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PROBABILISTIC SEARCH WITH OVERRIDES

By BENNETT L. Fox! AND GEORGE W. HEINE

University of Colorado

Consider a time-inhomogeneous Markov chain which converges in
probability to a subset S, of its state space. Override the standard move
mechanism up to a random transition time, almost surely finite, but not
necessarily a stopping time. Under weak conditions, the modified process
converges in probability to the same set S,. Two examples of independent
interest illustrate this result.

1. Introduction. Under various conditions, the (nonhomogeneous)
Markov chain (X(1), X (2) .) of simulated annealing [see Kirkpatrick, Gelatt
and Vecchi (1983) or Cerny (1985)] converges in probability to the set S, of
global optimizers. Suppose that we modify the search strategy on a random
but finite number of steps. In particular, let the search strategy have its
standard move mechanism overridden up to a random time N, assumed
almost surely finite. Just after N, the standard move mechanism takes over.
We show that the current state of the modified process converges in probabil-
ity to the set S, of optimal states if the current state of the original process
does; that is, the Markov chain associated with the modified process con-
verges in probability to S, whenever this is true in the unmodified process.
Our main result states this assertion precisely. Interestingly, our result holds
under certain conditions even when N is not a stopping time. The result is
not surprising; in fact, it would be surprising if it were false. However, the
proof, for N not a stopping time, seems to require more subtlety than one
might expect.

An obvious goal of overrides, espec1a11y with N a stopping time, is to
shorten the number of moves in the chain X to first hit the set S, of optimal
states. The examples in Sections 3 and 4 show uses for overrides when N is
not a stopping time. In Section 4, the setting is noisy objective functions.
There, the goal is not so much to shorten the time to first hit S, but to hit S,
repeatedly, to refine as quickly as possible our estimate of the objective-func-
tion value on S,.

The set S, can be an arbitrary measurable subset of S, not just the set of
global optimizers, and the Markov chain associated with the process does not
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have to arise from simulated annealing. We phrase our theorems in terms of
generic probabilistic search, but our results are not limited to that setting.

The remainder of this paper is organized as follows. Section 2 gives
notation and definitions and states our main result and a slight generaliza-
tion. Sections 3 and 4 give examples where N is not a stopping time. Proofs of
our main result and a generalization are in Sections 5 and 6.

2. The basic theorem. We are given a state space S. A probabilistic
search algorithm on S is a (generally nonstationary) Markov chain
(X(), X(2),...), where the probability distribution of X(% + 1) given X (k) is
computed according to some (generally time-dependent) rule, which we call
the standard move mechanism. We modify the chain so that the rule can be
overridden up to and including transition number N, assumed a.s. finite. The
result is a new Markov chain Y(:), also generally nonstationary.

Let S, be an arbitrary measurable subset of S, not necessarily finite. Both
our theorems require that the unmodified chain X(-) converge in probability
to S, from any starting state at any initial time. More precisely,

(1) im infPr(X(k) € Sy 1X(n) =x)=1,

1
koo x€s

for all positive integers n. Condition (1) holds when S is a compact subset of
finite-dimensional Euclidean space and the density for proposed moves is
uniformly bounded away from zero over S, along with certain other weak
conditions detailed by Bélisle (1992). In fact, examination of his proof shows
that, for finite S, it is enough that, from every state in S, there is a path to S,
on which the objective function is nonincreasing. However, this condition is
stronger than is generally assumed in finite-state simulated annealing. When
S is finite, we can replace (1) by the simpler condition

(2) ’gi_l)rgoPr(X(k) €S, X(n)=x)=1,

for all states x in S and all positive integers n. Various sets of conditions
which imply (2) when S is finite are given by Chiang and Chow (1988),
Connors and Kumar (1989), Hajek (1988) and Tsitsiklis (1989). Thus, (1) and
(2) are compatible with sufficient conditions in the simulated-annealing liter-
ature.

The epoch of the last override must be almost surely finite, but we do not
require it to be a stopping time. It is enough that the override mechanism
stops eventually and has no further influence on the destiny of the process.
Denote by (Y(%k), £ =1,2,...) the Markov chain of moves with overrides
possible, and by N the epoch of the last override. We assume that there exists
a-family {Z(n, - ): n > 0} of Markov chains such that the following hold:

() The chains Z(n,-) and Y(-) coincide exactly up to time n; that is,
Z(n,k,w) = Y(k, w) for k < n and every w in the probability space.
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(ii) After time n, the transition probabilities of Z(n,-) and X(-) are the
same; that is,
Pr(Z(n,k+1) =yl Z(n,k) =x) =Pr(X(k+ 1) =y | X(k) = x),
for k>nand x,y € S.
(iii) There exists a random time N, a.s. finite, such that Z(n,k,w) =
Y(k, ») for all & on the set {N(w) < n}.

Here is the intuition for this structure. We start with the unmodified process
and define a sequence of processes in which random overrides are allowed,
but only up to a deterministic time n. Each process Z(n, - ) couples with Y(-)
up to time n and behaves stochastically like X(-) after time n. We can
characterize Y(j) as lim, _,, Z(n, 7). The limit is attained for some finite 7,
which can be chosen uniformly in j.

Here is our main result.

THEOREM 1. Assume (1) and conditions (i)—(iii). Then (1) also holds for
the chain Y.

For reasons explained in Section 4, it is sometimes desirable to replace (ii)
with some weaker condition. The following is one such:

(ii’) There exist constants n,, 1,,... such that I} _,7, < «, and, for all x, y
in S and all £ > n and for all n large enough,

Pr(Z(n,k+1)=y|Z(n,k) =x) = (1 —m,)Pr(X(k+ 1) =y | X(k) =x).
It is not usually clear how to check that (ii’) holds.

THEOREM 2. The conclusion of Theorem 1 continues to hold if we assume
only (i), (ii') and (iii).

We prove Theorem 1 in Section 5, and Theorem 2 in Section 6.

3. Example 1 (Self-loop skipping). Fox (1993) introduces an algorithm
QUICKER (stated at the end of this section). It prunes the sequence of states
visited of self-loops of the form x —» x —» -+ — x, retaining only the first
state in each self-loop, while preserving the convergence property (1) of the
simulated annealing algorithm. Although QUICKER does require the evalua-
tion of the objective function at every neighbor of the current state, Fox
(1993, 1995a) for finite S and Fox (1995b, c) for general S give a rationale
that the procedure might nevertheless be desirable. Here we use QUICKER,
rather than the naive algorithm, as the standard move mechanism. Fox
(1995a) and Heine (1994) show that its use can lead to a significant decrease
in computer time over the naive algorithm. They make this notion precise
and give sufficient conditions for it to occur.

To illustrate our theorem, we truncate QUICKER to QUICKER-j, stated
below. Truncated QUICKER differs from the original version in that the
former is forced to exit after at most a user-specified number j of iterations of
its inner loop (in the original version, that number is unbounded stochasti-
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cally). Heine (1994) shows how to pick j to make N, here the last time
QUICKER takes more than ;j iterations, finite almost surely. In fact, Heine
(1995) shows that under broad conditions we never need pick j larger than 2.

We cannot say that QUICKER-j shortens the time to first hit S,. However,
QUICKER-j shortens computer time per accepted move and is essential to
synchronize parallel processors with SIMD architecture executing (stochasti-
cally) independent runs of simulated annealing. See Fox (1993) for details.
Theorem 1 shows that (1) is preserved under QUICKER-;j.

Now we state QUICKER-j, noting that QUICKER-» is QUICKER. Let
a(x,k) =Pr(Y(k+1) #x|Y(k) =x)

be the probability of accepting a proposed move to a new state y when at
state x at step %, and let G(«x, k) be the trial number of the first success in iid
Bernoulli trials, each with success probability a(x, ). The point of QUICKER
is to generate

L =arg Ilrlin{Y(l) +Y(i)} -1,

the transition number on which Y next moves to a different state Y(L + 1),
when it entered the current state x on move i. Given L, we generate
Y(L + 1) with NEXT using the temperature at simulated time L; this is
routine. Fox (1993, 1995a) proves that L is stochastically the same as what
the naive algorithm would produce. Below, Exit means go to the next state.
Inputs are the parameter j defined above, the current state x, the current
simulated time ¢, the cooling schedule, and the neighborhood of x.

ALGorITHM (QUICKER-)).

Set b <t
Seti < 0

Until exit, repeat
Seti —~i+1

Generate a geometric variate G(x, k)
Set L « k+ G(x,k)—1
Set V « uniform (0, 1) r.v.

IfV<alx,L)/a(x,k) |ori>j| then

Executc NEXT(x, L)
Reset simulated time to L + 1
Exit
Else
Setk«—L+1
End

With the boxed statements deleted, QUICKER-j reduces to QUICKER.
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4. Example 2 (Noisy objective function). Consider simulated anneal-
ing when the objective-function value at a state x must be estimated by a
measurement H(x) with expected value f(x). Although f is unknown, we
can observe H(x) whenever we visit x. Perform simulated annealing with
tentative-move and acceptance probabilities formed dynamically from some
estimate f( ), based on history of observed H-values. For simplicity, assume
that S is finite. Other than the conditions below on f(-) and £(), we introduce
no additional restrictions.

Until further notice, assume that there are only a finite number of possible
values for f(x) at any state x (e.g., a subset of the computer-representable
numbers such as integer multiples of 0.001 between 0 and 1). We show at the
end of this section how this requirement can be relaxed by using Theorem 2
in place of Theorem 1. In effect, until then we accept finite precision in our
knowledge of f(-). We assume that the estimator f(-) is consistent and that
every state is visited infinitely often. [See Fox and Heine (1995) for a way to
get a consistent estimator.] Hence, from some time N, a.s. finite, onward, the
vector of f-estimates coincides with the vector of true f-values. In this setting,
the standard move mechanism is simulated annealing using the true f-values
in the computation of the move probabilities. The modification uses the
dynamically updated estimates f Our theorem says that if simulated anneal-
ing converges in probability to S, with f(-), it also converges with the
consistent estimator f(-).

Fox (1995b) shows how to use the setup of this section to embed an
experimental-design problem in simulated annealing.

4.1. Previous literature. Yan and Mukai (1992) have previously consid-
ered such situations. They consider only the case where the matrix of
proposed-move probabilities is symmetric. The probability of accepting a
proposed move is itself a random variable, typically estimated by multiple
measurements of the objective-function value of the tentative next state. The
number of measurements required for each move required is large and grows
without limit as the algorithm proceeds. No account is taken of measure-
ments at previous visits.

Gelfand and Mitter (1989) study an approach similar to ours. They assume
that the tentative moves are independent of objective-function values, that
measurement errors are Gaussian and state-independent, and that the maxi-
mum noise variance at any state gets small sufficiently fast that its product
with the logarithm of the probability of the move which increases objective-
function value goes to zero. Like our condition (ii’) of Section 2, this last
condition seems hard to check.

4.2. Generalizing. Neither of the above studies limit f(s) to a finite set of
values. As indicated above, we do not consider this an important restriction.



1092 B. L. FOX AND G. W. HEINE

However, we indicate briefly how to remove it. The price is to replace (ii) with
the weaker condition (ii’). Roughly speaking, (ii') says that the ratio of
transition probabilities in the modified and unmodified chains must approach
1 sufficiently fast. Although something like (ii’) seems to be needed, perhaps
there are other, more easily verified conditions. If so, we are not aware of
them.

If the estimators f(-) are consistent, but not necessarily restricted to a
finite range, then at a random but a.s. finite time N, || f(x) — f(x)Il < &, for all
x, for any prescribed £ > 0. Although N is not a stopping time, our Theorem
2 shows that this does not matter. We need to show that knowing the
objective-function values to within an arbitrary ¢ suffices. In most formula-
tions of simulated annealing, this is quite straightforward. For example,
Heine (1994) shows how convergence is implied by a theorem in Hajek (1988),
assuming the conditions in that paper.

5. Proof of Theorem 1. Let &£ > 0 be arbitrary. Let ¢(m) be the small-
est integer larger than m that satisfies

(3) iggPr(X(t) €Syl X(m)=x)>1-¢,

for all ¢ > ¢(m). We now show that the function ¢(-) is nondecreasing. Select
n > ¢(m + 1). Then

(4) ingPr(X(n)ESOIX(m+1)=y)>1—s.
ye

Applying the Chapman—-Kolmogorov equations, we have, for any x in S,

Pr(X(n) € S, | X(m) = x)

= ZSPr(X(n) €Syl X(m+1)=y)Pr(X(m +1) =y|X(m) =x)
> iggPr(X(n) €S, X(m+1)=y);

this, together with (4), implies that n > ¢(m).
Since ¢(-) is nondecreasing and grows without limit, there is, for £ > ¢(0),
a unique integer ¢*(k) such that

d(d*(k)) <k < $(d*(k) +1).

Note that the function ¢*(-) is also nondecreasing and grows without limit.
Take any & > ¢(0); write v for ¢*(%). By condition (ii),

Pr(Z(¢*(k), k) €8,) inEIEPI‘(Z(V,k) €8yl Z(v,v) =x)

\%

(5) inf Pr(X(k) S, 1X(») =x)

>1-e.
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To finish the proof, we use a variant of the coupling inequality [see, e.g.,
Asmussen (1987), page 143]. By conditions (i) and (iii), the chains Z(»,-) and
Y(-) coincide exactly for all time on the set {N < v}. Thus

|Pr(Z(v, k) € Sy) — Pr(Y(k) € S,)|

(6) =|Pr(2(v, k) € So, N = v) = Pr(Y(k) € Sy, N 2 v)|
< Pr(N = v).
We have proved that, for arbitrary &, for all large %,
Pr(Y(k) € Sy) > 1 — &~ Pr(N = ¢*(k)).
As remarked above, the function ¢*(-) is nondecreasing and grows without
limit; by condition (iii), this completes the proof. O
6. Proof of Theorem 2. Note first that (ii') relates the j-step transition
probabilities in Z(n, ) and X(-). In fact, for all n large enough,
Pr(Z(n,k+2) =y|Z(n,k) =x)
>2(1-m)(1-m+1)
X Y Pr(X(k+2)=y|X(k+1) =2)Pr(X(k+1)=z|X(k)=x)

zeS
= (1= m)(L = M )PR(X(k +2) =y | X(k) = x)
2 exp(—m, — M4 1)Pr(X(k +2) =y | X(k) = x),
and, in general,
Pr(Z(n,k +j) =y |Z(n,k) =x)

k+j-1

- X ni)Pr(X(kw) =y 1X(k) =2).

> exp

Given ¢, define ¢(m) as in the proof of Theorem 2. Given &, let M be large
enough that exp (—X7_,_;m;) > 1 — 8. Proceed as in the proof of Theorem 1,
except choose & > ¢(M). This implies that ¢*(k) > M — 1, so that

Pr(Z(¢*(k), k) € Sy) = inf Pr(Z(v, k) € Sy | Z(v,v) =)
k-1

> exp(— Z le) inf Pr(X(k) € Sy | X(v) =x)

J=v

Jj=M-1
> (1-8)(1— &).

Since & and & can be chosen arbitrarily small, the proof now goes through as
before. O

k-1 '
> exp(— )y nj)(l - )
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