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A STOCHASTIC NAVIER-STOKES EQUATION
FOR THE VORTICITY OF A
TWO-DIMENSIONAL FLUID!

BY PETER KOTELENEZ

Case Western Reserve University

The Navier—Stokes equation for the vorticity of a viscous and incom-
pressible fluid in R? is analyzed as a macroscepic equation for an underly-
ing microscopic model of randomly moving vortices. We consider N point
vortices whose positions satisfy a stochastic ordinary differential equation
on R2N, where the fluctuation forces are state dependent and driven by
Brownian sheets. The state dependence is modeled to yield a short correla-
tion length & between the fluctuation forces of different vortices. The
associated signed point measure-valued empirical process turns out to be
a weak solution to a stochastic Navier—Stokes equation (SNSE) whose
stochastic term is state dependent and small if £ is small. Thereby we
generalize the well known approach to the Euler equation to the viscous
case. The solution is extended to a large class of signed measures conserv-
ing the total positive and negative vorticities, and it is shown to be a weak
solution of the SNSE. For initial conditions in Ly(R?, dr) the solutions are
shown to live on the same space with continuous sample paths and an
equation for the square of the Ly-norm is derived. Finally we obtain the
macroscopic NSE as the correlation length ¢ » 0 and N — » (macroscopic
limit), where we assume that the initial conditions are sums of N point
measures. As a corollary to the above results we obtain the solution to a
bilinear stochastic partial differential equation which can be interpreted
as the temperature field in a stochastic flow.

1. Introduction: macroscopic, microscopic and mezoscopic models.
Our aim is to model the time evolution of the vorticity of a two-dimensional
incompressible fluid (where for a rigid body the vorticity is twice the angular
velocity). The restriction to two dimensions is natural in applications like
oceanography, where the depth is considered to be negligible in comparison to
its planar extension. Although for applications in oceanography one should
include the action of the Coriolis force on the vorticity distribution, we will
neglect its contribution here since we want to be conceptual. Moreover, we
believe that it is fairly easy to include the Coriolis contribution into our
models, since it acts in the form of an external force on the system. Under the
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NAVIER-STOKES EQUATION FOR VORTICITY 1127

above assumptions we obtain a macroscopic equation for the distribution of
vorticity in a two-dimensional fluid:

d

-O_'—ZX(r,t) =vAX(r,t) - V- (U(r,t)X(r,t)),

11 .

(1-1) U, U,

X(r,t) =curlU(r,t) = — — ,
ory ary

V-U=0.

Here U(r, t) is the velocity field, r € R2, » > 0 is the kinematic viscosity (or
in the oceanographic setting, the eddy diffusion coefficient), A is the Lapla-
cian, V is the gradient and - denotes the scalar product on R2. If v > 0, we
obtain the Navier—Stokes equation for the vorticity. If the fluid is inviscid (or
ideal), that is, v = 0, we obtain the Euler equation. Note that by the incom-
pressibility condition V - U = 0 we obtain

(1.2) U(r,t) = [(V*&)(r - 9)X(q,t) dg,

where g(|r]) == (1/2m)In(|r]) with |r|* = r2 + rZand V*=(-d/dry, d/dr)T"
with T denoting the transpose; [( ) dg denotes integration over R? with
respect to the Lebesgue measure. As a consequence we can obtain the velocity
field U, which satisfies the standard Navier—Stokes equation from the vortic-
ity distribution.

There is an extensive literature on the (numerical) solution of (1.1) by the
so-called (random) point vortex method (cf. Chorin [3, 4], Long [22], Puckett
[29] and the references therein). A theoretical model related to the point
vortex model has been analyzed by Marchioro and Pulvirenti [23], which is a
special case of the following more general model.

Let 0 < 8§ <1 and g,;(Ir) = g(r), for § <|r| < 1/8. Let g;(s) be at least
twice continuously differentiable with bounded derivatives up to order 2, and
let |g4(s)l < |g'(s)l and |g4(s)l < |g"(s)l, for s > 0. Set

Ks(r) =V*gs(lrl).

We may assume without loss of generality g'(0) = 0, which implies K;(0) = 0.
Thus we have the smoothed Navier—Stokes equation (NSE):

14
—X(r,t) =vAX(r,t) = V- (Uy(r,t)X(r,t)),
at
(1.3)
Up(r,t) = [K;(r —q)X(q,t) dg.
Consider N point vortices with intensities a; € R.and let r’ be the position of

the ith vortex. Abbreviate ry = (r,...,r") € R?VN. Assume that the posi-
tions satisfy the stochastic ordinary differential equation (SODE)

N
(14) dri(t) = ¥ a;Ks(ri —ri)dt + V2vdmi(ry,t), i=1,...,N.

Jj=1
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The m'(ry,t) are R%-valued square-integrable continuous martingales (i =
1,..., N), which may depend on the positions of the vortices. We will call (1.4)
a microscopic model for the vorticity and (1.1) a macroscopic model. Let us
for the moment assume that for suitably adapted square-integrable initial
conditions (1.4) has a unique (Itd) solution ry(¢) = (r1(2),..., r¥(¢)). Set

N
(1.5) Zy(t) = Z aiar"(t),
i=1

where ri(t) are the solutions of (1.4) and &, is the point measure concen-
trated in r. We will call 2},(¢) the empirical process associated with the
SODE (1.4). Let Lp(Rz, dr) be the standard L ,-spaces of real-valued func-
tions on R? with p € [1,], where dr is the Lebesgue measure. Set H,=
L,(R?,dr) and denote by (- ,- ) and |- llo the standard scalar product and
its associated norm on H,,. Further let -, - ) be the extension of (- ,- )¢ to a
duality between distributions and smooth functions. The following facts have
been established by Marchioro and Pulvirenti [23]. Suppose for the initial
condition in (1.1), X(0) € L,(R?, dr) n L(R?, dr).

Al. Let v =0 [i.e, (1.4) is deterministic] and let 2 be the solution of the
Euler equation (1.1) with » = 0. Then there is a sequence K san(r) =
K(r) =V*g(r), as N - » such that

(1.6) (Zu(t), ® >{(2(t), 9 as N - o,

that is, 24(¢) is “approximately” a weak solution of the Euler equation,
where ¢ is sufficiently smooth with compact support. If one chooses K(r)
instead of K;(r) in (1.4) and assumes that (1.4) has a unique solution for
suitable initial values, we obtain directly that 24,(¢) is a weak solution of
the Euler equation.

A2. Let v> 0. Choose mi(ry,t) = Bi(t), where B(¢) are ii.d. R2valued
standard Wiener processes. In particular, the martingales are state
independent. Further assume that half of the intensities a ; are positive
and equal to some a*/N, a*> 0, and the other half are negative and
equal to —a”/N, a™> 0. Let X be the solution of the Navier—Stokes
equation (1.1) with » > 0. Again with the same sequence K sav)(r) and ¢
as in Al, (E24(0), ¢) — (X(0), ¢) as N — = implies, for any ¢ > 0,

(L) (E23y(1), &) >(X(1),¢) as N,

where E denotes the mathematical expectation, that is, E(-) = ((-) dP,
with P being the probability measure from an underlying probability
space (Q, 7, P).

The key to understanding the relation between (1.4), (1.5) and (1.1) is the
‘It6 formula. Let us abbreviate

(1.8) Us, n(r,t) = [Ks(r — q)23(dq, t).
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Denote by ({mi(ry,t), mj(ry,t))) the mutual quadratic variation process
of the one-dimensional components of m‘(ry,t) and mi(ry,t), k,1 € (1,2},
i,j €{1,..., N} (cf. Metivier and Pellaumail [24]). For m € N, let C"(R2,R)
be the set of bounded and Lebesgue integrable functions from R? into R
which are m times continuously differentiable in all variables with bounded
and Lebesgue integrable derivatives. Abbreviate r = (r,, r,). If ¢ € CZ(R?, R),
the It6 formula yields

K2y (), @ =(2u(2), (U~ V)@ dt

N 2 2
(1.9) * vi=zlaik,lz=1 ary dr, o(ri(t))d(mi(ry,t), mi(ry, 1))

N
+V2v ¥ a;(Ve(ri(t))) -dmi(ry,t).
i=1

If v=0, then (1.9) is a weak form of the (smoothed) Euler equation (1.1)
(with K instead of K). However, if v > 0 and we choose, following Marchioro
and Pulvirenti [23], the i.i.d. standard Wiener processes B(t) for the mi(ry, t),
then (1.9) becomes

K 2(t), @ =(2(),(Us* V)@ dt +{2(t),vAg) dt

1.10 N .
(1.10) +V2v Y a;Vo(ri(t)) - dBi(t).
i=1

The difference from the Euler case is twofold. First, although the stochastic
term in (1.10) disappears after taking the mathematical expectation on both
sides, this mathematical expectation does not satisfy the smoothed version of
the NSE (1.1) because of the nonlinearity. Second, note that the motion of
each particle is perturbed by its own “fluctuation force” dBi(¢), i = 1,...,N
(cf. Nelson [26] for a justification of this terminology). This introduces a
tagging in (1.10), that is, the “name tags” (i = 1,..., N) are preserved in the
stochastic term, whereas in the deterministic terms they disappear. If it were
not for the tagging in the representation of the “fluctuation forces” by d Bi(¢),
(1.10) would be some sort of (smoothed) stochastic Navier—Stokes equation
(SNSE) whose right-hand side is given by the right-hand side of the
(smoothed) NSE plus the fluctuation forces. We easily see that under the
Marchioro-Pulvirenti assumptions, 23 (¢) is a signed measure-valued Markov
process (cf. Dynkin [9], Chapter 10, Section 6). Analyzing its generator, one
can derive a (formal) stochastic partial differential equation (SPDE) for 23,(¢)
on the space of signed measures (with W(¢) an H-valued standard cylindri-
cal Brownian motion; cf. Kotelenez [16]):

[ 2v

where

Fy(2y) = VN (V- V% V - /- V&4 V).
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For nice functions %, y/ — V223 V is the positive root of the self-adjoint
extension of —VZ2# V (via quadratic forms, where 25 acts as a multipli-
cation operator). A smoother version of such an SPDE was derived and
analyzed by Dawson [6] (for the mass distribution of branching Brownian
particles, now called a superprocess; cf. also Konno and Shiga [13] for an
updated analysis of Dawson’s result). The high singularity of the diffusion
coefficient in (1.11) (and in [6]) is a consequence of the independence assump-
tion (in spatial coordinates) of the fluctuation forces in (1.4) if m(ry,¢) =
Bi(t). One can expect a smoother diffusion term if the fluctuation forces are
spatially correlated (as suggested by Vaillancourt [32] for a different physical
model). From our point of view, the correlations must be introduced such that
the requirements of the following program are satisfied:

1.1 PROGRAM.

(1) 24(2) is the weak solution of a (smoothed) SNSE [as 23,(¢) is the weak
solution of the (smoothed) Euler equation (1.3) if v = 0].

(ii) The intensity and the correlation length of the fluctuation forces
should be small and short, respectively.

(iii) The SNSE should be extendible to a large class of signed measures
including those with densities so that certain density-valued initial condi-
tions yield density-valued solutions.

(iv) The total positive and negative vorticities are (pathwise) conserved
quantities.

(v) As noise intensity and correlation length of the fluctuation forces tend
to zero [and K from (1.3) tends to V* g simultaneously], the solution of the
SNSE should converge to the solution of the NSE (1.1) (macroscopic limit
provided the initial conditions of the SNSE converge to the smooth initial
conditions of the NSE).

In order to realize this program we now introduce rigorous assumptions.
[Requirement (v) has been solved in this paper only in part; cf. Remark 4.5.]

Let (Q,4, 4., P) be a stochastic basis with right continuous filtration.
All our stochastic processes are assumed to live on () and to be F-adapted
(including all initial conditions in SODE’s and SPDE’s). Moreover, the pro-
cesses are assumed to be (dP ® dt)-measurable, where dt is the Lebesgue
measure on [0, ). Let w,(r, ¢) be independent Brownian sheets on R? X R,
[ = 1,2 (cf. Walsh [35] and Kotelenez [17]), with mean zero and variance ¢| A,
where A is a Borel set in R? with finite Lebesgue measure | A|. Adaptedness
for w,(r, t) means that [,w,(dp, ¢) is adapted for any Borel set A C R? with
|Al < . Set w(p,t) = (wp,?), wy(p, t))T. Further, let £ > 0 and define
correlation functions I'.: R* - R, to be bounded Borel-measurable functions
which are symmetric in r, p € R? such that the following conditions are

* satisfied:

(1.12) Jf2(r,p)dp =1
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and there is a finite positive constant ¢ such that, for any r, q € R?,

(1.13) JTu(r, p)T(a, p) dp = Ve - Ty, (7, q).
There are finite positive constants c, ¢, such that, defining
(1.14) . o(r,q) = (clr —ql) A 1,
we have

- - 2
(1.15) f(Fg(r,p) —L,(q,p)) dp <co®(r,q),

where A denotes the rhihinium of two numbers. Let us give a particular
correlation function, where (1.12)—(1.15) can be verified.

1.2. ExampLE. Set [,(r, p) == ((1/2me)exp(—|r — p|?/2£))'/2. Equation
(1.12) is obviously satisfied. The Chapman—Kolmogorov equation implies

- - ~r —ql?
(1.16) JT.(r. P)T(a, p) dp =exp(Tq).

Therefore JIT.(r, p) — T.(q, )12 dp = 21 — exp(—|r — q|*/8¢)) < 2(1 A
|r — qI /8¢). Hence if we set o(r,q) =1 A (Ir —ql/ V8¢), we easily verify
(1.14), (1.15) and that o(r, q) is a metric (using Minkowski’s inequality).
Apparently, one can get a more general class of 1y '(r, p) satisfying
(1.12)~(1.15) than in the above example by taking I(r, q) ve(e,r,q),
where p(e, r, q) is the transition density of an R2-valued diffusion process (at
time ¢ = £), whose generator is a strictly elliptic (second order) operator with
smooth coefficients.
 Set

(1.17) f.(r,p) =

If q(¢) is an R2-valued adapted stochastic process, then (1.12) and Walsh [35]
imply that (/[ r ' (q(s), p)w(dp, ds) is an R2?-valued square- -integrable contin-
uous martingale. Therefore, we may choose mi(ry,t) = [ Iy (r*, pw(dp, t)
and (1.4) becomes

dri(t) = LIVV; a;Ky(ri —ri)dt + m[fg(ri,p)w(dp,dt),

(1.18) el

i=1,...,N.

1.3. REMARKS. (i) Let {,}, c x be a complete orthonormal system (CONS)

in L,(R%, dr) and set
¢ 0
0 ¢,
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Then
119 [i(rpy(den) = T [Tra)bia) da B0,

where B™(t) == [¢,(q)w(dq, t) are R%-valued i.i.d. standard Wiener processes.
Hence (1.18) can be treated as a 2 N-dimensional ordinary It6 equation which
is driven by infinitely many i.i.d. R%valued standard Wiener processes. It is
well known that an L,(R?, dr)-valued standard cylindrical Brownian motion
W(2) can be visualized as the (weak) limit of ¥2_, 8,(t)&, (cf. Kotelenez [17]),
where B,(t) is without loss of generality the ﬁrst component of B,(¢).

(ii) We now see that (1.15) is a Lipschitz assumption on the stochastic
coefficient in (1.18). If r, ¢ € R?, we obtain that

L [t p) ~ e, 2) ) )
(1.20) n=1

= f[fe(r»p) - f"g(q,p)]2 dp < co®(r,q).

(iii) Assume there are two R*-valued adapted stochastic processes g'(¢)
and q%(t). Then we easily see that the [¢/T,(¢'(s), p)w(dp, ds) are R?*-valued
square-integrable continuous martingales (i = 1,2) and their mutual
quadratic variation is given by

([ [a), pymntap,as), [ [1(a%(9), P, ds) )

= f:ﬁs(ql(S), p).(¢%(s), p)dpds - 8,

(1.21)

k,1=1,2 with 8, ,=1, if k=1, and 0, otherwise. Moreover, assuming
the setup of Example 1.2, (1.16) implies that correlations are neghglble if
lg,(s) — q,(s)I® > & and that they are observable if |g,(s) — ¢y(s)]> ~ &. In
other words, & is the (short) correlation length of requirement (ii) of Program
1.1. For metric spaces M;, M,, C(M,, M,,) is the space of continuous functions
from M, into M,. Let us endow R? with the metric ¢ from (1.14) and R*¥
with QN(I‘N, gy) = max, _;  y o(r%, ¢%). To indicate this choice of the metric
on R? (resp., R*Y), we will write (R2, o) [resp., R*Y, oy)] and just R? (resp.,
R?7) if we use the usual Euclidean metric. A

1.4. LEMMA. To each Fy-adapted initial condition ry(0) € (R, gy ), (1.18)
has a unique F-adapted solution ry(-) € C([0,);R?*N) a.s., which is an
R?N.valued Markov process.



NAVIER-STOKES EQUATION FOR VORTICITY 1133

Proor. () Let gy () = (g}(),...,q"(-)) be R?N-valued adapted (dt ®
dP)-measurable stochastic processes, [ = 1,2. Set, for [ = 1,2,

N
Qy.(t) = ) @; 8yics
i=1
and

4i(t) = ai(0) + [ [Ks(ai(s) = P)Qw,i(dp, ) ds

+f0tffe(qz"(s),p)w(dp,ds).

(i) By the smoothness and boundedness of K, (1.14) and the
Cauchy—Schwarz inequality, we obtain

Qz(f()tha(qi(s) —p)Qy,1(dp, s) ds,fotha(qg(s) —p)@y.2(dp, 5) ds)

_ ¢
< CTCa'N/;) Q?V(QN,1(3),‘IN,2(3))d3-

(iii) Doob’s inequality, (1.15), (1.17) and (1.21) imply
2

E sup
0<t<T

< 4c [ "Eg*(ai(s). i(s)) ds.

(iv) Hence the existence of a unique continuous solution follows from the
contraction mapping principle. The Markov property follows as for It6 equa-
tions with perturbations by finitely many Wiener processes (cf. Dynkin [9],
Chapter 11, Section 2). O

[/ [[Eai(5). p) = Fu(ai(5). p)]w(dp. ds)

If u is a finite (signed) Borel measure on R?, we set

wfL.C, pyw(dp, t) = [L., p)w(dp, t) u(dr),

that is, | lA"S(-, p)w(dp, t) is treated as a density with respect to u.

If w itself has a density with respect to the Lebesgue measure, we will
denote this density also by u G.e., {¢, u) = (@, w)o), and the above expres-
sion reduces to multiplication between u and the stochastic integral. Further,
ut and p~ are the Jordan decompositions of the finite signed measure u and
| ul == u*+ u~ is the total variation. If b6, b~ are nonnegative numbers and
' A is a Borel set in R?, we will write

nwt(A) =b* ifandonlyif u*(A) =b" and p™(A) =b".
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Let a* and a~ be nonnegative numbers such that a=a*+a > 0.Set
M = { u: u is a finite signed Borel measure on R2, ;Li(R2j =at}.

The number a, a* will be fixed for the rest of the paper. The following SNSE
on M will be analyzed 'in this paper according to Program 1.1:

dz(t) = [vAz- V- (U2)] dt
(122 ~VE0 V- (2[R, ) |uwldp, ),

Us(r,t) = [Ky(r — 9)#(dg, 1),
(1 23) *(R?,t) =2*(R?, O) =a* as. (conservatlon ofvortlclty)

[The assumption fLVi(R2 0, w) =a* for all  has been made to avoid a
cumbersome notation when working with a variant of the Wasserstein metric
on the space of finite signed measures on R%]

1.5. LEMMA. Let Q’N(t) be the empirical prdcess associated with (1.18)
such that £, .oa; =a” and T, .o a; = —a”. Then 23,(t) is a weak solution

of (1.22) and (1. 23)

Proor. (i) Equatlons (1.9), (1.12) and (1.21) for ql(t) = 2(t) = ri(t) yield,
with ¢ € C*(R? R), 2(¢) == Z4(¢) and U; == U y,

KZ(2), @ = (2(2), vA@ +(2(2),(U;- V) 9)] dt

(1.24) .
V25 (210), [0, pYw(dp, dt) Vo),
which is just the weak form of (1.22).
(ii) The conservation of total positive and negative vorticities required by
(1.23) follows from the construction. O

Note that the empirical process 23 (¢) reduces the detailed information
provided by the microscopic model (1.18) to the information which is relevant
for the problem under investigation. The process 23(¢) describes just how
much vorticity is in a two-dimensional domain B at a given time ¢ [and not
where the single vortices are, as done in (1.18)]. By Lemma 1.5, 23(¢)
satisfies (1.22), which is (1.3) plus the fluctuation term which we derived from
the microscopic model (1.18). We may therefore call (1.22) a mezoscopic model
for the vorticity. [Accordingly, (1.10) and (1.11) are different microscopic and
mezoscopic models, respectively; cf. van Kampen [33] for the terminology.]

If u, o € M, we will call positive Borel measures @* on R* joint repre-
sentations of (u*, ") [resp., (u™, 7)) if Q*(A X R?) = u*(A)a* and
Q*(R% X B) = i*(B)a* for arbitrary Borel sets A, B c R2. The set of all



NAVIER-STOKES EQUATION FOR VORTICITY 1135

joint representations of (u*, ™) [resp., (7, 27)] will be denoted by
C(u™, a*) [resp., C(pn~, p7)]. For p, i € M and m = 1,2, set

Yol s B2) = [ inf [ [Q*(dr,dg)o™(r,q)
Q*teC(ut, %)

(1.25) . i/m
+ inf  [[Q(dr,dg)o™(r,q)

QeC(u,i’)
By the boundedness of ¢ and the Cauchy-Schwarz inequality,

1

(1.26) Vi o ) > v3(p, ) > preveel OO
where V denotes the maximum of two numbers

After normahzmg the measures by u*— u*/a*, the Kantorovich~
Rubinstein theorem implies y,(u, &) = O ifand only if u*= 4" and u™= @~
(Dudley [8] Chapter 11). The triangle inequality for y,(u, ) follows as for
the Wasserstein metric [which is y,(u*/a*, i*/a™) for u*/a* and p*/a*].
Hence y, is a metric on M, and M endowed with vy, will be denoted by
(M, y,). By (1.26), the Prohorov and the Kantorovich-Rubinstein theorems
(M, y,) is complete (cf. Dudley [8], 11.5.5 and 11.8.2). Moreover, as in the
Wasserstein case (cf. De Acosta [7], Appendix, Lemma 4) we obtain that the
set of linear combinations of signed p01nt measures from M is dense in
(M, v,). For f € C(R?,R) we set

[f(r) = f(a)l
IfllL = sup { ————.
r,qeR? Q( r, q)
r+q

Inequality (1.26) and the Kantorovich—Rubinstein theorem imply

1

1.27 () =2 ———— su - i, £,
(1.27) 3 (ms ) 2(a+va_)llfllLIs)1|<’u i, Y
In order to use SPDE techniques, it is convenient to analyze (1.22)-(1.23) also
on certain Hilbert spaces. Let I be the identity operator on H,. Then, for any
a € R, (I — vA)*® is defined through the spectral resolution of (I — »A) and is
self-adjoint. Let Cj(R%,R) be the subspace of C;"(R?, R) of infinitely often
differentiable functions with compact support. Suppose ¢, € C5(R?, R). For
a > 0 set

(o= (I = v8)*"* ¢, (I~ vA)*"*y),

and |lolls == {o, @)% Let H, be the completion of Cj(R? R) in H, with
respect to | - ||, identify H, with its strong dual H§ and denote by H_, the
strong dual of H,. The norms ||-||-, on H_, are Hilbert norms, and we easily
see that if ¢, y € H,

(oo )—a =((I = vA) 2o, (I - vA) "y,
(cf. Kotelenez [15]). Hence we have the sequence of Hilbert spaces
(1.28) H,cH,cH,=H{cH_,cH_,,



1136 P. KOTELENEZ

for 0 < B < @, with dense continuous inclusions. For ¢ € C["(R%,R), we set

I” ¢ ”' m = Ogl?fm rseullfz arh &r.lz ¢( )'
where j is a multiindex from (N U {0}) X (N U {0}) with J=(,J;) and
|jl == j; + J,- By imbedding (cf. Triebel [31], 2.8),

H, c C(R%,R),

if 1<m+ 1< a with continuous inclusion. Since || ¢lll1 > cllellL, with
¢ € (0,), that is, since ||| - |ll; is stronger than || - ||z, we finally obtain

(1.29) M,y,)cH_,_, a> 2,

with continuous inclusion. In particular, for o > 2 there is a ¢ > 0 such that,
for u, p €M,
(1.30) I — all-a < cyy(m, ).

Suppose a > 2. By (1.28), H} can be defined by H} = {# € H__: |[F1lp < «}.
The identification H, = H§ implies that for ¥ € M with ||#]ly < © we may
write #(dr) = f(r) dr and identify .7 with f, which is the density of # with
respect to dr.

All assumptions made on (1.22) and (1.23) will be used throughout the rest
of the paper without mentioning them (unless we change them, e.g., in
K; - V'g). Let us make some final remarks on notation. We will, for
example, use ¢; = [ K, lly = Il K5Iy + [l KF 1, where K/ are the one-
dimensional components of K;. If B and B are some normed vector spaces,
(B, B) will be the space of linear bounded operators from B into B and
I -1l #@, 8, Will be the usual operator norm on #(B,B). For B = B we will just
write .#(B) instead of .#(B, B).

We next state the main results here and give the proofs in the correspond-
ing sections.

If (M, 9) is some metric space and p > 1, L »(Q; M) is the metric space of
M-valued __p-integrable random variables with metrlc (EyP(€,m)V/P for £€,7
e L,(Q; M. Set

M,={peM:pu is a finite linear combination of point measures on R?},
Jio =Ly,(Q;My),
./[0 = Lz(Q;M),
M, 11 = L,(Q;C([0,T];M)).
Note that .#, and .#, r, are complete metric spaces, since M is complete
where the metric on .#}y 1, is given by [E sup, ., .7 va(uy 2 N2 for py, i,

€M, 1)
Set 2”(t Zy(0) = 24,(0), where % (¢) is the empirical process associated

with (1.18).
The following Theorems 1.6 and 1.7 are on existence for (1.22) and (1.23).

Their proofs are given in Section 2.
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1.6. THEOREM. The map 2 (0) = Z.(-,24(0)) from M, into My, 7 extends
uniquely to a map %, = Z(-,%,) from .#, into M, . Moreover, for any
20, %0 €Ay,

E sup 722(22(t’2¢0)’%(t’?0))
(1.31) .0<t<T
< exp(c[c, +cf(a® + 1) + 1])Ev; (%5, Z%o)-

1.7. THEOREM. For any go € C;(R%;R) and &, €4, (Z(t,Z,), ) satis-
fies (1.24), 0 <t < oo,

Theorems 1.8-1.10 are on H-valued solutions of (1.22) and (1.23) and on
uniqueness. Their proofs are given in Section 3.

1.8. THEOREM. Suppose 2(0,dr) = X,(0,r) dr and EIXOl5" < o,
for some n > 1. Then Z(t,dr) = X,(t,r)dr, X, (¢, w) is 2n-integrable over
[0, T] X Q with values in H, for any T > 0, X(t) is adapted and, for any
t>0,

(132)  E|X,(t)|" < 2" exp(c(s, v, 8,n)t) E| X,(0) 5"

where c(&, v, 8,n) is a finite constant given by (3.11). Moreover, X.(t) is a
weak solution of (1.22).

1.9. THEOREM. Suppose E|| X, (05" < , for some n > 1. Then:

() For any t > 0 [with * denoting the convolution of two functions from
L,(R2?,dr) and W,(r,¢) = [ I,(r — p)w(dp,?)],

1% D1 =1X 1" + = [1 X ()]5" ds

—n[1X,() e X X2(8), (V- K;) * X,(5))o ds
(1.33) 0
=2y [1X ()X XE (), T dW ()

+2n(n = Dr[ | X() 0" 7L X2(), - dW(s)o]-

(ii) We have
(1.34) X.(-) € C([0,%);Hy) a.s.

(iii) There is a finite constant &(e, v, 8, n) such that, for any T = 0,
n _ w172
(1.35) EosupT 1X,(2)|2" < exp(e(z, v, 8, n,T) - T)( E| X,(0) ") "
<t<

 where &e,v,8,n,T) = 3cle,v,8,n)T + nc, + 1 with ¢, 2 1 the constant
from the Burkholder-Davies—Gundy inequality.
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1.10. THEOREM. Suppose K; = 0 and X, € H with E||X0||§ < . Suppose
there is a weak solution Y,(-,X,) of (1.22) such that, for all T >0,
JEEIIY.(s)I ds <  and Y,(0, X,) = X,. Then, forall t > 0,

(+) - [EIY.(9) - X(9) g ds = 0,

where X (-, X,) is the Hj-valued solution of (1.22) from Theorems 1.6, 1.7 and
1.9 with X, (0, X,)) = X,,.

Finally, we obtain a macroscopic limit theoi‘em, whose proof is given in

Section 4.
Set

1.36) Ay = {ry € R?N:3(i,j),1 <i <j <N, suchthat ri =r/}.
N N

1.11. THEOREM. For each N € N suppose ry(0) & Ay a.s. Let pe
C,(R%,R) and suppose E{Z(0), ) — {X(0), 90, as N — ». Then there is a
sequence 8(N) — 0, as N — =, such that for any t > 0,

(1.37) E(Z sy(t), @ = (X(t), 9o ase—0andN — .

2. Existence for the SNSE. Let x,(¢):=xy(¢, x5(0) and yy(2) =
vy (¢, y5(0)) be the solutions of the SODE (1.18) with initial conditions x,(0)
and y,(0), respectively and let 23,(¢) and 2 (¢) be the empirical processes
associated with x,(¢) and yy(t), respectively. The following lemma allows us
to extend the solution 21¢,23(0)) =23 (¢) of (1.24) from discrete initial
conditions to arbitrary (adapted) initial conditions in M.

2.1. LEMMA. For any T > O there is a ¢ > 0 such that, for all N € N,

E sup v;(2y(t), Zn(t))
(2.1) 0<t<T
< exp(c[c, + c}(a® + 1) + 1])Ev3 (23 (0), Zx(0))

with c, from (1.14) and ¢; = || K, Il 1.

ProOF. (i) Since (xy, yy) is an R*V-valued Markov process, we may first
consider deterministic initial conditions (£, ) € R*Y and then average over
the distribution of (x,(0), y5(0)). The empirical processes associated with
xy(t, £) and yy(¢, n) will be denoted by 23 (¢, £) and %y (¢, 1), respectively.
Consider the two R2-valued Itd equations with deterministic initial condi-
tions r, q € R2:

dz(t,2(t)) = [Ky(2(t) — p)2y(dp,t) dt

(2:2a)
+ [T(2(8), p)w(dp,dt),  2(0,%.(0)) =r;
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dz(t, Zu(1)) = [Kys(2(t) — p)#n(dp,¢) dt

+[1”;(z(t),p)w(dp,dt), 2(0, Zy(0)) = q.

Clearly, (2.2) has unique continuous solutions, which follows as in Lemma
1.4. We set r(¢) = 2(¢,2y(t, £€)) with r(0) = r and q(¢) = 2(¢, %y(t, 7)) with
q(0) = g. Note that if, for example, r = ¢! (the ith two-dimensional compo-
nent of ¢), then r(¢) is the position of the ith vortex starting at &°. This fact
leads to the following observation. Assume f < C,(R*,R) and Q@ <
C(#y (0, &), Zx(0, ). Then

(23)  [[@Qudr.da)f(r,q) = [ [Q(dr,dq)f(r(t),q(t))

defines Q,(dr,dq) € C(Z (¢, £), Zy(t, n)).
(i) As in Lemma 1.4 we obtain

E sup o ['[[£.r(5). p) ~ £.(a(s). p)] (. do). 0]

0<t<T

(2.2b)

< ccstTEQz(r(s), q(s)) ds.

The smoothness of K; and the conservation of vorticity (1.23) imply

Q(I(,TﬂKs("(s) —-p) — K;(q(s) '—p)l~l2”NI(dp,s,§)ds,o)

< caa./(;TQ(r(s), q(s)) ds.

Further,
[/ 25 dp, 5,€) - 240(dp, 5, M Ka(a(s) - p) | ds
1
- (:;_)fOT [ ] =@ dp. dp)[Ky(a(s) = p) ~ Ky(a(s) = B)]|ds

[with Qi€ C(25 (s, £), #¥ (s,m)) arbitrary, where by definition (1/a*)@*=
0if a*=0]

T, 1 _ .
<e; ¥ [ [[-5Q(dp,dp)o(p,b).
(+,-)707 7 @
Hence by the arbitrariness of @, (2.3) and (1.26),

[|/1#(dp. 5. €) = #x(dp, s, ] Ky(a(s) ~ p)|ds

< [ena(@i (s, €), 2 (s,m) ds.
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The preceding estimates, the Cauchy—Schwarz inequality and the Gronwall

lemma imply
E sup 0%(r(t),q(?))

0<t<T

(2.4) ‘< exp(c[c, + cZa?])
X[Q2(r’ Q) + Cg];)TE'yg(%N(S> f),?N(S, "7)) ds]

Hence,

E sup yZ(2y(t, &), Zn(t,m))
0<t<T

< exp(c[c,B + cgazl)[yg(‘%N(O, £), Zw(0,m))

ved [ B (@5, £), Fa(o,m)) ds |

The Gronwall lemma and averaging over the distribution of (xy(0), y5(0))
implies (2.1). O

2.2. PROOF OF THEOREM 1.6. Since by (2.1), 23(0) — Z.(-,24(0)) is uni-
formly continuous, we can extend it by continuity to all 2, €4, by the
density of .#, in .#,. Inequality (1.31) follows immediately from (2.1). O

2.3. PROOF OF THEOREM 1.7. (i) Note that, by the choice of ¢, [A¢llL < ©
and [I(d/dr)ell;, <, I =1,2. So the right-hand side of (1.24) is defined for
Z(t,2,).

(i) Set fy(t) =2(t,2,) — 2(t,2(0)). Then

B(['(fu(s), [ p(dp,do) - Vo)

2

2
(%) - LE L[ [fu(s,dr) (s, da)

- - J d
Py T — —_ ds.
JEa, PIE(r, P) dpe(r) 5 -e(q) ds
Since, for any r,

1/2
/[0 p) = 5@ PTG 2 dp| = ([ (T, 2) - T, 2))' )

<cp(q,q) by (L15),

* we obtain that the right-hand side of (*) tends to zero as N —» « as a
consequence of (1.31).

(iii) Because sup, ||K,;(-— p)ilL < ¢ < «, the analogue to step (ii) also holds
for the deterministic integrals for the right-hand side of (1.24). O
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To avoid cumbersome notation, we will assume for the rest of this paper
that I, in (1.17) and (1.18) is the kernel from Example 1.2.

3. Smoothness. Let A > 0 and set R, = A*(A — vA)~3. Note that, for
feH,, (A —vA)*f = [fe MT(¢t)fdt; that is, (A — vA)~! is the resolvent of
vA at A > 0. Since MA — vA)"1(I — vA) = MA — vA)"Y(I — A) + A, we have
that ||-|l-¢ and ||-|l_¢,A» are equivalent norms, where for f € Hy, |Ifll-¢,A» =
IR, fllo. Let 22(¢) be the solution of (1.22) as constructed in the last section
and set

X, =R\
Since McH_, for all @ > 2, X, , € H, ¢ Hj, whence on H,
X, \(t) = X, ,(0) + [VAX, ,(s) ds
0
(3.1) ~ ['V-R\(%(s)K; *2(5)) ds
0

—V2v [V By(#(s) dW,(s))

with W,(r,t) = [T.(r — p)w(dp,t) and (K, * uXr) = [K,(r — p)uldp), n €
M. In what follows we will assume, for any A > 0, [ X, ,(0)llp <~ a.s. Let
n € N. Then Itd’s formula yields

1%, 16" =X, 5"
+ [2vnl X, ()07 X X, \(5), MK, a())o ds

= [2nl1 X, i) 6" XK, (5), VRA(Z2(5) Ky 5 22(5)))o ds

(32) ~ [[2nV2r 1 X, () 6" X X, u(5), VRA(Z2(s) dW, ()
+ [2vnl X, \(s) 3" V[VR\(2(5) dW,())]
+[(4vn(n = DX, (o) [

X [(X,,1(5), VRA(Z(5) dW,(5)))o]

where [ ] denotes the quadratic variation (on H, resp. R).
In what follows we will assume that, for some given n € N and A > 0 (and
hence by the equivalence of norms for all A > 0), E|l X, LOIE™ < oo,
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3.1. LEMMA.

2 2
(8.3) |[VR\(Z(s) dW,(s))] +(X, \(5),AX, \(5)), ds| < ;”R).I%'(S)HO ds.
Proor. (i) ~
2
0

= AGELt];w];w/;)wexp(—A(ul + o +u6))f/fG(u1 + - tug,r —q)

B[R, (2:(9) .-~ pyu(ap, ds))

2 i
X Elg&;(%(s,dq)l“e(q—p))

9 )
Xg-r—l(%(s,dr)re(r —p)) dpdu, -+ dugds

= —A6E/:f0m/:/:exp(—)t(u1 + e tug))

X [ [(A,G(us + - +ug,r = q))e.(r — q)
X Z(s,dq)Z(s,dr) du, - dugds

with g (r — q) == exp(—|r — q|?/8¢).
(ii) Denoting the left-hand side of (3.3) by |By(s, &, A) dsl, we obtain

| By(s, &,1)ds| < )tefotfomfomf:exp(—)t(ul + - tug))

Xff|(AqG(u1 + - dug,r — q))

xX(1—-g.(r—q))2Z(s,dq)Z(s,dr) du; - dug dsl.

(iii)
-1 |r—gqf? Ir — ql?
|(AqG(u,r— q))(l —ge(r —q))| < —1;'; +W G(u,r - q) 8z
i 1 |r|?
31Ance| -g.(n)] =< .

2
< —
&

lr—q* 2lr—ql*

8vu 64v2u?

Ir — ql?
X —
P 8vu |’

2
G(2u,r —q) < —;G(2u,r -q).
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(iv) The previous calculations and the change of variables 2u; = v;, i =
1,...,6, imply

2
|Bi(s,&,0)| < ;"szl%l(s)”i‘

(v) Using standard estimates for the norm of the resolvent (p—vA)?
(cf. Davies [5], page 48) we obtain ||R, ,R;'l#u, < 1 and, by unique ex-
tendibility to H_g, [|fll-6,1,2 < |Ifll-6,, for all f € H_g4. From this we obtain
3.3). O

For sufficiently smooth functions f and F we obtain, for [ = 1,2,

J J
(34) 2<f,a—rl(f‘F)> =<f2,3r—lF>,
0

0

where f- F is pointwise multiplication. This implies

(85) 2(X, ,(5), V- (X, \(8)K, »2(5)))o =( X2 1(5), (V- K;) *2(s))o-

Set By(s, &, A) = (X, :(8), V(X,, () K5 *2(s)) — VR\(Z(5) K5 *2(5))),-
3.2. LEMMA.

(3:6) |By(s, e, )| < I K, lll1- 3| R,ZI(s) [

Proor. (i) Let f€ M, f, =R, f and F be a sufficiently smooth function
on R? with values in R2. Then

JA(r) [(%.G(u,r ~ 0))f(da)(F(q) - F(r)) dr

) Fi(q) — F/(r)

2 (p —
=ij(r)l>=:l(—;;f—’G(u,r—q)( p— )(ql—rl)f(dq)dr

<2l Fllf|f(r)|G2u, r - q)If(dq) dr

[similarly to step (iii) in the proof of Lemma 3.1].
(ii) Clearly,

UfA(")fG(u, r—q)f(dq)(V, - F)(r) dgdr

< IFlLf|A(r)|G(u,r - a)Ifl(da) dr,

where || Fllly = [l Fyllly + I Flll ;.
(iii) Again as in steps (iv) and (v) of the proof of Lemma 3.1, we obtain (3.6)
from the previous steps as well as from 2/(s) € M and |R,Z((s) < R,|Z|(s).
O
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In order to estimate the last term in (3.2) we proceed as follows. By (1.19)
and (3.4),

(3.7 2( X, \(8), (X, A(s) dWs(s)))(, = (X;{,‘(s),V : dWs(s»o-
3.3. LEMMA.
1
(38) ((X2:(),9-dW)o] < =11 X.,u(5) o ds-

PrOOF. Set f:=X2,(s). Then
E(f,V-dW,(s))

2
_ gEj]ff(r)f(q)%n(r P ofita ~p) dpdadrds

" 2 1/2
l§1Efff(r)f(q)(f(3%fs(r—p)) dp
P 1/2
X( —1" (g — p)) ) dqdrds
—8E(jf(r) dr) ds. O
3.4. LEMMA.

[ X.,.(s), VR\(2(s) dW,(5)))o]

(3.9 1 1
< 21X, (BRI + 1%, (D)) d

ProoF. (i) Equation .(3.7) implies
(X, :(5),(VX, \(5)) - dW,(8))o = =% X2 A(5),V - AW,(8))o-
(ii) From the deﬁnition of the quadratic variation and (i), we obtain
[ X.,.(s), VR\(2(5) dW,(5)))o]
< 2[(X,,,(5), V- Ry(2(5) dW,(5)) = (VX.,,(5)) - dW,(s)}o]

2[< A(s) A\ dW(s)>o]
(iii)) We have

V- R,(2(s) dW,(s)) — (VX,, \(5)) - dW.(s)
2 00 00 00
= lgl,\sj(; j; ](; — exp(Muy + uy + u:;))f;%G(ul +uy + ug,r—q)

x 2(s,dq) [T,(q — p)w,(dp, ds) du;dusdu,
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2 o0 o0 o0
- Y a8 exp(—Mu, +u, +u

l§1 /0 /0 /0 P( ( 1 2 3))

dJ

x[ -b;:G(u1+u2+u3,r—q)

XZ(s, dq)[f‘s(r —p)w,(dp,ds) du,du,du,
2 0 0 0

= A3 exp(—Mu, + u, + uy)) du, du, du

lgl_/(;_/(;fo P((123))123

XfG(2(u1 +uy +ug), r — q)2(s,dq)
8(r - q) Ir — qf? )

X

- exol —
8v(u, + uy + uy) P 8v(u, + uy + ug)

x [(T(q = p) = T(r - p))w,(dp, ds) }.
(iv) Hence, since T2_,|r;, — q,| < V2|r — q|/Ir — ql,
[V-R\(2(s) dW,(s)) — (VX,,:(5)) - dW,(s)]

< 128/\6'/;°°'/(‘)°°/(‘)°°exp(_)t(ul + o tug)) duy - dug
XffG(z(ul +uy + ug), r — q)I(s, dg)

X G(2(ugy+ us + ug), r — §)IZI(s, dq)

I’:s(q_p) _fs(r_p) I".;s'(q,'_p) _fs(r_p)
Xf( r—dl ( r—dl )d”

drds.

(v) By Example 1.2,

f(f‘s(q -p) -T,(r —p))2 dp = 2(1 — exp(—Ir — ql*/8¢) - 1

Ir — ql? Ir — gl T 4e’

Hence, by the Cauchy—Schwarz inequality the right-hand side in step (iv) is
bounded above by

32 . 32 ,
=R, a2l [ ds < IR do.
(vi) By Metivier and Pellaumail ([24], Chapter 2.4.2) and the last step,
[(X. .(s), V- Ri(Z(s) AW,(5)) = (VX, \(5)) - dW,(s))o]
<1, ) o RX, (o) [ s
This together with step (ii) and (8.8) implies (3.9). O
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3.5. LEMMA. Suppose a” = 0 and E|| X, L0)13" < , for some n > 1. Then
for any t > 0,

2n
(3.10) E" ,\(t)"o <exp(c(e,v,8, n)t)E" A(O) ”0
with
260v(n — 1) 4vn
(3.11) c(e,v,8,n) = " + + Tall K4l 1n.
&

Proor. Note that e can first stop at an arbitrary M < » such that
sup; ., o 1X, (s A m)l8” < M and [since X, ,(¢) has a.s. continuous sample
paths in HO] P{lim,, ., 7,; = ©} = 1. Then the previous lemmas imply

2
E|X, (¢t A 1) [a" < B X, ,(0)]l5"
< K, I 1anf0tE||Xe,A(s A )|l ds

(260vn(n -1) 4vn
+ +

&

+6a [l K, lll1n

x[Eu (s ATl
The Gronwall lemma implies (3.10). O

3.6. LEMMA. Suppose a = 0 and E||X,(0)|3" < », for some n = 1. Then
for any t > 0, Z(¢t,dr) = X (¢, r) dr and
(3.12) E|X.(£)[" < exp(c(e, v, 8,n)t) - E| X,(0) [[s"

where c(e, v, 8, n) is given by (3.11).
The proof follows from Fatou’s lemma. O

We will now derive the same estimates for the signed measure case. Set
F(s) = K, »Z(s).

We easily see that the positive and negative components of the empirical
process Z(t) satisfy the “bilinear” equation

(3.13)  dz(¢) = {vAZ(t) = V(Z()F(t))} dt — V2v V- (#(¢) dW,(?)),

where %(¢,25(0)) = 24 (¢t) and %(¢,25(0)) = 2y (t). Since the extended pro-
cess Z(t) is obtained by extending both the positive and negative components
[see (1.25)], we obtain Z(¢,2(0)) = 2*(¢,2(0) and Z(¢t,2,(0) =
2, (t,2,(0)) in the general case as well. On the other hand, only the “smooth-
" ness of K, s and I and 2(s) € M were used in the derivation of (3.10) and
(3.12), whence the same estimates also hold for Z*(t). Since (X7 (s), X;(s))o
= 0, we obtain [|X,()II} = IIX; (DI + 1 X, (DIE.
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3.7. ProOF OF THEOREM 1.8. (i) The 2n-integrability of X, (¢) as an H,-
valued process follows from the 2n-integrability of X (¢) and X (¢), whose
integrability properties follow from the corresponding properties of X,*,(¢)
and (3.12). The bound in (1.32) follows from (3.12).

(ii) Since the bilinearity between measures and smooth functions is an
extension of the.inner product on H,, X, (¢) satisfies (1.22). O

In What follows we will derive an expression for ||X€(t)||(2>" by Itd’s formula,
where X, (¢) is the density process for (1.22), as derived in Theorem 1.8. The
following lemma will be used at various steps in that derivation.

3.8. LeMMA. Let f,g € Hy N L,(R?,dr) and set g, =R, — Dgl +|g|,
where R, = R}, for some n > 1. Then, for any m > 1,

}i_r)rlffomj:j:exp(—)\(ul + o tu,,))A" du, - du,

(3.14)
X [G(uy + = +u,,r = )| f(g) — F(r)|dgg,(r) dr = 0.

- PrROOF. (i) Let & > 0 be given and denote the multiple integral on the
left-hand side of (3.14) by A(f, g). By change of variables p = (¢ — r)/ Vu,

J[G(u,r = ) f(a) = F(7)lax(r) dadr
= [[G(, p)|f(r + pVu) = F(r)|dpas(r) dr
_ ffB G(1, p)| f(r + pV) — £(r)|dpa,(r) dr

+[ [ G P F(r +pVa) = (r)|dpgy(r) ar

= Ap(u) +AL(u),
where B, = {p € R%: |p| < L}, Bf = R2\ B,, L > 0.
(ii)) On B, GQ1, p) < 2exp(—L?/8v)G(2, p), which implies
2
é
){||f”(2> +lglis} < =

Aiiu) < 2exp( 3

2 )

14

for L sufficiently large.
(iii) Let m denote the two-dimensional Lebesgue measure and set

F(r,u) = |£(r +q) = f(r)]dr.

m(BﬁL) '/;3‘/EL
We have
0< [ G(1,p)|f(r + pVu) = f(r)|dp < wL?F(r,u) >0 asu — 0,
: By

m-a.e. (m-almost everywhere) by the Lebesgue differentiation theorem.
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(iv) To conclude from (iii) that A;(v/A) - 0, A - =, for any v > 0, we first
set

Hf(r) = sup f |f(r +q)ldg,

(B)

which is the Hardy-Littlewood maximal function for f, and

Hf(r) = Hf(r) +IfI(r).
Let N € N. Then

fF(r, —K—)gA(r) dr = fﬁsz)F(r’ —K—)g,\(r) dr+ | F(r, %)gA(r) dr

{ {Hf<N}
= L(v,N) + I,(v,N).
(v) Our assumptions on g imply g, € H, N L,(R?,dr), and we easily

check that both {g,} and {g2} are uniformly 1ntegrable Hence, for any v > 0,
N eN,
IIL(v,N) -0 as A > x.

i) L(v, N) < 2(f1 35, n(r)gi(r) dr)/?|fllo = 0, as N - o, since {g}} is
uniformly integrable and m{Hf> N} - 0, and N — « (cf. Folland [11],
Theorem 3.17).

(vii) By steps (iv)—(vi) we first choose N = N(¢), for given & > 0, such that
L(v,N) < ¢/2, for all v, A, and then choose A = A(v, N, &) such that, for
A= Muv, N, &), II,(v, N) < &/2. This implies, for any v > 0, L > 0,

v
AL(j\‘) -0 as A — o,

(viii) By change of variables,

© L0 A0 v1+'--+vm
M) = [ oo+ o) oy = o 2 )
(f.8) j;j;]; xp(— (v, )) dvy v L I\

vy, + - tu,
it )

fo fo fowexp(—(vl + - +v,)) dvy - dvm(AL(W))

é
+ j—
2
by step (ii) for sufficiently large L. Since A,;((v, + --- +v,,)/A) < L2z 2(| fII3 +
llgll3), (vii) and Lebesgue’s dominated convergence theorem imply that, for
any L, the multiple integral in the right-hand side of (%) will be less than
8/2 for A > ML, §) = MI(8), 8). O

(*)

IA

3.9. LEMMA. Let f be a jointly measurable adapted H,-valued process
such that, for any T > 0, [TE|f(s)ls ds < . Then the stochastic integral
[o{F%(8),V - dW.(8))o defines a real-valued square-integrable continuous mar-
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tingale whose quadratic variation satisfies, for any 0 < s <t < », the rela-
tion

[f:(_fz(u),v-dVV;(u))o] B [fos( f2(u),V‘dWs(u))]

aZ
or, dq,

2
(3.15) = L [[[fnriea ;e - drdg

1 . 4
< 5 [1f @)l du.

Proor. We easily check that the quadratic variation is given by the
equality in (3.15). From this, the upper bound for its increments follows
immediately. Hence the existence of a continuous version of the stochastic
integral follows from standard arguments (cf. Metivier and Pellaumail [24],
Chapter 1.2.5). O

3.10. PrOOF OF THEOREM 1.9. (i) The assumption implies by Lemma 3.9
that the martingale on the right-hand side of (1.33) is a square-integrable
continuous martingale. Hence the right-hand side of (1.33) defines a continu-
ous real-valued process.

(i) We will first replace the martingale and the last quadratic variation
integral on the right-hand side of (3.2) by their limits [cf. step (iii) in the proof
of Lemma 3.4].

(ii.1) Set f(s) =X, (s), f\(s) =X, \(s) == R,Z(s). Then

(£(5),V-B,(f(5) dW,(s)) = (Vi(5)) - AW, (s))o

- fwfmfwexl)(_)‘(ul + uy + u3)) du duydu,
07070
2 d
X {lgl ff('leG(ul +uy +ug,r—q)|f(s,r)fi(s,r)

x [(T.(g = p) = T,(r - p))w(dp, ds) dgdr

2 (ri—q)lg —rl
- G(uy +uy, +ug,r —
lg’lff2v(u1+u2+u3) ( 14 2T )

X[f(s,q) _f(s’r)]fA(s’r)
L,(¢ = p) -T,(r-p)
Xf lg —rl
= I,(ds) + II,(ds).

w,(dp, ds) dqdr}
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(ii.2) The spatial and stochastic integrals in I,(ds) are equal to

a A,
ff(E*;G(ul +ugy +ug,r— q))f(s,r)f)‘(s,r)fl"e(q — p)w,(dp, ds) dgdr

, a
[since fa—r—G(u,r —q)dg=0
1

_[f(z%la(ul + uy + ug, r — q))f(s,")f;u(s»")

x [T,(q — p)w,(dp, ds) dgdr

ffG(ul + uy +u3,r—q)f(s,r)f)‘(s,rl)

f—r (¢ - p)w,(dp,ds) dgdr
by (1.19), Fubini’s theorem and integration by parts. Hence

I(ds) = wa()mj;wexp(—h(ul + uy + ug))A® duyduydug
2
X z¥1/fG(ul +uy +ug,r—q)fi(s,q)
J .
X[ 5g.5:(a ~P)wi(dp, ds) drda
2
+ % [fG(ul +uy + ug, 7 — @) (f(s,7) = f(5,9))ils:7)
x [~ —r(q p)w,(dp,ds) dgdr
+ lZ ffG(ul +uy + ug,r — q)(fi(s,r) —f(s,7))f(s,9)
=1 -
J .
x [ 7 Tla ~ pywi(dp, ds) dgar
2
+lz ffG(ul +ug + ug, r — Q)(f(syr) _f(s?q))f(s’q)
=1

s .
Xf?q—ll"e(q - p)w,(dp, ds) dqdr}

'S

= Z F; \(ds).

=1
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(ii.3) Clearly,
Fy (ds) =(£*(5),V-dW,(s)),
(ii.4) Then
[II,‘( ds)]

32 o .0 .o
< — exp(—AMuy + - +ug))Abdu; - du
- '/(; '/(; j;) p(—A(uy 6)) 1 6

x{fffG(z(ul +uy +ug),r — @)l £(s,9) — F(s, )| | fi(s,7)]
XG(2(uy + ug + ug), 7 — §)| f(s,4) — f(s,7)]
lel\(s,i‘)l} dqdrdgdrds

(by the techniques used in the proof of Lemma 3.4) — 0, as A — « (by Lemma

3.8).
(ii.5) Similarly,

[F, \(ds)] >0 asA—wfori=24.

(ii.6) Then
2
[F5.1(d0)] = X [ [ IR = D (s, ) I(R, = D f(s,7)]

xj;)j;j;) Aexp(—A(uy + -+ +ug)) du, - dug
X G(uy +ug +ug,r—q)G(uy +us +ug, 7 —§)
~ a T ﬂ T~ ~
le(s,Q)llf(s,q)I.fa—%Fs(q—p)a—dlfe(q—p)dp
X dqdgdrdrds
< (R, = DFRIRIA ds > 0 as 2 e

(ii.7) Since f2(s,r) = f2(s,r), dP ® ds ® dr-a.e. and f?2(s) uniformly inte-
grable,

[(£2(s),V-dW,.(s))o] = [(£2(s5),V-dW,(s)),|, dP ®dt-ae.asr -,

,whence we obtain uniform convergence on bounded intervals of the corre-
sponding stochastic integrals. Using the identity

(£ (VF) AW, (s))o + ¥ f2(s5),V-dW,(s)), =0
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we obtain
(*) - fot< £i(8), VR,(f(5) dW,(8)))o = —%fo? f2(5),V - dW,(8)),

in mean square, uniformly on bounded integrals. First of all, the preceding
arguments show that the last quadratic variation integral in (3.2) tends a.s.
to the corresponding integral in (1.33) uniformly on bounded intervals. More-
over, by choosing a subsequence A — « in (*), we obtain that the martingale
in (3.2) tends to the martingale in the right-hand side of (1.33) a.s., uniformly

on bounded intervals.
(iii) Next we will consider the first quadratic variation integral in (3.2)

plus the first integral (containing (X, ,(s), AX, ,(s))o). Using the notation of
the proof of Lemma 3.1, we obtain

B,(s, &, )

o]

B /\6'[000-[0 fowexp(_)‘(ul o ";ue))du1 - dug
X [X2(s,7) [(A,G(uy + = +ug,r — q))
X(1-g.(r—gq))dgdr
A [ exp( A+ ) iy
X [ [(8,G(uy + = +ug,r — q))(1 ~ 8.(r — 9))
X(X,(5,9) = X.(s,))X,(s,7) dgdr

= I,(s) + I(s) [ (A,G(u,7 — 9))(1 ~ &.(r —q)) dq

2 _ 2
- U G - g)e(r - 9) da

(after integration by parts)

Thus, I,(s) = 1/2£[X,(s)l§. Also II,(s) - 0, as A — = by the same estimates
as in the proof of Lemma 3.1 and by Lemma 3.8. By step (iv) in the proof of
Lemma 3.1 and ||R,|l#w,) < 1, this together implies that a.s.,

vn
2vn ['| X, \(5) 5" " By(s, &, 1) ds » — [ X,(s) " ds
0 . € 70

uniformly on bounded intervals, as A — .
(iv) Set f(s) = X,(s), fi(s) =X, ,(s) and F(s) = K; * f(s).
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(iv.1) Then
(fi(8),V-Ry(f(8)F(s)) — (Vi(8)) - F(8))o

- fmfw,[wexp(*)‘(ul + uy + ug))A® duyduydug
0

X{, 1”’“8 N G(u1+uz+u3, r—=a)f(s,r)
X[Fl(s q) —F,(s r)] dgdr

+ Z f/fA(s ) G(ul +uy + ug,r = q)(f(s,9) —f(s,7))

X[Fy(s,q) — Fy(s,r)] dqdr}

= L(s) + II,(s).
(v.2) I(s) = {fi(s)f(s), RV - F(s))o = {f*(s),V-F(s))o, as A > », dP ®
dt a.e. by the continuity of V - F(s).
(iv.3) II,(s) —» 0 as A — « by the estimates in the proof of Lemma 3.2 and
by Lemma 3.8. By Lemma 3.2 and similarly to step (ii.7), this implies a.s.

2n [[1X, ()0" XX, u(5), V- Ru(X, () K * X,(5))o ds

iR nfotlle(s)llg("—D< X2(s),(V-Ky)* X,(5)), ds

uniformly on bounded intervals.

(v.1) By the previous steps, the convergence of (3.2) to (1.33) is uniform
a.s., S0 we may assume that on the same measurable set (0, with P(Q,) = 1:
(1) X (¢) € H, uniformly in ¢; (2) R,Z = R, X, is continuous with values in
H,; 3 I X,()llo is continuous.

v.2) If ¢ € Hg and o € Q, then

(X(8) = X,(5), Dol =KX a(8) = X,,1(), B9l
‘ <[ X,,\(2) = X, :(s) oI RS ello = O,
as [t — s| = 0. That is, for w € Q,, X,(-) is weakly continuous if restricted to
H,. Now it follows by a standard argument that X,(-) is weakly continuous
on all of Hy, if & € Q,, since sup,_, .7 I X, (D)llo < © on Q,, for any T > 0.
The continuity of || X_(¢)llop now implies (1.34).

(vi) Inequality (1.85) follows easily from (1.32), (3 15), (1.33) and the
Burkholder-Davis—Gundy inequality. O

3.11. REMARK. Inequality (1.33) for n =1 shows that our stochastic
Navier—Stokes equation cannot be treated by the usual variational methods
on H, (cf. Pardoux [28] and the generalization of Pardoux’s variational
approach by Krylov and Rozovskii [21]).
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Finally, we prove uniqueness for (1.22) in the bilinear case.

3.12. PrROOF OF THEOREM 1.10. () Z,(¢) = Y,(t) — X,(t) = — V2v [{T(t —
sV(Z,(s) dW (s)).
(i1) Similarly to the derivation of (1.33), we obtain

2 Vot 2
E|Z,()ls = [ El Z.(s) s ds,
0
which implies (*) in Theorem 1.10 by the Gronwall lemma. O

3.13. REMARK. It is possible to derive uniqueness for (1.22) also for the
case when K # 0 since both the “smoothed” Euler equation and the diffusion
equation (K; = 0) have unique weak solutions (cf. Kotelenez [19]).

4. The macroscopic limit. Let {r, y},., ={r, y(,ry(0)},., be the
R?M_valued solution processes of (1.18) which, for any & > 0, start in the
same initial position ry(0).

4.1. LEMMA. The family (r, ), o is relatively compact on C([0, ), R?N).

Proor. (i) Since K, bounded and E|[¢(T.(ri(s) — p)w(dp, ds)|® = 2¢, we
obtain, for any ¢ > 0, a ¢(N, ¢, a) < » such that

Elrit) _ e(N.1)
M =T ME
which implies the compactness condition for the marginals r, y(¢), V¢ > 0.

(ii) To obtain the “modulus of continuity” we compute a bound for the
conditional expectation for 0 <s <t < T:

E||ri(e) - ri(s) 1] < 2822t - 0)* + 4t - 5).

(iii) Together (i) and (ii) imply relative compactness of r, 5 by Theorem
3.8.2 of Ethier and Kurtz [10] and the fact that the metric on the Skorohod
space D([0,»); R?V) restricted to C([0, »); R?V) is equivalent to the metric of
uniform convergence on bounded intervals. O

P{|ri(t)| > M} <

Let By =(BL,...,B"Y) be a standard R?"-valued Brownian motion de-
fined on (Q,%,%.,, P). Further, set 7,:=inf{t > 0: r, y(¢,ry(0) € Ay},
where A, was defined by (1.36). Define continuous square-integrable martin-
gales M, y = (M},...,MY) by

Mi(e) = [ [T(ris) — p)w(dp, ds) + [ B(2) = B*(2)] Lz sy

i=1,...,N, where we set B(r,) = 0, if 7, = . Denote by = weak conver-
gence.
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4.2. LEMMA. Suppose ry(0) & Ay a.s. Then
(4.1) M, y = By onC([0,°);R2Y).

ProOOF. (i) By the martingale central limit theorem, all we have to show
is that the mutual quadratic variations of M, y, (M5!, M} *)(¢), tend for any
¢t > 0 in probability to ¢-§; ;§, , for i,/ =1,. ,N and [,k = 1,2, where [
and % index the one- d1mens1onal components of M (resp M) (cf. Ethier
and Kurtz [10], Theorem 7.1.4).

(ii) By Lemma 4.1, for any n > 0, there is a compact set K, C B =
C(0,»); R?Y) such that inf, P{r, x(-,ry(0)) € K } > 1 — n (Ethier and Kurtz
[10], Theorem 3.2.2).

(iii) Let B, = {gy(-) € B: qN(O) & Ay} and set 7 := inf{t > 0: qN(t) € AN}
Recalling that g,(r) = exp(—|r|®/8¢), r € R2, we define for i, j € {1,..., N}
mappings G*’: [0,1] X B, » C([0,»); R) by

[O " g.(a'(s) — ¢’(s)) ds

Gean()O) = w(t-n)1,.,-8,, ife>0,

£ 9 ;s if e=0.

Clearly, G*/ are continuous from [0, 1] X B, into C([0,»); R). By assumption,
K, c B, and K; is compact [cf. step (ii)]. Therefore, the restriction of G¥/ to
[0,1] X K, is uniformly continuous. In particular, for any p > 0 and 7'> 0
there is an &,; > 0 such that sup,, )cx, sup, ., .7 G*/(¢, qy(N2) < p, for
all & < ¢;; and i # j. The definition entails a.s. G*/(e, ro N = (ME! M2,
forl =1, 2 Hence, for £ < & cand i #j, Plo: (M}!, MJ De)>pt<n. Smce
w, and w, are independent, (4 1) follows. O

Next we consider the more classical SODE for the positions of point
vortices (cf. Marchioro and Pulvirenti [23]), where we assume the same initial
condition ry(0) & Ay as for r, y(-):

N,
(4.2) dri= Y aKs(r' —r/)ydt +v2vdp, i=1,...,N.
J=1

Clearly, (4.2) has a unique global continuous solution ry (-, ry(0)).

If gy € R*Y, we define F(qy) = (Fl(qy),...,FN(gy)' by Fi(qy) =
E}V:IajK,;(qi — ¢’) and we define a continuous map ¥: B, » B, as the
“pathwise” solution of the ODE:

¥ (an())(E) = [F(¥(an())(5) ds + an(2)-
Further, let B, , = {qy() € B,: qy(¢) = qy(¢t A 7)}, where 7 is the first

entrance time of g, into A as defined in step (iii) of the proof of Lemma 4.2.
D(qy(IN2) == W(gy()Xt A 7) defines a continuous map &: B, —» B, , which



1156 P. KOTELENEZ

satisfies

43)  ®(ay())(®) = [F(®(an())(s)) ds + qu(t A 7).

For qy(t, ) = M, y(t, ) + ry(0, ®), ® is the solution of (1.18)if t < 7, and,
for g5(¢, ®) = BN(t, w) + ry(0, w), ® is the solution of (4.2) if t < 7,, where
1o = inf{¢: ry(¢, ry(0)) € Ay}. Since Ay is nonattainable for (4.2) with r,(0)
& Ay, 7, = ® a.s. (cf. Friedman [12], Corollary 11.4.3).

4.3. THEOREM. Suppose ry(0) € Ay a.s. for all N € N. Then & — 0 im-
plies

(4.4) re,n(rx(0)) = ry(,rn(0)) on C([O,oo);R“’),

ProoF. The continuous mapping theorem (cf. Ethier and Kurtz [10],
Corollary 3.1.9) implies r, y( A 7,, ry(0)) = ry(:, ry(0)) by the preceding con-
siderations. This in particular implies, for any ¢ > 0,

lif% sup P{r, (¢ A 7,,75(0)) € Ay} < P{ry(¢,7y(0)) € Ay} =0,
whence lim, (7, =~ as. O

We can now derive a macroscopic limit theorem as an easy consequence of
our Theorem 4.3 and of Theorem 4.2 of Marchioro and Pulvirenti [23]. Recall
that X(-, X(0)) is the solution of (1.1) with initial condition X(0), where we
assume that (X £(0, r) dr = a*. Further, denote by %} ;(¢,2y(0)) the empiri-
cal process associated with ry(:, ry(0)), the solution of (4.2) [cf. (1.5)], where
2,0) =T ,a,8,i,, and 2 ;(¢,24(0) is the empirical process associated
with (1.18), which is a solution of (1.22). Now & indicates the dependence on
the smoothing in Kj.

4.4. PROOF OF THEOREM 1.11. By Marchioro and Pulvirenti [23] there is a
sequence 8(N) — 0 such that, for any p > 0, ¢ > 0 and N = N(p, ?),

' |E<?N,5(N)(t), ‘P) —<X(t),go)| < g

Moreover, by Theorem 4.3 for p and N(p, ¢) there is an &(N(p, t)) such that,
for £ < e(N(p, ),

p
| B2, sucorinr @ = B v, svco, (2 9 < 2" =

4.5. REMARK. Theorem 4.3 implies in particulai' that

<22,s(t)» ‘P) =’<%v,a(t)» ‘P) as ¢ >0,

if ry(0) & Ay as. for all N. This means that we do not obtain a macroscopic
distribution if £ — 0, but N remains fixed, that is, if the vorticity keeps being
concentrated in points.
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However, we also expect macroscopic behavior for already smooth initial
conditions, that is, where X_(0) € H,, or smoother if £ — 0.

5. Bilinear equations and generalizations.

5.1. REMARK. We may choose g; = const. and thus K; = 0 and all results
from Sections 2—4 will hold for the mild solution of

(5.1) d#(t) = vAZdt — V2v V - (Z’ff‘s(-,p)w(dp,ds)).

(In the macroscopic limit we just ignore K;.) Moreover, the results are not
dimension dependent (even in the semilinear case working with some ab-
stract smooth K;). An equation of type (5.1) was suggested by Molchanov [25]
to describe the temperature field in a random flow.

The extension of our results to the vector-valued case is straightforward. In
particular, by discretizing the momentum (see Kotelenez and Mann [20]), we
can easily obtain by this approach a stochastic Navier—Stokes equation for
the velocity field of a two-dimensional fluid. Again this equation would consist
of the macroscopic NSE plus a state dependent fluctuation term of small
order, similar to the stochastic term in (1.22). The salient feature in our
approach is the derivation of the fluctuation term in (1.22) from the fluctua-
tion “force” acting on the positions of the vortices, that is, its derivation from
a microscopic model. This inevitably leads to a state dependent fluctuation
term in (1.22) with the advantage that certain physical properties are con-
served. Note that perturbation of a (parabolic) PDE by a state independent
(Gaussian white noise) fluctuation term may deprive the resulting SPDE of
the physical meaning attached to the PDE. This was shown for the
reaction—diffusion equation (RDE) in Kotelenez [18] (a RDE perturbed by
state independent white noise would no longer yield nonnegative solutions, so
it could not be interpreted as a description of a mass distribution). A similar
statement can be made concerning our NSE (1.1). Perturbations by state
independent Gaussian white noise would yield solutions which do not pre-
serve the orientation (which they should as a consequence of the conservation
of the angular momentum; cf. Kotelenez and Mann [20]). Although adding
Gaussian white noise to a PDE may render the resulting SPDE physically
meaningless, it leads to a sometimes mathematically more accessible formal-
ism and is widely used. For the NSE (for the velocity field), examples of this
approach are Bensoussan and Temam [2], Albeverio and Cruzeiro [1] and the
last chapters in Vishik and Fursikov [34]. It should be mentioned that a
“justification” for adding a state independent noise is the argument that this
presents an external random force acting on the system. Since it is hard to
see how an external random “force” can make a distribution of particles
negative, we believe that this kind of reasoning is not correct. One can, of
course, let state independent fluctuation “forces” act on the positions of
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particles as done in (1.10), and one may therefore interpret the “forces” as
external ones (in the spirit of the Ornstein—Uhlenbeck approximation to the
Einstein—-Smoluchowski theory of Brownian motion; cf. Nelson [26] and also
van Kampen’s comments on this interpretation [33], page 247). However,
(1.10) leads to .the (formal) SPDE (1.11) which also has a state dependent
noise term. Moreover, in both (1.22) and (1.11) the resulting state dependent
fluctuation term comes from the diffusion alone Gf v = 0, then there are no
fluctuations). On the other hand, if we include creation and annihilation, then
there would be an additional (state dependent) fluctuation term (see
Kotelenez [16] and also Dawson [6], where in [6] the resulting fluctuation
term is due exclusively to the branching of particles). Let us briefly comment
on correlations between the fluctuation “forces” acting on the positions of the
vortices (resp., particles), which are more general than those given in (1.18).
Such an assumption would yield an SPDE with state dependent diffusion
coefficient, that is, a quasilinear SPDE (see Vaillancourt [32] for such a
particle system as well as Kotelenez [19]). This generalization seems to be
quite natural in areas like physical oceanography, where the molecular
viscosity has to be replaced by the so-called eddy diffusion coefficient. The
empirical determination of those coefficients yields spatially dependent dif-
fusion coefficients (see Olson [27]), which will be distorted by noise (such as
weather, etc.). Thus a more general task is to derive an SNSE (and its
natural generalization) with state dependent diffusion coefficients, which
have to be determined by some sort of smoothing procedure. This will be done
in a forthcoming paper (cf. Kotelenez [19]).

5.2. REMARKS. (i) The generalization of the inviscid case to the viscous
case can be interpreted as follows. In the inviscid case, the mezoscopic and
macroscopic models coincide and are given by the Euler equation. In the
viscous case, the mezoscopic and the macroscopic models are different. Fur-
thermore, the mezoscopic model is described by a family of stochastic
Navier—Stokes equations indexed by the small noise parameter &£ > 0, and
the macroscopic model, given by the Navier—Stokes equation, should be the
limiting case of & = 0 (and the limit for £ — 0).

(ii) All results of this paper can be easily extended to higher dimensions
for (abstract) particle systems as long as there is no creation or annihilation.
The two dimensionality in this paper is only needed for the particular
physical interpretation.
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