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CONVERGENCE RATE AND AVERAGING OF
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The first aim of this paper is to establish the weak convergence rate of
nonlinear two-time-scale stochastic approximation algorithms. Its second aim
is to introduce the averaging principle in the context of two-time-scale sto-
chastic approximation algorithms. We first define the notion of asymptotic
efficiency in this framework, then introduce the averaged two-time-scale sto-
chastic approximation algorithm, and finally establish its weak convergence
rate. We show, in particular, that both components of the averaged two-time-
scale stochastic approximation algorithm simultaneously converge at the op-
timal rate \/n.

1. Introduction. Let
d d d d d d
f:{R x R4 - R and g:{]R x R4 > R
O, )= f(O, 1) O, 1) > g0, w

be two unknown functions, and let (6*, 1*) be the unique solution to the equations

fO,n)=0 and g(0,pn)=0.

Assume that error-contaminated observations of f (6, u) and g(6, ) are available
at any level (6, i). The two-time-scale stochastic approximation algorithm, which
allows the recursive approximation of (8%, u*), is defined as

(1) 9n+1 :0n+,3nxn+l,
) HUnt1 = Mn + VaYni1,

where X,+1 and Y,4; are error-contaminated observations of f(6,, u,) and
g6y, un), respectively, and where the step sizes (8,) and (y,,) are two positive
nonrandom sequences converging to zero with different rates.

Over the past few years, several such algorithms have been proposed for vari-
ous applications (see [1, 3, 4, 12, 13]), and criteria ensuring the almost sure con-
vergence of (0, ,) to (6%, u*) have been established by Borkar [5], Konda and
Borkar [12] and Konda and Tsitsiklis [13]. To our knowledge, the only existing

Received February 2005; revised March 2006.

AMS 2000 subject classification. 621L20.

Key words and phrases. Stochastic approximation, two-time-scales, weak convergence rate, aver-
aging principle.

1671


http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051606000000448
http://www.imstat.org

1672 A. MOKKADEM AND M. PELLETIER

result on the convergence rate of the two-time-scale stochastic approximation al-
gorithm (1)—(2) is the one of Konda and Tsitsiklis [14]. In the case when the func-
tions f and g are linear and when lim,— 8, /¥» = 0, Konda and Tsitsiklis [14]
establish that the fastest component 6, satisfies the following central limit theorem
(CLT):

3) B0, — %) B N (0, 39),

2 e . C
where — denotes the convergence in distribution, N the Gaussian-distribution,
and where the asymptotic covariance matrix Xy is defined in (8) below. Moreover,
it can be conjectured from their analysis that the slowest component u, fulfills
the CLT:

) Vv e — 1 B N0, 3,)

[where the asymptotic covariance matrix X, is defined in (9) below]. The result (3)
of [14] is thus very surprising. As a matter of fact, it shows that the slowest com-
ponent u, [which, through X, 1, is present in the recursive definition (1) of 6,]
has no effect on the convergence rate of the fastest component 9,, except in the
expression of the asymptotic covariance matrix Xg. It is then natural to wonder
whether this phenomenon is specific to the case of the functions f and g being
linear or not.

Our first aim in this paper is to study the weak joint convergence rate of
6, and u, in the case where the functions f and g are nonlinear. We still con-
sider the case lim,—, o B, /¥» = 0, and prove that

—1 *
o (pme )Rl )
Vi (in — %) "

The CLT (5) extends, in particular, the result (3) of [14] to the case where the
functions f and g are nonlinear. Let us underline that, as explained in [14], in
the case (8,;) = (y»), the algorithm defined by (1)-(2) reduces to a single-time-
scale stochastic approximation algorithm used for the search of the zero of the
function h:R4t4" — RI+4" defined by h(0, n) = (f (6, 1), g6, ). The con-
vergence rate of such single-time-scale stochastic approximation algorithms has
been widely studied (see, among many others, Nevels’on and Has’minskii [21],
Kushner and Clark [15], Benveniste, Métivier and Priouret [2], Ljung, Pflug and
Walk [10] and Duflo [9]), but the existing techniques do not apply when the step
sizes (B,) and (y,) have two different convergence rates, that is, in the context
of two-time-scale stochastic approximation algorithms. Let us also point out that
the two-time-scale iterations considered by Konda and Tsitsiklis [14] and in the
present paper are totally different from those that arise in the study of the track-
ing ability of adaptative algorithms (see [2]) or in the joint approximation of the
location and size of the maximum of a regression function (see [20]); the specific



NONLINEAR TWO-TIME-SCALE ALGORITHMS 1673

difficulty in the present context relies on the double dependency between both
components 6, and u, [0, defined by (1) depends, through X,,;, on wu, defined
by (2), whereas u, defined by (2) depends, through Y}, 1, on 6, defined by (1)]. Let
us finally underline that the techniques we use to prove (5) (introduction of expo-
nential martingales and recourse to successive almost sure upper bounds) radically
differ from those employed by Konda and Tsitsiklis [14] to establish (3); let us also
mention that the additional difficulty induced by the nonlinearity of the functions
f and g will be enlightened in our proof of (5).

Now, let us note that, in view of (3) and (5), the recommended choice of the
fastest step size (8y) is (By) = (ﬁon_l), since it is the choice which ensures that
the fastest component 6, converges with the optimal rate ,/n. However, this op-
timal choice induces conditions on the parameter Sy, which are difficult to han-
dle because of depending on an unknown parameter. The problem due to the
choice of the optimal step size (8,) = (,BOn_l) is now well known in the context
of single-time-scale stochastic approximation algorithms, and the method widely
employed in this framework to circumvent this problem is the use of the aver-
aging principle independently introduced by Ruppert [26] and Polyak [24], and
then widely discussed and extended (see, among many others, Yin [27], Delyon
and Juditsky [6], Polyak and Juditsky [25], Kushner and Yang [16], Dippon and
Renz [7, 8], Duflo [9], Kushner and Yin [17] and Pelletier [23]).

Our second aim in this paper is to introduce the averaging principle in the
context of two-time-scale stochastic approximation algorithms. We first define
the notion of asymptotic efficiency in this framework, then introduce the aver-
aged two-time-scale stochastic approximation algorithm, and finally establish its
weak convergence rate. We prove, in particular, that, by choosing the step sizes
(B,) and (y,) equal to (B,) = (Bon ") and (y,) = (yon™*) with 1/2 <a <b < 1,
and by defining the averaged two-time-scale algorithm by setting

— 1 & 1 &

9n=—29k and En=—ZMk,

n n
k=1 k=1

where 6 and uy are defined in (1)—(2), we obtain an asymptotically efficient two-

time-scale algorithm, which satisfies the CLT

*
( V1O —0") ) 2 §0,0),
(i, — p1*)

where the asymptotic covariance matrix C is precisely defined (see Theorem 2).
The striking aspect of this result is that averaging leads to a two-time-scale al-
gorithm whose components 6, and 7z, simultaneously converge with the optimal
rate /7.

Our paper is now organized as follows. Section 2 is devoted to the study of the
convergence rate of nonlinear two-time-scale stochastic approximation algorithms.
We first precisely state our assumptions and main results; then, we give the outlines
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of the proof of our main results, postponing the technical parts until the Appendix.
Section 3 is reserved for averaging. The notion of asymptotic efficiency of two-
time-scale stochastic approximation algorithms is introduced in Section 3.1; the
weak convergence rate of the averaged two-time-scale algorithm is stated and then
proved in Sections 3.2 and 3.3, respectively.

2. Convergence rate of nonlinear two-time-scale stochastic approximation
algorithms.

2.1. Assumptions and notation. For any square matrix A, we set
A™W = —max{Re()), A € Sp(A)},

where Sp(A) denotes the spectrum of A. Moreover, || - || denotes the Euclidean
vector norm in R?, RY and R4t without distinction, and ||| - ||| the matrix norm
induced by the Euclidean vector norm.

The assumptions we require are the following:

(A1) lim,_ 06, =0* a.s. and lim,,_, 5o b, = ™ a.s.
(A2) (i) There exists a neighborhood U of (6*, u*) such that, for all
O, n)eU,

(Fo)=(& 82 (i) vo(lu=i
(i) Set
(6) H=011— 01205 0.

We have A7) > 0 and A(€22) > (.

(A3) () (Bx) = (Bon™®) and (y) = (yon™@) with fip > 0, yo > 0 and } <
a<b<l.

(i) If b =1, then By > 1/[2AUD].

(A4) The error-contaminated observations can be written as

Xni1 = f O, i) + 00 + Vi1,
Yiy1 =g0n, un) + lﬁ,&“) + Wat1,

and denoting by ¥, the o-field spanned by {V;, W;, 6k, w;, w,g/g), 1//(”“) 0<i,j,

k,1,k',1' < n}, we have the following:

(1) E(Vn411Fn) =0 and E(W,11]|F,) =0 as.
(i) There exists a positive matrix I" such that

n+1 =Y\_pr_(Tn T
nlgroloE«Wn )(V f”>_F_(F21 Fzz) s
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(iii) There exists m > 2/a such that sup,E(||V,+1]"|F,) < oo and
sup,, E([| Wy 11" |F,) < 00 a.s.
(iv)
O =r® £ 0|6, — 0*I1> + N1t — w*11),
Y = L 0116, — %11 + e — w*11),
with [ + 1l = o(VBy ) as.

Let us specify that the matrices Qg and I'1; (resp. Q2 and ') in (A2)(1)
and (A4)(ii) are d x d (resp. d’ x d") matrices; the matrices Q12, Q21, I'12 and 'y
are of appropriate dimension. Set

o= lim E((Va+1 — 1202 WattllVas1 — C1205 War1l” |F0)

=T+ Q12Q2_21F22[Q2_21]TQ1T2 — F12[Q2_21]TQ1T2 — Q12Q2_21F21-
We can now give the explicit definition of the asymptotic covariance matrices
Y and X, which stand in (3), (4) and (5):

(8) E@=/Oooexp[(H+12b—ﬁzoll)t}Fgexp[<HT+12b—/3:011)t] dt,

9 2u =/0 exp[ Q212 exp[ Qo1 dt.

Let us mention that the matrices Xy and X, are the solutions of the Lyapounov
equations

(N

1p—i ] [ r Lpei ]
H+—1Yp+ 29| H +——1|=-T)
[ 2Bo 280

and

0n%, +32,05 =-Ty,

respectively (see Lemma 3.1.3 in [9]).

Comments on the assumptions.
1. We refer to [5, 12, 13] for quite general conditions that ensure the consis-
tency assumption (A1). Let us underline that, in the case where f and g are linear,
,59) =0 and w,i“ ) — 0, assumption (A1) is useless; as a matter of fact, as noted
by Konda and Tsitsiklis [14], assumptions (A2)—(A4) imply (A1) in this particu-
lar case. Let us also mention that a particular example of two-time-scale stochas-
tic approximation algorithm is the well known Polyak—Ruppert averaging; in this
framework, (1)—(2) reduces to

1
9n+1 =0, + ;(Mn —6h),

Mn+1 = Un + YnYn+1,
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where Y,,4+1 is an error-contaminated observation at i, of an unknown function #,
and lim,,_, oo 1y, = 00; (A1) then comes down to the assumption lim,, o pt, = ™
[where 2(u*) = 0], and conditions which ensure this lattest assumption can be
found, among many others, in [9, 15, 18].

2. Assumptions (A2)(ii) and (A3)(ii) ensure that the matrices ¥y and X, are
well defined. As a matter of fact, the conditions in (A2)(ii) mean that the matrices
H and Q9 are attractive (or Hurwitz) and, in the case » = 1, it follows from the
condition in (A3)(ii) that the matrix [H + - 1] is attractive.

3. To establish the convergence rate of the two-time-scale stochastic approxima-
tion algorithm (1)—(2), Konda and Tsitsiklis [ 14] assume that the functions f and g
are linear, that is, that

<f(9,M)>:<Q11 Q12>(9—9*>
g0, 1) 021 On/\u—u*
Moreover, their framework corresponds to the case (A4) is fulfilled with w,@ =0,

,E“ ) = 0, and (V,, W,) are independent random vectors with zero mean and
common covariance I'. On the other hand, their conditions on the step sizes
(Br) and (y;,) are more general than ours.

2.2. Main results. Our main result in this section is the following theorem.

THEOREM 1 [Joint weak convergence rate of (6,) and (u,)]. Let (6,, iy) be
defined by the recursive equations (1)—(2). Under assumptions (A1)—(A4), we have

(Eem)avols )
Yu o (n — %) #
where X9 and X, are defined in (8) and (9), respectively.

The following proposition, which is of independent interest, will be a key tool
for the study of the weak convergence rate of the averaged two-time-scale stochas-
tic approximation algorithm.

PROPOSITION 1 [Strong convergence rate of (6,) and (u,)]. Let (0, un) be
defined by the recursive equations (1)—(2). Under assumptions (A1)—(A4), we have

||en—e*||=0< ﬁnlog[zﬂkD as.

k=1

and

n
IIMn—u*||=0( ynlog[ZykD as.

k=1
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2.3. Proof of Theorem 1 and Proposition 1. Throughout the proof of Theo-
rem 1 and Proposition 1, we assume, without loss of generality, that 6* = 0 and
w* = 0. In view of assumptions (A1), (A2) and (A4), we can write

(10) Oni1 =60+ Bn(0Q116n + Qroptn + 0\ + 1P + V1),
(11) tns1 = tin + ¥ (Q210n + Qoptn + p + 7 + Wiy1),
where

12) @] = 06>+ lunll® and o] = OUEN* + leall?).
Note that (11) gives
tn = 05 Vi [lnt1 — tn] — 055 (0216, + pI? + 1) + Wys1),
and thus, in view of (10), it follows that
Ot = On + B (01160 + 01205 vy Titns1 — n]
- Q12Q2_21(Q219n + 09 41 4 Wpy)
+ o+ + Vi)
=0 + BuHOu + B 01205 vy [ ins1 — [tn]
+ Bu (Vg1 — 01205 Was1)

(o) 1) = 0003 [ + 1),
where H is defined in (6). Now, set

n
Up = Z Bk,
k=1

(13)

n
[%] _ _
(14) L) = N e H g (Vipy — 012055 Wier1),
k=1
9 n
(15) RO = e " et 015 05 v ikt — i,
k=1
0 [ 0
(16) A;(w:l =Ont1 — wa)l - Rr(l+)1
and

n
Sn = Z Yk
k=1

n
(17) L§1M+)1 — 02 Z e 02y Wy
k=1
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n
(18) R,(ll_t_)1 = 02 Ze—Sszzyk 071 [L](CQ) + RIEQ)]’
k=1
(19) Aizlj—l = MUn+1 — Lfl’fl ng’_‘gl

The main idea to establish Theorem 1 and Proposition 1 is to prove that the se-
quences (R,(le)) and (Af,e)) are negligible in front of (L,(f)) on the one hand, and
that the sequences (R,(,”“ )) and (A,(f )) are negligible in front of (L,(fl )) on the other
hand; the convergence rates of (6,,) and (u,) are then given by the ones of (Lf,e))
and (L,(f )), respectively. Let us note that, even though the sequence (u;) goes to

zero a.s. slower than the sequence (6,,) does, we shall prove that the term (R,(lg))
goes to zero a.s. faster than the sequence (6,) does. This is due to an averaging ef-

fect, the sequence (R,(,g)) bringing in a weighted sum of the differences pgy1 — (k-
In the sequel we shall come back on this effect several times.

Applying Lyapounov’s theorem, we obtain the following lemma (see Sec-
tion A.2 for the technical details).

LEMMA 1 [Joint weak convergence rate of (L,(19) ) and (L,(l“ ))]. We have

() 2w (3 2))

Moreover, the following lemma is proved in [22].

LEMMA 2 [Strong convergence rate of (L;,g)) and (L;,“ ))]. We have

ILO| = O(,/Buloguy)  as.
|| = 0(/ynlogss)  as.

Theorem 1 (resp. Proposition 1) thus follows from the combination of Lemma 1
(resp. of Lemma 2), and of the following two lemmas (which imply, in particular,

2IRY 4+ A7) and ()/n_l/z[R,(,M) +AMY) g0 to zero a.s.):

and

that the sequences (8,

LEMMA 3 [Strong convergence rate of (R,(f)) and (R,(f ))].
1. There exists s > b/2 such that ||R,(19)|| =0n*) a.s.
2. IRl = O(V/BuiTogun ) as.
LEMMA 4 [Strong convergence rate of (Af,g)) and (Af,“ ))]. We have
A1 =0(VB)  as.
A =0(VBa)  as.
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The key point in the proof of Theorem 1 and Proposition 1 is thus the proof of
Lemmas 3 and 4. The rest of Section 2 is devoted to this proof (we shall refer to
the Appendix for the technical details). Let us first give the strategy to prove these
lemmas.

We note that, to obtain an upper bound of (R,(IM )), we need to have an upper
bound of (R,S”), which requires to have an upper bound of (u,). The main idea
to prove Lemma 3 is thus to proceed by successive upper bounds. In a first step,
we shall start with the only upper bound of (u,,) available to us, that is, in view of
assumption (A1), with ||u, || = o(1). This will enable us to establish a first upper
bound of (R,(ﬁ)) and then of (R,S“ )). With these preliminary upper bounds, we shall
be able to prove preliminary upper bounds for (A,(f)) and (Af,“ )). Using (19) and
applying Lemma 2, we shall then slightly improve the first upper bound of (u,,);
starting with this second upper bound of (u,), we shall then repeat the procedure
previously described to find a third upper bound of (), which slightly improves
the second one, and we shall carry on these successive upper bounds until we
obtain the adequate upper bounds of (u,), (R,(lg)), (R,(lu )), (A,(l@)) and (A,(f‘ ) ).

Let us mention that the step, which consists in deducing upper bounds of (Aﬁ,g))
and (AY”) from upper bounds of (1)), (L), (LY, (R®) and (RY"), is quite
straightforward in the case when the functions f and g are linear, 1//29) =0 and

,E“ ) =0 (see Remark 4 below); however, in the case where the functions f and g
are nonlinear, this step too requires to compute successive upper bounds [we shall
first show that | A ,(1“ ) || = o(1), and then shall recursively improve the upper bound
of (A;,“ )) until we find the adequate upper bound of (Af,“ ))].

Our proof of Lemmas 3 and 4 is now organized as follows. We first define Con-
ditions (C) and (C’) [that are expressed with respect to the step sizes (8,) and (y;,)
resp.] for a nonrandom sequence, conditions which will be used throughout the
proof. Then, in Section 2.3.1, we show how the knowledge of an upper bound of
(un) and of (A,(,“)) enables to establish upper bounds of (R,(ZQ)), (R,g“)), (A,(f)),
and to improve the upper bound of (A,(q“ )). Section 2.3.2 is devoted to the body of
the proof of Lemmas 3 and 4.

DEFINITION 1 [Condition (C)]. Let (w,) be a sequence of real numbers. We
say that (wy,) satisfies Condition (C) if (w,) is positive and bounded and if:

e inthe case b = 1, there exist w > 0 and a nondecreasing slowly varying function
L such that w, =n~“L(n);
e inthecase b < 1,

Wp

=1+ 0(Bn).
Wn+1
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DEFINITION 2 [Condition (C’)]. Let (w,) be a sequence of real numbers. We
say that (w,) satisfies Condition (C’) if (wj,) is positive and bounded and if

Wp

=1+ o0(yn).
Wn+1
REMARK 1. If b =1 and if (w,) satisfies Condition (C) with w = 0, then the
function £ is necessary bounded.

REMARK 2. Inthe case b < 1, if (w,,) satisfies Condition (C), then (w;,) sat-
isfies Condition (C").

2.3.1. Intermediate upper bounds. We can now state the following lemma,

which gives an upper bound of (R,(le)) and (R,g“ )) under the assumption |[u,| =
O (wy,), where (w;) is a nonrandom sequence satisfying Conditions (C) and (C).
The proof of this lemma only requires classical computations, and is thus post-
poned until the Appendix (see Section A.3).

LEMMA 5 [Intermediate upper bound of (R,(lg)) and (R,g“ ))]. Assume that there

exists a nonrandom sequence (wy) satisfying Conditions (C) and (C'), and such
that |||l = O (wy) a.s. Forall s €11/2, ,BQA(H)[, we have

I Rr(te) | =0, Vn_l wy +n"") a.s.,
||Rf(lu)|| = O(ﬁﬂyn_lwn +\/ﬁn10gun) a.s.

REMARK 3. The term R,S“ ) can be seen as a (matricial) weighted average of
the terms L,(f) + R,EQ); the second upper bound in Lemma 5 is established by prov-
ing that the same upper bound holds for the sequence (L;,G) + R,(,Q)) and for its

average (R,g“ )), which seems quite natural. On the other hand, the term R,(,g) can
be seen as a (matricial) weighted average of the terms yk_l [ik+1 — ui]; the strik-
ing aspect of the first upper bound in Lemma 5 is that, although w, is bounded
by wj,, although yn_l — 00, the average R,(,Q) can be bounded by 8, yn_lwn (which
is smaller than w,, since B, yn_l — 0). This averaging effect is similar to the one
which appears in the study of the averaged single-time-scale stochastic approxi-
mation algorithm introduced by Ruppert [26] and Polyak [24].

We now state a lemma, which gives an upper bound of (A,(f)) and (Af,“ )) under
the assumption |||l = O (wy) and |AY) | = O(8"), where (w,) and (85")) are
two nonrandom sequences satisfying Conditions (C) and (C).

LEMMA 6 [Intermediate upper bound of (AY)) and (AY)]. Assume that
there exist two nonrandom sequences (wy) and (8,(,“ )) satisfying Conditions
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(C) and (C'), and such that ||in| = O(wy) a.s. and ||AY || = 081 a.s. We
have

1A = 0By, 2w? + Bay, '8%) +o(VBr)  as.,
|AM | = 082y, w2 + By, '8) +0(VBs)  as.

We now give the outlines of the proof of Lemma 6, and refer to the Appendix
for the technical computations.

Outlines of the proof of Lemma 6. We first note that Af,e) and A,(f ) satisfy the
following recursive expressions (see Section A.4.1 for the algebra leading to these
equations):

A =+ B.H)AD +0BH[LY + RD]

(20) n+1 — ) ) .
+ Bu ([0 + 1] = 01203, [P + r{]),
o AW = (141,00 AP + 0(yH[LY + R

o 41+ 00 AL

Now, set T and M such that 1;—;()‘ <T < A" and 0 < M < A@22) respec-
tively. In view of Proposition 3.1.2 in [9], there exist two matrix norms || - ||
and || - ||, and there exists a €]0,inf{1/7,1/M}[ such that, for all y < a,
I +yHlly <1—yT and || +y Qnlly <1 — y M. For x in R (resp. in R%),

define M?(x) = [xx---x] (resp. M (x) = [xx---x]) the d x d (resp. d’ x d’) ma-

trix all of whose columns are x. The function || - || (resp. | - || ;) defined on R¢
(resp. on RY) by [lx]l7 = [|M9 ()l (resp. by [lx|ly = M4 (x)llp) is then a
vector norm compatible with the matrix norm || - || (resp. with ||| - |I[57) (see [11],

page 297). For n large enough, we thus have
I8 <A =BDIAD |+ BLOBNLL | + Bal R 1))
(22) + B[00 |7 + 1PN + 121205, 0|1
+[0120% 7" [7)]

and
1A [y = (1= yudD [ A |y + 7a[ O G| L[4y + v | RE (4]

(23) (1) (1) )
Ol Ly + 17y + Q218 )]

REMARK 4. In the case where the functions f and g are linear and when

,29) =0 and w,ﬁ“ ) = 0, the terms p,§9> and p,ﬁ“ ) equal zero; replacing in (22)

ILP 117 and |RY |17 by their upper bounds given in Lemmas 2 and 5 enables to
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get an upper bound 8,(19) of ||A,(19) |l7. Then, replacing in (23) ||L,(,“) |l as and ||R,§”) Il a
by their upper bounds given in Lemmas 2 and 5, and || Q21A29)||M by its upper
bound 8,(19), enables to obtain an upper bound of ||A£,”“ )|| um. Thus, in this partic-
ular framework, the proof of intermediate upper bounds of (Af,e)) and (Ag,“ )) is
quite straightforward. Moreover, the upper bounds of (Afﬁ)) and (A,(ﬂ )) obtained
in this case are better than those stated in Lemma 6 [compare (22) with (28) be-
low, and (23) with (27) below]; in particular, the knowledge of a preliminary upper
bound 85 of the sequence (AY) is not necessary.

By using the equivalence property of the finite-dimensional vector norms, we
note that, in view of (12), (16) and (19), we have

102”17+ 1012055 £ |1
= 0(|o® ]+ 1)
= 06> + lliea 1)
= O(ILY I + IR I + A7 + |L 1 + | RY 1 + [ a2])
= O(IL P + IR+ 1A 17 + ILE 1 + 1REI + [ A% [3)).
It thus follows from (22) that there exists C1 > 0 such that, for n large enough,
||A(9)1||T < =BDA" ],
o +Bu[OBaL) | + Bal R [ + 17 + 1 )]
+BCLILY P+ R+ AP 7
+ LY+ IRE T+ 1A )-
Similarly, we can deduce from (23) the existence of C> > O such that, for n large
enough,

|80 = (1= vudD | AL,

100l LE |+ % R ] + [ ])]
) ©) 2 ©))2 ©) 2 (W) |2 (W2
FRC(LD P + 1RO + 8P 17 + L8 + R

2
a2 T 18271 7)-

Now, let us note that, in view of assumption (A1), we have lim,_, 6, = 0 and
lim,, oo t, = 0 a.s. Since lim,_, ﬂnyn_l = 0, Lemma 5 [applied with the se-
quence (wy,) = 1] implies that lim,_, s R,(lg) =0 and lim,,_ oo R,(l“) =0 a.s. Not-
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ing that Lemma 2 ensures that lim,_, L,(le) =0 and lim,,_, o Lf,”“) =0 as., we
deduce that lim,, _, oo Ai,g) =0and lim,,_, A,(f) =0 a.s. Set T* and M* such that

]12”—/;01 <T* <Tand 0 < M* < M, respectively; we can then deduce from (24) that,

for n large enough,
|8l < A= BT [ A
(26) + BuOL(Bal L] + Bul R [ + 177 + 73 D]
+BCLILD P+ RO+ L8 1 + RS + [8813)
and from (25), that there exists Cé > 0 such that, for n large enough,

1801y = (= vaM) | AL

n+1
27) + 1[0l | + 7l R | + | )]
ML P+ RO + L

2
+ IR+ 1457 17)-

REMARK 5. Let us note here that classical techniques allow to deduce
from (26) that if the sequence

2 2
Bl L1+ Bal BV N+ I 1+ 12+ 1717 + RV
L+ IR + 188 1)

is bounded above by a suitable sequence (w),), then || A,(f) |l7 can also be bounded
above by (w),). However, since the first upper bound of ||A,(1“ )||M, which will
be available in the body of the proof of Lemmas 3 and 4 (see Section 2.3.2)
is 1A% = O(1), inequality (26) leads only to AL |l = O(1) (which has
already been proved). The idea to deduce from (26) a better upper bound for
||A,(10)||T is to resort to the averaging effect; for that, we need to substitute
Vi MAY e = 1AV, 1] for [|AS” 13, in (26) [see (28) and Remark 6 below].

Inequality (27) allows to write

[ A1y = AE 1 = 1AL ]+ O0n L8| + vl R T + (71

YaM*
2 2 2 2
+CILY I+ IRDT+ L1 + 1R+ 14571 7).

Set ¢ > 0 such that % < T* — ¢Cj; since lim,_ o Aﬁ,”) = 0, we deduce
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from (26) that, for n large enough,
|42 1 < (=BT A]
+ B[ OBl L |+ Bull R [ + 157 + 17 )]
+ B CLILY P+ IR+ TLE 1P + IRV + Bue | AL
<A =BTH A
+ B[ OB L7 |+ Bull R + 157 ] + 17 )]
+ B CL LY P+ IR P+ 1L 1 + R

Bne
o AP ]y = 1850,

+Ba[ O ILE | + v | REV |+ )]
+ B 6Cé(|}L(9)HZ+ IR+ 1817 + RSN + (85 ).
Setting T** such that L 2/3 < T** < T* — ¢C}, we obtain, for n large enough,
0
|82 7 < A= BT AP
+Bu[OBu| LY | + Bal RO [ + 1 + 1|

(28) + | L]+ v | R D))
+ B [O(ILY P+ RO + LY )+ [RE )]
Pne
+o '}W[HA(“’ L = 1AL ]
Classical computations (see Section A.4.2) then allow to deduce from (28) that
(29) |85 17 = 0By 2wy + Buviy '8°) +0(v/Bn).-

REMARK 6. Let us point out the averaging effect here again: the term

v LA Lo = 14371 4]

present in (28) leads to the bounding term ,Bn)/_la W) in (29), although the term
A itself is bounded only by 8.

To conclude the proof of Lemma 6, we substitute the upper bound obtained
in (29) for [|A |7 in (27) and, via classical computations (see Section A.4.3),
establish that
(30) |83 = O(Brva *wis + By '807) +0(VBn).

Lemma 6 then straightforwardly follows from the equivalence of the finite-
dimensional vector norms.
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2.3.2. Body of the proof of Lemmas 3 and 4. Let (w,) be a sequence satis-
fying Conditions (C) and (C’), and such that ||, || = O(wy) a.s. In the proof of

Lemma 6, we have seen that lim,,_, A,(l“ ) =0 a.s. We can thus apply Lemma 6
with (8Y) = 1, which ensures that

[AP T+ 1801 = 0By, wi + v D) +0(VBa)  as.

Now, let k be a positive integer, and assume that
(A1 + A8 = 0B, 2wy + Bavy 1) +o(VBa)  as.

Since (w,) satisfies Conditions (C) and (C’), the sequence (3,(,”“ )) = (ﬂ%yn*2w5 +

[Bn yn_l]k + ﬂ,l / 2) also satisfies Conditions (C) and (C’); it follows from the appli-
cation of Lemma 6 that

A+ A8 = 0By, 2wy + 1Buyy T +0(VBa)  as.
We have thus proved by induction that, for all integers j,

[+ 1A% = 0By, 2wy + [Baviy V) +0(VBa)  as.

Since Assumption (A3) ensures the existence of jo such that [8, yn_l]j0 = 0(/3,} / 2),
we have proved that, for any sequence (w;,) satisfying Conditions (C) and (C") and
such that ||, || = O(w,), we have

31) AP+ AW = 0By, *wd) +o(VBr) as.

Set k > 0, and assume that

(32) ltnll = O (v logsa + By, 1) as.

Since the sequence (/¥ 1025, + [Bay, '1¥) satisfies Conditions (C) and (C'), the
application of Lemma 2, and of Lemma 5 and (31) with (w,) = (/y, logs, +
[Bnv,'1¥) ensures that

Il = O(IL ] + R + [ A1)

= O(,/ v logsn

+[Bav Y 4 By valogsa + Balogun |+ (Bay,H**2)
+o(v/Bn) a.s.
= O(\/ynlogs, + [Bay, 'TFTY)  as. [in view of (A3)].

Now, in view of assumption (A1), we have ||u,|| = o(1) a.s., so that (32) is sat-
isfied for k = 0. We have thus proved by induction that (32) holds for all k£ > 0.
Since (A3) ensures the existence of kg such that [,Bnyn_l]k" = o(s/ynlogsy, ), it

follows that ||, || = O(/ynlogs, ) as.
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REMARK 7. This latter upper bound of (u,) proves the second assertion of
Proposition 1.

To conclude the proof of Lemma 3, we now apply Lemma 5 with (w,) =
(Vynlogsy):
e Forall s €]1/2, Bo A, we have
|IR® | = 0(Bny, "/*\/logs, +n~*) a.s.
=0(n b Jlogn +n~*)  as.,

with, in view of (A3), b — a/2 > b/2; the first part of Lemma 3 follows.
e We have

IR | = 0(1B, yn_l]l/z\/ﬂn logs, + \/ﬂn logu,)  as.,
which, in view of (A3), gives the second part of Lemma 3.

To conclude the proof of Lemma 4, we apply (31) with (w,,) = (/vx logs, ), which
gives

|AD |+ AW = O((Buy, 1Bulogsa) +0(vVBr)  as.

In view of (A3), Lemma 4 follows.

3. The averaging principle in the context of two-time-scale stochastic ap-
proximation algorithms.

3.1. Asymptotic efficiency of two-time-scale stochastic approximation algo-
rithms. The averaging principle has been introduced simultaneously by
Ruppert [26] and Polyak [24] in the framework of single-time-scale stochastic ap-
proximation algorithms, and their pioneer work has been widely discussed and ex-
tended in this context (see, among many others, Yin [27], Delyon and Juditsky [6],
Polyak and Juditsky [25], Kushner and Yang [16], Dippon and Renz [7, 8],
Duflo [9], Kushner and Yin [17] and Pelletier [23]). Let us recall that the foun-
dations of this principle are the following: (i) there exists an algorithm which
converges with the optimal rate; however, in general, this “optimal algorithm”
cannot be used because it depends on an unknown parameter; (ii) taking a suitable
average of a slowly converging algorithm leads to an “averaged algorithm,” which
has the same asymptotic behavior as the “optimal algorithm.”

To introduce the averaging principle in the context of two-time-scale stochastic
approximation algorithms, we first need to define the notion of asymptotic effi-
ciency in this framework, that is, to find out what the optimal convergence rate
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of the two-time-scale algorithms is. For that purpose, we follow the approach em-
ployed in the framework of the single-time-scale stochastic approximation algo-
rithms, and consider the class of matricial and two-time-scale algorithms defined
as

Ag
(33) 0n+1 = Gn + 7Xn+1,

Ap
(34) KUn+1 = Un + n_aYn—l—] s

where a €]1/2, 1[, and where Ag (resp. A,) is a d x d (resp. d’ x d’) nonsin-
gular matrix such that the matrix AgH + I/2 (resp. A, Q22) is attractive [re-
call that H and Q», are defined in (A2)]. Following the computations made in
the beginning of Section 2.3, and setting (8,) = (n~ ! and (W) =@ %), we
rewrite (33)—(34) as

(35) Ot = On + AP (Q1160n + Qratn + 0 + Vitr).
(36) a1 = tn + Ap¥n (02100 + Q22itn + P + Wit1).
From (36), we get

tn = 05 Ay st — 1tn) — 035 02100 — 0355 p — 035 W1,
which, reintroduced in (35), gives

Onr1 = On + Bu (A6 H)Op + Bu(Ag Q1205 A7)y Titns1 — itn]

+ BuAg(Vas1 — 01205 Wart) + BuAo (0 — 01205, o).
Following the proof of Theorem 1, we obtain
Vi, —0) 3 N (0, Zo(4)),

where Xg(Ap) is the solution of the Lyapounov equation
U .1, 1 T
AgH + E Yo(Ag) +29(Ag)| H AO —+ 5 = —AQFQAQ

[["y being defined in (7)]. Classical computations (see, e.g., [9], page 166) ensure
that the optimal choice of Ag in (33)is Ag = —H ~!, which leads to the optimal as-
ymptotic covariance matrix ¥g(Ag) = H —“Irg[H~ 17, and to the following CLT
for 6,,:

(37) 6, — 6% B N0, H'Ty[H~T).

Therefore, one of the conditions we shall require to say that a general two-
time-scale stochastic approximation algorithm of the type (1)—(2) is asymptotically
efficient is that its fastest component 6, satisfies the CLT (37).
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Now, the idea to find out the optimal weak convergence rate for the slowest
component p, of the two-time-scale stochastic approximation algorithm (1)—(2)
is the following. First, we invert the roles of 6, and w,, that is, we give to w, the
position of the fastest component, and consider the following alternative algorithm
to the algorithm (33)—(34):

Ag
9n+1 - 9}1 + _aXl’l-‘rla
n

Ay
Mn4+1 = Un + 7Yn+l’

where a € ]1/2, 1[. Then, we apply the results previously obtained for the matricial
two-time-scale stochastic approximation algorithm (33)—(34). Set

(38) G=0xn-02107'0mn,
T= lim E(Wor1 — 02107} Vit 1IWis1 — 02107 Va1 17 152)

=Tn+ 0210 Tl 0 — Tl 17 0%, — 02107/ Tz,

and assume that the matrices A, G + I /2 and Ag Q1 are attractive. Following the
proof of (37), we deduce that the optimal choice of A, is A, = —G~ !, which
leads to the optimal covariance matrix G~ FM[G“]T and to the following CLT
for p,:

(39)

S —w*) B N0, 67T, 167,

We can now precisely define the notion of asymptotical efficiency for two-time-
scale stochastic approximation algorithms.

DEFINITION 3. Let (6,, i) be given by a two-time-scale stochastic approxi-
mation algorithm used for the search of the common zero (6*, u*) of two functions
f and g. Assume that f and g satisfy assumption (A2)(i), and that the error-
contaminated observations (X, +1) and (Y,4+1) of f 6,, [i,) and g(én, [Ln) satisfy
assumption (A4). We say that the two-time-scale stochastic approximation algo-
rithm which defines (6,, fi,,) is asympotically efficient if the two following prop-
erties hold:

(P1) Vil — 0% 2 N O, H'To[H D),
(P2) VG, — )3 N 0,677,067,
where H, I'g, G and ', are defined in (6), (7), (38) and (39) respectively.

Let us note that a sequence (0~n, fLn) satisfying properties (P1) and (P2) can be
obtained, under suitable assumptions, by simultaneously running the two follow-
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ing two-time-scale stochastic approximation algorithms:

1
Mn+1 = tn + n_aYVE-i-)l

and
| JG)
0n+1 =0y + n_aX’l+1’
- - G™! 2
Mn+1 = Un — TYFE-I—)I’
where X 221, Yn(i)l, X fﬁil and Yﬁ)l are error-contaminated observations of

F B, tin), 8Ons ttn), f B, fin) and g(By, fin), respectively. However, this proce-
dure has two main drawbacks. The first one (which is minor) is that it doubles the
number of necessary observations. The second one (which is much more impor-
tant) is that, most of the time, this procedure cannot be used, the matrices H and G
being usually unknown.

3.2. Averaging of two-time-scale stochastic approximation algorithms. We
can now introduce the averaged two-time-scale stochastic approximation algo-
rithm. Applying the averaging principle, we first define the slowly converging two-
time-scale algorithm. For that purpose, we let the sequence (6, i,,) be still defined
by the recursive equations (1)—(2), but, this time, the step sizes (8,) and (y,,) fulfill
the following assumption:

(A'3) (By) = (Bon™") and (y,) = (yon™®) with By >0, ¥ > 0, and ¥ < a <
b<1.

We then define the averages of 6; and i by setting
— 1< 1<

(40) On=—> 6 and T, =—> .

n n

k=1 k=1
To establish the joint weak convergence rate of (f,) and (f,), we need to
strengthen assumption (A4) into the following condition:
(A’4) Assumption (A4) is fulfilled with ||| + [ = o(n=1/?).
Our main result in this section is the following theorem.

THEOREM 2 [Joint weak convergence rate of (_5,,) and (w,)]. Let (6y, yn) be
defined by the recursive equations (1)—(2), and (0, t,,) by (40). Under assump-
tions (A1), (A2), (A’3) and (A’4), we have

0, —0* D T ~T
(41) Jn T _ ) = NO.DPTPTDD),

n
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where I is defined in (A4)(i1), and where
-1 I o -1
D:(H O—1>’ P:( . Q12Q22>.
0 G —0210 11 I
In particular, the averaged two-time-scale stochastic approximation algorithm
(@n, ;) is asymptotically efficient.

3.3. Proof of Theorem 2. Let us first note that the CLT (41) implies, in partic-
ular, that

i@, — 0% 3 N0, H'Ty[H ),
VA, — 1) B N 0,67, 67T,

which proves the asymptotic efficiency of the averaged algorithm (0,,,71,). We
now prove (41).

We assume again, without loss of generality, that 6* = 0 and u* = 0. In the
beginning of Section 2.3 we have seen that [see (13)]:

Ont1 = 0n + BuHOu + 101205 ¥ Titnt1 — tn] + Ba (Vi1 — 01205 Wat1)
+ Bu ([0 + 7] = 01205 [P +r{P]).

We can thus write
On = —H " (Vo1 — 01205 Wai1) + H™ B, 01 — 6]
— H 01205 v Hitns1 — il

=17 ([0 + "= 01203 [0 + ).
so that

_ _ 1 & _
On=H 1(7 > Vi1 — 01205 Wer) + R — P — R — fRSZ‘)),
k=1

with

1 &N
RV == B 01 — k],
=

1 1 _
R =~ 0005 v Tiiert — .
k=1

1 & 0 _
ﬁ£13) = ; Z[P;E ) QlZszlp]EM)],
i1
1 & o) 1w
R = " Dl — 012051
pa
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Similarly, we have
1 n
fi, =G (_E > Wept — 02107 Vir) + RO — RO — R — 52,28’),
with

R = - Z v Tiirn — pid,
k=1

1 1.
RO = p Z 02107} B¢ Oks1 — 6kl
k=1

] n
32127) — ; Z[ (n) QZlQlll © )]’

k=1

1 n

k=1

A straightforward application of Lyapounov’s theorem gives the following
lemma:

LEMMA 7.

v W,
Z ( k+1 — QlZsz1 k+1) 3 N (0, PTPT).
Wit1 — 02107; Vit

The CLT (41) follows thus from the combination of Lemma 7 and of the fol-
lowing lemma.

LEMMA 8. Forie{l,..., 8}, we have

lim fﬁ(’) = a.s.

n—oo

PROOF. The application of Proposition 1 gives

fZﬁk [Ok+1 — Ok]
L (6n11 01 " 1 1
=~ - ———16
ﬁ( Bn B +,;|:,3k—1 ,Bk] )

[0n+11l 1 1 & b—1 )
=0 +—=4+——=) k"6l
( NI TN ﬁ,;
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/Bnlogu, 1 I &y
=0l ———+ —=+—= k""" Bx log ug a.s.
( NN ﬁ,;
= O(nb/z_l/Zlogn) a.s.

Since b < 1, it follows that lim,_ oc /7R = 0 and limy,_ o0 VAR =0 a.s. In
the same way, we have

1 &
Jn Y% "ert — il
k=1

L (punr1 - [ 1 1 i|
=— -—+ — — — | Mk
\/ﬁ( Yo VI ,; V-1 Yk
J1og s, 1 | RN
=0 +—4+—= > k7w logsk a.s.
( A 1Vn \/E \/ﬁ/;

= 0(n~ 1792 10gn) a.s.
Since a < 1, it follows that lim,_ oo /RS> = 0 and lim,_ o0 /IR = 0 ass.
Now, we note that

1

n 1 n
161 + e ll®) = 0(— Vi logsk> as.
ﬁ,; ﬁ,;

= 0n'* “logn) a.s.
Since a > 1/2 and in view of (12), it follows that lim,_ o /RS = 0 and

limy,— 00 \/ﬁfR,(,D = 0 a.s. Finally, assumption (A’4) ensures that lim,_, o, /7 X
RW =0 and lim,_, 0o VRS =0as. O

APPENDIX
A.1. Two technical lemmas.

LEMMA 9.

Let (x,) be a sequence of positive real numbers, let (u,) be an
R4 -valued random sequence such that ||u,| = O(x,) a.s., set T >0,

n n
Z,(ll) = T Z e Bixy  and Z,(f) = H Z el By

k=1 k=1
Let (wy,) be a nonrandom sequence satisfying Condition (C).

1. Forall T' €10, T[, we have

1ZD| = O(e™ T Ly + wy),
n

if xp = O(wy),
o(e™ T Ly + wn),

if xn = o(wy).
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2. Forall T' €10, AYD[, we have

1z = | O Lyt +wa). if = Own),
" 0(37M"T 1p=1 + wn)a if xp = o(wy).

LEMMA 10. Let (x,) be a sequence of positive real numbers, let (u,) be an
R?-valued random sequence such that |u,| = O(x,) a.s., set T >0,

n n
Z,gl) =e 5T Z e yexi  and Z,(f) =02 Z e~ K02y,
Let (wy,) be a nonrandom sequence satisfying Condition (C"). We have
1) @ _ | Own), if xp = O(wy),
‘Z” |+ HZ” ” - {O(U)n), if X, = o(wy).
PROOF OF LEMMA 9. We first establish the upper bound of (Z,(f)).

e Consider the case b = 1, that is, (8,) = (Bon™"). In the case x,, = o(w,), we
have

|Z,gl)| =0 (n_’sOT ikﬁOT_lxk)

k=1
n
= o(n—ﬂOT > kﬂoT—l_w£(k)>
k=1
=o(n P [logn +nfT=*1L(n))
= o(nPT L(n)logn + w,).
Since £ is a slowly varying function, it follows that, for all 7’ €10, T'[,
1Z0] = o(n A" 4 w,)
= o(e_”"T/ + wy).

In the case x, = O (wj,), the upper bound of (Z,(,l) ) is obtained by replacing o(-)
by O (-) in the previous equations.

e Consider the case b < 1. We note that the sequence (Z,(,l)) satisfies the recursive
equation

T (1
Z,(ll) = eﬂ” Z,(l )1 + Bnxn,
so that we can write

1 ~(1 —BnT Wp—1 —1 () —1
w, Z,g):e B |:—w }(wn_lZn_l)—%—,ann Xn
n

=[1 =BT + OBIIN + 0B (wa1 Z." ) + Baw; ' xs

=1 =BT + 0B wn1Z")) + Baw ' x,.
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Now, set T’ €10, T'[; for n large enough, we get

w1 ZD | < (1= BT | wua1 Z || + Buwyy ',
and the application of Lemma 4.1.2 of [9] ensures that if x,, = O(w,), then the
sequence (w, Z( ) 1) 1s bounded, that is, |Z(1)| = O(wy); if x,, = o(wy,), then

the sequence (w Z(l)l) goes to zero, that is, |Z( )| =o(wy).

We now establish the upper bound of (Z,(,z)). Let || - || denote the matrix norm
associated with the Euclidean vector norm. We have

n
1Z32] < 3 lle =5 | Bl
k=1
and the application of Proposition 3.1.2 of [9] ensures that, for all T € ]0, AW,
n
12O <Y e @ gy as,
k=1
The upper bound of (Z,(,z) ) then follows straightforwardly from the one obtained
(1
for (Z,7). O

PROOF OF LEMMA 10. The proof is straightforward by following the proof
of Lemma9inthecase b <1. [

A.2. Proof of Lemma 1. Set
My (\/ By et 0 )
J 0 / )/n_] e 022

y 2’: (e_ukH,Bk(Vk+1 01205, Wk+l)>
= Sszzyka+1

For each n, M™ = (MJ(.n) )j>1 1s a martingale whose increasing process satisfies

A A
M (n):< In 2,11)’
< )n Ag’n A4,n

with, in view of assumption (A4),

Al,n— ”l U {Zﬁ e ukHFge_ukH } u,lH ’

k=1

Az p :\/,Bn Vn Lot {Zﬁk)/ke "k HFlvze—SszTz}eSanTz’

n

— _ _ T T

A4’n =y, lesn QZZ{ E sze sk Q22 Fﬂe Sk Q22 }esn sz'
k=1
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The application of Lemma 4 in [19] ensures that
lim A1, =%y and lim Ay, =3%,.
n—0o0 n—0o0

Moreover, we note that

n
A2l = O (x/ Byt ﬂkykllle(“"‘““*’lll!l!e“""“%|||)-
k=1

Set T €10, AUD[ and T’ €10, A92)[; the application of Proposition 3.1.2 in [9]

ensures that
n
A2l = O (x/ Bulvi ' Y Bevee™ (T “"—S“)
k=1
n
=0 (x/ﬁn‘lyn‘l > B ™" “"—S“),
k=1

and the application of Lemma 10 gives

A2l = OB v B2) = O Bava ).

In view of (A3), it follows that lim,_, o A2, =0, and we thus obtain

. n) _ Yo 0
nlgrolo(M)” _< 0 2M> a.s.

Now, set T € ]15—1/(2B0), A and T’ €10, A922[; in view of assumption
(A4), we have

n
S E[| M — M| Fie]
k=1

n n
=0 ( (B Bre T OH Y Y yn—m/zmyke“n—wnH\M) as.

k=1 k=1
n n
-0 < Z(ﬂfm/ZIB;(nefmT(unfuk)) + Z J/m/Z)/kmemT/(snSk)) a.s
n n )
k=1 k=1

where the latter upper bound follows from the application of Proposition 3.1.2
in [9]. The application of Lemmas 9 and 10 then ensures that, for all 7* €

1p=1/2Bo), T,

n
SE[IM — M2 "1 Fi]
k=1

(ﬂn—m/2[e—mT*u,,]1b:1 +ﬂ’r171—1] +yn—m/2+(m—1)) as.

=0
_ O(nm/2—,30mT*lb:1 +ﬂ”1"/2—1 + ynm/2—1) as.,
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so that it be comes
n
Jm SEIMY - M A =0 as

The application of Lyapounov’s theorem then gives

@)
M (Wn Lnﬂ)@dv((),(ze 0))
/yn L(M) 0 Z/L

which concludes the proof of Lemma 1.

A.3. Proof of Lemma 5. We first note that, in view of (15), we have
0
R,(1_:21 = ﬂnVn 012 Q22 Mn+1

+ etnfl Z[e_”k*‘Hﬂk—lJ/k_—ll — e "By 10120
=2

unH —u1H

—e By, Q12Q2_21,u1

= ,Bn)/n_ O ng Mn+1

n
H ~urH H,—mH -
1 gltn E:e wHg U —e'nH e 7 g, =101, 05 i,
=2

where
U=y e P B 87 v v — 1101205, .

+ |||e”"H|||).

It follows that

n
eu”H Ze_ukHﬂkUk

k=2

IR, | = (ﬁny;1|mn+1|| +

Note that
1Unll = Oy, ' Balltall)
= O(Vn_ Bnwn) a.s.

Since the sequence (wj) satisfies Condition (C), the sequence (yn_1 B.w;) sat-
isfies Condition (C); it follows from the application of Lemma 9 that, for all
t €10, A¥)[, we have

IRE) | = 0Buy, wa + e L) + Ol ) as.

Now, the application of Proposition 3.1.2 in [9] ensures that, for all ¢ € ]0, AW,
lle“r || = O (e~"n"); it follows that, for all t €10, AU,

HR(Q)1 | = O(ﬁnyn wy, + e ") a.s.
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1 (H) i
and thus, for all s € ]5, BoA"’[, we obtain

| Rﬂl | = O(ﬂn)’n_lwn +n"%) a.s.,

which proves the first part of Lemma 5.
In view of (18), we note that

n
Rr(z/fs-)l — 92 Z e SkOn veUr,
k=1

with, by application of Lemma 2 and of the first part of Lemma 5,

10a1 = 0(|L3”] + [ R,”1)

= 0(m+ﬁnyn_lwn+n_s) a.s.
= 0(\/ Bnlogu, + ,Bn)/n_lwn) a.s.

Since the sequence (wj) satisfies Condition (C’), the sequences (/B logu, ) and
(Bn yn_l wy,) satisfy Condition (C’); the application of Lemma 10 gives

[RY) | = O(/Balogu + By wn) — as.

which concludes the proof of Lemma 5.
A.4. Technical details for the proof of Lemma 6.

A.4.1. Proof of (20) and (21). Noting that, in view of (14) and (15), we have

0 _
L§,+)1 =Bu(Viy1 — Q12Q221 Wht1) +eﬂnHL£19)’

6 1 -
Ry(,+)1 = 6012 szl Y I[Mn—i-l — Ml + eﬁ”HR,(f),
and using (16) and then (13), we write

@ _ ©) ©)
An—I—I =0Ony1 — Ln—l—l - Rn+1

=0 + BuHu + B[ + 1] = C1205) [0 +ri])
—PHLO) _ Bt RO)

=+ BuH)0y — [ + BuH + OBDHILY + R
+Ba([0)) +7r"] = 01205, [0 + 1))

=+ B AP + 0BH[LY + RY]
+ B[y 1] = 01205 [0 + 1)),
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which proves (20). Similarly, we note that, in view of (11), (17), (18) and (19), we

have

(1) () (n)
An—l—l = Hn+1 — Ln+1 - Rn+1

= tn + ¥ (02100 + 022ptn + P 4 M + Wii1) — v Wt
_ e)’anszlI/«) — 1,021 [L;ge) + Rr(ze)] — et Q22Rr(lu)'

Using (16), it follows that

= Un+ Vn(QZlen + Qooup + ,Or(;m + r;gm) — el szLS;'u)
— ¥ 021 [gn _ A;,G)] _ eV"QZZR,g“)

= (I + 12 Q2)ttn — U +va Q22 + O(DILYY + R
+yalof” + i + 02140

=+ 7,02 AW + 0(yH[LP + R
+valo + i + 00 A,

()
An-i—l

which proves (21).

A.4.2. Proof of (29). In view of (28), we have

0 Bne
I8y = (0= BT ALk + B+ Lo (18] = 1AL L)
n

where (z,,) is a nonnegative sequence such that
2w = O(Bul L | + Bal BV |+ 1ri” | + (7] + v |L7 | + | R
2 2 2 2
LI+ IRD T + L1 + 1R

Forn > 1, set m, = [[;_; (1 — B T**). We note that

n
) ) T, P w "
enlr =i ”T+l;ﬂ_k'3k[2k+ )/kM*(”Ak I — ||Ak+l||M):|
0 n TT,
<A |7+ 3 T B
k=17"k
n
o il Pr-t ) (1)
+ ( _ A
| (L - e
N N
+—A _ A
o L Wi LYY 1Y
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®) Bie w S Ty
A A s
= ”n[” Ll + T M | Ay HM:| + k§:1: - Brzk

Tne ~~ Bk Br—17k Vi
I 188

M* = mkvi BrTti—1Vk—1

Since g /m—1 = 1 — B T™* and since, in view of (A3), % =14 O(B), there
exists ¢ > 0 such that

®) ®) Bie ] S T [ Br ) ]
A <z llA _ P A T LLIPN .
I n+1”T—n"|:H | ||T+mylM*H 1y +,;7Tkﬁk Zk+cka had I
Noting that 7, /7y < e~ T un=u) it follows that
n
8y =0 (e e S e o B, ] )

k=1
which can be rewritten as

() ks
||A,iil||T=0(e T

n
ke ok 0 0 0
e Y T B L]+ Bl R+ 1+ 1)
k=1

n
e e B | L |+ e R+ 1L
k=1

0) 12 2 2
+ IR+ 1L+ IR 1)

sk n sk ,82
pey gy, )

Replacing ||r,§9)|| and ||r,£“ )|| by their upper bounds given in assumption (A4)(iv),
||L,(<9)|| and ||L,(<“)|| by their upper bounds given by Lemma 2, ||R,£9)|| and ||R,E“)||

by their upper bounds given by Lemma 5, || A,(C“ ) | by 8,&“ ), and doing some straight-
forward simplifications, we obtain

0 —T*y,
1A9, ], = o(e r

n
e Ty Tk B [ By *wi + i log sy + By ']
k=1

+e_T**un ZeT**ukﬁkO(\/ﬂ_]{)>.

k=1
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Now, since the sequences (wj;) and (8,(1“ )) satisfy Condition (C), the sequences
(,B,%yn_zw%), (vn logsy,) and (B, yn_lé,(l“ )) satisfy Condition (C). Moreover, the se-
quence (,B,l/ 2) satisfies Condition (C). The application of Lemma 9 then ensures
that, for all 7’ €10, T**[,

[aP]7 = 0" + e Ly + Bryy wi + v logsu + By, '81Y)

+0(VBn)-

Let us recall that 7** has been set such/ that 7** > 1,—1/(2Bp), and note that T’
can be chosen such that e =74 4 ¢=T"un = o( /B, ). Since y, logs, = o(v/Bn),
it follows that

|87 = O(Bivs 2wy + Buvi '84) +o(VBu),
which proves (29).

A.4.3. Proof of (30). In view of (27), we have

n
|2 =0 (e‘M DI AT S A T B [
k=1

0) 12 9)2 2
FLOPR + RO P+ 28]
2 0
R0 +||A§JHT]).

Replacing ||r,§“ )|| by its upper bound given in Assumption (A4)(iv), ||L,((0)|| and
||L,(C“ )|| by their upper bounds given by Lemma 2, ||R,£9)|| and ||R,(C“ )|| by their

upper bounds given by Lemma 5, ||A,(<0) |l7 by its upper bound given in (29), and
doing some straightforward simplifications, we deduce that

n
Ay ly=0 (e_M*sn +e M Z M Sty [,31%)’1:2“)/% + vk log sk
k=1

+ B Vkil 51?”]

—}—e_M*s” ZBM*skaO(\/ﬁ_k)>-

k=1

Since the sequences (w,) and (8,2“ )) satisfy Condition (C’), the sequences

(B2y,72w?), (ynlogsy), (n~) and (B,y,'8W") satisfy Condition (C’). Moreover,
the sequence (5,1/ 2) satisfies Condition (C’). The application of Lemma 10 then
ensures that

” A}(’lﬂ) HM = O(e_M*sn + ﬁ,%l/n_zwz + ¥ulogsy + B Vn_l‘s;gm) + 0(\/5)
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Noting that e M 4 Ynlogs, = o(s/Br), it follows that

A,y = OB2y, w2 + Buyy '6) + 0(\Bn ),

which concludes the proof of (30).
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