
The Annals of Applied Probability
2006, Vol. 16, No. 3, 1563–1575
DOI: 10.1214/105051606000000196
© Institute of Mathematical Statistics, 2006

ON THE VARIATIONAL DISTANCE OF TWO TREES1

BY M. A. STEEL AND L. A. SZÉKELY2

University of Canterbury and University of South Carolina

A widely studied model for generating sequences is to “evolve” them on
a tree according to a symmetric Markov process. We prove that model trees
tend to be maximally “far apart” in terms of variational distance.

1. Introduction. In this paper we investigate sequences that have been gener-
ated on the tree by a simple Markov model. Such processes are widely-studied in
molecular genetics, and in other areas of applied probability (including broadcast-
ing and statistical physics). More precisely, we study the separation—as measured
by variational distance—of the probability distribution on sequence patterns gener-
ated by different trees. We find that a large tree generates a probability distribution
that is typically at maximal distance from that generated by nearly all other trees.

To describe our results more precisely, we first provide some terminology con-
cerning trees and random processes on them. In a tree, vertices of degree 1 are
called leaves, as opposed to internal vertices. A tree is binary if all vertices have
degree 1 or 3. Consider a set X of labels. A phylogenetic X-tree is a tree in which
leaves are identified with elements of X. (We do not require phylogenetic X-trees
to be binary by definition for technical reasons, as we will have to deal with sub-
trees of phylogenetic X-trees.) We will regard two phylogenetic X-trees as being
identical if there is a graph isomorphism between them, which, in addition, if re-
stricted to X, is the identity function of X. If |X| = n, then the number of different
binary phylogenetic X-trees is (2n − 5)!! [= 1 × 3 × 5 × · · · × (2n − 5)] [16].
For a phylogenetic X-tree T , let [T ] denote the corresponding unlabeled tree. The
distance dT (u, v) between two vertices, u, v in a tree T is the number of edges on
the unique path connecting them.

We now describe a model for the evolution of binary sequences on a tree. This
model has been described by various authors (and in a range of disciplines, includ-
ing molecular biology, information theory and physics; for references, see [8, 16]).
Here we refer to this model as the CFN model (short for Cavender–Farris–Neyman
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model); it has also been referred to in the literature as the “symmetric binary chan-
nel” and the “symmetric 2-state Poisson model.” The CFN model provides a sim-
ple model for the evolution of purine–pyrimidine sequences. The significance of
this simple model is that phenomena shown for the CFN model often extends to
more realistic models of sequence evolution, and we will describe how our main
results concerning the CFN model generalize. The term CFN tree will refer to a
phylogenetic X-tree equipped with a CFN model.

Suppose we have two states, 0 and 1, and a phylogenetic X-tree T . The CFN
model assigns probabilities to the patterns of state of the elements of X as follows.
Let us associate a number pe (0 < pe < 1/2) with the edge e called the transition
probability. Let ξe denote a random indicator variable associated to edge e with
P[ξe = 1] = pe, and assume the ξe’s are independent. Fix any vertex v and assign
state 0 or 1 to v with equal probability 1/2. Note that, for every vertex u of T ,
there is a unique path denoted path(u, v) in T and so we may define

state(u) = state(v) + ∑
e∈path(u,v)

ξe mod 2.(1.1)

This gives a ( joint) probability distribution on the set of all assignment of states
(0 or 1) to the vertices of T , and thereby a marginal distribution on state assign-
ments to the leaves of T —we call each such assignment χ :X → {0,1} a (state)
pattern, and we let Pχ denote the probability of generating χ under this model.

The CFN model is thus specified by the pair (T ,P ), where P is the map that
associated to each edge e its transition probability p(e). We refer to T as a CFN
tree and P as a transition mechanism.

The probability p that the endpoints of a path uw in a CFN tree T are in differ-
ent states is nicely related to the transition probabilities of edges of the uw-path:

p = 1
2

(
1 − ∏

e∈path(u,w)

(1 − 2pe)

)
.(1.2)

Formula (1.2) is well known and is easy to prove by induction. Formula (1.2) also
shows that the transition probability of a path is not less than the largest transition
probability on its edges. It is well known [18] that (1) changing the location of
v in T , or (2) substituting a path by a single edge in a CFN tree, and assigning
to the new edge a transition probability according to (1.2) does not change the
probability distribution of patterns.

Usually k independent experiments are made to generate random patterns from
a binary CFN tree T , they are called sites. The (abstract) phylogeny reconstruction
problem is the following: from the observed pattern frequencies, determine, with
a prescribed probability, what was the underlying binary phylogenetic X-tree. We
have shown in [6] that if |X| = n and n → ∞, then k = �(logn) sites are needed
to return the true underlying tree with probability at least 1

2 + ε with either a de-
terministic algorithm or with a randomized algorithm whose random bits are inde-
pendent from the random events on the CFN tree. Sequence length requirements
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for accurate tree reconstruction is not only of mathematical interest, but also a top-
ical issue in molecular systematics (e.g., [3, 15]). We showed in [6] that, for fixed
0 < f ≤ g < 1/2, f ≤ pe ≤ g, and n → ∞, phylogeny reconstruction is possible
for all model trees, when k is a certain polynomial of n; is possible for some model
trees, when k is a logarithmic function of n; and is possible for almost all model
trees, either in the uniform random binary X-tree model or in the Yule–Harding
model, when k is a certain polylogarithmic function of n. More recent work by
Mossel and colleagues [5, 12] has established further instances for which logarith-
mic dependence of k on n suffices for accurate tree reconstruction and cases for
which polynomial dependence is necessary.

In this paper we show asymptotic results. The theorems are about n-leaf trees,
but their conclusions are o(1) (limit) relations as n → ∞. The understanding is
that, for a sequence of n-leaf trees satisfying the hypotheses, the limit relation
holds. It would be technically more proper to speak about sequences of trees in
the statements of the theorems, but we follow the tradition of random graph theory
[1, 4] not speaking explicitly about sequences. With the exception of Section 4, we
study problems where the bounds on pe are fixed, and we let n → ∞. In Section 4
we show that many of the results generalize if dependence of the bounds on n is
allowed but limited.

2. Results. Let us be given two binary phylogenetic X-trees T1,T2 with CFN
transition mechanism P1 and P2, respectively. The variational distance of their
pattern distributions is

vardist
(
(T1,P1), (T2,P2)

)= ∑
χ

|(P1)χ − (P2)χ |.(2.1)

This distance lies between 0 and 2, and in Theorem 3.1 we show that almost all bi-
nary trees are maximally distant (in terms of variational distance) from any given
binary tree with a given CFN transition mechanism, under mild assumptions on
their transition mechanisms. A practitioner may argue that Theorem 3.1 has lim-
ited relevance, since the uniform distribution of trees is just one particular prior
distribution on trees, and the CFN model is very particular. However, the conclu-
sion of Theorem 3.1 holds not just for the counting measure, but for all permutation
invariant measures on phylogenetic X-trees; moreover, it holds for more general,
and for the applications more realistic classes of transition mechanisms (Theo-
rem 4.1). This result may not be surprising: as we equip randomly selected trees
with CFN models, they have many local statistics that are essentially independent
and have different marginals in the two trees. Therefore, analogously to the Kaku-
tani dichotomy, their measures are expected to be (near) orthogonal.

Farach and Kannan [2, 9, 10] designed an algorithm for phylogeny reconstruc-
tion based on convergence to the true tree in variational distance and suggested to
pay more attention to the variational distance in phylogeny reconstruction. Some
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support for the utility of this metric is provided by results that we present in Sec-
tions 3 and 4: if we get just close to a model tree in variational distance, then we
already excluded most of the false candidates for the phylogenetic tree.

However, a simple fact provides a sharp contrast to the results mentioned
above. Note that in practice we estimate the model distribution of patterns by
the observed frequency of patterns. For sub-exponential sequence length, which
is known to be sufficient for phylogeny reconstruction with probability 1 − o(1)

as 0 < f ≤ g < 1/2 fixed and f ≤ pe ≤ g, as n → ∞ (see the discussion in Sec-
tion 1), the variational distance between the model pattern distribution and the
observed pattern distribution is near 2 with probability 1 − o(1). (For details, see
our technical report [19].)

In other words, phylogeny reconstruction is well possible without convergence
of the observed pattern distribution to the model pattern distribution in variational
distance.

Therefore, the accuracy of tree reconstruction cannot be captured by variational
distance alone. This conclusion was suggested by [7] and [14], though with less
explicit theoretical justification.

3. Variational distance of CFN trees is typically large.

THEOREM 3.1. Fix 0 < f and g < 1/2. There exists a function ε(n) =
εf,g(n) = o(1) as n → ∞, such that, for every binary phylogenetic X-tree T1 with
CFN transition mechanism P1 where pe ≤ g in P1, the following holds: For almost
all [i.e., (1−o(1))(2n− 5)!! in number] binary phylogenetic X-trees T2, equipped
with an arbitrary transition mechanism P2, where f ≤ pe in P2, we have

vardist
(
(T1,P1), (T2,P2)

)≥ 2 − ε(n).(3.1)

The proof requires a number of lemmas, which we now state.

LEMMA 3.2. For every binary phylogenetic X-tree T on n ≥ 4 leaves, there
are at least n/4 disjoint pairs of leaves ai, bi , such that, for every i:

(i) ai and bi are separated by a distance of 2 or 3;
(ii) for i �= j , the aibi and the ajbj paths in T are edge disjoint.

PROOF. The claim is true for 4 ≤ n ≤ 8, since then any longest path ends in
two disjoint cherries. This is the basis for an induction proof on n. It is easy to see
that, for n ≥ 9, there exists a longest path in T , for which one end must be a leaf in
a cherry that lies at the top portion of the tree given by one of the four cases shown
in Figure 1 (the other end of the path lies in the bottom part of the tree, represented
by a circle). In each of the four cases truncate the tree Ti as indicated by the dashed
curve to obtain T ′

i . For i = 1,2,3,4, T ′
i has n−2 (resp. n−2, n−3, n−4) leaves,

and the induction hypothesis applies to T ′
i . In all four cases it is easy to add two
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FIG. 1. Ending of a longest path in a binary tree.

new close vertex pairs to create the required set of them for Ti , while destroying at
most one which pre-existed in T ′

i . �

REMARK 3.3. As Figure 2 shows, the conclusion of Lemma 3.2 is essentially
the best possible.

LEMMA 3.4 (Tree-chopping lemma, [17], Lemma 3). Let T be an arbitrary
binary X-tree and q ≥ 2 integer. Then edges can be deleted from T such that a
forest results with the following properties:

(i) The number of leaves from X in any tree of the forest is at most 2q − 2.
(ii) The number of leaves from X in any tree of the forest is at least q , except

possibly for one tree. (We shall call this exceptional tree degenerate.)

Recall the Azuma–Hoeffding inequality (see [1]):

FIG. 2. Binary tree on 4t + 9 leaves, with only t + 3 close leaf pairs.
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LEMMA 3.5. Suppose X = (X1,X2, . . . ,Xk) are independent random vari-
ables taking values in any set S, and L :Sk → R is any function that satisfies the
condition: |L(u)−L(v)| ≤ t whenever u and v differ at just one coordinate. Then,

P
[|L(X) − E[L(X)]| ≥ λ

] ≤ 2 exp
(
− λ2

2t2k

)
.(3.2)

The following lemma is obvious.

LEMMA 3.6. Let F denote a fixed phylogenetic X-tree, with |X| = n, and let
τ = [F ] (the corresponding unlabeled tree). Let π be a randomly selected per-
mutation of X under the uniform distribution. Let π(F ) denote the phylogenetic
X-tree that we obtain from F by changing all leaf labels from v to π(v) simul-
taneously. Then π(F ) represents a random uniform selection from those binary
phylogenetic X-trees whose underlying unlabeled tree is τ .

From now on, for notational convenience, we pretend that 4 divides n.

LEMMA 3.7. For an X with |X| = n, and n/4 disjoint ai, bi ordered pairs
from X, there exist functions m(n) → ∞, h(n) → ∞ and g(n) → ∞, such that
the following holds. For every unlabeled binary tree τ with n leaves, for all but
a 1

g(n)
fraction of binary phylogenetic X-trees T with property [T ] = τ , there is

an index set I such that |I | = m(n) and:

(i) dT (ai, bi) ≥ h(n) for all i ∈ I ; and
(ii) for i, j ∈ I , i �= j , pathT (ai, bi) and pathT (aj , bj ) are edge disjoint.

PROOF. Let F denote a fixed binary phylogenetic X-tree such that [F ] = τ ,
with |X| = n. Apply Lemma 3.4 to F with q = �log2 n	. Let L1,L2, . . . ,Ls de-
note the leaf sets that the nondegenerate trees contain from X. From the lemma,
q ≤ |Li | ≤ 2q − 2, and at most q − 1 elements of X are not in some Li . Let π be
a randomly selected permutation of X under the uniform distribution. Let π(F )

denote the phylogenetic X-tree that we obtain from F by changing all leaf labels
from v to π(v) simultaneously. According to Lemma 3.6, π(F ) represents a ran-
dom uniform selection from those binary phylogenetic X-trees whose underlying
unlabeled tree is τ . The previous application of Lemma 3.4 still partitions π(F ),
the leaf sets of the nondegenerate trees intersect X in π(L1),π(L2), . . . , π(Ls),
and we still have q ≤ |π(Li)| ≤ 2q − 2. Therefore, for i �= j , if pathi

π(F ) (resp.,

pathj
π(F )) connects an arbitrary pair of vertices of Li (resp., Lj ) in the tree π(F ),

then

path iiπ(F ) is edge disjoint from pathj
π(F ).(3.3)
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Set h(n) = log logn and m(n) = n
4q−2 − 1

2 . Observe from Lemma 3.4 and the
choice of q that n ≤ (s + 1)(2q − 2), and therefore,

m(n) ≤ s

2
.(3.4)

We are going to find an appropriate g(n) for this choice. We call a leaf set Y ⊂ X

infected, if there is a 1 ≤ j ≤ n/4, such that both aj , bj ∈ Y . Let E denote the
event that, for our fixed τ and F , π(F ) has the property that for all j = 1,2, . . . , s,
π(Lj ) is infected; and let F denote the event that, in addition to E, for at least half
of the indices j = 1,2, . . . , s, one finds some ij , such that both aij , bij ∈ π(Lj )

[i.e., they do infect π(Lj )] and dπ(F )(aij , bij ) ≥ h(n). In view of (3.3), the aij , bij

paths in π(F ) are pairwise edge disjoint for j = 1,2, . . . , s.
Observe that

P[π(Lj ) not infected] =
∑|Lj |

u=0

(n/4
u

)
2u

( n/2
|Lj |−u

)
( n
|Lj |

) .(3.5)

[A noninfected Lj can have zero or one element from every (ai, bi) pair, for i =
1,2, . . . , n/4. The case analysis is based on the number u = |π(Lj ) ∩ {ai, bi : i =
1,2, . . . , n/4}|. There are

(n/4
u

)
to select a subset of u indices from {1,2, . . . , n/4},

and then 2u ways to tell if ai or bi selected for the particular index set into Lj .
There are

( n/2
|Lj |−u

)
ways to make Lj complete using |Lj | − u elements not belong-

ing to {ai, bi : i = 1,2, . . . , n/4}.]
Comparison of consecutive terms show that the largest term in the numerator

of the RHS of (3.5) is u = |Lj |. Using the usual notation (x)m for the mth falling
factorial, it follows that

P[π(Lj ) not infected] ≤
(|Lj | + 1)2|Lj |(n/4

|Lj |
)

( n
|Lj |

)(3.6)

= (n/4)|Lj |
(n)|Lj |

(|Lj | + 1)2|Lj |

(3.7)

≤ n|Lj |

4|Lj |(n − |Lj |)|Lj | (|Lj | + 1)2|Lj |

≤ (
1 + o(1)

)
2−|Lj |(|Lj | + 1)

(3.8)
≤ (

1 + o(1)
)
2−q(2q − 1) ≤ 2−0.01 log2 n,

and from (3.6)–(3.8),

P[∃ j :π(Lj ) not infected] ≤ n

q
2−0.01 log2 n.(3.9)
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By (3.9), we showed that

P[E] > 1 − n2−0.01 log2 n.(3.10)

Call the ordered s-tuple of pairwise disjoint sets Y1, Y2, . . . , Ys ⊂ X feasible, if
|Yi | = |Li | and Yi is infected for i = 1,2, . . . , s. Now we turn to the conditional
probability P[F |E]. Observe

P[F |E] = ∑
Y1,Y2,...,Ys feasible

P[F |∀ i :π(Li) = Yi]P[∀ i :π(Li) = Yi](3.11)

≤ max
Y1,Y2,...,Ys feasible

P[F |∀ i :π(Li) = Yi].(3.12)

Assume now that an arbitrary feasible Y1, Y2, . . . , Ys is fixed. A π that satisfies the
condition in (3.12) is nothing else but the juxtaposition of πi : i → Yi bijections
for i = 1,2, . . . , s + 1. Therefore, a uniform random π satisfying the condition
in (3.12) can be realized by a sequence of independent uniform random choices of
bijections πi from Li to Yi , i = 1,2, . . . , s + 1.

Let πi :Li → Yi denote a uniform random bijection for i = 1,2, . . . , s +1. Con-
ditional on E, for every i = 1,2, . . . , s, fix an aij , bij leaf pair that infects Yi . Ob-
serve that the conditional event

F |∀ i :π(Li) = Yi

is implied, if for at least half of the indices 1 ≤ i ≤ s, we have dπ(F )(aij , bij ) ≥
h(n). Also observe, that notwithstanding the notation dπ(F ), this distance depends
only on the single πi under consideration. No matter what is the value of π−1

i (aij ),

at most 2h(n) vertices of Li can be closer than h(n) to π−1
i (aij ) in the binary

tree F . Those at most 2h(n) vertices can be pre-images of bij under πi (and π as
well), if dπ(F )(aij , bij ) < h(n). Therefore,

P
[
dπ(F )

(
aij , bij

) ≥ h(n)
] ≥ 1 − 2h(n)

|Li | = 1 − 2log logn

log2 n
= 1 − 1

log2−log 2 n
.

Hence, a lower bound for P[F |E] is the probability of at least s/2 successes in a
sequence of s independent Bernoulli trials, each with probability of success p =
1 − 1

log2−log 2 n
. Not having at least m(n) successes implies not having at least s/2

successes by (3.4), and probability of the latter event can easily be bounded from
above by Lemma 3.5 (t = 1, k = s, λ = s/3), as soon as 1

log2−log 2 n
< 1/6, by

2e−s/18.(3.13)

Finally, using (3.10) and (3.13), we have

1 − P[F ] = 1 − P[E] + P[E](1 − P[F |E])
(3.14)

≤ n2−0.01 log2 n + 2e−n/(64 log2 n),
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and since the RHS of (3.14) is o(n), we can take for g(n) its reciprocal. �

PROOF OF THEOREM 3.1. Specify now n/4 leaf pairs {ai, bi} of T1 according
to Lemma 3.2—for notational convenience, we assume again that n is a multiple
of 4. We set m(n), h(n), g(n) and I according to the statement of Lemma 3.7.
We are going to show that, for every fixed (T1,P1) and fixed unlabeled tree τ , if
[T2] = τ and T2 is not in the exceptional set of trees described in Lemma 3.7, then
the variational distance between (T1,P1) and (T2,P2) differs from 2 by at most
a quantity that is o(1) as a function of n. Recall that state(x) denotes the state of
leaf x ∈ X in a CFN tree. Consider the random indicator variable Zi , which is 1,
if state(ai) = state(bi), and 0 otherwise, and Z = ∑

i∈I Zi , which depends on the
distribution of leaf colorations of the CFN tree. We will speak about Z

(1)
i , Z(1)

and Z
(2)
i , Z(2) as the CFN tree is (T1,P1) or (T2,P2), and similarly about state1

and state2, and will drop the superscript if the argument applies to both.
By the linearity of expectation,

E[Z] = ∑
i∈I

E[Zi] = ∑
i∈I

P[state(ai) = state(bi)].(3.15)

In (T1,P1), we have P[state1(ai) �= state1(bi)] ≤ 1
2(1 − (1 − 2g)3), by (1.2), and

hence,

1 − 3g + 6g2 − 4g3 ≤ P[state1(ai) = state1(bi)].(3.16)

Formula (3.15) and inequality (3.16) imply that

E
[
Z(1)] ≥ (1 − 3g + 6g2 − 4g3)m(n)(3.17)

In (T2,P2), by a similar argument, we have

P[state2(ai) = state2(bi)] ≤ 1 − 1
2

(
1 − (1 − 2f )h(n))= 1

2 + o(1)(3.18)

by (1.2), and h(n) → ∞. By linearity (3.15), we have

E
[
Z(2)] ≤ (

1 + o(1)
)m(n)

2
.(3.19)

We are going to show that, with high probability, both Z(1) and Z(2) are very close
to their respective expectations. This will be easy to show, since both of them
are the sums of independent indicator variables. [Use Lemma 3.5 for Xi = Z

(1)
i

(resp. Z
(2)
i ), k = m(n), t = 1, λ = m(n)2/3.]

It is easy to see that, for 0 < g < 1/2, we have

1/2 < 1 − 3g + 6g2 − 4g3,(3.20)

and therefore, using (3.17) and (3.19), E[Z(1)] and E[Z(2)] are separated by a lin-
ear function of m(n), for example, l(n) = 1

2(1 − 3g + 6g2 − 4g3 + 1
2)m(n). Con-

sider now the event H : “Z > l(n).” In (T1,P1), event H has probability 1 − o(1),
while in (T2,P2), the complement of event H has probability 1 − o(1). This im-
plies that the variational distance of (T1,P1) and (T2,P2) is 2 − o(1). �
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4. Variational distance in more general models. In this section we provide
a result (Theorem 4.1) that is a three-fold generalization of Theorem 3.1. The three
extensions allow (i) more general probability distributions on trees (“permutation-
invariant measures”), (ii) more general transition models than the CFN model
(“conservative, separable processes”) and (iii) a weakening of the constraints on
the parameters of the model.

Permutation-invariant measures on trees. Let us call a measure µ on the set
of (2n − 5)!! binary phylogenetic X-trees permutation invariant, if for every π

permutation of X and any phylogenetic X-tree F , µ(F ) = µ(π(F )). Note that
Lemma 3.6 stated that the uniform distribution (or counting measure) on binary
phylogenetic X-trees is permutation invariant. A practitioner may argue that The-
orem 3.1 has limited relevance, since the uniform distribution of trees is just one
particular prior distribution on trees. However, any relevant distribution of trees
is permutation invariant and it is easy to see that the stronger Theorem 3.1 holds
with basically the same proof. A nonuniform, phylogenetically relevant permuta-
tion invariant distribution on phylogenetic X-trees is the unrooted Yule–Harding
distribution [6].

More general transition processes (conservative, separable processes). The
restriction of the CFN to two states and symmetric transition probabilities is con-
venient for description and proofs. However, much of the argument used in the
proof of Theorem 3.1 can be generalized to models that are much closer to those
used in modern molecular biology. We identify two key properties that are used in
the proof, and that both apply to a range of substitution models.

Suppose we have a set S of q ≥ 2 states. A pattern will now refer to a state as-
signment function χ :X −→ S, where X is the leaf set of T . Assume that we have
a probability distribution on the patterns of a binary phylogenetic X-tree, where
Pχ denotes the probability of pattern χ . Selecting a random pattern according to
the distribution, we can observe a random state of any particular leave. For a pair
of leaves a, b, let E(a, b) be the event that state(a) = state(b). Let us be given a
strictly decreasing function H : [0,∞) → (c,1] with H(0) = 1, and a c > 0 con-
stant, such that limx→∞ H(x) = c. We assume that H and c are fixed and do not
depend on n. We say that a probability distribution on patterns is conservative if

there exists an assignment of t (e) > 0 to each edge e of T ,(C)
so that the following condition holds: For each pair a, b ∈ X,

P[E(a, b)] = H(
∑

e∈path(a,b) t (e)).

The CFN model satisfies condition (C), as can easily be seen from (1.2) by taking
t (e) = −1

2 log(1 − 2pe), H(x) = 1
2(1 + exp(−2x)), and c = 1

2 . More generally,
condition (C) is satisfied by any tree-based Markov process that can realized by a
stationary, reversible, continuous-time Markov process operating on each edge e
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of T for a duration [corresponding to t (e)] (this is Theorem 4(2) of [18]; for more
details on such models, see [16]).

Next, we say that a probability distribution on patterns is separable if it satisfies
the following property:

Whenever (a1, b1), (a1, b2), . . . , (am, bm) are pairs of leaves whose(S)
connecting paths are pairwise edge-disjoint, then {E(ai, bi), i = 1, . . . ,m}
are independent events.

It is easily seen that the CFN model is separable. Moreover, any group-based model
satisfies the separation condition (S) (Theorem 10 of [20], generalizing [11]);
briefly, “group-based models” are defined in the same way as the CFN model,
but over an arbitrary finite Abelian group, rather than the particular group ({0,1},
+mod2) (for more details, see [16]).

We will call a model that satisfies conditions (C) and (S) a conservative, sepa-
rable process. Examples of such models include the CFN model, and, more gener-
ally, the symmetric q-state model, for which, when a transition occurs, one of the
remaining states is selected uniformly at random. For this model, we have c = 1

q

in condition (C), and this model is well known in a variety of fields, including
physics, broadcasting and molecular biology, where it is referred to as the “q-state
Potts model,” the “q-ary symmetric channel,” and the “Neyman q-state model,”
respectively (and, in the special case when q = 4, as the “Jukes–Cantor model”);
for more details, see [13]. A further example of a conservative, separable process
in molecular biology is the Kimura 3ST model (for details, see [16]).

Weakened constraints. In Theorem 3.1 we imposed the condition f ≤ pe

for a fixed f > 0 for the transition mechanism P2. In fact, an inspection of
the proof reveals that 0 < f = f (n) may depend on n, as far as we have
limn→∞ h(n)f (n) = ∞, where h(n) is any function satisfying the statement of
Lemma 3.7. [The present proof of Lemma 3.7 allows f (n) → 0 “very slowly,” but
the truth is likely just “slowly.”]

The result allowing these three types of extensions is the following.

THEOREM 4.1. Fix 0 < t+ < ∞, and allow t− = t−(n) > 0 to vary with n if
still limn→∞ h(n)t−(n) = ∞, where h(n) is any function satisfying the statement
of Lemma 3.7. For every binary phylogenetic X-tree T1 with a conservative, sepa-
rable process P1 where t (e) ≤ t+ in P1, and any µ permutation invariant measure
on phylogenetic X-trees, the following holds for a function ε(n) = o(1). The set of
binary phylogenetic X-trees of measure 1 − o(1) has the property that any of them
equipped with an arbitrary conservative, separable process P2, with t (e) ≥ t− in
P2 (assuming P2 has the same H and c as P1) has

vardist
(
(T1,P1), (T2,P2)

) ≥ 2 − ε(n).(4.1)
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PROOF. We need a straightforward modification of the proof of Theorem 3.1.
Leaving out the subscript from the notation for the generic leaf pair (ai, bi), for-
mula (3.16) can be substituted by

H(3t+) ≤ H
(
dT1(a, b)t+

) ≤ P[state1(a) = state1(b)];(4.2)

(3.18) can be substituted by

P[state2(a) = state2(b)] ≤ H
(
dT2(a, b)t−

) ≤ H(h(n)t−) < c + ε(4.3)

for any fixed ε > 0 as n → ∞. For a sufficiently small ε > 0, we have

c + ε < H(3t+)(4.4)

[this follows from the assumptions on H and c], and thus, inequality (4.4) substi-
tutes for (3.20). �
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