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CONVERGENCE RATE AND AVERAGING OF
NONLINEAR TWO-TIME-SCALE STOCHASTIC

APPROXIMATION ALGORITHMS

BY ABDELKADER MOKKADEM AND MARIANE PELLETIER

University of Versailles–Saint-Quentin

The first aim of this paper is to establish the weak convergence rate of
nonlinear two-time-scale stochastic approximation algorithms. Its second aim
is to introduce the averaging principle in the context of two-time-scale sto-
chastic approximation algorithms. We first define the notion of asymptotic
efficiency in this framework, then introduce the averaged two-time-scale sto-
chastic approximation algorithm, and finally establish its weak convergence
rate. We show, in particular, that both components of the averaged two-time-
scale stochastic approximation algorithm simultaneously converge at the op-
timal rate

√
n.

1. Introduction. Let

f :
{

R
d × R

d ′ → R
d

(θ,µ) �→ f (θ,µ)
and g :

{
R

d × R
d ′ → R

d ′

(θ,µ) �→ g(θ,µ)

be two unknown functions, and let (θ∗,µ∗) be the unique solution to the equations

f (θ,µ) = 0 and g(θ,µ) = 0.

Assume that error-contaminated observations of f (θ,µ) and g(θ,µ) are available
at any level (θ,µ). The two-time-scale stochastic approximation algorithm, which
allows the recursive approximation of (θ∗,µ∗), is defined as

θn+1 = θn + βnXn+1,(1)

µn+1 = µn + γnYn+1,(2)

where Xn+1 and Yn+1 are error-contaminated observations of f (θn,µn) and
g(θn,µn), respectively, and where the step sizes (βn) and (γn) are two positive
nonrandom sequences converging to zero with different rates.

Over the past few years, several such algorithms have been proposed for vari-
ous applications (see [1, 3, 4, 12, 13]), and criteria ensuring the almost sure con-
vergence of (θn,µn) to (θ∗,µ∗) have been established by Borkar [5], Konda and
Borkar [12] and Konda and Tsitsiklis [13]. To our knowledge, the only existing
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result on the convergence rate of the two-time-scale stochastic approximation al-
gorithm (1)–(2) is the one of Konda and Tsitsiklis [14]. In the case when the func-
tions f and g are linear and when limn→∞ βn/γn = 0, Konda and Tsitsiklis [14]
establish that the fastest component θn satisfies the following central limit theorem
(CLT): √

β−1
n (θn − θ∗) D→ N (0,�θ),(3)

where
D→ denotes the convergence in distribution, N the Gaussian-distribution,

and where the asymptotic covariance matrix �θ is defined in (8) below. Moreover,
it can be conjectured from their analysis that the slowest component µn fulfills
the CLT: √

γ −1
n (µn − µ∗) D→ N (0,�µ)(4)

[where the asymptotic covariance matrix �µ is defined in (9) below]. The result (3)
of [14] is thus very surprising. As a matter of fact, it shows that the slowest com-
ponent µn [which, through Xn+1, is present in the recursive definition (1) of θn]
has no effect on the convergence rate of the fastest component θn, except in the
expression of the asymptotic covariance matrix �θ . It is then natural to wonder
whether this phenomenon is specific to the case of the functions f and g being
linear or not.

Our first aim in this paper is to study the weak joint convergence rate of
θn and µn in the case where the functions f and g are nonlinear. We still con-
sider the case limn→∞ βn/γn = 0, and prove that( √

β−1
n (θn − θ∗)√

γ −1
n (µn − µ∗)

)
D→ N

(
0,

(
�θ 0
0 �µ

))
.(5)

The CLT (5) extends, in particular, the result (3) of [14] to the case where the
functions f and g are nonlinear. Let us underline that, as explained in [14], in
the case (βn) ≡ (γn), the algorithm defined by (1)–(2) reduces to a single-time-
scale stochastic approximation algorithm used for the search of the zero of the
function h : Rd+d ′ → R

d+d ′
defined by h(θ,µ) = (f (θ,µ), g(θ,µ)). The con-

vergence rate of such single-time-scale stochastic approximation algorithms has
been widely studied (see, among many others, Nevels’on and Has’minskii [21],
Kushner and Clark [15], Benveniste, Métivier and Priouret [2], Ljung, Pflug and
Walk [10] and Duflo [9]), but the existing techniques do not apply when the step
sizes (βn) and (γn) have two different convergence rates, that is, in the context
of two-time-scale stochastic approximation algorithms. Let us also point out that
the two-time-scale iterations considered by Konda and Tsitsiklis [14] and in the
present paper are totally different from those that arise in the study of the track-
ing ability of adaptative algorithms (see [2]) or in the joint approximation of the
location and size of the maximum of a regression function (see [20]); the specific
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difficulty in the present context relies on the double dependency between both
components θn and µn [θn defined by (1) depends, through Xn+1, on µn defined
by (2), whereas µn defined by (2) depends, through Yn+1, on θn defined by (1)]. Let
us finally underline that the techniques we use to prove (5) (introduction of expo-
nential martingales and recourse to successive almost sure upper bounds) radically
differ from those employed by Konda and Tsitsiklis [14] to establish (3); let us also
mention that the additional difficulty induced by the nonlinearity of the functions
f and g will be enlightened in our proof of (5).

Now, let us note that, in view of (3) and (5), the recommended choice of the
fastest step size (βn) is (βn) ≡ (β0n

−1), since it is the choice which ensures that
the fastest component θn converges with the optimal rate

√
n. However, this op-

timal choice induces conditions on the parameter β0, which are difficult to han-
dle because of depending on an unknown parameter. The problem due to the
choice of the optimal step size (βn) ≡ (β0n

−1) is now well known in the context
of single-time-scale stochastic approximation algorithms, and the method widely
employed in this framework to circumvent this problem is the use of the aver-
aging principle independently introduced by Ruppert [26] and Polyak [24], and
then widely discussed and extended (see, among many others, Yin [27], Delyon
and Juditsky [6], Polyak and Juditsky [25], Kushner and Yang [16], Dippon and
Renz [7, 8], Duflo [9], Kushner and Yin [17] and Pelletier [23]).

Our second aim in this paper is to introduce the averaging principle in the
context of two-time-scale stochastic approximation algorithms. We first define
the notion of asymptotic efficiency in this framework, then introduce the aver-
aged two-time-scale stochastic approximation algorithm, and finally establish its
weak convergence rate. We prove, in particular, that, by choosing the step sizes
(βn) and (γn) equal to (βn) ≡ (β0n

−b) and (γn) ≡ (γ0n
−a) with 1/2 < a < b < 1,

and by defining the averaged two-time-scale algorithm by setting

θn = 1

n

n∑
k=1

θk and µn = 1

n

n∑
k=1

µk,

where θk and µk are defined in (1)–(2), we obtain an asymptotically efficient two-
time-scale algorithm, which satisfies the CLT( √

n(θn − θ∗)√
n(µn − µ∗)

)
D→ N (0,C),

where the asymptotic covariance matrix C is precisely defined (see Theorem 2).
The striking aspect of this result is that averaging leads to a two-time-scale al-
gorithm whose components θn and µn simultaneously converge with the optimal
rate

√
n.

Our paper is now organized as follows. Section 2 is devoted to the study of the
convergence rate of nonlinear two-time-scale stochastic approximation algorithms.
We first precisely state our assumptions and main results; then, we give the outlines
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of the proof of our main results, postponing the technical parts until the Appendix.
Section 3 is reserved for averaging. The notion of asymptotic efficiency of two-
time-scale stochastic approximation algorithms is introduced in Section 3.1; the
weak convergence rate of the averaged two-time-scale algorithm is stated and then
proved in Sections 3.2 and 3.3, respectively.

2. Convergence rate of nonlinear two-time-scale stochastic approximation
algorithms.

2.1. Assumptions and notation. For any square matrix A, we set

�(A) = −max{Re(λ), λ ∈ Sp(A)},
where Sp(A) denotes the spectrum of A. Moreover, ‖ · ‖ denotes the Euclidean
vector norm in R

d , R
d ′

and R
d+d ′

without distinction, and ||| · ||| the matrix norm
induced by the Euclidean vector norm.

The assumptions we require are the following:

(A1) limn→∞ θn = θ∗ a.s. and limn→∞ µn = µ∗ a.s.
(A2) (i) There exists a neighborhood U of (θ∗,µ∗) such that, for all

(θ,µ) ∈ U,(
f (θ,µ)

g(θ,µ)

)
=

(
Q11 Q12
Q21 Q22

)(
θ − θ∗
µ − µ∗

)
+ O

(∥∥∥∥ θ − θ∗
µ − µ∗

∥∥∥∥2
)

.

(ii) Set

H = Q11 − Q12Q
−1
22 Q21.(6)

We have �(H) > 0 and �(Q22) > 0.
(A3) (i) (βn) ≡ (β0n

−b) and (γn) ≡ (γ0n
−a) with β0 > 0, γ0 > 0 and 1

2 <

a < b ≤ 1.
(ii) If b = 1, then β0 > 1/[2�(H)].
(A4) The error-contaminated observations can be written as

Xn+1 = f (θn,µn) + ψ(θ)
n + Vn+1,

Yn+1 = g(θn,µn) + ψ(µ)
n + Wn+1,

and denoting by Fn the σ -field spanned by {Vi,Wj , θk,µl,ψ
(θ)
k′ ,ψ

(µ)

l′ , 0 ≤ i, j,

k, l, k′, l′ ≤ n}, we have the following:

(i) E(Vn+1|Fn) = 0 and E(Wn+1|Fn) = 0 a.s.
(ii) There exists a positive matrix 	 such that

lim
n→∞ E

((
Vn+1
Wn+1

)
(V T

n+1 WT
n+1)

∣∣∣Fn

)
= 	 =

(
	11 	12
	21 	22

)
a.s.
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(iii) There exists m > 2/a such that supn E(‖Vn+1‖m|Fn) < ∞ and
supn E(‖Wn+1‖m|Fn) < ∞ a.s.

(iv)

ψ(θ)
n = r(θ)

n + O(‖θn − θ∗‖2 + ‖µn − µ∗‖2),

ψ(µ)
n = r(µ)

n + O(‖θn − θ∗‖2 + ‖µn − µ∗‖2),

with ‖r(θ)
n ‖ + ‖r(µ)

n ‖ = o(
√

βn ) a.s.

Let us specify that the matrices Q11 and 	11 (resp. Q22 and 	22) in (A2)(i)
and (A4)(ii) are d ×d (resp. d ′ ×d ′) matrices; the matrices Q12, Q21, 	12 and 	21
are of appropriate dimension. Set

	θ = lim
n→∞E([Vn+1 − Q12Q

−1
22 Wn+1][Vn+1 − Q12Q

−1
22 Wn+1]T |Fn)

(7)
= 	11 + Q12Q

−1
22 	22[Q−1

22 ]T QT
12 − 	12[Q−1

22 ]T QT
12 − Q12Q

−1
22 	21.

We can now give the explicit definition of the asymptotic covariance matrices
�θ and �µ, which stand in (3), (4) and (5):

�θ =
∫ ∞

0
exp

[(
H + 1b=1

2β0
I

)
t

]
	θ exp

[(
HT + 1b=1

2β0
I

)
t

]
dt,(8)

�µ =
∫ ∞

0
exp[Q22t]	22 exp[Q22t]dt.(9)

Let us mention that the matrices �θ and �µ are the solutions of the Lyapounov
equations [

H + 1b=1

2β0
I

]
�θ + �θ

[
HT + 1b=1

2β0
I

]
= −	θ

and

Q22�µ + �µQT
22 = −	22,

respectively (see Lemma 3.I.3 in [9]).

Comments on the assumptions.
1. We refer to [5, 12, 13] for quite general conditions that ensure the consis-

tency assumption (A1). Let us underline that, in the case where f and g are linear,
ψ

(θ)
n = 0 and ψ

(µ)
n = 0, assumption (A1) is useless; as a matter of fact, as noted

by Konda and Tsitsiklis [14], assumptions (A2)–(A4) imply (A1) in this particu-
lar case. Let us also mention that a particular example of two-time-scale stochas-
tic approximation algorithm is the well known Polyak–Ruppert averaging; in this
framework, (1)–(2) reduces to

θn+1 = θn + 1

n
(µn − θn),

µn+1 = µn + γnYn+1,



1676 A. MOKKADEM AND M. PELLETIER

where Yn+1 is an error-contaminated observation at µn of an unknown function h,
and limn→∞ nγn = ∞; (A1) then comes down to the assumption limn→∞ µn = µ∗
[where h(µ∗) = 0], and conditions which ensure this lattest assumption can be
found, among many others, in [9, 15, 18].

2. Assumptions (A2)(ii) and (A3)(ii) ensure that the matrices �θ and �µ are
well defined. As a matter of fact, the conditions in (A2)(ii) mean that the matrices
H and Q22 are attractive (or Hurwitz) and, in the case b = 1, it follows from the
condition in (A3)(ii) that the matrix [H + 1

2β0
I ] is attractive.

3. To establish the convergence rate of the two-time-scale stochastic approxima-
tion algorithm (1)–(2), Konda and Tsitsiklis [14] assume that the functions f and g

are linear, that is, that(
f (θ,µ)

g(θ,µ)

)
=

(
Q11 Q12
Q21 Q22

)(
θ − θ∗
µ − µ∗

)
.

Moreover, their framework corresponds to the case (A4) is fulfilled with ψ
(θ)
n = 0,

ψ
(µ)
n = 0, and (Vn,Wn) are independent random vectors with zero mean and

common covariance 	. On the other hand, their conditions on the step sizes
(βn) and (γn) are more general than ours.

2.2. Main results. Our main result in this section is the following theorem.

THEOREM 1 [Joint weak convergence rate of (θn) and (µn)]. Let (θn,µn) be
defined by the recursive equations (1)–(2). Under assumptions (A1)–(A4), we have( √

β−1
n (θn − θ∗)√

γ −1
n (µn − µ∗)

)
D→ N

(
0,

(
�θ 0
0 �µ

))
,

where �θ and �µ are defined in (8) and (9), respectively.

The following proposition, which is of independent interest, will be a key tool
for the study of the weak convergence rate of the averaged two-time-scale stochas-
tic approximation algorithm.

PROPOSITION 1 [Strong convergence rate of (θn) and (µn)]. Let (θn,µn) be
defined by the recursive equations (1)–(2). Under assumptions (A1)–(A4), we have

‖θn − θ∗‖ = O

(√√√√βn log

[
n∑

k=1

βk

])
a.s.

and

‖µn − µ∗‖ = O

(√√√√γn log

[
n∑

k=1

γk

])
a.s.
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2.3. Proof of Theorem 1 and Proposition 1. Throughout the proof of Theo-
rem 1 and Proposition 1, we assume, without loss of generality, that θ∗ = 0 and
µ∗ = 0. In view of assumptions (A1), (A2) and (A4), we can write

θn+1 = θn + βn

(
Q11θn + Q12µn + ρ(θ)

n + r(θ)
n + Vn+1

)
,(10)

µn+1 = µn + γn

(
Q21θn + Q22µn + ρ(µ)

n + r(µ)
n + Wn+1

)
,(11)

where ∥∥ρ(θ)
n

∥∥ = O(‖θn‖2 + ‖µn‖2) and
∥∥ρ(µ)

n

∥∥ = O(‖θn‖2 + ‖µn‖2).(12)

Note that (11) gives

µn = Q−1
22 γ −1

n [µn+1 − µn] − Q−1
22

(
Q21θn + ρ(µ)

n + r(µ)
n + Wn+1

)
,

and thus, in view of (10), it follows that

θn+1 = θn + βn

(
Q11θn + Q12Q

−1
22 γ −1

n [µn+1 − µn]
− Q12Q

−1
22

(
Q21θn + ρ(µ)

n + r(µ)
n + Wn+1

)
+ ρ(θ)

n + r(θ)
n + Vn+1

)
(13)

= θn + βnHθn + βnQ12Q
−1
22 γ −1

n [µn+1 − µn]
+ βn(Vn+1 − Q12Q

−1
22 Wn+1)

+ βn

([
ρ(θ)

n + r(θ)
n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
,

where H is defined in (6). Now, set

un =
n∑

k=1

βk,

L
(θ)
n+1 = eunH

n∑
k=1

e−ukHβk(Vk+1 − Q12Q
−1
22 Wk+1),(14)

R
(θ)
n+1 = eunH

n∑
k=1

e−ukHβkQ12Q
−1
22 γ −1

k [µk+1 − µk],(15)

�
(θ)
n+1 = θn+1 − L

(θ)
n+1 − R

(θ)
n+1(16)

and

sn =
n∑

k=1

γk,

L
(µ)
n+1 = esnQ22

n∑
k=1

e−skQ22γkWk+1,(17)
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R
(µ)
n+1 = esnQ22

n∑
k=1

e−skQ22γkQ21
[
L

(θ)
k + R

(θ)
k

]
,(18)

�
(µ)
n+1 = µn+1 − L

(µ)
n+1 − R

(µ)
n+1.(19)

The main idea to establish Theorem 1 and Proposition 1 is to prove that the se-
quences (R

(θ)
n ) and (�

(θ)
n ) are negligible in front of (L

(θ)
n ) on the one hand, and

that the sequences (R
(µ)
n ) and (�

(µ)
n ) are negligible in front of (L

(µ)
n ) on the other

hand; the convergence rates of (θn) and (µn) are then given by the ones of (L
(θ)
n )

and (L
(µ)
n ), respectively. Let us note that, even though the sequence (µn) goes to

zero a.s. slower than the sequence (θn) does, we shall prove that the term (R
(θ)
n )

goes to zero a.s. faster than the sequence (θn) does. This is due to an averaging ef-
fect, the sequence (R

(θ)
n ) bringing in a weighted sum of the differences µk+1 −µk .

In the sequel we shall come back on this effect several times.
Applying Lyapounov’s theorem, we obtain the following lemma (see Sec-

tion A.2 for the technical details).

LEMMA 1 [Joint weak convergence rate of (L
(θ)
n ) and (L

(µ)
n )]. We have( √

β−1
n L

(θ)
n√

γ −1
n L

(µ)
n

)
D→ N

(
0,

(
�θ 0
0 �µ

))
.

Moreover, the following lemma is proved in [22].

LEMMA 2 [Strong convergence rate of (L
(θ)
n ) and (L

(µ)
n )]. We have∥∥L(θ)

n

∥∥ = O
(√

βn logun

)
a.s.

and ∥∥L(µ)
n

∥∥ = O
(√

γn log sn
)

a.s.

Theorem 1 (resp. Proposition 1) thus follows from the combination of Lemma 1
(resp. of Lemma 2), and of the following two lemmas (which imply, in particular,
that the sequences (β

−1/2
n [R(θ)

n +�
(θ)
n ]) and (γ

−1/2
n [R(µ)

n +�
(µ)
n ]) go to zero a.s.):

LEMMA 3 [Strong convergence rate of (R
(θ)
n ) and (R

(µ)
n )].

1. There exists s > b/2 such that ‖R(θ)
n ‖ = O(n−s) a.s.

2. ‖R(µ)
n ‖ = O(

√
βn logun ) a.s.

LEMMA 4 [Strong convergence rate of (�
(θ)
n ) and (�

(µ)
n )]. We have∥∥�(θ)

n

∥∥ = o
(√

βn

)
a.s.,∥∥�(µ)

n

∥∥ = o
(√

βn

)
a.s.
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The key point in the proof of Theorem 1 and Proposition 1 is thus the proof of
Lemmas 3 and 4. The rest of Section 2 is devoted to this proof (we shall refer to
the Appendix for the technical details). Let us first give the strategy to prove these
lemmas.

We note that, to obtain an upper bound of (R
(µ)
n ), we need to have an upper

bound of (R
(θ)
n ), which requires to have an upper bound of (µn). The main idea

to prove Lemma 3 is thus to proceed by successive upper bounds. In a first step,
we shall start with the only upper bound of (µn) available to us, that is, in view of
assumption (A1), with ‖µn‖ = o(1). This will enable us to establish a first upper
bound of (R

(θ)
n ) and then of (R

(µ)
n ). With these preliminary upper bounds, we shall

be able to prove preliminary upper bounds for (�
(θ)
n ) and (�

(µ)
n ). Using (19) and

applying Lemma 2, we shall then slightly improve the first upper bound of (µn);
starting with this second upper bound of (µn), we shall then repeat the procedure
previously described to find a third upper bound of (µn), which slightly improves
the second one, and we shall carry on these successive upper bounds until we
obtain the adequate upper bounds of (µn), (R

(θ)
n ), (R

(µ)
n ), (�

(θ)
n ) and (�

(µ)
n ).

Let us mention that the step, which consists in deducing upper bounds of (�
(θ)
n )

and (�
(µ)
n ) from upper bounds of (µn), (L

(θ)
n ), (L

(µ)
n ), (R

(θ)
n ) and (R

(µ)
n ), is quite

straightforward in the case when the functions f and g are linear, ψ
(θ)
n = 0 and

ψ
(µ)
n = 0 (see Remark 4 below); however, in the case where the functions f and g

are nonlinear, this step too requires to compute successive upper bounds [we shall
first show that ‖�(µ)

n ‖ = o(1), and then shall recursively improve the upper bound
of (�

(µ)
n ) until we find the adequate upper bound of (�

(µ)
n )].

Our proof of Lemmas 3 and 4 is now organized as follows. We first define Con-
ditions (C) and (C′) [that are expressed with respect to the step sizes (βn) and (γn)

resp.] for a nonrandom sequence, conditions which will be used throughout the
proof. Then, in Section 2.3.1, we show how the knowledge of an upper bound of
(µn) and of (�

(µ)
n ) enables to establish upper bounds of (R

(θ)
n ), (R

(µ)
n ), (�

(θ)
n ),

and to improve the upper bound of (�
(µ)
n ). Section 2.3.2 is devoted to the body of

the proof of Lemmas 3 and 4.

DEFINITION 1 [Condition (C)]. Let (wn) be a sequence of real numbers. We
say that (wn) satisfies Condition (C) if (wn) is positive and bounded and if:

• in the case b = 1, there exist ω ≥ 0 and a nondecreasing slowly varying function
L such that wn = n−ωL(n);

• in the case b < 1,

wn

wn+1
= 1 + o(βn).
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DEFINITION 2 [Condition (C′)]. Let (wn) be a sequence of real numbers. We
say that (wn) satisfies Condition (C′) if (wn) is positive and bounded and if

wn

wn+1
= 1 + o(γn).

REMARK 1. If b = 1 and if (wn) satisfies Condition (C) with ω = 0, then the
function L is necessary bounded.

REMARK 2. In the case b < 1, if (wn) satisfies Condition (C), then (wn) sat-
isfies Condition (C′).

2.3.1. Intermediate upper bounds. We can now state the following lemma,
which gives an upper bound of (R

(θ)
n ) and (R

(µ)
n ) under the assumption ‖µn‖ =

O(wn), where (wn) is a nonrandom sequence satisfying Conditions (C) and (C′).
The proof of this lemma only requires classical computations, and is thus post-
poned until the Appendix (see Section A.3).

LEMMA 5 [Intermediate upper bound of (R
(θ)
n ) and (R

(µ)
n )]. Assume that there

exists a nonrandom sequence (wn) satisfying Conditions (C) and (C′), and such
that ‖µn‖ = O(wn) a.s. For all s ∈]1/2, β0�

(H)[, we have∥∥R(θ)
n

∥∥ = O(βnγ
−1
n wn + n−s) a.s.,∥∥R(µ)

n

∥∥ = O
(
βnγ

−1
n wn +

√
βn logun

)
a.s.

REMARK 3. The term R
(µ)
n can be seen as a (matricial) weighted average of

the terms L
(θ)
k +R

(θ)
k ; the second upper bound in Lemma 5 is established by prov-

ing that the same upper bound holds for the sequence (L
(θ)
n + R

(θ)
n ) and for its

average (R
(µ)
n ), which seems quite natural. On the other hand, the term R

(θ)
n can

be seen as a (matricial) weighted average of the terms γ −1
k [µk+1 − µk]; the strik-

ing aspect of the first upper bound in Lemma 5 is that, although µn is bounded
by wn, although γ −1

n → ∞, the average R
(θ)
n can be bounded by βnγ

−1
n wn (which

is smaller than wn since βnγ
−1
n → 0). This averaging effect is similar to the one

which appears in the study of the averaged single-time-scale stochastic approxi-
mation algorithm introduced by Ruppert [26] and Polyak [24].

We now state a lemma, which gives an upper bound of (�
(θ)
n ) and (�

(µ)
n ) under

the assumption ‖µn‖ = O(wn) and ‖�(µ)
n ‖ = O(δ

(µ)
n ), where (wn) and (δ

(µ)
n ) are

two nonrandom sequences satisfying Conditions (C) and (C′).

LEMMA 6 [Intermediate upper bound of (�
(θ)
n ) and (�

(µ)
n )]. Assume that

there exist two nonrandom sequences (wn) and (δ
(µ)
n ) satisfying Conditions
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(C) and (C′), and such that ‖µn‖ = O(wn) a.s. and ‖�(µ)
n ‖ = O(δ

(µ)
n ) a.s. We

have ∥∥�(θ)
n

∥∥ = O
(
β2

nγ −2
n w2

n + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
a.s.,∥∥�(µ)

n

∥∥ = O
(
β2

nγ −2
n w2

n + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
a.s.

We now give the outlines of the proof of Lemma 6, and refer to the Appendix
for the technical computations.

Outlines of the proof of Lemma 6. We first note that �
(θ)
n and �

(µ)
n satisfy the

following recursive expressions (see Section A.4.1 for the algebra leading to these
equations):

�
(θ)
n+1 = (I + βnH)�(θ)

n + O(β2
n)

[
L(θ)

n + R(θ)
n

]
(20)

+ βn

([
ρ(θ)

n + r(θ)
n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
,

�
(µ)
n+1 = (I + γnQ22)�

(µ)
n + O(γ 2

n )
[
L(µ)

n + R(µ)
n

]
(21)

+ γn

[
ρ(µ)

n + r(µ)
n + Q21�

(θ)
n

]
.

Now, set T and M such that 1b=1
2β0

< T < �(H) and 0 < M < �(Q22) respec-
tively. In view of Proposition 3.I.2 in [9], there exist two matrix norms ||| · |||T
and ||| · |||M , and there exists a ∈]0, inf{1/T ,1/M}[ such that, for all γ ≤ a,
|||I + γH |||T ≤ 1 − γ T and |||I + γQ22|||M ≤ 1 − γM . For x in R

d (resp. in R
d ′

),
define Md(x) = [xx · · ·x] (resp. Md ′

(x) = [xx · · ·x]) the d ×d (resp. d ′ ×d ′) ma-
trix all of whose columns are x. The function ‖ · ‖T (resp. ‖ · ‖M ) defined on R

d

(resp. on R
d ′

) by ‖x‖T = |||Md(x)|||T (resp. by ‖x‖M = |||Md ′
(x)|||M ) is then a

vector norm compatible with the matrix norm ||| · |||T (resp. with ||| · |||M ) (see [11],
page 297). For n large enough, we thus have∥∥�(θ)

n+1

∥∥
T ≤ (1 − βnT )

∥∥�(θ)
n

∥∥
T + βn

[
O

(
βn

∥∥L(θ)
n

∥∥
T + βn

∥∥R(θ)
n

∥∥
T

)]
+ βn

[
O

(∥∥ρ(θ)
n

∥∥
T + ∥∥r(θ)

n

∥∥
T + ∥∥Q12Q

−1
22 ρ(µ)

n

∥∥
T(22)

+ ∥∥Q12Q
−1
22 r(µ)

n

∥∥
T

)]
and ∥∥�(µ)

n+1

∥∥
M ≤ (1 − γnM)

∥∥�(µ)
n

∥∥
M + γn

[
O

(
γn

∥∥L(µ)
n

∥∥
M + γn

∥∥R(µ)
n

∥∥
M

)]
(23)

+ γn

[
O

(∥∥ρ(µ)
n

∥∥
M + ∥∥r(µ)

n

∥∥
M + ∥∥Q21�

(θ)
n

∥∥
M

)]
.

REMARK 4. In the case where the functions f and g are linear and when
ψ

(θ)
n = 0 and ψ

(µ)
n = 0, the terms ρ

(θ)
n and ρ

(µ)
n equal zero; replacing in (22)

‖L(θ)
n ‖T and ‖R(θ)

n ‖T by their upper bounds given in Lemmas 2 and 5 enables to
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get an upper bound δ
(θ)
n of ‖�(θ)

n ‖T . Then, replacing in (23) ‖L(µ)
n ‖M and ‖R(µ)

n ‖M

by their upper bounds given in Lemmas 2 and 5, and ‖Q21�
(θ)
n ‖M by its upper

bound δ
(θ)
n , enables to obtain an upper bound of ‖�(µ)

n ‖M . Thus, in this partic-
ular framework, the proof of intermediate upper bounds of (�

(θ)
n ) and (�

(µ)
n ) is

quite straightforward. Moreover, the upper bounds of (�
(θ)
n ) and (�

(µ)
n ) obtained

in this case are better than those stated in Lemma 6 [compare (22) with (28) be-
low, and (23) with (27) below]; in particular, the knowledge of a preliminary upper
bound δ

(µ)
n of the sequence (�

(µ)
n ) is not necessary.

By using the equivalence property of the finite-dimensional vector norms, we
note that, in view of (12), (16) and (19), we have∥∥ρ(θ)

n

∥∥
T + ∥∥Q12Q

−1
22 ρ(µ)

n

∥∥
T

= O
(∥∥ρ(θ)

n

∥∥ + ∥∥ρ(µ)
n

∥∥)
= O(‖θn‖2 + ‖µn‖2)

= O
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥�(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(µ)
n

∥∥2)
= O

(∥∥L(θ)
n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥�(θ)
n

∥∥2
T + ∥∥L(µ)

n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(µ)
n

∥∥2
M

)
.

It thus follows from (22) that there exists C1 > 0 such that, for n large enough,
∥∥�(θ)

n+1

∥∥
T ≤ (1 − βnT )

∥∥�(θ)
n

∥∥
T

+ βn

[
O

(
βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
(24)

+ βnC1
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥�(θ)
n

∥∥2
T

+ ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(µ)
n

∥∥2
M

)
.

Similarly, we can deduce from (23) the existence of C2 > 0 such that, for n large
enough,

∥∥�(µ)
n+1

∥∥
M ≤ (1 − γnM)

∥∥�(µ)
n

∥∥
M

+ γn

[
O

(
γn

∥∥L(µ)
n

∥∥ + γn

∥∥R(µ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
(25)

+ γnC2
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥�(θ)
n

∥∥2
T + ∥∥L(µ)

n

∥∥2 + ∥∥R(µ)
n

∥∥2

+ ∥∥�(µ)
n

∥∥2
M + ∥∥�(θ)

n

∥∥
T

)
.

Now, let us note that, in view of assumption (A1), we have limn→∞ θn = 0 and
limn→∞ µn = 0 a.s. Since limn→∞ βnγ

−1
n = 0, Lemma 5 [applied with the se-

quence (wn) ≡ 1] implies that limn→∞ R
(θ)
n = 0 and limn→∞ R

(µ)
n = 0 a.s. Not-



NONLINEAR TWO-TIME-SCALE ALGORITHMS 1683

ing that Lemma 2 ensures that limn→∞ L
(θ)
n = 0 and limn→∞ L

(µ)
n = 0 a.s., we

deduce that limn→∞ �
(θ)
n = 0 and limn→∞ �

(µ)
n = 0 a.s. Set T ∗ and M∗ such that

1b=1
2β0

< T ∗ < T and 0 < M∗ < M , respectively; we can then deduce from (24) that,
for n large enough,

∥∥�(θ)
n+1

∥∥
T ≤ (1 − βnT

∗)
∥∥�(θ)

n

∥∥
T

+ βnO
[(

βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
(26)

+ βnC1
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(µ)
n

∥∥2
M

)
and from (25), that there exists C′

2 > 0 such that, for n large enough,

∥∥�(µ)
n+1

∥∥
M ≤ (1 − γnM

∗)
∥∥�(µ)

n

∥∥
M

+ γn

[
O

(
γn

∥∥L(µ)
n

∥∥ + γn

∥∥R(µ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
(27)

+ γnM
∗C′

2
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2

+ ∥∥R(µ)
n

∥∥2 + ∥∥�(θ)
n

∥∥
T

)
.

REMARK 5. Let us note here that classical techniques allow to deduce
from (26) that if the sequence

(
βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥ + ∥∥L(θ)
n

∥∥2 + ∥∥R(θ)
n

∥∥2

+ ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(µ)
n

∥∥2
M

)
is bounded above by a suitable sequence (w′

n), then ‖�(θ)
n ‖T can also be bounded

above by (w′
n). However, since the first upper bound of ‖�(µ)

n ‖M , which will
be available in the body of the proof of Lemmas 3 and 4 (see Section 2.3.2)
is ‖�(µ)

n ‖M = O(1), inequality (26) leads only to ‖�(θ)
n ‖T = O(1) (which has

already been proved). The idea to deduce from (26) a better upper bound for
‖�(θ)

n ‖T is to resort to the averaging effect; for that, we need to substitute
γ −1
n [‖�(µ)

n ‖M − ‖�(µ)
n+1‖M ] for ‖�(µ)

n ‖2
M in (26) [see (28) and Remark 6 below].

Inequality (27) allows to write

∥∥�(µ)
n

∥∥
M ≤ 1

γnM∗
[∥∥�(µ)

n

∥∥
M − ∥∥�(µ)

n+1

∥∥
M

] + O
(
γn

∥∥L(µ)
n

∥∥ + γn

∥∥R(µ)
n

∥∥ + ∥∥r(µ)
n

∥∥)
+ C′

2
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(θ)
n

∥∥
T

)
.

Set ε > 0 such that 1b=1
2β0

< T ∗ − εC′
2; since limn→∞ �

(µ)
n = 0, we deduce
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from (26) that, for n large enough,∥∥�(θ)
n+1

∥∥
T ≤ (1 − βnT

∗)
∥∥�(θ)

n

∥∥
T

+ βn

[
O

(
βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
+ βnC1

(∥∥L(θ)
n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2) + βnε
∥∥�(µ)

n

∥∥
M

≤ (1 − βnT
∗)

∥∥�(θ)
n

∥∥
T

+ βn

[
O

(
βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
+ βnC1

(∥∥L(θ)
n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2)
+ βnε

γnM∗
[∥∥�(µ)

n

∥∥
M − ∥∥�(µ)

n+1

∥∥
M

]
+ βn

[
O

(
γn

∥∥L(µ)
n

∥∥ + γn

∥∥R(µ)
n

∥∥ + ∥∥r(µ)
n

∥∥)]
+ βnεC

′
2
(∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2 + ∥∥�(θ)
n

∥∥
T

)
.

Setting T ∗∗ such that 1b=1
2β0

< T ∗∗ < T ∗ − εC′
2, we obtain, for n large enough,∥∥�(θ)

n+1

∥∥
T ≤ (1 − βnT

∗∗)
∥∥�(θ)

n

∥∥
T

+ βn

[
O

(
βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥
+ γn

∥∥L(µ)
n

∥∥ + γn

∥∥R(µ)
n

∥∥)]
(28)

+ βn

[
O

(∥∥L(θ)
n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2)]
+ βnε

γnM∗
[∥∥�(µ)

n

∥∥
M − ∥∥�(µ)

n+1

∥∥
M

]
.

Classical computations (see Section A.4.2) then allow to deduce from (28) that∥∥�(θ)
n

∥∥
T = O

(
β2

nγ −2
n w2

n + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
.(29)

REMARK 6. Let us point out the averaging effect here again: the term

γ −1
n

[∥∥�(µ)
n

∥∥
M − ∥∥�(µ)

n+1

∥∥
M

]
present in (28) leads to the bounding term βnγ

−1
n δ

(µ)
n in (29), although the term

‖�(µ)
n ‖M itself is bounded only by δ

(µ)
n .

To conclude the proof of Lemma 6, we substitute the upper bound obtained
in (29) for ‖�(θ)

n ‖T in (27) and, via classical computations (see Section A.4.3),
establish that ∥∥�(µ)

n

∥∥
M = O

(
β2

nγ −2
n w2

n + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
.(30)

Lemma 6 then straightforwardly follows from the equivalence of the finite-
dimensional vector norms.
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2.3.2. Body of the proof of Lemmas 3 and 4. Let (wn) be a sequence satis-
fying Conditions (C) and (C′), and such that ‖µn‖ = O(wn) a.s. In the proof of
Lemma 6, we have seen that limn→∞ �

(µ)
n = 0 a.s. We can thus apply Lemma 6

with (δ
(µ)
n ) ≡ 1, which ensures that∥∥�(θ)

n

∥∥ + ∥∥�(µ)
n

∥∥ = O(β2
nγ −2

n w2
n + βnγ

−1
n ) + o

(√
βn

)
a.s.

Now, let k be a positive integer, and assume that∥∥�(θ)
n

∥∥ + ∥∥�(µ)
n

∥∥ = O(β2
nγ −2

n w2
n + [βnγ

−1
n ]k) + o

(√
βn

)
a.s.

Since (wn) satisfies Conditions (C) and (C′), the sequence (δ
(µ)
n ) ≡ (β2

nγ −2
n w2

n +
[βnγ

−1
n ]k + β

1/2
n ) also satisfies Conditions (C) and (C′); it follows from the appli-

cation of Lemma 6 that∥∥�(θ)
n

∥∥ + ∥∥�(µ)
n

∥∥ = O(β2
nγ −2

n w2
n + [βnγ

−1
n ]k+1) + o

(√
βn

)
a.s.

We have thus proved by induction that, for all integers j ,∥∥�(θ)
n

∥∥ + ∥∥�(µ)
n

∥∥ = O(β2
nγ −2

n w2
n + [βnγ

−1
n ]j ) + o

(√
βn

)
a.s.

Since Assumption (A3) ensures the existence of j0 such that [βnγ
−1
n ]j0 = o(β

1/2
n ),

we have proved that, for any sequence (wn) satisfying Conditions (C) and (C′) and
such that ‖µn‖ = O(wn), we have∥∥�(θ)

n

∥∥ + ∥∥�(µ)
n

∥∥ = O(β2
nγ −2

n w2
n) + o

(√
βn

)
a.s.(31)

Set k ≥ 0, and assume that

‖µn‖ = O
(√

γn log sn + [βnγ
−1
n ]k) a.s.(32)

Since the sequence (
√

γn log sn + [βnγ
−1
n ]k) satisfies Conditions (C) and (C′), the

application of Lemma 2, and of Lemma 5 and (31) with (wn) ≡ (
√

γn log sn +
[βnγ

−1
n ]k) ensures that

‖µn‖ = O
(∥∥L(µ)

n

∥∥ + ∥∥R(µ)
n

∥∥ + ∥∥�(µ)
n

∥∥)
= O

(√
γn log sn

+ [
(βnγ

−1
n )k+1 + βnγ

−1
n

√
γn log sn +

√
βn logun

] + (βnγ
−1
n )2k+2)

+ o
(√

βn

)
a.s.

= O
(√

γn log sn + [βnγ
−1
n ]k+1)

a.s. [in view of (A3)].

Now, in view of assumption (A1), we have ‖µn‖ = o(1) a.s., so that (32) is sat-
isfied for k = 0. We have thus proved by induction that (32) holds for all k ≥ 0.
Since (A3) ensures the existence of k0 such that [βnγ

−1
n ]k0 = o(

√
γn log sn ), it

follows that ‖µn‖ = O(
√

γn log sn ) a.s.
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REMARK 7. This latter upper bound of (µn) proves the second assertion of
Proposition 1.

To conclude the proof of Lemma 3, we now apply Lemma 5 with (wn) ≡
(
√

γn log sn ):

• For all s ∈]1/2, β0�
(H)[, we have

∥∥R(θ)
n

∥∥ = O
(
βnγ

−1/2
n

√
log sn + n−s) a.s.

= O
(
n−(b−a/2)

√
logn + n−s) a.s.,

with, in view of (A3), b − a/2 > b/2; the first part of Lemma 3 follows.
• We have ∥∥R(µ)

n

∥∥ = O
([βnγ

−1
n ]1/2

√
βn log sn +

√
βn logun

)
a.s.,

which, in view of (A3), gives the second part of Lemma 3.

To conclude the proof of Lemma 4, we apply (31) with (wn) ≡ (
√

γn log sn ), which
gives ∥∥�(θ)

n

∥∥ + ∥∥�(µ)
n

∥∥ = O([βnγ
−1
n ][βn log sn]) + o

(√
βn

)
a.s.

In view of (A3), Lemma 4 follows.

3. The averaging principle in the context of two-time-scale stochastic ap-
proximation algorithms.

3.1. Asymptotic efficiency of two-time-scale stochastic approximation algo-
rithms. The averaging principle has been introduced simultaneously by
Ruppert [26] and Polyak [24] in the framework of single-time-scale stochastic ap-
proximation algorithms, and their pioneer work has been widely discussed and ex-
tended in this context (see, among many others, Yin [27], Delyon and Juditsky [6],
Polyak and Juditsky [25], Kushner and Yang [16], Dippon and Renz [7, 8],
Duflo [9], Kushner and Yin [17] and Pelletier [23]). Let us recall that the foun-
dations of this principle are the following: (i) there exists an algorithm which
converges with the optimal rate; however, in general, this “optimal algorithm”
cannot be used because it depends on an unknown parameter; (ii) taking a suitable
average of a slowly converging algorithm leads to an “averaged algorithm,” which
has the same asymptotic behavior as the “optimal algorithm.”

To introduce the averaging principle in the context of two-time-scale stochastic
approximation algorithms, we first need to define the notion of asymptotic effi-
ciency in this framework, that is, to find out what the optimal convergence rate
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of the two-time-scale algorithms is. For that purpose, we follow the approach em-
ployed in the framework of the single-time-scale stochastic approximation algo-
rithms, and consider the class of matricial and two-time-scale algorithms defined
as

θn+1 = θn + Aθ

n
Xn+1,(33)

µn+1 = µn + Aµ

na
Yn+1,(34)

where a ∈]1/2,1[, and where Aθ (resp. Aµ) is a d × d (resp. d ′ × d ′) nonsin-
gular matrix such that the matrix AθH + I/2 (resp. AµQ22) is attractive [re-
call that H and Q22 are defined in (A2)]. Following the computations made in
the beginning of Section 2.3, and setting (βn) ≡ (n−1) and (γn) ≡ (n−a), we
rewrite (33)–(34) as

θn+1 = θn + Aθβn

(
Q11θn + Q12µn + ρ(θ)

n + Vn+1
)
,(35)

µn+1 = µn + Aµγn

(
Q21θn + Q22µn + ρ(µ)

n + Wn+1
)
.(36)

From (36), we get

µn = Q−1
22 A−1

µ γ −1
n (µn+1 − µn) − Q−1

22 Q21θn − Q−1
22 ρ(µ)

n − Q−1
22 Wn+1,

which, reintroduced in (35), gives

θn+1 = θn + βn(AθH)θn + βn(AθQ12Q
−1
22 A−1

µ )γ −1
n [µn+1 − µn]

+ βnAθ(Vn+1 − Q12Q
−1
22 Wn+1) + βnAθ

(
ρ(θ)

n − Q12Q
−1
22 ρ(µ)

n

)
.

Following the proof of Theorem 1, we obtain

√
n(θn − θ)

D→ N
(
0,�θ(Aθ)

)
,

where �θ(Aθ) is the solution of the Lyapounov equation[
AθH + I

2

]
�θ(Aθ) + �θ(Aθ)

[
HT AT

θ + I

2

]
= −Aθ	θA

T
θ

[	θ being defined in (7)]. Classical computations (see, e.g., [9], page 166) ensure
that the optimal choice of Aθ in (33) is Aθ = −H−1, which leads to the optimal as-
ymptotic covariance matrix �θ(Aθ) = H−1	θ [H−1]T , and to the following CLT
for θn:

√
n(θn − θ∗) D→ N (0,H−1	θ [H−1]T ).(37)

Therefore, one of the conditions we shall require to say that a general two-
time-scale stochastic approximation algorithm of the type (1)–(2) is asymptotically
efficient is that its fastest component θn satisfies the CLT (37).
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Now, the idea to find out the optimal weak convergence rate for the slowest
component µn of the two-time-scale stochastic approximation algorithm (1)–(2)
is the following. First, we invert the roles of θn and µn, that is, we give to µn the
position of the fastest component, and consider the following alternative algorithm
to the algorithm (33)–(34):

θn+1 = θn + Aθ

na
Xn+1,

µn+1 = µn + Aµ

n
Yn+1,

where a ∈]1/2,1[. Then, we apply the results previously obtained for the matricial
two-time-scale stochastic approximation algorithm (33)–(34). Set

G = Q22 − Q21Q
−1
11 Q12,(38)

	µ = lim
n→∞ E([Wn+1 − Q21Q

−1
11 Vn+1][Wn+1 − Q21Q

−1
11 Vn+1]T |Fn)

(39)
= 	22 + Q21Q

−1
11 	11[Q−1

11 ]T QT
21 − 	21[Q−1

11 ]T QT
21 − Q21Q

−1
11 	12,

and assume that the matrices AµG + I/2 and AθQ11 are attractive. Following the
proof of (37), we deduce that the optimal choice of Aµ is Aµ = −G−1, which
leads to the optimal covariance matrix G−1	µ[G−1]T and to the following CLT
for µn:

√
n(µn − µ∗) D→ N (0,G−1	µ[G−1]T ).

We can now precisely define the notion of asymptotical efficiency for two-time-
scale stochastic approximation algorithms.

DEFINITION 3. Let (θ̃n, µ̃n) be given by a two-time-scale stochastic approxi-
mation algorithm used for the search of the common zero (θ∗,µ∗) of two functions
f and g. Assume that f and g satisfy assumption (A2)(i), and that the error-
contaminated observations (Xn+1) and (Yn+1) of f (θ̃n, µ̃n) and g(θ̃n, µ̃n) satisfy
assumption (A4). We say that the two-time-scale stochastic approximation algo-
rithm which defines (θ̃n, µ̃n) is asympotically efficient if the two following prop-
erties hold:

√
n(θ̃n − θ∗) D→ N (0,H−1	θ [H−1]T ),(P1)

√
n(µ̃n − µ∗) D→ N (0,G−1	µ[G−1]T ),(P2)

where H , 	θ , G and 	µ are defined in (6), (7), (38) and (39) respectively.

Let us note that a sequence (θ̃n, µ̃n) satisfying properties (P1) and (P2) can be
obtained, under suitable assumptions, by simultaneously running the two follow-
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ing two-time-scale stochastic approximation algorithms:

θ̃n+1 = θ̃n − H−1

n
X

(1)
n+1,

µn+1 = µn + 1

na
Y

(1)
n+1

and

θn+1 = θn + 1

na
X

(2)
n+1,

µ̃n+1 = µ̃n − G−1

n
Y

(2)
n+1,

where X
(1)
n+1, Y

(1)
n+1, X

(2)
n+1 and Y

(2)
n+1 are error-contaminated observations of

f (θ̃n,µn), g(θ̃n,µn), f (θn, µ̃n) and g(θn, µ̃n), respectively. However, this proce-
dure has two main drawbacks. The first one (which is minor) is that it doubles the
number of necessary observations. The second one (which is much more impor-
tant) is that, most of the time, this procedure cannot be used, the matrices H and G

being usually unknown.

3.2. Averaging of two-time-scale stochastic approximation algorithms. We
can now introduce the averaged two-time-scale stochastic approximation algo-
rithm. Applying the averaging principle, we first define the slowly converging two-
time-scale algorithm. For that purpose, we let the sequence (θn,µn) be still defined
by the recursive equations (1)–(2), but, this time, the step sizes (βn) and (γn) fulfill
the following assumption:

(A′3) (βn) ≡ (β0n
−b) and (γn) ≡ (γ0n

−a) with β0 > 0, γ0 > 0, and 1
2 < a <

b < 1.

We then define the averages of θk and µk by setting

θn = 1

n

n∑
k=1

θk and µn = 1

n

n∑
k=1

µk.(40)

To establish the joint weak convergence rate of (θn) and (µn), we need to
strengthen assumption (A4) into the following condition:

(A′4) Assumption (A4) is fulfilled with ‖r(θ)
n ‖ + ‖r(µ)

n ‖ = o(n−1/2).

Our main result in this section is the following theorem.

THEOREM 2 [Joint weak convergence rate of (θn) and (µn)]. Let (θn,µn) be
defined by the recursive equations (1)–(2), and (θn,µn) by (40). Under assump-
tions (A1), (A2), (A′3) and (A′4), we have

√
n

(
θn − θ∗
µn − µ∗

)
D→ N (0,DP	P T DT ),(41)
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where 	 is defined in (A4)(ii), and where

D =
(

H−1 0
0 G−1

)
, P =

(
I −Q12Q

−1
22

−Q21Q
−1
11 I

)
.

In particular, the averaged two-time-scale stochastic approximation algorithm
(θn,µn) is asymptotically efficient.

3.3. Proof of Theorem 2. Let us first note that the CLT (41) implies, in partic-
ular, that

√
n(θn − θ∗) D→ N (0,H−1	θ [H−1]T ),

√
n(µn − µ∗) D→ N (0,G−1	µ[G−1]T ),

which proves the asymptotic efficiency of the averaged algorithm (θn,µn). We
now prove (41).

We assume again, without loss of generality, that θ∗ = 0 and µ∗ = 0. In the
beginning of Section 2.3 we have seen that [see (13)]:

θn+1 = θn + βnHθn + βnQ12Q
−1
22 γ −1

n [µn+1 − µn] + βn(Vn+1 − Q12Q
−1
22 Wn+1)

+ βn

([
ρ(θ)

n + r(θ)
n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
.

We can thus write

θn = −H−1(Vn+1 − Q12Q
−1
22 Wn+1) + H−1β−1

n [θn+1 − θn]
− H−1Q12Q

−1
22 γ −1

n [µn+1 − µn]
− H−1([

ρ(θ)
n + r(θ)

n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
,

so that

θn = H−1

(
−1

n

n∑
k=1

(Vk+1 − Q12Q
−1
22 Wk+1) + R(1)

n − R(2)
n − R(3)

n − R(4)
n

)
,

with

R(1)
n = 1

n

n∑
k=1

β−1
k [θk+1 − θk],

R(2)
n = 1

n

n∑
k=1

Q12Q
−1
22 γ −1

k [µk+1 − µk],

R(3)
n = 1

n

n∑
k=1

[
ρ

(θ)
k − Q12Q

−1
22 ρ

(µ)
k

]
,

R(4)
n = 1

n

n∑
k=1

[
r
(θ)
k − Q12Q

−1
22 r

(µ)
k

]
.



NONLINEAR TWO-TIME-SCALE ALGORITHMS 1691

Similarly, we have

µn = G−1

(
−1

n

n∑
k=1

(Wk+1 − Q21Q
−1
11 Vk+1) + R(5)

n − R(6)
n − R(7)

n − R(8)
n

)
,

with

R(5)
n = 1

n

n∑
k=1

γ −1
k [µk+1 − µk],

R(6)
n = 1

n

n∑
k=1

Q21Q
−1
11 β−1

k [θk+1 − θk],

R(7)
n = 1

n

n∑
k=1

[
ρ

(µ)
k − Q21Q

−1
11 ρ

(θ)
k

]
,

R(8)
n = 1

n

n∑
k=1

[
r
(µ)
k − Q21Q

−1
11 r

(θ)
k

]
.

A straightforward application of Lyapounov’s theorem gives the following
lemma:

LEMMA 7.

1√
n

n∑
k=1

(
Vk+1 − Q12Q

−1
22 Wk+1

Wk+1 − Q21Q
−1
11 Vk+1

)
D→ N (0,P	P T ).

The CLT (41) follows thus from the combination of Lemma 7 and of the fol-
lowing lemma.

LEMMA 8. For i ∈ {1, . . . ,8}, we have

lim
n→∞

√
nR(i)

n = 0 a.s.

PROOF. The application of Proposition 1 gives

1√
n

n∑
k=1

β−1
k [θk+1 − θk]

= 1√
n

(
θn+1

βn

− θ1

β1
+

n∑
k=1

[
1

βk−1
− 1

βk

]
θk

)

= O

(‖θn+1‖√
nβn

+ 1√
n

+ 1√
n

n∑
k=1

kb−1‖θk‖
)
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= O

(√
βn logun√

nβn

+ 1√
n

+ 1√
n

n∑
k=1

kb−1
√

βk loguk

)
a.s.

= O(nb/2−1/2 logn) a.s.

Since b < 1, it follows that limn→∞
√

nR(1)
n = 0 and limn→∞

√
nR(6)

n = 0 a.s. In
the same way, we have

1√
n

n∑
k=1

γ −1
k [µk+1 − µk]

= 1√
n

(
µn+1

γn

− µ1

γ1
+

n∑
k=1

[
1

γk−1
− 1

γk

]
µk

)

= O

(√
log sn√
nγn

+ 1√
n

+ 1√
n

n∑
k=1

ka−1
√

γk log sk

)
a.s.

= O
(
n−(1−a)/2 logn

)
a.s.

Since a < 1, it follows that limn→∞
√

nR(2)
n = 0 and limn→∞

√
nR(5)

n = 0 a.s.
Now, we note that

1√
n

n∑
k=1

(‖θk‖2 + ‖µk‖2) = O

(
1√
n

n∑
k=1

γk log sk

)
a.s.

= O(n1/2−a logn) a.s.

Since a > 1/2 and in view of (12), it follows that limn→∞
√

nR(3)
n = 0 and

limn→∞
√

nR(7)
n = 0 a.s. Finally, assumption (A’4) ensures that limn→∞

√
n ×

R(4)
n = 0 and limn→∞

√
nR(8)

n = 0 a.s. �

APPENDIX

A.1. Two technical lemmas.

LEMMA 9. Let (xn) be a sequence of positive real numbers, let (un) be an
R

d -valued random sequence such that ‖un‖ = O(xn) a.s., set T > 0,

Z(1)
n = e−unT

n∑
k=1

eukT βkxk and Z(2)
n = eunH

n∑
k=1

e−ukHβkuk.

Let (wn) be a nonrandom sequence satisfying Condition (C).

1. For all T ′ ∈ ]0, T [, we have

∣∣Z(1)
n

∣∣ =
{

O
(
e−unT ′

1b=1 + wn

)
, if xn = O(wn),

o
(
e−unT ′

1b=1 + wn

)
, if xn = o(wn).
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2. For all T ′ ∈ ]0,�(H)[, we have

∥∥Z(2)
n

∥∥ =
{

O
(
e−unT ′

1b=1 + wn

)
, if xn = O(wn),

o
(
e−unT ′

1b=1 + wn

)
, if xn = o(wn).

LEMMA 10. Let (xn) be a sequence of positive real numbers, let (un) be an
R

d -valued random sequence such that ‖un‖ = O(xn) a.s., set T > 0,

Z(1)
n = e−snT

n∑
k=1

eskT γkxk and Z(2)
n = esnQ22

n∑
k=1

e−skQ22γkuk.

Let (wn) be a nonrandom sequence satisfying Condition (C′). We have∣∣Z(1)
n

∣∣ + ∥∥Z(2)
n

∥∥ =
{

O(wn), if xn = O(wn),
o(wn), if xn = o(wn).

PROOF OF LEMMA 9. We first establish the upper bound of (Z
(1)
n ).

• Consider the case b = 1, that is, (βn) ≡ (β0n
−1). In the case xn = o(wn), we

have
∣∣Z(1)

n

∣∣ = O

(
n−β0T

n∑
k=1

kβ0T −1xk

)

= o

(
n−β0T

n∑
k=1

kβ0T −1−ωL(k)

)

= o
(
n−β0T [logn + nβ0T −ω]L(n)

)
= o

(
n−β0T L(n) logn + wn

)
.

Since L is a slowly varying function, it follows that, for all T ′ ∈ ]0, T [,∣∣Z(1)
n

∣∣ = o
(
n−β0T

′ + wn

)
= o

(
e−unT ′ + wn

)
.

In the case xn = O(wn), the upper bound of (Z
(1)
n ) is obtained by replacing o(·)

by O(·) in the previous equations.
• Consider the case b < 1. We note that the sequence (Z

(1)
n ) satisfies the recursive

equation

Z(1)
n = eβnT Z

(1)
n−1 + βnxn,

so that we can write

w−1
n Z(1)

n = e−βnT

[
wn−1

wn

](
w−1

n−1Z
(1)
n−1

) + βnw
−1
n xn

= [1 − βnT + O(β2
n)][1 + o(βn)](wn−1Z

(1)
n−1

) + βnw
−1
n xn

= [1 − βnT + o(βn)](wn−1Z
(1)
n−1

) + βnw
−1
n xn.
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Now, set T ′ ∈ ]0, T [; for n large enough, we get∣∣w−1
n Z(1)

n

∣∣ ≤ (1 − βnT
′)

∣∣wn−1Z
(1)
n−1

∣∣ + βnw
−1
n xn,

and the application of Lemma 4.I.2 of [9] ensures that if xn = O(wn), then the
sequence (w−1

n−1Z
(1)
n−1) is bounded, that is, |Z(1)

n | = O(wn); if xn = o(wn), then

the sequence (w−1
n−1Z

(1)
n−1) goes to zero, that is, |Z(1)

n | = o(wn).

We now establish the upper bound of (Z
(2)
n ). Let ||| · ||| denote the matrix norm

associated with the Euclidean vector norm. We have∥∥Z(2)
n

∥∥ ≤
n∑

k=1

∣∣∣∣∣∣e(un−uk)H
∣∣∣∣∣∣βk‖uk‖,

and the application of Proposition 3.I.2 of [9] ensures that, for all T ∈]0,�(H)[,
∥∥Z(2)

n

∥∥ ≤
n∑

k=1

e−(un−uk)T βkwk a.s.

The upper bound of (Z
(2)
n ) then follows straightforwardly from the one obtained

for (Z
(1)
n ). �

PROOF OF LEMMA 10. The proof is straightforward by following the proof
of Lemma 9 in the case b < 1. �

A.2. Proof of Lemma 1. Set

M
(n)
j =

(√
β−1

n eunH 0

0
√

γ −1
n esnQ22

)

×
j∑

k=1

(
e−ukHβk(Vk+1 − Q12Q

−1
22 Wk+1)

e−skQ22γkWk+1

)
.

For each n, M(n) = (M
(n)
j )j≥1 is a martingale whose increasing process satisfies

〈M〉(n)
n =

(
A1,n A2,n

AT
2,n A4,n

)
,

with, in view of assumption (A4),

A1,n = β−1
n eunH

{
n∑

k=1

β2
k e−ukH	θe

−ukH
T

}
eunHT

,

A2,n =
√

β−1
n γ −1

n eunH e−sn

{
n∑

k=1

βkγke
−ukH	1,2e

−skQ
T
22

}
esnQT

22,

A4,n = γ −1
n esnQ22

{
n∑

k=1

γ 2
k e−skQ22	µe−skQ

T
22

}
esnQT

22 .
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The application of Lemma 4 in [19] ensures that

lim
n→∞A1,n = �θ and lim

n→∞A4,n = �µ.

Moreover, we note that

|||A2,n||| = O

(√
β−1

n γ −1
n

n∑
k=1

βkγk

∣∣∣∣∣∣e(un−uk)H
∣∣∣∣∣∣∣∣∣∣∣∣e(sn−sk)Q

T
22

∣∣∣∣∣∣).

Set T ∈]0,�(H)[ and T ′ ∈ ]0,�(Q22)[; the application of Proposition 3.I.2 in [9]
ensures that

|||A2,n||| = O

(√
β−1

n γ −1
n

n∑
k=1

βkγke
−T (un−uk)e−T ′(sn−sk)

)

= O

(√
β−1

n γ −1
n

n∑
k=1

βkγke
−T ′(sn−sk)

)
,

and the application of Lemma 10 gives

|||A2,n||| = O
(√

β−1
n γ −1

n βn

) = O
(√

βnγ
−1
n

)
.

In view of (A3), it follows that limn→∞ A2,n = 0, and we thus obtain

lim
n→∞〈M〉(n)

n =
(

�θ 0
0 �µ

)
a.s.

Now, set T ∈]1b=1/(2β0),�
(H)[ and T ′ ∈ ]0,�(Q22)[; in view of assumption

(A4), we have
n∑

k=1

E
[∥∥M(n)

k − M
(n)
k−1

∥∥m|Fk−1
]

= O

(
n∑

k=1

(
β−m/2

n

∣∣∣∣∣∣βke
(un−uk)H

∣∣∣∣∣∣m) +
n∑

k=1

γ −m/2
n

∣∣∣∣∣∣γke
(sn−sk)Q22

∣∣∣∣∣∣m)
a.s.

= O

(
n∑

k=1

(
β−m/2

n βm
k e−mT (un−uk)

) +
n∑

k=1

γ −m/2
n γ m

k e−mT ′(sn−sk)

)
a.s.,

where the latter upper bound follows from the application of Proposition 3.I.2
in [9]. The application of Lemmas 9 and 10 then ensures that, for all T ∗ ∈
]1b=1/(2β0), T [,

n∑
k=1

E
[∥∥M(n)

k − M
(n)
k−1

∥∥m|Fk−1
]

= O
(
β−m/2

n

[
e−mT ∗un1b=1 + βm−1

n

] + γ −m/2+(m−1)
n

)
a.s.

= O
(
nm/2−β0mT ∗

1b=1 + βm/2−1
n + γ m/2−1

n

)
a.s.,
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so that it be comes

lim
n→∞

n∑
k=1

E
[∥∥M(n)

k − M
(n)
k−1

∥∥m|Fk−1
] = 0 a.s.

The application of Lyapounov’s theorem then gives

M(n)
n =

( √
β−1

n L
(θ)
n+1√

γ −1
n L

(µ)
n+1

)
D→ N

(
0,

(
�θ 0
0 �µ

))
,

which concludes the proof of Lemma 1.

A.3. Proof of Lemma 5. We first note that, in view of (15), we have

R
(θ)
n+1 = βnγ

−1
n Q12Q

−1
22 µn+1

+ eunH
n∑

k=2

[e−uk−1Hβk−1γ
−1
k−1 − e−ukHβkγ

−1
k ]Q12Q

−1
22 µk

− eunH e−u1Hβ1γ
−1
1 Q12Q

−1
22 µ1

= βnγ
−1
n Q12Q

−1
22 µn+1

+ eunH
n∑

k=2

e−ukHβkUk − eunH e−u1Hβ1γ
−1
1 Q12Q

−1
22 µ1,

where

Uk = γ −1
k [e−βkHβk−1β

−1
k γ −1

k−1γk − I ]Q12Q
−1
22 µk.

It follows that

∥∥R(θ)
n+1

∥∥ = O

(
βnγ

−1
n ‖µn+1‖ +

∥∥∥∥∥eunH
n∑

k=2

e−ukHβkUk

∥∥∥∥∥ + |||eunH |||
)
.

Note that

‖Un‖ = O(γ −1
n βn‖µn‖)

= O(γ −1
n βnwn) a.s.

Since the sequence (wn) satisfies Condition (C), the sequence (γ −1
n βnwn) sat-

isfies Condition (C); it follows from the application of Lemma 9 that, for all
t ∈]0,�(H)[, we have∥∥R(θ)

n+1

∥∥ = O(βnγ
−1
n wn + e−unt1b=1) + O(|||eunH |||) a.s.

Now, the application of Proposition 3.I.2 in [9] ensures that, for all t ∈]0,�(H)[,
|||eunH ||| = O(e−unt ); it follows that, for all t ∈]0,�(H)[,∥∥R(θ)

n+1

∥∥ = O(βnγ
−1
n wn + e−unt ) a.s.
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and thus, for all s ∈]1
2 , β0�

(H)[, we obtain

∥∥R(θ)
n+1

∥∥ = O(βnγ
−1
n wn + n−s) a.s.,

which proves the first part of Lemma 5.
In view of (18), we note that

R
(µ)
n+1 = esnQ22

n∑
k=1

e−skQ22γkŨk,

with, by application of Lemma 2 and of the first part of Lemma 5,

‖Ũn‖ = O
(∥∥L(θ)

n

∥∥ + ∥∥R(θ)
n

∥∥)
= O

(√
βn logun + βnγ

−1
n wn + n−s) a.s.

= O
(√

βn logun + βnγ
−1
n wn

)
a.s.

Since the sequence (wn) satisfies Condition (C′), the sequences (
√

βn logun ) and
(βnγ

−1
n wn) satisfy Condition (C′); the application of Lemma 10 gives

∥∥R(µ)
n+1

∥∥ = O
(√

βn logun + βnγ
−1
n wn

)
a.s.,

which concludes the proof of Lemma 5.

A.4. Technical details for the proof of Lemma 6.

A.4.1. Proof of (20) and (21). Noting that, in view of (14) and (15), we have

L
(θ)
n+1 = βn(Vn+1 − Q12Q

−1
22 Wn+1) + eβnHL(θ)

n ,

R
(θ)
n+1 = βnQ12Q

−1
22 γ −1

n [µn+1 − µn] + eβnHR(θ)
n ,

and using (16) and then (13), we write

�
(θ)
n+1 = θn+1 − L

(θ)
n+1 − R

(θ)
n+1

= θn + βnHθn + βn

([
ρ(θ)

n + r(θ)
n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
− eβnHL(θ)

n − eβnHR(θ)
n

= (I + βnH)θn − [I + βnH + O(β2
n)][L(θ)

n + R(θ)
n

]
+ βn

([
ρ(θ)

n + r(θ)
n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
= (I + βnH)�(θ)

n + O(β2
n)

[
L(θ)

n + R(θ)
n

]
+ βn

([
ρ(θ)

n + r(θ)
n

] − Q12Q
−1
22

[
ρ(µ)

n + r(µ)
n

])
,
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which proves (20). Similarly, we note that, in view of (11), (17), (18) and (19), we
have

�
(µ)
n+1 = µn+1 − L

(µ)
n+1 − R

(µ)
n+1

= µn + γn

(
Q21θn + Q22µn + ρ(µ)

n + r(µ)
n + Wn+1

) − γnWn+1

− eγnQ22L(µ)
n − γnQ21

[
L(θ)

n + R(θ)
n

] − eγnQ22R(µ)
n .

Using (16), it follows that

�
(µ)
n+1 = µn + γn

(
Q21θn + Q22µn + ρ(µ)

n + r(µ)
n

) − eγnQ22L(µ)
n

− γnQ21
[
θn − �(θ)

n

] − eγnQ22R(µ)
n

= (I + γnQ22)µn − [I + γnQ22 + O(γ 2
n )][L(µ)

n + R(µ)
n

]
+ γn

[
ρ(µ)

n + r(µ)
n + Q21�

(θ)
n

]
= (I + γnQ22)�

(µ)
n + O(γ 2

n )
[
L(µ)

n + R(µ)
n

]
+ γn

[
ρ(µ)

n + r(µ)
n + Q21�

(θ)
n

]
,

which proves (21).

A.4.2. Proof of (29). In view of (28), we have

∥∥�(θ)
n+1

∥∥
T ≤ (1 − βnT

∗∗)
∥∥�(θ)

n

∥∥
T + βnzn + βnε

γnM∗
[∥∥�(µ)

n

∥∥
M − ∥∥�(µ)

n+1

∥∥
M

]
,

where (zn) is a nonnegative sequence such that

zn = O
(
βn

∥∥L(θ)
n

∥∥ + βn

∥∥R(θ)
n

∥∥ + ∥∥r(θ)
n

∥∥ + ∥∥r(µ)
n

∥∥ + γn

∥∥L(µ)
n

∥∥ + γn

∥∥R(µ)
n

∥∥
+ ∥∥L(θ)

n

∥∥2 + ∥∥R(θ)
n

∥∥2 + ∥∥L(µ)
n

∥∥2 + ∥∥R(µ)
n

∥∥2)
.

For n ≥ 1, set πn = ∏n
k=1(1 − βkT

∗∗). We note that

∥∥�(θ)
n+1

∥∥
T ≤ πn

∥∥�(θ)
1

∥∥
T +

n∑
k=1

πn

πk

βk

[
zk + ε

γkM∗
(∥∥�(µ)

k

∥∥
M − ∥∥�(µ)

k+1

∥∥
M

)]

≤ πn

∥∥�(θ)
1

∥∥
T +

n∑
k=1

πn

πk

βkzk

+ πnε

M∗

[
n∑

k=2

(
βk

πkγk

− βk−1

πk−1γk−1

)∥∥�(µ)
k

∥∥
M

+ β1

π1γ1

∥∥�(µ)
1

∥∥
M − βn

πnγn

∥∥�(µ)
n+1

∥∥
M

]
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≤ πn

[∥∥�(θ)
1

∥∥
T + β1ε

π1γ1M∗
∥∥�(µ)

1

∥∥
M

]
+

n∑
k=1

πn

πk

βkzk

+ πnε

M∗
n∑

k=2

βk

πkγk

[
1 − βk−1πkγk

βkπk−1γk−1

]∥∥�(µ)
k

∥∥
M.

Since πk/πk−1 = 1 −βkT
∗∗ and since, in view of (A3), βk−1γk

βkγk−1
= 1 +O(βk), there

exists c > 0 such that∥∥�(θ)
n+1

∥∥
T ≤ πn

[∥∥�(θ)
1

∥∥
T + β1ε

π1γ1M∗
∥∥�(µ)

1

∥∥
M

]
+

n∑
k=1

πn

πk

βk

[
zk + c

βk

γk

∥∥�(µ)
k

∥∥
M

]
.

Noting that πn/πk ≤ e−T ∗∗(un−uk), it follows that

∥∥�(θ)
n+1

∥∥
T = O

(
e−T ∗∗un + e−T ∗∗un

n∑
k=1

eT ∗∗ukβk

[
zk + βk

γk

∥∥�(µ)
k

∥∥
M

])
,

which can be rewritten as
∥∥�(θ)

n+1

∥∥
T = O

(
e−T ∗∗un

+ e−T ∗∗un

n∑
k=1

eT ∗∗ukβk

[
βk

∥∥L(θ)
k

∥∥ + βk

∥∥R(θ)
k

∥∥ + ∥∥r(θ)
k

∥∥ + ∥∥r(µ)
k

∥∥]

+ e−T ∗∗un

n∑
k=1

eT ∗∗ukβk

[
γk

∥∥L(µ)
k

∥∥ + γk

∥∥R(µ)
k

∥∥ + ∥∥L(θ)
k

∥∥2

+ ∥∥R(θ)
k

∥∥2 + ∥∥L(µ)
k

∥∥2 + ∥∥R(µ)
k

∥∥2]
+ e−T ∗∗un

n∑
k=1

eT ∗∗uk
β2

k

γk

∥∥�(µ)
k

∥∥
M

)
.

Replacing ‖r(θ)
k ‖ and ‖r(µ)

k ‖ by their upper bounds given in assumption (A4)(iv),

‖L(θ)
k ‖ and ‖L(µ)

k ‖ by their upper bounds given by Lemma 2, ‖R(θ)
k ‖ and ‖R(µ)

k ‖
by their upper bounds given by Lemma 5, ‖�(µ)

k ‖ by δ
(µ)
k , and doing some straight-

forward simplifications, we obtain

∥∥�(θ)
n+1

∥∥
T = O

(
e−T ∗∗un

+ e−T ∗∗un

n∑
k=1

eT ∗∗ukβk

[
β2

k γ −2
k w2

k + γk log sk + βkγ
−1
k δ

(µ)
k

]

+ e−T ∗∗un

n∑
k=1

eT ∗∗ukβko
(√

βk

))
.
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Now, since the sequences (wn) and (δ
(µ)
n ) satisfy Condition (C), the sequences

(β2
nγ −2

n w2
n), (γn log sn) and (βnγ

−1
n δ

(µ)
n ) satisfy Condition (C). Moreover, the se-

quence (β
1/2
n ) satisfies Condition (C). The application of Lemma 9 then ensures

that, for all T ′ ∈ ]0, T ∗∗[,∥∥�(θ)
n

∥∥
T = O

(
e−T ∗∗un + e−T ′un1b=1 + β2

nγ −2
n w2

n + γn log sn + βnγ
−1
n δ(µ)

n

)
+ o

(√
βn

)
.

Let us recall that T ∗∗ has been set such that T ∗∗ > 1b=1/(2β0), and note that T ′
can be chosen such that e−T ∗∗un + e−T ′un = o(

√
βn ). Since γn log sn = o(

√
βn ),

it follows that ∥∥�(θ)
n

∥∥
T = O

(
β2

nγ −2
n w2

n + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
,

which proves (29).

A.4.3. Proof of (30). In view of (27), we have

∥∥�(µ)
n

∥∥
M = O

(
e−M∗sn + e−M∗sn

n∑
k=1

eM∗skγk

[
γk

∥∥L(µ)
k

∥∥ + γk

∥∥R(µ)
k

∥∥ + ∥∥r(µ)
k

∥∥
+ ∥∥L(θ)

k

∥∥2 + ∥∥R(θ)
k

∥∥2 + ∥∥L(µ)
k

∥∥2

+ ∥∥R(µ)
k

∥∥2 + ∥∥�(θ)
k

∥∥
T

])
.

Replacing ‖r(µ)
k ‖ by its upper bound given in Assumption (A4)(iv), ‖L(θ)

k ‖ and

‖L(µ)
k ‖ by their upper bounds given by Lemma 2, ‖R(θ)

k ‖ and ‖R(µ)
k ‖ by their

upper bounds given by Lemma 5, ‖�(θ)
k ‖T by its upper bound given in (29), and

doing some straightforward simplifications, we deduce that

∥∥�(µ)
n

∥∥
M = O

(
e−M∗sn + e−M∗sn

n∑
k=1

eM∗skγk

[
β2

k γ −2
k w2

k + γk log sk

+ βkγ
−1
k δ

(µ)
k

]
+ e−M∗sn

n∑
k=1

eM∗skγko
(√

βk

))
.

Since the sequences (wn) and (δ
(µ)
n ) satisfy Condition (C′), the sequences

(β2
nγ −2

n w2
n), (γn log sn), (n−s̃ ) and (βnγ

−1
n δ

(µ)
n ) satisfy Condition (C′). Moreover,

the sequence (β
1/2
n ) satisfies Condition (C′). The application of Lemma 10 then

ensures that∥∥�(µ)
n

∥∥
M = O

(
e−M∗sn + β2

nγ −2
n w2

n + γn log sn + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
.
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Noting that e−M∗sn + γn log sn = o(
√

βn ), it follows that∥∥�(µ)
n

∥∥
M = O

(
β2

nγ −2
n w2

n + βnγ
−1
n δ(µ)

n

) + o
(√

βn

)
,

which concludes the proof of (30).
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