenous inflow of fluid % during
the time interval [0, ¢]. The component p;; of matrix P indicates the fraction
of the outflow of fluid i that turns into fluid %, and 1 — Zf=1 Dir indicates the
fraction that leaves the network. The interpretation of the potential outflow
rate is given shortly.

Let T':(¢) be the cumulative amount of time allocated to processing fluid %
by buffer o(%), during [0, ¢]. Then u;T'x(t) indicates the cumulative amount of
outflow of fluid % during [0, ¢]. It is assumed that the maximum time that can
be allocated to processing fluid % during any time interval [s,¢] (¢ > s > 0)
is (¢ — s). Thus, ux(¢ — s) is potentially the maximum possible amount of
outflow of fluid % in that duration. The K-dimensional process T = (T';) with
Ty ={T(t), ¢t > 0} is referred to as allocation process.

The process of primary interest is the fluid level process @ = (Q3) with
Qr = {Qr(t), t > 0}, where Q.(¢) is the fluid level of fluid % at time 2.
Given (e, u, P,C), Q(0) and the allocation process T, Q.(t) is given by the
flow-balance relations

K
(2.1) Qr(t) = Qr(0) + art + ) w;Ti(¢) pir — wrTr(t) > 0.
i=1

The total busy time of buffer j during [0,¢] equals > keci) Tr(t). Thus, its
cumulative idle time (unused capacity) is

Ujt)=t— )Y Ta(2).

. keC(j)
Clearly, it must be true that
(2.2) T (-) is nondecreasing with T';,(0) = 0, k=1,..., K,
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(2.3) U;(-)'is nondecreasing, j=1,...,d.

An allocation T is called feasible if it satisfies (2.1)—(2.3), and a feasible
allocation is work-conserving if it also satisfies

(2.4) U,(.) is increasing at time ¢ only when Z;(¢) =0, j=1,...,d,

where

Zit)= Y Qult)
keC(J)
is the total fluid level in buffer j at time . We note that any feasible allocation
process T must be Lipschitz continuous, as must be its associated fluid level

process.
To summarize in a vector form, an allocation 7' is work-conserving if and
only if, together with the associated fluid level process @, it satisfies for ¢ > 0,

(2.5) Q(t)=Q0)+at—[I— P MT(t) >0,
(2.6) dT(¢t) =0 with T(O) =0,

2.7 dlet—CT(¢)] >0,

(2.8) [CR(t)]d[et — CT(t)]=0,

where M = diag(u) is a K x K diagonal matrix. The associated fluid level
process is referred to as a work-conserving fluid level process. The pair (T, @)
is simply referred to as a work-conserving pair.

It is easy to see that the set of feasible allocation processes is not unique.
For example, both 7'(t) = 0 and T(t) = M~1[I — P']"lat are feasible. On the
other hand, it is known that the set of work-conserving allocations is always
unique when J = K [Chen and Mandelbaum (1991a)]l. However, this may
not be the case in general. In the next section, a sufficient condition is found
under which the set of work-conserving allocation processes is unique for the
case @(0) = 0. In general, additional constraints on the allocation process are
necessary for uniqueness. Such constraints may correspond to various service
disciplines in queueing networks. (See the discussion in Section 6.)

The existence of a work-conserving allocation process is stated as follows
(the proof is given in the Appendix).

THEOREM 2.1. For any linear fluid network (a, P,u,C) with Q(0), there
exists at least one work-conserving allocation.

REMARKS.

1. The proof of the theorem actually implies a stronger result. Let I° be a
J-dimensional process; each of its component Ig = {Ig( t), t > 0} is nonde-



642 H. CHEN

creasing with I?(O) = 0 and is Lipschitz continuous with a Lipschitz con-

stant 1. Then given I°, there always exists an allocation process satisfying
(2.5) and (2.6), and

(2.7) d[I°(¢) - CT(t)] = 0,

(2.8) [CQ()TAI’(t) - CT(t)]=0

The theorem is a special case with I°(¢) = et. This generalization is very
useful for the construction of an allocation that utilizes the remaining ca-
pacity described by I°. In particular, given any feasible allocation 7, there
exists a work-conserving allocation 7' > T?°. [In fact, T' — T° is an allo-
cation satisfying (2.5) and (2.6) with @(0) = 0 and (2.7') and (2.8') with
I(t) = et — CT(2).]

2. The existence theorem can also be extended to a nonlinear fluid model,
where the linear cumulative exogenous arrival vector at in (2.5) is replaced
by a nonlinear nondecreasing vector «(t).

This section is concluded with two important properties of a linear fluid
network; their proofs are straightforward.

PROPERTY 1 (Shift property). Suppose that (T, @) is a work-conserving
pair for fluid network (e, u, P,C) with an initial fluid level @(0). For any
fixed s > 0, let T(t) = T(¢ +s) — T(s) and Q(¢) = Q(¢ + s). Then (T,Q)is a
work-conserving pair for the same fluid network with initial fluid level Q(s).

PROPERTY 2 (Scale property). Suppose that (T, Q) is a work-conserving
pair for fluid network (a, u, P, C) with an initial fluid level §(0). Then T(t) =
0T(¢/0) and Q(t) = 6Q(¢/0) give a work-conserving pair for the same fluid
network with the initial fluid level 6Q(0).

3. Stability of the linear fluid network. A fluid network (a, u, P,C)
is said to be weakly stable if the set of work-conserving allocations is unique
with Q(¢) = 0 for all ¢ > 0 when @(0) = 0, and is said to be (strongly) stable
if there exists a finite time ¢o such that @(¢p) = 0 for all work-conserving
fluid level processes @ with ¢'@(0) = 1. The notion of the stabilities here is
about the stabilities of a fluid network under all work-conserving conditions,
and a brief discussion of the stabilities under more restrictive conditions is in
Section 6.

The presentation of this section is arranged into four subsections: the first
subsection proves that stability implies weak stability and gives some neces-
sary conditions for stabilities; the second and the third present, respectively,
sufficient conditions for weak and strong stability; the last proves some addi-
tional properties of stability, including a monotonicity property.
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3.1. Properties and necessary conditions for stabilities.

THEOREM 3.1. A necessary condition for a fluid network (a, u, P,C) to be
weakly stable is that

(3.1) p=CB<e,
where
(3.2) B:=M1I- Pl a

If the network is weakly stable, then when Q(0) = 0, the unique work-
conserving allocation is given by T(t) = Bt, and its associated fluid level
process is given by Q(t) = 0.

REMARKS.

1. The J-dimensional vector p is known as the ¢raffic intensity for the network.
Throughout the paper, assume that 8 > 0. This is without loss of generality,
since otherwise, those classes that correspond to a zero coordinate of 8 can
be removed from the network. (See Section 4.1 for more comments on the
traffic intensity.)

2. Condition (3.1) is sufficient for the case when J = K [in this case the
fluid network is known as a homogeneous fluid network; see Chen and
Mandelbaum (1991a)], but it is not sufficient in more general cases, which
is demonstrated by the example in Section 4.3.

3. Condition (3.1) is sufficient for the case when J = 1. The proof is by ob-
serving that

Z@t)=MI-P1'Qt)=(p—e)t+U(t)>0

and Z(¢)dU(t) = 0 and by the uniqueness of one-dimensional reflec-
tion mapping. The argument can be extended to a feedforward network
[Peterson (1991)], which implies that condition (3.1) is also sufficient in
this case.

PROOF OF THEOREM 3.1. Multiplying both sides of (2.5) by CM~![I — P']!
yields

CMYI-P1'Q(t)=(p—e)t+ U(t) = (p—e)t,

which clearly implies the theorem. O

THEOREM 3.2. A necessary condition for a fluid network (a, u, P,C) to be
stable is that

(3.3) p=CB=CM I [I-Plla<e.
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REMARKS.

1. Condition (3.3) is also sufficient for the homogeneous fluid network to be
stable [see Chen and Mandelbaum (1991a)], but the example in Section 4.3
indicates that condition (3.3) is not sufficient in the more general case.

2. Condition (3.3) is sufficient for the single station case (J = 1) and the
feedforward network. The justification is similar to the one for Remark 3
after Theorem 3.1.

PROOF OF THEOREM 3.2. Multiplying both sides of (2.5) by CM~1[I— P']!
yields

CM~[I-P]'Q(t)=CM™[I-PT'QO)+(p—e)t+U(¢)
> CM™'[1-PT'Q(0)+ (p—e)t.
In the above, taking a @(0) with @;(0) > 0 for p; > 1 proves the theorem. O

THEOREM 3.3. If a fluid network is stable, then it must be weakly stable.

PrROOF. When the fluid network is stable, by Properties 1 and 2 (the shift
property and the scale property), there exists a ¢y such that if &€ Q(s) = ¢,

(3.4) Q(s+1t)=0 fort> &ty.

Suppose that the fluid network is not weakly stable. Then there exists a
fluid level process @ with @(0) = 0 and a 7 > 0 such that ¢ Q(7) =6 > 0.
Pick ¢ << §, and let 79 = max{t < 7: € Q(¢) = ¢} (which is well defined since
Q is continuous). Since @ is Lipschitz continuous,

le'Q(¢) — €' Q(7o)| < 6(t — 7o),
for all ¢ > 79, where 0 is a finite constant. The above inequality implies that

€Q(t) <eQ(tg)+0ety =(1+6ty)e

(3.5)
<86=€Q(7) forallte]lry,7o+ eto],

where in the last inequality we assume that we have picked ¢ small enough.
Inequality (3.5) implies that 79+ &9 < 7. On the other hand, by (3.4), we have
e Q(71o+ety) = 0. Therefore, there must be ¢’ Q(s) = ¢ for some 7o+etyp <s < 7,
contradicting the definition of 79. O

3.2. A sufficient condition for weak stability. A K x K symmetric matrix
A is called a strictly copositive matrix if, for all x € %K and x > 0, x’Ax > 0
and x’ Ax = 0 only when x = 0 [see Cottle, Habetler and Lemke (1970)].

THEOREM 3.4. The fluid network (a, u, P, C) is weakly stable if there exists
a K x K symmetric strictly copositive matrix A = (a;z) such that, for k =
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1,...,K,

X J
3.6 a;a;, — min hy — min A;) <0
30 ; o ieC(a(k)) i ;1 (ieC(j) ‘k) =Y
] J#o(k)

where H = (h;;) = M[I — P]A, or equivalently,

' K
hip = pi [aik - pilalk]-

=1
REMARKS.

1. The existence of a strictly copositive matrix A such that d[ Q'(¢)AQ(¢)] =0
is in fact a necessary and sufficient condition for weak stability. Thus, the
necessary condition may be improved if inequalities (3.7) and (3.9) can be
tightened.

2. The verification of condition (3.6) can be formulated into a linear program-
ming problem (see Remark 2 after Theorem 3.5).

PROOF OF THEOREM 3.4. Suppose that @ is a work-conserving fluid level
process of the fluid network (a, u, P, C) with Q(0) = 0. Let f(¢) = Q'(t)AQ(¢).
Clearly, £(0) = 0. If we can show that df (¢) = 0 for all ¢ > 0, then f(¢) = 0 for
all ¢ > 0. This implies that @(¢) = 0 for all ¢ > 0, in view of matrix A being
strictly copositive. Thus, it suffices to show that df(¢) =0 for all ¢ > 0.

Using (2.5) yields

3df(t) = (o' dt —dT'(t)M[I - P])AQ(?)

K K
= AQ(¢)dt — )y dTi()hi Qr(t)

k=1i=1

=o' AQ(¢)dt - Z Z Y haQr(1)dTi(2)

k=1 j=1ieC(j)
K J

(3.7 <dAQ(t)dt— Y ( min Rir) Qr(t)d(t — U;(t))

k=1j=1 "

K
(3.8) < AQ(t)dt — Z[ min A + Z mm hir) ]Qk(t)dt

w=1LicCla (k)
J#a(k) )
Kr K J
= a;a;, — min hg — min A; tH)dt <0
;[; iQik ieClo(h)) ik JZ—__:I (16 CU) 1k) ]Qk() =Y,
J#o(k)

where Uj(t) =t — Y ;cc(;) Ti(¢) is used in (38.7), inequality (3.8) follows from
Qr(t)dU;(t) =0 for j=o(k)
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[the work-conserving condition (2.4)], and

(3.9) (LIG%I(IJI) hir) Qr(t) dU;(t) < (zIeI(ll'l(I}) hix) Qu(t)dt for j#o(k). O
3.3. A sufficient condition for stability.

THEOREM 3.5. The fluid network (a, u, P, C) is stable if there exists a K x K

symmetric strictly copositive matrix A = (a;) such that, for k=1,..., K,
K J
3.10 o;a;, — min hjp — min A;) <O,
( ) ; iQir ieClo(h) ik JXz:l (ieC(j) lk)
J#o(k)

where H is as defined in Theorem 3.4.
REMARKS.

1. Condition (8.10) is the same as the stability condition in Theorem 7 of
Kumar and Meyn (1993) for queueing networks. Therefore, the fluid net-
works that correspond to the stable queueing networks in Kumar and Meyn
(1993) are stable.

2. Kumar and Meyn (1993) formulated the problem of verifying condition
(3.10) as a linear programming problem. There, several examples are given
to show the stability of some queueing networks.

PROOF OF THEOREM 3.5. Suppose that @ is a work-conserving fluid
level process of the fluid network («, u, P,C) with ¢ @(0) = 1. Let f(¢) =
Q'(¢)AQ(¢) and

K J
—0p = i@, — min A, — min A;) .
k ; aiQip ieC(;(k)) ik Jg:l (ieC(j) lk)
J#o(k)
Then 6 = (6;) > 0. It follows from the proof of Theorem 3.4 that
(3.11) df (t) < -6'Q(¢t)dt,

for all work-conserving fluid level processes @ with ¢'@(0) = 1. Let u(¢) =
Vf(t). Then it follows from (3.11) that

(3.12) du(t) < —ydt forallt=>0,
whenever ¢ Q(t) > 0, with
= —inf __0’x = 1 inf __0’x
7_2x204/x’Ax_2 x>0 x’Ax‘
x£0 ex=1

Clearly, y > 0. Thus, (3.12) implies that Q(¢) = 0 for ¢ > u(0)/y. O
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3.4. Some additional properties for stability. The first theorem is a mono-
tone property for the stability, and the second is on the stability of a subnet-
work of a stable fluid network.

THEOREM 3.6. Suppose that a fluid network (al, P, wu, C) is weakly (respec-
tively, strongly) stable. Then the fluid network (a?, P, u, C) with o® < o' is also
weakly (respectively, strongly) stable.

REMARK. It is plausible that a similar property also holds for varying the
service rate u and the flow-transfer matrix P: increasing the service rate and
decreasing the flow-transfer matrix preserve the (weak and strong) stabilities.
However, this does not hold in general. Counterexamples have been found by
Maury Bramson and were brought to my attention by Jim Dai.

PROOF OF THEOREM 3.6. We prove the weak stability case only; the proof
for the stability case is similar. Suppose that the fluid network (a2, P, u,C)
is not stable. Then there exists a work-conserving allocation T? such that its
associated fluid level process @2 = 0, but Q%(0) = 0.

From Remark 1 after Theorem 2.1, there exist an allocation process 7° and
its associated fluid level process Q° for the fluid network (a! — a2, P, u,C)
satisfying (2.5) and (2.6) and (2.7') and (2.8") with I°(t) = U2(¢t) = et — CT?(t).

Let T1(¢) = T2(¢)+T°(¢t) and Q(¢) = Q*(¢)+Q°(¢). If we can prove that T
and Q! are a work-conserving pair for the fluid network (a!, P, u,C), then we
reach a contradiction that the fluid network is weakly stable, since @1(0) = 0,
but Q' > Q2% # 0. For the pair, a direct verification shows that it satisfies
(2.5)~(2.7). For (2.8), note that

(CQ'(t))d[et — CT'(t)] = (CQ*(t) + CQ(2))d[U*(¢) — CT°(8)]
= (CQ*(1))d[U*(t) - CT*(8)] =0,

where the second equality is due to (2.8'). The last equality of the above equa-
tion follows from the statement that if (CQ2(¢)); > 0, then (U?); must not
increase at time ¢ (since T2 and Q? are a work-conserving pair). In this case,
(CT?); must not increase at time ¢ as well (since U2 — CT? is nondecreasing).
Therefore, it must be that (d[U2(¢) — CT(¢)]); =0. O

Consider a fluid network (a, P, u,C). Let a be a subset of its classes and
let b be the complement of a. A subnetwork of this fluid network consisting
of classes a is constructed as follows. The set of stations for the subnetwork
is given by s(a) = {o(k): k € a}. Its constituent matrix C, is a submatrix of
C with row indices s(a) and column indices a. The exogenous inflow rate and
the flow transfer matrix are, respectively, given by

Qg = ag + Pia[I - P;,]—lab,
pa=Pa+Pab[I_Pb]_1Pba-
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The construction of the fluid network (&, P, Ma, C,) hereis a generalization
of the single class (J = K) case in Chen and Mandelbaum (1991a), to which
readers are referred for the interpretation of @ and P. There it is proved
that the original network and the constructed network have the same traffic
intensities and hence are either both stable or both weakly stable or both
unstable. The generalization here is as follows. Its proof resembles that in
Chen and Mandelbaum (1991a) and thus is omitted.

THEOREM 3.7. Ifthe fluid network~(a, P, u, C) is weakly stable (respectively,
stable), then the fluid network (&4, Py, pq,Cq) is weakly stable (respectively,
stable).

4. Multiclass queueing networks and their fluid approximations.
In this section, it is established that the fluid approximation for a multiclass
queueing network exists if its corresponding multiclass fluid network is weakly
stable. Conversely, it is proved that if a multiclass queueing network has a
traffic intensity less than unity, and its fluid approximation exists, the fluid
limit for the queue length process must be zero. Finally, a two-station net-
work example is given whose parameters satisfy traffic condition (3.3). How-
ever, the corresponding queueing network does not have a fluid limit, and the
corresponding fluid network is not weakly stable and hence is not stable.

4.1. Multiclass queueing networks. The queueing network consists of o/
single-server stations indexed by j = 1,...,J and K job classes indexed by
k=1,...,K. Jobs of class k are exclusively served by station o (k) with o(-)
as in Section 2.

The evolution of the network is modelled in terms of a random vector and
three stochastic processes, all defined on a common probability space. These
are a K-dimensional vector Q(0) = (@Q:(0)), two K-dimensional counting
processes A = {A(¢),t > 0} and S = {S(¢),¢ > 0} and a K x K matrix process
R ={R(n),n=1,2,...}. The components of all these vectors and vector and
matrix processes take nonnegative integer values. Vector Q(0) is referred to
as an initial queue length vector; its kth component indicates the number of
class k jobs initially present in the network. Process A is referred to as an
arrival process with Aj(¢) indicating the number of class % jobs that arrive
exogenously during the time interval (0, ¢], and process S is referred to as a
service process with Sj(¢) indicating the number of class % jobs that can be
served by station o (%) during the first ¢ units of time allocated to the service
of class k jobs. Process R is referred to as a routing sequence; its (i, k)th
component evaluated at n, Ri(n), indicates the number of class i jobs, among
the first n class i jobs served at station o (i), that switch into class % jobs. Note
~ that n — Z,If:l i(n) must be nonnegative, indicating the number of class i

jobs, among the first n class i jobs served, that leave the network.

" Let Q(t) denote the number of class % jobs in the network at time ¢ > 0
(either served or waiting), and let T'(#) denote the cumulative amount of
time that has been allocated to their service during [0,¢]. Then the queue
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length process of class k, @, = {Qr(t), t > 0}, and the allocation processes
Ty ={Twp(t), t > 0} are related via the flow-balance relations

K
(4.1) Qr(t) = Qr(0) + Ax(t) + Y Ry(Si(Ti(t))) — Sk(Tw(¢)) = 0.
i=1

The total queue length at station j, Z; = {Z(¢), ¢ > 0}, and the cumulative
busy time of station j, B; = {B;(¢), t > 0}, can be represented by

Zj(t)= ). Qwt) and Bj(t)= > T(),
keC(j) keC(j)
where C(j) = {k: o(k) = j} is the constituent set as defined in Section 2.
The idleness process (unused capacity) of station j, U; = {U;(¢), t > 0}, is
given by U(t) =t — Bj(t), j=1,...,d. Clearly, it must be true that

(4.2) T'r(-) is nondecreasing with T (0) =0, k=1,...,K,

(4.3) U;(-) is nondecreasing, j=1,...,d.

An allocation T' = (T') is called feasible if it satisfies (4.1)—-(4.3), and a
feasible allocation is work-conserving if it also satisfies

t
Uj(t)=/0 1[Z;(u) =0]du, =0,

for j=1,...,J, which is equivalent to
(4.4) Z;(t)dU;(t) =0, t>0.

In words, each station j idles only when there are no jobs at station j, or as
stated in (2.4).

The fact that both U; and B; are monotone implies that both are Lipschitz
continuous, and consequently all the T';’s are as well (the Lipschitz constant
equals unity). The existence of a feasible allocation is clear: simply take 7' = 0.
The construction of work-conserving allocations is postponed to the end of this
subsection.

Hereafter we assume that our queueing network has an exogenous arrival-
rate vector «, a potential service-rate vector u and a routing-rate matrix P =
(pjr). These are, respectively, given by

(4.5) lim é@ =aq,
t—oco t
(4.6) lim 5@ _ “,
t—>oco {
- 1
(4.7) lim —R(n) = P.
t—ooo n

We also assume that the routing matrix P is substochastic with a spectral
radius less than unity, thus restricting attention to open networks.



650 H. CHEN

Let A\A=[I-P1la,B=M"'A=MI-Pl'aand p=CB=CM[I-
P'] la, where C is the constituent matrix and M = diag(u), both the same
as defined in Section 2. Vector p is known as the traffic intensity. Note that A
is the solution to

A=a+ P

This equation is known as a traffic equation. For single class queueing net-
works (J = K case), it is proved that when p < e, Az, the kth component of A,
gives the long-run average arrival rate of class % jobs, derived from both exoge-
nous and endogenous arrivals; thus, A is known as an effective arrival rate. The
counterexamples by Rybko and Stolyar (1992), Seidman (1993) and Bramson
(1994) imply that, for multiclass queueing networks, A may not be the ef-
fective arrival rate (meaning the long-run average arrival rate), even when
p < e. Identifying the effective arrival rate in a multiclass queueing network
is further complicated by its dependence on service disciplines. Chen and
Mandelbaum (1991b) contains a preliminary discussion on the traffic equation
and the effective arrival rate for multiclass queueing networks, in particular,
under the first-in first-out service disciplines.

Now we consider the construction of work-conserving allocation processes
for queueing networks under several service disciplines. The FIFO discipline
is discussed in detail in Chen and Zhang (1994), and will not be discussed
here.

The head-of-line processor sharing discipline can be constructed as follows
[see Johnson (1983)]:

1[Qr(u) > 0] du
0 Yiec(ory HQi(u) >0] 7

where the integrand is taken to be zero if its denominator equals zero. By
induction on all jump points (starting from time 0), it can be shown that there
exists a unique allocation process satisfying relations (4.1)—(4.4) and (4.8), that
is, relations (4.1)—(4.4) and (4.8) well define the head-of-line processor sharing
allocation process.

Next, we construct an allocation process for a priority discipline with pre-
emption. Without loss of generality, we assume that C(j) = {k: o (k) = j} =
{kj1,...,kjn,} and class kj; has higher priority than class kjy if 1 <1 <1’ < nj,
Jj=1,...,J. Thenfor j=1,...,dJ,

(4.8) Tr(t) =

@9 Tuy()= [ 1Qu,w) > 0ldu,

t .
(4.10) Tr,(2) =[0 l[ij(u)'= 0,'=1,...,1-1,Q;(u) > 0]du,

1=2,...,n;

Similarly it can be shown that there exists a unique allocation process satis-
fying (4.1)—(4.4) and (4.9)—(4.10), which describes the dynamics of the priority
discipline with preemption.



MULTICLASS QUEUEING NETWORKS 651

The construction of an allocation process under a priority discipline without
preemption is more involved, and we leave it to the Appendix. Again, the
allocation process satisfies relations (4.1)—(4.4), with some additional relations.

Finally, we point out that it may not be true that all work-conserving ser-
vice disciplines are described by relations (4.1)(4.4). The dynamics of some
processor sharing disciplines may not take the form given by relations (4.1)—
(4.4). In particular, consider the processor sharing based on jobs (i.e., at any
time ¢, every job residing at a station shares the same proportion of the pro-
cessing capacity of that station). If the time interval between two consecutive
jumps of the service (counting) process S; indicates the service time for a
class % job, then S;(T(t)) does not indicate the number of departed class
k jobs. Therefore, relations (4.1)—(4.4) may not describe the dynamics for all
work-conserving service disciplines. In this paper, we restrict our attention
to the work-conserving service disciplines that can be described by relations
(4.1)(4.4).

4.2. Fluid approximations for multiclass queueing networks. Consider a
multiclass queueing network as described in Section 4.1, which operates under
work-conserving disciplines and satisfies (4.5)—(4.7). As in Section 4.1, the
queueing length process, the allocation process, the busy time process and the
idle time process are denoted by @, T', B and U, respectively. Corresponding to
the queueing network, a fluid network (a, u, P,C) can be constructed, where
parameters «, u and P are from (4.5)—(4.7), and the matrix C is from the
constituent matrix of the queueing network.

THEOREM 4.1. Ifthe corresponding fluid network (a, u, P, C) is weakly sta-
ble, then the multiclass queueing network under all work-conserving service
disciplines has the same fluid limits:

(4.11) %(Q(nt),T(nt),B(nt),U(nt))—>(Q(t),T(t),E(t),ﬁ(t)), u.o.c.,
as n — oo, where Q(t) =0, T(¢) = Bt, B(t) = pt and U(t) = (e— p)t.
REMARKS.

1. The convergence (4.11) is also known as the functional strong law of large
numbers theorem for multiclass queueing networks. This generalizes the
result of Chen and Mandelbaum (1991a) for a single class queueing net-
work, where condition (3.3) is proved to be sufficient for the convergence
(4.11). -

2. The existence of a fluid limit in the theorem is for all work-conserving
service disciplines, thus, more restrictive than a specific service disci-
pline. For example, it may well be the case where for given parameters
(a, u, P,C), the queue length process has a fluid limit under one work-
conserving service discipline, but does not have a fluid limit under another
work-conserving service discipline. (See Section 6 for more discussion.)
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3. The traffic intensity condition (3.1), even the stronger condition (3.3), is not
sufficient for the existence of the fluid limit (4.11), which is demonstrated
by the example in Section 4.3.

PROOF OF THEOREM 4.1. First, as in Section 2.3 of Chen and Mandelbaum
(1991a), existence of the long-run averages (4.5)—(4.7) is equivalent to

(4.12) ' %A(nt) — at, uwo.c,
(4.13) %S(nt) — ut, uw.o.c.,
(4.14) %R( lnt]) - Pt, u.o.c.,
as n — oo. Clearly, the convergence,

(4.15) %Q(O) —- 0, a.s.,
holds.

Let T"(t) = T'(nt)/n. Then clearly, for any ¢ > s > 0,
0<Tit)—THs)<t—s.

Hence {T"(t), n > 1} are uniformly Lipschitz. By the Arzela—Ascoli theorem,
any subsequence of T”( t) has a u.o.c. convergent subsequence. Next, we can
show that any limit T' of any subsequence of T" must be a work- -conserving
allocation for the fluid network (a, u, P, C) with zero initial fluid level. Then,
by Theorem 3.1 and the weak stability of the fluid network, the limit must be
T(¢t) = Bt, thus proving the convergence of T". The rest follow immediately. O

THEOREM 4.2. Suppose that a multiclass queueing network under a (spe-
cific) work-conserving service discipline has the fluid limit

(4.16) %(Q(nt), T(nt)) - (Q(¢),T(t)), u.oc., asn — oo,
and that
(4.17) p=CM Y I-Plla<e.

Then Q(t) =0 and T(t) = Bt.

REMARK. It is easy to show that the fluid limit of a queueing network, if
it exists, must be a fluid network, but it remains to show that a fluid network
must be the limit of a queueing network. If the latter is the case, the theorem
implies that the converse of Theorem 4.1 holds; that is, if the fluid limit exists
for a queueing network under all work-conserving service disciplines, then the
corresponding fluid network must be weakly stable.
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PROOF OF THEOREM 4.2. Since T is nondecreasing and Lipschitz continu-
ous, it follows from convergence (4.16) that T'(¢)/¢ converges to b := T(1) as
¢ — oo. Note that T(nt)/n = (T(nt)/(nt))t; thus, T(¢) = bt. Next, scaling the
time in (4.1)—(4.4) by a factor of n and scaling all the processes by a factor of
1/n, and then taking limits as n — oo, yields (in vector form)

(4.18) | gi=a—[I-P]Mb=0,
(4.19) b>0,

(4.20) e—Cb=0,

(4.21) [Cq][e~Cb] =0,

where we used the fact that the limiting processes (T, @,_{7) must jointly
satisfy (2.1)~(2.4), and that T(¢) = bt, U(¢t) = (e — Cb)t and Q(t) = qt.

Now it suffices to show that (4.18)—(4.21) have a unique solution b = 3 and
g = 0. If g5, > 0 for some index %, say ko, then clearly [Cqls(k,) > 0; this,
together with (4.21), implies

(4.22) Y by=1
keC(o (ko))

On the other hand, using (4.18) and g, > 0 yields
B—b=MI-P1'q¢=0,
(B=b)ky = (M'[I - P1q), >0,
implying

Potb) = D, Be> Y =1,
heCla(ke)  keClotko)

where (4.22) is used in the last equality. The above inequality contradicts the
assumption (4.17). Now it is proved that ¢ = 0 must hold; this clearly implies
b = B, which satisfies (4.18)—(4.21). O

4.3. An example. The example, adapted from Kumar and Seidman (1990),
is a network with J =2, K =4, C(1) = {1,4}, C(2) = {2,3} and

1 : 4 0100
: 0 3/2 0000
(4.23) a=|, | w=|"" | P=lo 0 01
0 3/2 0000
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In this case,

1/4
oAty el 2/3 _ _ (1112
B=M[I-P]  a= 1/4 and p-CB-(ll/lz).
2/3

Therefore, condition (3.3) prevails.

THEOREM 4.3. The fluid network (a, P, u,C) defined above is not weakly
stable and hence is not stable.

THEOREM 4.4. Let a queueing network have deterministic interarrival and
service times with parameters as defined above. Suppose the initial queue
length Q(0) = (v,0,0,0). Then for any given y large enough, there exists a
work-conserving service discipline such that the fluid limit (4.11) does not ex-
ist. In particular, we have

. Q) (1313 O
(4.24) luisozlp = 2,7,5,7) and llggglfT_O,

. Tt) _ .. T@#) (1111
(4.25) hrtrii:lp ; =B and hgr_l)glf~t—_<§,§,§,§),

where both lim sup and liminf are taken coordinatewise.
REMARKS.

1. Although our proof calls for v > 5, a more tedious argument proves that
vy > 2 is sufficient for the theorem to hold.

2. The fluid limit (4.11) does exist if the queueing network specified in the
theorem has an initial queue length @(0) = (0,0,0,0) (i.e., the system
starts empty).

The proof of Theorem 4.3 follows from Theorems 4.1 and 4.4, while the proof
of Theorem 4.4 is quite tedious and therefore is included in the Appendix.

Through analyzing the fluid network, we give a heuristic proof for Theo-
rems 4.3 and 4.4, which may provide some insight into the stability of this
network. (The heuristic is actually rigorous for the stability part of Theo-
rem 4.3.) Let the initial fluid level @(0) = (y,0,0,0) with v > 0. The dynam-
ics of the fluid network is as follows: at time ¢ = 0, buffer 1 processes fluid 1
and buffer 2 processes fluid 2, both at full capacity, until time ¢; = y/3. Then
Q(t1) = (0,5y/6,v/3,0), buffer 1 is forced to process at one quarter of its
capacity, since it is empty, and buffer 2 processes at its full capacity. This con-
tinues until time ¢ = 2y, at which @(¢2) = (0,0,2v,0), that is, the inventory
levels for both fluids 1 and 2 are zero. Next, we switch the roles of buffers 1 and
2, fluids 1 and 3 and fluids 2 and 4. Similarly we continue until the inventory
levels for both fluids 3 and 4 are zero, to obtain that Q(6y) = (4y,0,0,0). The
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fluid level is four times the initial fluid level. Continuing with this process, we
find the following work-conserving pair:

(’Yn —3(t—t n),é(t_ tn),t — tn,O), th <t<tp+ %')’ny
(0 '}'n__(t tn )’t_tn’o) tn+%7n§t<tn+27n,

Q)= (t—tn ~272,0,2yn = 8(t ~ tn = 22),
S(t—ta—2vn)),  tat2¥n <t <tn+ Svn,

(t —tn — 2v4,0,0, g'}’n - §(t —ln— §7n))y ln + g')’n <t <tn1,

and
(1,1,0,0), tp <t <tp+3yn;
dT(t) _ (3:1,0,0), tn+3yn <t <tn+2¥n;
Tdt (0,0,1,1), tn+2yn << tutEyn;
0,0,1,1), t,+8y, <t <tp,

where t, = 2(4" — 1)y, y, = 4"y and t,41 = t, + 6y,. This clearly implies that
the network is not stable. In addition, it implies

Q(tr) = (vr,0,0,0) and Q(t, +2v,)=1(0,0,2v,,0),

which implies that @(ny)/n does not converge, since one of its subsequences,
with n = 2(4* — 1), converges to (1/2,0,0,0) as £ — oo, and one of the
other subsequences, with n = 4 x 4* — 2, converges to (0,0,1/2,0) as & — oo.
Similarly, the process T'(nt)/n does not converge. Thus, we prove that the
fluid limit (4.11) does not exist for the fluid level and allocation processes
with initial inventory level @(0) = (y,0,0,0).

5. Stability of multiclass queueing networks. Based on Theorem 4.3
in Dai (1994), we establish that the stability of the corresponding fluid network
suffices for the stability of a multiclass queueing network.

Throughout this section, the queueing network is as described in Section 4.
Assume that both the arrival and the service processes are renewal processes,
and the routing matrix process R is constructed from an iid sequence [i.e.,
{R(n) — R(n—1), n > 1} is an iid sequence, where R(0) = 0]. Also assume
that the arrival process A, the service process S and the routing process R are
mutually independent. Furthermore, assume that the interarrival times of the
arrival process are unbounded and spread out (thus, excluding deterministic
interarrival times).

A queueing network under a specific service discipline is stable if the under-
lying Markov process that describes the dynamics of the queueing network is
positive Harris recurrent. That is, the Markov process has a unique invariant
probability measure. Readers are referred to Dai (1995) for a precise definition.

The specific form of the underlying Markov process may vary with service
disciplines. Readers are referred to Dai (1995) for a list that includes FIFO,
priorities and head-of-line processor-sharing disciplines.
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The following theorem is a variation of Theorem 4.3 in Dai (1995), where
the workload formulation is replaced by the fluid level formulation. [It is con-
sistent with the latest version of Dai (1995).]

THEOREM 5.1. The queueing network is stable if there exists a constant &
that depends on (a, u, P,C) only, such that, for any (Q,Z,T,U) and v satis-
fying (5.1)—(5.5) below, Z(t) =0 for all t > ty:

(5.1) Q(¢) = Q(0) + Mv +diag(a)(et —u)t + PM[T(¢t) —v]" — MT(t) > 0,

(5.2) dT(t) =0 with T(0) =0,

(5.3) U(t):=et—CT(t) and dU(t)=>0,
(54) Z(t):=CQ(t) and Z'(t)dU(t)=0,
(5.5) [M7'Q(0)+v] <1,

where u > 0and v > 0.
REMARKS.

1. In Dai (1995), any processes (Q, Z, T, U) satisfying (5.1)—(5.5) are referred
to as a fluid limit model for the multiclass queueing network. The fluid
limit model is said to be stable if there exists a finite ¢y such that for any
fluid limit, @(¢) = 0 or equivalently Z(¢) = 0 for all ¢ > .

2. The theorem is proved for service disciplines such as FIFO, priority with
and without preemption and head-of-line processor sharing. It has not been
proved for more general processor sharing.

Theorem 5.1 [which is from Theorem 4.3 in Dai (1995)] significantly sim-
plifies the process of verifying the stability of multiclass queueing networks
to the verification of the stability of a piecewise linear fluid network. In fact,
the verification of the latter can be further simplified to the verification of a
linear fluid model, which is summarized as follows. (The proof is given at the
end of this section.)

THEOREM 5.2. If the linear fluid model corresponding to the queueing net-
work is stable, then the queueing network is stable.

REMARKS. Combining this theorem and Remark 2 after Theorem 3.2 pro-
vides a simple proof for the stability of the generalized Jackson network and
the feedforward queueing network, under the traffic intensity condition (3.3).
This theorem is also used in Dai (1995) to reach the same conclusion.

" COROLLARY 5.3. If condition (3.10) holds, then the queueing network under
all work-conserving service disciplines that are included in Theorem 5.1 is
stable.
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REMARK. This generalizes the stability result of Kumar and Meyn (1993) to
nonexponential interarrival and service times. On the verification of condition
(8.10) and the examples of stable multiclass queueing networks, see Remark 2
that follows Theorem 3.5.

As a preparation for the proof of Theorem 5.2, we prove the following lemma.

LEMMA 5.4. Consider a linear fluid network (a, u, P,C) and suppose that
its traffic intensity p < e. Then for any work-conserving total fluid level process
Z(t)=CQ(t) and j=1,...,d, the set {¢: Zj(t) =0} is unbounded. In other
words, there does not exist a finite to such that Zj(t) > 0 for all t > to.

ProOOF. If such a ¢, exists, from (2.7), it must be true that
(5.6) d |:t — Z Tk(t)] =0 for all ¢ > .
keC(j)
On the other hand, it follows from (2.5) that
CT(t) < CM~'[I - P'T7'Q(0) + pt.
This, together with p < e, contradicts (5.6). O

PROOF OF THEOREM 5.2. Consider T and @ satisfying (5.1)—(5.5). Suppose
that there exists a finite ¢’ such that et > u and

(5.7) Tt)=>v fort>t.

Then (5.1) takes the form

(5.8) Q(t) = Q(0) + at — [I - P'IMT(t) fort>¢,
where

Q(0) = Q(0) — diag(a)u + [I — P'IMuv.

Now using the shift property of the linear fluid model (in Section 2) yields
that there exists a finite ¢ > ¢, such that @(¢) = 0 for ¢ > ;. This, combined
with Theorem 5.1, proves the theorem.

Returning to (5.7), we actually prove a stronger result that 7';(oco) = oo for
all % (noting that T, is nondecreasing). Otherwise, there exists an allocation
T satisfying (5.1)—(5.5) such that

a={k: Tr(oo) < oo} #d.

Let b be the complement of a.
Consider ¢ > maxj<<x u;- and write the subblock of (5.1) corresponding
to a:

Qa(?) = Qa(0) + agt + Py, Mp[To(2) — vs]*

(5.9)
+ P My[To(t) = vo]" — MoTa(£) = 0,
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where Q,(0) is the corresponding subblock of
Q(0) = Q(0) + Mv — diag(a)u.

Since T',(o0) = oo, for & € b, and T,(o0) < oo, for & € a, it follows from (5.9)
we must have a, = 0 and P, = 0; otherwise, at least one of the coordinates
of @,(¢) must approach infinity as ¢ — oo, contradicting Lemma 5.4. Writing
the traffic equation A = @ + P’'A with coordinates in a yields

Ao = ag + Py Ay + P Aq.

When a, = 0 and P, = 0, the above implies that A, = 0, contradicting our
assumption that 8 = M~ > 0 (see Remark 1 after Theorem 3.1). O

6. Concluding remarks. Based on Dai (1995), we relate the stability of
a multiclass queueing network to the stability of a linear fluid network. In
addition, we relate the existence of the strong law-of-large-numbers theorem
(fluid approximations) for a multiclass queueing network to the weak stability
of a linear fluid network. Using an approach similar to Kumar and Meyn
(1993), sufficient conditions are identified for both stability and weak stability
of a fluid network.

The notions of stability considered here are concerned with general work-
conserving service disciplines. However, a queueing network (as well as a fluid
network) may be stable under one service discipline, but not under another.
A two-station queueing network in Rybko and Stolyar (1992) provides a good
example where the network is stable under FIFO but is unstable under a
priority service discipline. Thus, the notions of stability considered are more
restrictive when applied to a queueing network (respectively, a fluid network)
under a specific service discipline (respectively, a specific class of allocation
processes). However, the idea of the current approach can be extended to those
cases as well. Chen and Zhang (1994) investigate a multiclass queueing (and
the corresponding fluid) network under FIFO service discipline. As a simple
example, we illustrate the idea by considering a multiclass queueing network
under a priority service discipline with preemption. In this case, an allocation
is feasible if in addition to (4.1)—(4.4), it also satisfies (4.9) and (4.10). The
dynamics of the corresponding linear fluid network is described by (A.1)—(A.3)
(in the Appendix), in addition to (2.5)—(2.8); these relations also define the
feasibility of the allocation process for the fluid network. Accordingly, we can
define the weak stability and the stability of the linear fluid network, and then
establish that weak stability and strong stability are sufficient for the fluid
approximation and the stability of queueing network, respectively. As the set
of feasible allocation processes is smaller in this case, the conditions for both
weak and strong stabilities are in general weaker than conditions (3.6) and
(3.10), respectively. .

. Kumar and Meyn (1993) developed a linear programming approach to iden-
tify the given parameters of a queueing network that satisfy the sufficient
condition (3.10) for the stability of the network. However, so far there is no
explicit condition on the given parameters such that a fluid network is stable,
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which is sufficient for the stability of the corresponding queueing network.
Note that stability is weaker but less explicit than condition (3.10). It is our
belief that the stability of a fluid network is also necessary for the stabil-
ity of the corresponding queueing network (under all work-conserving service
disciplines), at least for the Markovian network.

APPENDIX

A.1. Proof of Theorem 2.1. First we state a lemma, whose proof is ele-
mentary and hence omitted.

LEMMA A.1.

1. If f is a Lipschitz continuous function, then

h(¢) = sup f(u)
O<u<t
is also Lipschitz continuous and both have the same Lipschitz constants.
2. If f and g are Lipschitz continuous, then [ — g is Lipschitz continuous.

PROOF OF THEOREM 2.1. Let C(j) = {k: a(k) = j} ={kj1,..., kjn;}, J = 7
1,...,J. Note that n; > 1 for all j and Z}]=1 n; = K. Hence,

d:=max{n;: j=1,...,J} <K-J+1

Let h; = {kj: j = 1,...,J} be a subset of class indices, and let s(h;) =
{s(kj;): j=1,...,J} be a subset of station indices, where both kj; and s(& ;)
are understood to be null elements if / > n;. Hence, both A; and s(#;) may
have less than J elements but both A; and s(A;) have exactly JJ elements and
s(hy) ={1,...,J} is the set of all station indices.

First, we prove that there exists a process T satisfying
I () =~os<‘i‘3t{ll<_hl'>(“) — (M7[Q(0) + au+ PMT(w))n}",

S

(A1)
1=1,...,d,

(A.2) I°(t) = et,

(A.3) Tw(t) =I5 () =Ty (8),  1=1,...,d.

Consider a sequence of K-dimensional processes T" (with T° = 0) generated
by the following iteration:

Il (e) = sup (I (w) — (MU Q(0) + aw + P MT™ ()},
(A.4) Osust
[=1,...,d,
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(A.5) I97F1(¢) = et,
(A.6) Tr(t) = L) - I @0, 1=1,...,d.

By Lemma A.1, it can be shown inductively that T%(-) and Ii.’" (-) are nonde-
creasing with T7(0) = 0 and are Lipschitz continuous with unity Lipschitz
constants for all # = 1,...,K,l =1,...,d and j = 1,...,J. Thus, the se-
quence {T™, n > 0} is equicontinuous and there exists a u.o.c. convergent
subsequence. The limit denoted by 7 must satisfy (A.1)—(A.3) and its coor-
dinate 7T';(-) must be nondecreasing and Lipschitz continuous with Lipschitz
constant 1. [We could not prove that (A.4)—(A.6) defines a contraction mapping;
if so, then there exists a unique solution to (A.4)—(A.6). Note that the alloca-
tion process satisfying (A.4)—(A.6) appears to correspond to the priority service
discipline. Given the counterexample of a two-station network in Kumar and
Seidman (1990), it might well be that the mapping defined by (A.4)—(A.6) is
not a contraction mapping.]

Now we show that the process T that satisfies (A.1)-(A.3) is a work-
conserving allocation process. First, by our induction, T satisfies (2.6). Next,
verifying that T satisfies the nonnegativity (2.5), we use (A.3) to yield

(M7'Q(t))n, = (M[Q(0) + at + P'MT(¢))s, — Th,(t)
(A7) = (M7[Q(0) + at + P MT(¢)])s,
= Ly (&) + I, () 20,

where the last inequality follows from (A.1), thus proving the allocation sat-
isfies (2.5).
By (A.2) and (A.3), it can be checked directly that

Ustha) () = I, (),
Us(h1_1)\8(hl)(t) = Ii(_};l[_l)\s(hl)(t)’ l=d- 1, e y2.
By (A.1) and (A.3),
(A.8) Ugnye) = Ig(hd)(t)

(A.9) = sup [T, () = (M7[Q(0) + au + P MT ().}
<u<t
(A.10) =141 (t) — Th,(2).

It follows from (A.9) that dUu,)(¢) > 0. By (A.1) and (A.7)—(A.9), coordi-
natewise the increase of Ug,) at time ¢ implies @p,(¢) = 0 and implies the
increase of I ‘:(;li ) at time . Next, note that, for /=d - 1,...,1,

I, @) = Oiugt{li(_hl”(u) — (M7 Q(0) + au + PMT(u) s}
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This, together with (A.1) and (A.7), implies that coordinatewise I i( »,) increases
at time ¢ only when @,(¢) =0 and [ i( By increases at time ¢. Thus, the allo-
cation process satisfies (2.8). Therefore, it is a work-conserving allocation. O

A.2. Construction of the allocation for priority without preemption.
For a pure jump function f, define its last jump time

I(t;f) =sup{s <t: f(s—)—f(s) =1}.

We may simply write it as /(¢) when no confusion arises. Similar to the priority
with preemption case, we assume that C(j) = {kj1,..., kjs, } and the priorities
for each class are in a decreasing order: kji,...,k,,. Define first the indicator
sets: for j=1,...,Jandl=1,...,nj,

Ty (t) ={Fu: Ut;Qn,) <u<t
such that @, (v) =0, I'=1,...,1 -1, Q,;(u) > 0},

and then

T, (8) = Ty, (8),
Jk}l(t) = kal(t) N ('/kj,[,u(t))C, l = nj - 1,- cey 1.

The allocation process is given by
t
(A.11) Th(t) =f0 s, (w)]ldu, L=1,...,n; j=1,...,d.

It can be shown that there exists a unique allocation process satisfying (4.1)-
(4.4) and (A.11), which describes the dynamics of the priority discipline with-
out preemption.

A.3. Proof of Theorem 4.4. The state of the queueing network is de-
scribed jointly by the queue length @ and the residual times ((r1,r3), (s1, S2, S3,
s4)), where r; and s, are residual interarrival and residual service times, re-
spectively, It is assumed that 0 < r, <1 and 0 < s; < 1/4, where s, = 0 is
interpreted as there being no class k& jobs in the network.

We first state a lemma, whose proof is postponed to the end of the Appendix.

LEMMA A.2. Suppose that Q(0) = (v,,0, d9,0) with yo > 5 and 8y being
either 0 or 1. Then there exists a time t such that Q(t1) = (81,0, v1,0), where
81 is either O or 1,

(A.12) t1 <2y0+21 and vy1 >2yo-—5.

PrOOF OF THEOREM 4.4. Note that the queueing network is symmetric
when we switch the roles of classes 1 and 3, classes 2 and 4 and sta-
tions 1 and 2. Now applying Lemma A.2 repeatedly, we would have a
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sequence of (tn,¥n, 8,) such that Q(t2m) = (72ma 0, 82m,0) and Q(t2m+1) =
(82m+1,0, Y2m+1,0), where 8, is either 0 or 1,

(A.13) lnyl — In < 2vp + 21,

(A.14) Ynt1 = 2vn — 5,

to = 0 and yo = v. It follows from (A.13) and (A.14) that
¥ = (¥ —5)2" +5,
t, <2(y-5)(2" —1)+31n.

This clearly implies the lim sup in (4.24), whereas the liminf in (4.24) is im-
plied by Lemma 5.4 (which can also be observed from the proof for Lemma A.2).
The convergence (4.25) follows from (4.1) (also refer to the proofs of Theo-
rem 4.1 and Lemma A.2). The convergences (4.24) and (4.25) clearly indicate
that the fluid limit (4.11) does not exist. O

PROOF OF LEMMA A.2. The initial queue length is @(0) = (0,0, 0, 0), and
80 = 1[s3 > 0]. Based on the residual arrival and service times, there are three
possible cases.

Case (i): s1 < s3 or s3 = 0. At time s;, we have

Q(Sl) = (70 -1+ 1[7’1 < Sl]’ 1a 1[53 > O] + 1[7’3 < Sl]’ O)’

where 7’s and s’s are the residual interarrival and service times at time 0.
From time s;, station 2 switches to serving class 2 jobs, and station 1 serves
class 1 jobs (whenever they are available). This continues until yo +n1 +1
jobs complete service at station 2, where n; is determined from

3s; —3r1 +2y0 — 1 <n15381—37‘1+270—%-

The above service policy is work-conserving. Note that at time ny+r1, there
are n1 + 1 exogenous arrivals of class 1 jobs. The time at which all yo+n1+1
class 1 jobs complete service at station 1 is n1 + r1 + 1/4, and and at station
2 is

t1 ;= max{s; + %(yo +ni+1),n1+r1+ %}
=s14+ 2(yo+n1+1),

where the last equality follows from our choice of n1.
At time ¢4, -

Q(t1) = (1[t1 = n1 + 71 +1],0, ¥1,0),
where y1 = [#1 — rs] + 1. By our choice of n1, we have
(A.15) ti<ni+ri+14+31<2y+4,
(A.16) v1>t1>ny>2yp—5.
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Case (ii): s1 > s3 > 0 and r3 +1/4 > s3 + 2/3 (implying r3 > 1/4 > s3).
In this case, station 2 first completes serving a class 3 job at s3, and this job
proceeds to station 1. At this moment, station 1 switches to serving this class
4 job, which completes service at station 1 before another class 3 job completes
service at station 2. Thus, at time s3 + 2/3,

Q(ss + %) =(yo+1[ri <ss+ %] +1{ri+1<s3+ %],O, 1[rs < s3],0);

this reduces to Case (i). Applying the result of Case (i), we have ¢; < 2y¢+ 10
and y; > 2y — 5, with #; and vy; similarly defined.
Case (iii): s1 > s3 > 0 and max{rs,ss} + 1/4 < s3 + 2/3. Pick ng such that

%+333—3r3<n05383—3r3+§.

At stations 1 and 2, class 4 and class 3 jobs have preemptive priorities over
class 1 and class 2 jobs, respectively. This continues until ny + 2 class 4 jobs
complete service at station 1. First note that at time ng + r3, there are ng + 1
arrivals of class 3 jobs. Also note that there is a class 3 job initially in the
network; hence, the time at which all ny + 2 jobs complete service at station
2 is
ty = max{ss + 2(ng +2),n0 + 3 + 13}
= s34 2(no +2) < 4.25,

where we used the definition of n¢ in the last equality and inequality. At time
to,

Q) = ('y0+1+21[n+r1 <ty<n+r1+1],0,1[¢ > n0+r3+1],0).
n

Now as in Case (ii), we can use the result of Case (i) to obtain that

t1 <2yp+21 and vy; =2y -—3. a
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