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SUBGEOMETRIC ERGODICITY OF STRONG
MARKOV PROCESSES

By G. FORT AND G. O. ROBERTS
CNRSLMC-IMAG and Lancaster University

We derive sufficient conditions for subgeometfi@rgodicity of strongly
Markovian processes. We first propose a criterion based on modulated mo-
ment of some delayed return-time to a petite set. We then formulate a criterion
for polynomial f-ergodicity in terms of a drift condition on the generator. Ap-
plications to specific processes are considered, including Langevin tempered
diffusions onR” and storage models.

1. Introduction. This paper is devoted to the study of subgeomefriergo-
dicity of a strong Markov semigroupP’);>o. That is, for a subgeometrically
increasing rate function := (r(t)),;>0, and a Borel functionf > 1, we propose
sufficient conditions implying the limit

Jim r@ P, =7l =0,

for r-almost all (a.a.)x, whererx is the unique invariant probability measure.
Our main condition is couched in terms of modulated moments of return-times
to a “test-set.” In this form, this condition extends earlier criteria, implying dif-
ferent notions of stability (such as Harris-recurrence, positive Harris-recurrence,
ergodicity andf-ergodicity) for continuous-time Markov processes. This condi-
tion is also analogous to the criterion for subgeomefriergodicity of discrete
time Markov chains. We also derive a condition for polynomial ergodicity which
is easy to check in many applications. This condition is expressed in terms of
inequality on the semigrougenerator, and is analogous to the so-callddft in-
equality in the discrete-time case.

We apply our results to the study of strongly Markovian processes, giving
three nontrivial examples, two of which are of considerable applied probabilistic
interest. We first consider a simple jump process as a toy example, demonstrating
that f-ergodicity at a logarithmic (resp. polynomial or subexponential) rate is
narrowly related to the existence of a logarithmic (resp. polynomial or sub-
exponential) moment of the mean-time spent in each state, with respect to the
jump distribution. We then consider Langevin tempered diffusiori®’owhich are
relevant to Markov Chain Monte Carlo (MCMC) techniques since they construct

Received September 2003; revised September 2004.

AMS 2000 subject classifications. Primary 60J25; secondary 60J60, 60K30.

Key words and phrases. Markov processes, subgeometyieergodicity, drift criterion, Langevin
diffusions, storage models.

1565



1566 G. FORT AND G. O. ROBERTS

a diffusion process with given stationary distributian(which only needs to

be available up to an unknown normalization constant). When the stationary
distribution is polynomial in the tails, the (simple) Langevin diffusion can not
be ergodic at a geometric rate and we show that it is polynomially ergodic. We
also consider Langevin tempered diffusion in which the diffusion matrix is a
scalar matrix with coefficientr =%, d > 0, and prove that even when the target
distribution is polynomial in the tails, a convenient choice of the temperature
d involves geometric ergodicity of the process. Finally, we study a compound
Poisson-process driven Ornstein—Uhlenbeck process which is used in storage
models and more recently in financial econometrics. It is known that when the
distribution of the jumpF has sufficiently light tails, the process is geometrically
ergodic. We investigate the case whdtdas heavy tailed and establish the sub-
geometric ergodicity of the process under appropriate conditions in this case.

The paper is organized as follows. We first recall basic definitions on Markov
process, as well as reviewing existing results on ergodicity of strongly Markovian
process. The new criteria for subgeometric ergodicity are given in Section 2, and
the proofs are postponed to Section 4. Section 3 is devoted to the three examples
mentioned above.

1.1. Basic definitionson Markov process. Let X be alocally compact and sep-
arable metric space endowed with the Barelield B(X). X = (22, A, (F1):>0,
(X1)r>0, Py) is a X-valued Borel right process so that it is a temporally homo-
geneous Markov process, strongly Markovian with right-continuous sample paths
(see, e.g., [31])P, (resp.E,) denotes the canonical probability (resp. expectation)
associated to the Markov process with initial distributignthe Dirac distribution
at pointx. Let (P");>0 be the associated Markov semigroup.

We recall basic definitions and properties on Markov process that will be used
throughout this paper. The procegss ¢-irreducible for someo -finite measure
on B(X) if

¢(A)>0 — Ex[/OOOIlA(XS)ds}>O VxeX.

If the process ig-irreducible, there exists a maximal irreducibility measurthat
dominates any irreducibility measure [24]. In factgzifis an invariant measure,
that is,7 P’ = P’ for all t > 0, thens is a maximal irreducibility measure. Any
measurable set which is of positivie-measure is said to baccessible. A set

C € B(X) is vp-petite for the process (or simply petite) if there exists a probability
measure (resp. nontriviab -finite measurey,) on the Borelr -field of R, [resp.

on B(X)] such that

/OOO P'(x,)b(dt) > vp(+) forallx e C.
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A ¢-irreducible process always possesses an accessible closed petite set ([20],
Proposition 3.2). A process Harris-recurrent if there exists a -finite measurep
such that

¢(A) >0 = Px</ooo]lA(Xs)ds=+oo>=l, xeX;

or, equivalently, if there exists a-finite measurex such thatu(A) > 0 =

P, (ta < 00) = 1forallx € X wherer, is the hitting time oM. Harris-recurrence
trivially implies ¢-irreducibility. A Harris-recurrent right process possesses an
invariant measure [10]. In fact, when the invariant measure is fiites called
positive Harris-recurrent. A ¢-irreducible process igperiodic if there exist an
accessiblevs, -petite setC and 79 such thatP’(x, C) > 0 for all x € C, 1 > 1.
Meyn and Tweedie ([22], Proposition 6.1) show that a positive Harris-recurrent
process is aperiodic if some skeleton chaiff, m > 0, is irreducible, that

is, if there exists ao-finite measuregp on B(X) such thaty(A) > 0 —
Ex[>>01a(Xnm)] > 0forallx e X.

For Borel functionsf > 1, g, define the normg| r :=sup, |g(x)|/f (x) and the
Banach space ; := {g, |g| s < oo}. For a signed measuye, thetotal variation
norm is given by| u|tv := supy n(A) — inf4 (A); and the f-norm (for some
Borel function f > 1), [|ullf = SUR |¢1,=1) l(g)|, so that the total variation
norm is thel-norm, wherel denotes the constant functidiiz) = 1. The process
is ergodic if

Vxe X, lim | P'(x,) —7()lIlTv =0,
1—00
and f-ergodic ifr (f) < co and
(1) VxeX,  lim [P'(x.) =)y =0.

Finally, X is geometrically (resp.subgeometrically) f-ergodic if the limit (1)
holds at a rater(r) := «', for somex > 1 [resp.r := (r(t));>0 for some
subgeometrically increasing rate]. A subgeometric rate is defined as follows
(see, e.g., [34]). LetAp be the set of the measurable, bounded on bounded
intervals and nondecreasing functionsR, — [1, co), such that log(¢)/r | O
ast — +oo. Let A be the set of the rates= (7 (¢));>0 such that for some € Ay,
O<liminf,7(t)/r(t) <limsup r(t)/r(t) < oo. A is by definition, the set of the
subgeometric rates. For example, contains rates such asr) ~ log?(t + 1),
B=>0, )~ @Avi9logl(r + 1), « >0, B € R, and subexponential rates
F(t) ~explat?),a >0,0< B < 1.

Throughout this paper, we will often make comparison with (discrete time)
Markov chains; the unfamiliar reader can refer to [21].
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1.2. (f,r)-modulated moments and stability. Define the hitting-time on a
measurable se&t, delayed by > 0,

2) tc(8) :=inf{r > 6§, X, € C},

the momentr¢(0) is denoted bytc. It is proved in the literature that modulated
moments ofzc(8) for some closed petite set are related to Harris-recurrence,
positive Harris-recurrencef;-ergodicity and geometrig¢ -ergodicity. For a Borel
function f > 1, an increasing nonnegative rate functios= (r(¢));>0, 6 > 0O,
define the( £, r)-modulated moment

7c (8)
GC(X,f,r;5)1=Ex[/O r(s)f(Xs)ds].

R1. X is Harris-recurrent if and only if there exists a petite €efuch that, for all
x €X,Py(rc <o0) =1([20], Theorem 1.1).

R2. If X is Harris-recurrent with invariant measurethen forf > 1, 7 (f) < oo
if and only if sup..c Ge(x, f,1; ) < oo for some closed petite sét ([20],
Theorem 1.2).

R3. A positive Harris-recurrent process is ergodic if and only if some skeleton
chain P™ is irreducible ([22], Theorem 6.1).

R4. A positive Harris-recurrent process fsergodic if (a) some skeleton chain
P™ is irreducible, (b) sup.- Ge(x, h, 1;8) < oo, whereh > sup.,, P* f
and C is a closed petite set, and (c) for all G¢(x, h,1;8) < oo ([20],
Proposition 4.1 and [22], Theorem 7.2).

R5. A positive Harris-recurrent process is geometricglhgrgodic if (a) some
skeleton chainP™ is irreducible, (b) there exists a closed petite Seand
n >0 andGc¢(x, h, exp(nt); 8) is finite for all x, whereh > 1 is a Borel
function such that1f < [5° exp(—t) P'hdt < cof for some finite positive
constants;, (C) suR- G¢c (-, h, exp(nt); 8) < oo ([5], Theorem 7.4).

In Section 2 we give a criterion of the form R1-R5 that implies subgeometric
f-ergodicity.

To date, little is known about general characterizations feergodicity at
a subgeometric rate for Markov processes. However, we note some important
special cases which have been studied in the literature. The work by Ganidis,
Roynette and Simonot [9] is restricted (a) to convergence in total variation norm
and (b) to diffusion processes d&f with diffusion matrix equals to identity.
Their proof is based on spectral properties of the transition semigroup seen as an
operator, and differs from the probabilistic approach adopted in the present paper.
We will see in Section 3.2 how to improve their conclusions. Veretennikov [36]
and Malyshkin [19] deal with diffusion processes and can be read as a special
application of the present paper. The most related work to the present one is the
paper by Dai and Meyn [2] that considefsergodicity at a polynomial rate of
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a Markovian state process, in order to study the stability of multi-class queuing
networks. These results are particularly related to our work and we will describe
their results in Section 2.

1.3. Drift condition and generator. For a Borel function G6< V < oo, denote
by AV the Borel function—when exists—such that> AV (X,) is integrable
P.-almost surely (a.s.), and there exists an increasing sequence of stopping-time
{T,,}» such that for any stopping time

AT,
EX[V(XTATH)—V(XO)—f AV(XS)ds]:O forallx e X,n>0.
0

When AV exists,V is said to be in the domain 64. If there exists: such that

t — h(X,) is integrabldP,-a.s. and — V(X;) — V(Xg) — fé h(Xy)ds is aright-
continuoudP, -local martingale (with respect to the filtratidf), thenV is in the
domain ofA and AV = h [3]. If V is in the domain of the weak infinitesimal
generatorA, thenV is in the domain of4 and AV = AV [6]. If the functions

V andAV are right-continuous, these two sufficient conditions are equivalent and
AV = AV.

When AV satisfies a drift conditiomV < — f + b1 for some closed sef,
and a nonnegative functioif such thatr — f(X;) is integrableP,-a.s., we
haveG¢(x, f,1;68) < V(x) + éb; this will be the basic tool to upper bound the
(f, r)-modulated moments.

Conditions onAV are analogous to conditions on the variatiB#V — V
for a discrete time Markov chain with transition kernef*. It is well known
that the conditionP™V — V < — f outside a “test set” for the skeletoR™
is related (a) to thef-ergodicity of the Markov chaif( Xy, )« [21]; (b) to the
geometricV -ergodicity if f = AV for some O< A < 1 [21]; (c) to the polynomial
V-ergodicity if f o« V1~ for some O< « < 1 [8, 14]; (d) and more generally
subgeometricf-ergodicity is f o< ¢ (V) for some concave functiog [4]. Similar
results hold for a continuous Markov process. Meyn and Tweedie [23] prove that
the conditionAV < — f outside a closed petite set is related (a) tofhergodicity
of the Markov proces«; and (b) to the geometri¥’-ergodicity if f o« V (see
also [5, 26, 29]). In Section 2 we establish that the cAse V1~ is related to
polynomial f-ergodicity.

2. Statements of the results. In Theorem 1, we establish that modulated
moment on some delayed hitting-time on a closed petit€ ggbvides a criterion
for subgeometricf -ergodicity. We assume that there exist 0, a Borel function
f+« > 1 and a rate function, € A such that

3) supGe (-, f«, 1;8) < 00, SupGe (-, 1, ry; §) < o0.
C C

We will establish that, is the maximal rate of convergence (that can be deduced
from these assumptions) and it is associated to convergence in total variation norm,
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that is, in1-norm, which is the minimal one. On the other hand, we will show that
f+ is the largest norm in which convergence occurs and the associated convergence
rate is the minimal oné.

Using an interpolation technique, we also derive a convergence ratg k r,
in A associated to somg-norm, 1< f < f, (see [4] for a similar approach in
the discrete time case). The simplest interpolation technique is given by Hoélder’s
inequality which yields [from (3)] supGc(-, 7, ri 7 8) < co. By analogy to
the discrete-time case, one would expect convergengg-norm at the ratei_p ,
and we will prove the continuous time version of this result.

More generally, if there exists a pair of nondecreasing positive functions
(W1, Wp) satisfying

4) Wi(x)Wa(y) <x+y, x,y>1,

then sup G¢ (-, Wa( fy), W1(ry); 8) < oco. We will establish that ifUq(r,) € A,
this condition yields convergence ira( fi)-norm at the ratedq(r,). Young
functions are closely related to these pairs of functiohg W), say. Specifically,

if (Hi, Hp) is a pair of Young functions, theoH; *, Hy 1) satisfies (4) (see,
e.g., [16], Chapter 1). Letl be the set of pairs of inverse Young functions,
augmented with the pairdd, 1) and (1, Id). As commented above, contains
the pairs((x/p)?, (y/(L — p))*~?), 0< p < 1, and, more generally, the pairs of
functions increasing at infinity ag? In® x, y1=?In~* y) for some 0< p < 1 and
beR,p=0andb>0,p=1andb <0.

THEOREM1. Let f, > 1beaBore functionand r, € A. Assume that:

() X isHarris-recurrent with invariant measure rr, and some skeleton chain,
say P™,isy-irreducible.
(i) Thereexist aclosed petite set C and some § > 0, such that (3) holds.
(iii) There exists a finite constant ¢ such that sug_,, P! f« < cfs.

Then 7 is an invariant probability measure, 7 (f) < oo and for any pair W :=
(W1, W2) € 4,

im0 ) v BIP x0) = 1O lugerva =0 forall x € Sy,
where 8y, which is of 7-measure one, is defined by
7c ()
suim e B [ Wi o0 wa(f(x)ds | < o).
0
The proof of Theorem 1 is postponed to Section 4.1. We first verify that

Wi (ry(t)) vV 1€ A. Under (i) and (ii),C is accessible and the following lemma
holds ([22], Proposition 6.1).
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LEMMA 2. Suppose that X is positive Harrisrecurrent with invariant
distribution = and some skeleton chain P™ isirreducible. For any accessible petite
set C, there exist 1o > 0 and an irreducibility measure v for the process such that
v(C) > 0and infyec infisq PH(x, ) > v(-).

Based on this lemma and on condition (ii), the second step consists in proving
that the skeleto®™ is irreducible, aperiodic and possesses a petitd setch that

supG §” (x, Wa( f), W1(ry) < 00
xeA
(5) Tth
with GY" (x, f,r) = E, [Z r(k)f(ka)},
k=0
whereT,, 4 > 1 is the return-time ta\ for the skeleton chai®”
(6) T a:=Inflk > 1, Xg € A}

By application of [35], Theorem 2.1, this proves that for-a.a. x,
iMoo W1(rs (K) | PF (x, ) — () lw,( ) = 0. Using Theorem 1(iii), the limit
still holds replacing (k) (resp.P¥™) by r.(t) (resp.P'). We finally establish that
the limit holds for all the points € 8¢ andx ($y) = 1.

REMARK 3. Theorem 1 remains valid by substituting condition (i) for the
following condition: there exist a -irreducible, aperiodic and positive recurrent
transition kernelP”.

Theorem 1 remains valid by substituting (i) and (iii) for the following
condition: there exist a closed petite seand some > 0 such that supGc¢ (-, &,
1;8) < oo and sup G¢ (-, 1, ry; 8) < oo whereh > sup_,, P’ f.

Condition (iii) implies that the semigroupP’);~o and the resolvent kernel
R = [y° exp(—r) P'dt are bounded ot 4, .

REMARK 4. By (4), it is readily seen thafx; Ge(x, fi, 1;68) + Ge(x, 1,
r«; 8) < 0o} C 8. It may be read from the proof that

(7) Jim (@ (n(0) v B P' () = 7 Ollwy(pva =0,

for all probability measurew such thatGe(x, Wao(fy) vV 1, W1(ry) Vv 1;6) is
u-integrable. Applying again (4), (7) holds for all distributiqm such that
(Ge(x, fo,1;8) + Ge(x, 1, ry; 8)) is u-integrable.

REMARK 5. For any pair(W, W) € 4, if W4 strongly increases at infinity
[e.0.,¥1(x) xx x? for somep < 1 close to one], thew, slowly increasesy,(x) «
x1=P for some 1— p close to zero] ([16], Theorem 2.1, Chapter 1). Hence, the
stronger the norm, the weaker the rate (and conversely). This compromise between



1572 G. FORT AND G. O. ROBERTS

the rate function and the norm of convergence is well known for the discrete
parameter Markov chain ([35]; see also [4, 8, 14]). As expected, this property
remains valid for the continuous-time Markov process.

Corollary 6 provides a condition based @n well adapted to prove polynomial
ergodicity.

COROLLARY 6. Let1l <V < oo beaBord functionand 0 < o < 1. Assume
that:

(i) Some skeleton chain P™ isirreducible.
(i) There exists a closed petite set C such that sup-V < oo and for all
a<n<lt— V17 %X,) isintegrable P,-a.s. and

(8) AVT < —c, V™% +blc, 0<b<00,0<c,; <o00.

Then there exists a unique invariant distribution 7, n(Vlfo‘) < oo and for all
O<p<landbeRorp=1landb>00or p=0andb <0,

: 1-p)(1— b
Mm@+ @ P ogn” | P (x. ) = 7 Ollva-rrdny)-sv1 = 0.

xeX.

The proof is given in Section 4.2. From (ii), we obtaih-(x, vi-e 1.8) +
Ge(x, 1, A+ )Y*=1; 8) < ¢V (x); and then we apply Theorem 1.

By choosingg =0andp = (1—«a)/(1—a) for some 1< k < 1/a, Corollary 6
yields

9) Vx e X, Jlim (e + DY P (x, ) — () |ly1ca =0O.

If (9) holds for someV function, we shall say that the Markov chain is
polynomially ergodic with rate (1 + r)1—®)/e,

REMARK 7. Corollary 6 can be compared to the paper by Jarner and Roberts
[14] for the discrete parameter case. They start with proving that if there exist a
Borel function 1<V <00, 0 < a <1, asefC such that, foralk <n <1,

(20) P"VT— VT < —c, V™% +blc, 0<b<00,0<cy<o0,

there exists: < oo such thatG" (., V1=, 1) + GW (., 1, A+ n¥e1) < eV,
where Gg") is given by (5). The drift condition (10) is analogous to (8) and
the controls of the moment§(c’") and G¢ are similar. If, in addition,P™ is
irreducible, aperiodic and is petite for the skeletorR™ is positive with invariant
distribution = such thatr (V1) < oo and for all 1< « < 1/«, the skeleton is

v1-<@_ergodic with raten + 1)* 1. These rates coincide with those in (9).
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REMARK 8. From the proof of Corollary 6, it may be read than only a fi-
nite number of nested drift conditions is required; nevertheless, in practice, it is
not more restricting to verify a continuum of drift conditions than to verify a
finite number of drift conditions. More precisely, assumption (ii) can be substi-
tuted for the following conditions: (iii) there exist a closed petite set and func-
tions 1< V,_1 < cfy,, such that for all integers ¥ ¢ < p, AV, < —f, + blc,

t = fy(X;) is integrableP,-a.s., and sypV, < oo; (iv) there exists8 > 0 such
thatIEx[rC’g] < f1(x). If such, following the same lines as in the proof of Proposi-
tion 26, it may be proved thabc (-, 1, (t + )P ~1A:8) + Ge (-, £, 1;8) <cV,

for somes > 0. Together with condition (i), this yieldgf*l_”-ergodicity at a
rate (r + 1)P~14A" for all 0 < n < 1, where f, is any function satisfying
SUR<,, P/ fs < [

Dai and Meyn [2] are, to our best knowledge, the first to exhibit this
kind of nested drift condition and, hence, the first to address ergodicity at
a polynomial rate; they proved this yieldg-ergodicity at a rate(r + 1)7~1
(Theorem 6.3, [2]). We are able to obtain the same result: to that goal, we observe
that conditions (iii) and (iv) are verified with functiong < fl],‘/", B=1(as a
consequence of Proposition 5.3 and equation (6.1) in [2])/and f),.

We proved that nested drift conditions on the generatgrovide a control of
momentsG ¢ with a polynomially increasing rate function. The converse seems
to be an open question. We, nevertheless, make mention of Propositions 5.4
and 6.1 in [2], that provide a (partial) converse condition: from the condition
sup- Ge (-, f, 1; 8) < oo, they deduce a drift condition o (we point out that this
single condition implies a continuum of conditions by using the same convexity
argument as in [14], Lemma 3.5). Unfortunately, this drift condition, in turn,
implies only a control of the momeiit¢ (x, Rf, 1; 8), whereRf (x) is a function,
which is, in general, difficult to compare with.

3. Examples. In this section(-,-) and| - | denote, respectively, the scalar
product and the Euclidean normIRY. If u is a twice continuously differentiable
real-valued function ofR”, Vu (resp.V2u) denotes its gradient (resp. its Hessian
matrix); andou/dx; its partial derivative with respect to théh variable. For a
matrix u, Tr(u) stands for the matrix trace amdthe matrix transpose. Ferc A,
define the sequena€ by rO(r) = [§r(s) ds. Finally, we largely make use of the
inequality r(s + 1) < r(s)r(t), s, > 0, which holds for any rate € A ([34],
Lemma 1).

3.1. Toy example: jump process. Consider the jump process @h- such that
given thatX,; = i, the waiting-time to the next jump has an exponential distribution
with expectationki_1 and is independent of the past history. We assume that
for all i >0, ; > 0, and sup.g; < oo. The probability that the jump leads
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to statej is given by the matrix entryQ(i, j). We consider the case when
0(0,i) = p; and Q(i,0) = 1 for all i > 1, for some positive sequence;);>1
such thafy_;-.; pi = 1. We assume, in addition, that

(11) liminfa; =0 and Y pia;t <oo.
! i>0
Since sup.gA; < oo, there exists & -valued right-continuous strong Markov

process satisfying the heuristic description above and such that, for glie 72,
the limit exists

Pl‘ . . _ 8[- .
(12) im LG = 6i() _

A, ) <00,
t—0 t ( ])

wheres; is the Dirac-mass at point and for alli > 1,
andA(i, j) = 0 otherwise (see, e.g., [7], page 330).

LEMMA 9. The processisHarris-recurrent, reversible with invariant distrib-
ution 7 given by 77(0) = {1+ ¥4 pj)\.;l}_l and 7 (i) = pir; tm(0), i > 1. Any
skeleton chain P™ isirreducible.

PROOF We haveF;[to] = (1 — 1g(i))A; L and for alli >0, j #i, 8 > 0,
P2, j) < pj. ThenEi[zo(8)] =8 + Xj-1 P2, HE;[t0] <8 +2% ;1 pjh;
Hence, for alli € Z, P;(t0(8) < c0) = 1 and as{0} is a closed petite set, the
process is Harris-recurrent is the unique invariant probability measure (as
unigue solution torA = 0), and sinceX obeys the detailed balance, that is,
(A3, j) = m(j)A(, i) for all i, j, the process is reversible. Finally, for all
m >0, andi, j > 0,

m
PP, ) = pidoiid [ dsexp—iis)
0

m—s m—(t+s)
X / dt exp(—xot)/ duexp(—Aju) > 0,
0 0

where the inequality says th&" (i, j) is greater than the probability of a single
visit to 0 before a jump tg. Similarly, it is easy to prove tha®™ (0, j) > 0 and
P™(j,0) >0 forany; € Z,. This proves the irreducibility of any skeletonlJ

We deduce from R3 that the process is ergodic. Nevertheless, this convergence
fails to occur at a geometric rate as shown in Lemma 10, the proof of which relies
on the notion of conductance.

LEMMA 10. X failsto be geometrically ergodic.
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PROOF As X is reversible, any Markov kernét™ is reversible. It is proved
in [17] that for a reversible Markov kerneP™, the conductance;,, given
by ki := infacm(A), Where ¢, (A) == {m(A)w (A} 7L [, P™(x, A7 (dx), is
positive if and only ifP™ is geometrically ergodic. We verify that for any skeleton
P™_ the conductance is zero which will involve that the skeleton fails to be
geometrically ergodic. Consider the set of statesich thatr (i) < 1/2. Then
cm(i) <2(1— P™(i,1)) < 2(1 — exp(—A;m)) upon noting thatP™ (i, i) is lower
bounded by the probability that the waiting-time in staig greater tham. Since
liminf;_ o0 A; =0, for all ¢ > 0, there exists a staiesuch that,, (i) < &, which
involvesk,, =0. O

We now identify functiond/ that are in the domain oh.

LEMMA 11. Let0O<V < oobeaBorel functionsuchthat ) ;- p; V(i) < oc.
Then V isinthe domain of A and AV =AV.

PROOF  For a function f > 0 such that}_; p; f(j) < oo, the monotone
convergence theorem yields

P 5; J PL(G, j)—6;(j . .
i m PED =D 1y~ i > im PODZAD) pjy = ary

I1+o0 4110

in addition, sup f~YAf| < oo. This proves thav is in the domain of the weak
infinitesimal generatod, and thus in the domain o4. [

The expression of the generator suggests that fundtiam the form)»l._" is
a candidate to solve the drift inequality (8). This yieldsergodicity at a log-
polynomial rate.

PROPOSITION12. Assumethatthereexists 8 > 1suchthat} ;-4 p;A, P < .
ThenforallieZ,,0<k<pB—1landbeRork=0andb <0, or/c_ﬁ—l
and b >0,

; —1—« b :
Jim (1 + 0’ (N +nDPIPG, ) = Ol apnesaz > = 0

PROOF We apply Corollary 6: we choos¥ > 1 such that for alli > 1,
Vi) = c—1V(O)/\,._’3 for somec > V(0). Then (8) is verified withw = g~ and
the closed petite s€t = {0}. O

When g =1 [i.e., with nothing more than the condition (11)], this establishes
the convergence in total variation norm at the ratewhich corroborates the
ergodicity of the process proved above. Nevertheless, if for s@md, the sum
Yis1pi(lv Ai_l)[log(l Vv Ai_l)]/3 exists, Corollary 6 does not yield a stronger
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convergence result than the ergodic one. We prove, by application of Theorem 1,
that covers more general rates than the polynomial ones, that convergence in
total variation norm occurs at the ratgr) ~ [log(r)]?, and convergence in norm
fe(x) =[log(1v A7) + 112 occurs at ratd . We also derive sufficient conditions

for subexponential ergodicity.

LEMMA 13. Let f:Z+ — [1,00) and r, € A such that

Y piAVATHfa(j) <oo and
=1

(14) +OOL

ij)\;lf r«(s)Aj exp(—A;s)ds < oo.

: 0

j=1

Then there exists a finite constant ¢ such that for all m > 0, SUR-,, P! f < cfs.
For all § > 0, there exists a finite constant ¢ such that

Go(x, fi, 1:8) < c(1V A7) fi(x),

—+00
GO(-xv ]lvr*; 6)§C/ I’*(S)eXF(—)»xS)ds.
0

PROOF  Since P'(x, j) < p; for all x # j, it is trivial to prove that
SUR.oSURcz, fi tP' fi <oo.For f = 1andr € A,

§
Go(x, f,r:8) < /0 r(s)P fx)ds +r) Y PP (x, ) f(HE;[r2(0)].

j>1

E;[r%(o)l =2, [rOt) exp(—rjs)ds = [r(t) exp(—hjs)ds. O

PROPOSITION14. (i) Assume that Y ;-1 pi(1 v A7 Hllog(d v A7 H1F < oo,
for some g >0.Foral 0<«k <pB,ieZy, lim_ llogt + D1F*| PG, ) —
() ||[1+|og(1vk;l)]K =0.

(i) Assume that ;.1 pi(1 v A7 DA Y2 exp(z2h ) < oo, for some z > 0.
For al 0<p <1, ieZg limoisexp2z(l — pi?)|Pii,) —
T 0.

PrROOFE In both cases, apply Theorem 1; for case (i) ysét) = {log(exp(8 —
1) +1}f and f.(i) = 1+ log(1 v ;1P and for case (i), set. (1) = exp(2z11/?),
fu@) =1+ 2 7P expz227Y) and observe thaf exp(2zsY/2)x exp(—As) ds <
1+ 2wz YPexpiz?2a~ Y. O
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3.2. Langevin tempered diffusionson R". Let us consider a stochastic integral
equation

t t
(15) Xt=Xo+/O b(XS)ds—i-/O o (Xy) dWs,

where W, is an n-dimensional Brownian motion, the drift coefficient
b= (by,...,b,) isontheform, I<i <n,

b 12 0 | 14 9

i) =3 2“”1“)% 097 (x) + 5 ; o 20

Jj=1 j=1

wherea = oo’ is then x n symmetric positive definite matrix. Such a diffusion

is the so-called Langevin diffusion and is defined in such a way thas,

up to a multiplicative constant, the density of the unique invariant probability
distribution (with respect to the Lebesgue measur®®n This property motivates
recent interests in Langevin diffusion for their use as MCMC methods, where
the scope of these techniques is to draw samples from a Markov chain with
given stationary density . The efficiency of these algorithms is linked to the rate
at which f-momentsE, [ f (X;)] converge to the constant(f). This motivates

the study of thef-ergodicity. In practice, discretizations of the continuous-time
process are used to solve the MCMC simulation problem and recent works
proved that it is possible to find methods of discretizing which inherit the
convergence rates of the continuous-time diffusion (see [27, 28, 30, 32, 33] for
methods of discretizing and their use in MCMC techniques). Roberts and Tweedie
proved that, on the real line, when the target densitys heavy tailed, the
Langevin diffusion witha := 1 cannot be geometrically ergodic. We complement
this assertion whem is polynomial in the tails, and prove that the Langevin
diffusion in the one-dimensional case, as well as in the multidimensional one,
is f-ergodic at a polynomial rate. For such polynomial target density on the
real line, it was observed in [13] that the polynomial rate of convergence of the
Metropolis—Hastings algorithm could be improved by choosing a heavy-tailed
proposal distribution. This idea, when adapted to the diffusion on the real line,
suggests the choice of a speed measure, that is, of the coefficisath that

o is small when the process is close to the modesroénd big when far
from the modes [32]. In the multidimensional case, this suggest$ on the

form n—Zd(x)I[n, wherel,, is the identity matrix onR", d > 0. In that case

(d > 0), we call these processes Langevin tempered diffusion (see [27] for the
justification of these heated diffusions). It was observed in the literature that
by choosingd large enough, a diffusion on the real line with target density
polynomial in the tails is geometrically ergodic. We investigate the behavior of this
Langevin tempered diffusion in the multidimensional case, contrarily to most of
the mentioned contributions that cover the one-dimensional case. In Theorem 16,
it is proved that, up to some critical temperatdie the diffusion is polynomially
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ergodic and that the larget, the better the rate. Wheh > d,, the diffusion is
geometrically ergodic. We henceforth consider a diffusion mattiy = o2(x)I,,,
whereo (x) := 7~ (x) for somed > 0. Assume the following:

Al. 7 is, up to a multiplicative constant, a positive and twice continuously
differentiable density ofR” (with respect to the Lebesgue measure).

Define the drift vector

(16) b(x):= %oz(x)(v log{m (x)o%(x)}) = Tn_Zd(x)Vlogn(x).

Under Al, the coefficients ando are locally Lipschitz-continuous, which implies
that for any compact seK, sup.cx{|b(x)| + o (x)[}(1 + Ix)~1 < c0. These
local conditions allow the construction of a continuous process satisfying the
stochastic integral equation (15) up to the explosion time lim,,_, o ¢,, Where

& :=1inf{t > 0, | X;| > n}. We thus formulate the following assumption:

A2. The process is regular, that is= +00 a.s.

Under Al, a sufficient condition for regularity is the existence of a twice
continuously differentiable nonnegative functihand a constant > 0 such that
LV <cV onR" and lim,_,  infjy|>, V (x) = 400 ([12], Theorem 3.4.1), whetle
is the elliptic operator

2
LV () = (b(x), VV () + T Véx)a(x))
—2d n 2
D) ((1 2d)(Vlog (x), VV(x)) +Za V(zx)>.
2 i=1 axi

In the one-dimensional case, Has'minskii ([12], Remark 2, page 105) establishes
that the process is regulardfis chosen such that

17) /anf’—l(x)dx = 00,

since the functionV (x) := sign(x) [y Q(y)dy, where InQ(x) = =2 f5 b(r) x

o~ 2(t)dt = (2d — 1)(In7w(x) — In7(0)) is finite and satisfietV =0 onR. To

cover the multidimensional case, we adapt this condition and claim that the process
is regular ifd is chosen such that

(18)/ 1”exp< 1— 2d>f -1 sup VIOQn(x),x)ds)dt:—i—oo.

{x.|x]=s}

Indeed, the functioV (x) := U (|x|) where, for allu > 0,

[ B ¢ 2b(x) X n—1
vw = [Few(- [ s 10 )+ s
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is finite and satisfiekV = 0 onR”. In the one-dimensional case, condition (17)

is necessary for the existence of an invariant probability measure ([12], Remark 2,

page 105); thus, for the objective of this papghas to be chosen in the sy

of the positive real numbers such that (17) hold. Observe dhats nonempty

and containg(0, 1/2}. In the multidimensional case, a necessary condition for

(positive) recurrence is that checks a condition on the form (18) where the

supremum is replaced by the infimum ([11], Theorem Il, page 194). This involves

the definition of an intervaf, limiting the range of the possible temperatdre
Under Al and A2, there exists a solutiof, #, (¥;), (W;), (X;), P), where

(2, F,(F), (W), P) is n-dimensional Brownian motion(X,); is an¥;-adapted

homogeneous and continuous Markov process with Feller transition probability,

satisfying (15)P-a.s. and such that both the integral exist, that is, far all0,

(19) P(/Ot b(X,)ds + /Otoz(Xs)ds < oo) ~1

A transition semigroug P"),>o has the Feller property if for any continuous
bounded real-valued functiorf, x — P’ f(x) is continuous.(X;) is thus a
strongly Markovian process as a (right)-continuous process with Feller transition
probability [6].

Let 0< V < oo be a twice continuously differentiable function such that there
exist a nonnegative Borel functigh bounded on compact sets, a constaatoco
and a compact sétf such thalLV < —¢1¢c + blc. From (19) and the continuity
of t = VV(X,), the process — féo(Xs){VV(Xs)}/dWs is a local martingale.
Application of Ité’s rule yieldd.V = AV.

A3. For all 1<i,j <n, 8%0%(x)/dx; 3x; and 3%logn (x)/dx; dx; are locally
uniformly Holder continuous.

PROPOSITION15. Under A1-A3, the process is reversible and  is, up to
a multiplicative constant, the density of an invariant probability measure. Any
skeleton chain isirreducible, and compact sets are closed petite sets.

PROOF There exists a continuous functign: (¢, x, y) — p(¢,x,y) such
that P'(x,dy) = p(t,x, y)dy ([15], Theorem 1.1). Since the process is regular
(or conservative, in the terminology of Kent [15]) andis Lebesgue integrable
([15], Theorems 4.1. and 6.2) imply that the process is time-reversible and

(20) tingo/Ap(t,x,y)dy: </71(x)dx>_1/An(x)dx.

Hence, n(dx) is invariant. Irreducibility of skeletons results from (20), and
petiteness of compact sets from the continuity¢f, -, -). O

Finally, we restrict our attention to densitizghat are polynomially decreasing
in the tails.
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A4. 7 satisfies Al and A3 and there exists some 8 < 1/n,

\Y
0 < liminf V1097 _ i gyp V10971
x|—>+oo B (x x| = +o00 7T/3(x)
Tr(V2logm (x))

2
26— 1< limip TTH0ITW) o TH(V2logr o)
Wl—+o0  |Vlogrm (x)] t|>too |V10gT(x)]

Sety = liminf | 00 Tr(V2logm (x))|V log (x)| 2.

This class is nonempty and contains the densities that are polynomially decreasing
in the tailsz (x) = c|x|~Y# for large|x|, where O< 8 < 1/n; in that casey =
B(2—n) > 2B — 1. For this family, the regularity criterion (17) or (18) says that
the temperaturé has to be chosen i, = [0, (1+ 8(2—n))/2]. For any density
in the class A4, O< liminf | x|’z (x) <limsup,, |x|’7(x) < co. Hence,D1 =
[0, (1 + B)/2] and forn > 3, 1/2 ¢ Dy. If sup,>, SUR, = (V1097 (x), x) =:
—o0~1 <0 exists, theri0, 1/2 + o(1 — n/2)] € D,.

It is readily seen that setting = 1 4 sign(p)7 ~* outside a compact set, and
V =1 otherwise,

LV = _Mvinﬂﬁ—d)

1) 2 1+7r—/’2 2
|Vlogn|) < Tr(V Iogn))
AR~ ) 1—p— " 797
X( 7B p—2d+ |Vlogm|2 )’

for large |x|. As established in [32], Theorem 3.1, the diffusion cannot be
geometrically ergodic when® d < B: by choosingf := 7¢~# and applying Itd’s
formula, df (X,) ~ cin?~4(X,) dt + cod W, for some constants;; and the drift
coefficient tends to zero for a large value of the process. The proféxs)); fails
to be geometrically ergodic, and, hencefortk; ), itself.

From (21), for largéx|,

LV < —cV¥®  wherea :=2p"1(8 —d) andc > 0
— 1l4+y—p—-2d>0.

In any cases, one has to chogssuch thatc > 0. If « <0 andp > 0, then the
process is geometrically -ergodic ([23], Theorem 6.1). If & « < 1 andp > 0,

the diffusion is polynomially ergodic as discussed in Section 2. § 1 andp

can be set negative, the process is uniformly ergodic, that is, therexexist

and a constant such that for allx, lim,_, o «’||P'(x, ) — 7w (-)|ITv < ¢ and the
convergence does not depend on the starting point. This yields Theorem 16: the
first assertion results from [28] and Corollary 6 of the present paper. The second
and third assertions result from [23], Theorem 6.1.
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THEOREM 16. Consider the Langevin tempered diffusion on R”, where the
target density 7 is from the class A4 and o := 7~ for some d satisfying (17) if
n=21or (18)ifn > 2.

() If0=<d < B, the process fails to be geometrically ergodic. For all 0 <k <
1+y —28,
1+y-28—«
26—-d)
(i) f Bp<d<@+y)/2,thenfor all 0 <k <1+ y — 2d, the diffusion is

geometrically V-ergodicwith V := 14 7%,
(i) If B <d, thediffusion is uniformly ergodic.

(22)  lim (¢ +D7IP'(r,) =7 (lapne =0,

Theorem 16 extends earlier results to the multidimensional case and provides
polynomial rates of convergence of the “cold” Langevin tempered diffusions for a
wide family of norms. In the one-dimensional case, whea 0 ([9], Result R3,
page 245) only claim that the convergence in total variation norm is polynomial,
with no explicit value of the rate of convergence. We establish that, for a given
m~*-norm, the minimal rate of convergence is achieved witk- 0 and, in
that case, coincides with the rate of convergence of the symmetric random walk
Hastings—Metropolis algorithm with light proposal distribution [13]. By choosing
a diffusion matrix which is heavy where the target distribution is light, and
conversely, improves the rate of convergence as evidenced by (22). The critic
temperature igl = 8. Ford > B, the diffusion is no more polynomially ergodic
and geometric rates can be reached. This critic temperature coincides with the
critic one given in [32], Theorem 3.1, for the real-valued diffusion.

REMARK (General diffusions on R"). The techniques above can be adapted
for the analyzing of diffusions satisfying (15). Under conditions implying (a) the
existence of a solution, (b) the condition (i) of Corollary 6 and (c) the petiteness
property of the compact sets (see, e.g., [12, 19, 36]), we are able to prove that when
there existM, 8, y > 0 andl < 2 such that

sup |x|7@ D (x, a(x)x) =: 8, sup x| Tr(a(x) =:y,
{x,|x|=M} {x,|x|=M}

sup |x|7Hb(x),x)=:—r  forsomer > (y — Bl)/2,
{x,lx|=M}
then the diffusion is polynomially ergodic and for all for all 0 <k <[ +
B2 —y),
2r+B)—vy K

t[[go(l-l-t)fllP’(x, ) =7 l1xe =0, TS The-n 1- 57
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3.3. Compound Poisson-process driven Ornstein—Uhlenbeck processes. Let
X be an Ornstein—Uhlenbeck process driven by a finite rate subordinator:

Xm = _MXI d[ +dZ[,

where Z, := Zf\':’l Wi, {W;}i>1 is an independent and identically distributed
collection of random variables from probability measureand {N;};>¢0 is a
Poisson-process of finite rate independent of the collectiofW;};>1. Such
processes are used as storage models (see, e.g., [18]) and have recently been used
in financial econometrics as models for stochastic volatility (see [1]).

The exponential decay ok, except at jump points, leads to geometric
ergodicity of X when the tails ofF (-) are sufficiently light. Here we shall explore
the case wheré&'(-) is extremely heavy-tailed. First we make this concept precise:
we say a probability measurehsavy-tailed if, under that probability measure, for
all k > 0, E[¢X] = co. Now let G denote the law of the log jump sizes, that is,
G(A) = F(e®). We have the following negative result showing that for sufficiently
heavy-tailed jumps, geometric ergodicity and even ergodicity can fail. As usual, we
let 7 denote the invariant probability measure (should it exist).

LEMMA 17. (i) Suppose [ xG (dx) = oo, then X failsto be positive recurrent.
(ii) Suppose G is heavy-tailed, then X fails to be geometrically ergodic.

PROOF SupposeXp =2 and consider the petite S€t= [0, 1]. Then
P(zc > t) > P[jump of size> "' occurs before time log/2:]
(23) N
=@-2""" | Gx)dx.
ut
For positive recurrence, we require thatrc) to be finite, that is, thaP[t¢c > 1]
be integrable. However, the integrated right-hand side of (23) is just

/Ooodt/oo G(x)dx :foooule(x)dx =0

ut
by hypothesis, so thaE(r¢) = oo too, so that positive recurrence must fail,
proving (i). For (ii), we recall that for geometric ergodicity, we require that for
somek > 0, E[¢“*C] < oco. (Although not necessary, we shall again assume that
Xo=2andC = [0, 1].) Thus, from (23) we require that

o (0,0] o0
(24) f el dt G(x)dx = ,ulc_lf @ —1)G(ux)dx < 0.
0 ut 0

However, this is precluded by the heavy-tailed naturé& pthus proving (ii). O

Examples of jump distributions for which geometric ergodicity fails (case 2
above), though we will see thaX is positive Harris-recurrent, include the
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following:
dx
Fldx)=— at least fork > 1;
x (logx)k
e—(1090)”
Fldx)=—— for someg < 1.
X

LEMMA 18. Supposethat for somer > 1,m, := [ [log(1+ u)]" F (du) < cc.
Then, X is polynomially ergodic with rate (1+ )1,

ProoF For differentiable function®¥ in the domain of4,
0
AV :/ (V(x +u) — V(x))AF (du) — uxV'(x).
0

Now setV (x) = (logx)", then by direct calculation,

o logx)" 1
(25) AV :/ ((logCe + )" — (logx) ") F (duy — *X OGN
0
Now the finiteness ofn, merely ensures the finiteness of the first term on the
right-hand side of (25). So, noting thdbgx)"" is concave beyond = ¢~ for
all 0 < n < 1, we find that, in fact, the first term on the right-hand side of (25) is
bounded as a function af, so that for some positive constant

00 | nr—1
AV < f MAF(du)c — ru(logx)” L,
0 X

It is easy to check that all bounded sets are petite in this example, and, therefore,
the conditions for the application of Corollary 6 with=r—1. O

4. Proofsof Section 2. When not explicitly defined; denotes a generic finite
positive constant is the usual shift operator on the canonical probability space
of the strong Markov process.

LEMMA 19. If w—lisaYoungfunctionandr € Ag (resp. A), [¥(r) V1] € Ag
(resp. A).

PROOE Letr € Ag. ¥~ 1is a continuous, increasing and convex function, so
¥ is measurable and bounded on bounded sets ([16], Chapter 1). Furthermore,
there exists a right-continuous nondecreasing fungtissuch that In¥ (r(¢)) =
Inr(t) + In{r(t)‘lfg(’)qb(s)ds}; thus proving that I (r(¢))/t | 0 ast — oo.
This yields W € Ag. The second assertion deduces easily from the definition of
A and the upper bound sup W (at)/ ¥ (t) < oo for all a > 0 ([16], Chapter 1,
pages 7 and 8). -

While Theorem 1 and Corollary 6 are claimed for a rate functioa A,
Lemma 19 shows that they can be established for arrat& o, and we will do so.
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4.1. Proof of Theorem 1. Without loss of generality, we assundg(r,) > 1
andW(fy) > 1.

LEMMA 20. Letr e Agand f > 1 bea Borel function. For any closed set C
suchthat sup- G¢ (-, f,r; 8) < oo, thereexistsa constant M < oo such that for all
xeXandr>38,Gelx, f,rit) < MUGe(x, f,r;8).

PrROOFE The proof is on the same lines as the proof of Lemma 4.1 in [20]
that addresses the case= 1, and the details are omitted. Using the property
r(s +1) <r(s)r() ([34], Lemma 1(d)), we obtai =1+ Sugza[r(t)/ro(t)] X
sup- Ge (-, f,r; 8), which is finite since limr(r)/r%(t) = O (this is a consequence
of [34], Lemma 1). O

PROPOSITION21. Letr € Ag and f > 1 be a Borel function. Assume that
X is ¢-irreducible and sup- G¢ (-, f,r;8) < oo for some closed petite set C
and § > 0. x — G¢(x, f,r; ) isfinite ¢-almost surely for some (and then any)
maximal irreducibility measure v, and C is accessible.

ProOOF By [20], Proposition 3.2(ii), for alk > 0, there exist a positive integer
m and a maximal irreducibility measugesuch thatj (1) <inf,cc R} (x, -), where
R, is the resolvent kernel R;(x,:) = [iexp(—it)P'(x,-)dt.
By Lemma 20,R, G¢c (-, f,r; 8)(x) < cGc(x, f,r;8), wherec is finite for some
convenienti. Hence, v G¢(-, f,r;8) < oo, proving the first statement. This
implies that there exists an accessible getsuch that supzE,[tc(8)] <
Sup.cp Ge(x, f.r;8) < oo. Then forg large enough, intp P, (tc(8) <g) >0
and, for anyx, E,[nc] > P"(x, B) infycp Py (tc(8) < g) > 0O for somen depend-
ing upon(x, B). Hence,C is accessible. [

PROPOSITION22. Suppose assumptions (i) and (ii) of Theorem 1. Then:

() There exist 7o and a measure v such that inf,, infyec P (x,-) > v(-), and
v(C) > 0.
(i) For anyset B suchthat v(B) > 0,E,[r%(T;,. )] < RpE.[r%(zc(8))] for some
finite constant R; p.
(iii) For any r > 0 and any accessible set B, E, [rO(tz(1))] < R pE[r%(tc(8))]
for some finite constant R; 5.

PrROOE (i) Results from R2, Proposition 21 and Lemma 2. (ii) kgandv
be given by (i). Setr = z¢ (1o + m); and define the sequence of iteratds= ¢
and forn > 2, 7" = "L + 1 0 67" Finally, let (un)n>2 be a{0, 1}-valued
process given by, = 1 if Xn-14,)/mm € B @and O otherwise[7] denotes
the upper integer part af Thenu, € #, with #, =o(X,,t < t"), and by the
strong Markov propertyPy (u, = 1|#,_1) > v(C) > 0 for n > 2. Finally, set
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n=inf{n > 2, u, = 1}, so that®, [r°(T;,. )] < E,[r°(z")]. Using again the strong
Markov property and the inequalitf (t1 + 12) < rO(t1) + r(r1)r%12) [34],

(26) E.[r%(M] < > Ex[r(r™")1yzn]l = Z{ax (n) + SUPE[r°(7)1by (n)},

n>2 n>2 xeC

for all n > 2, wherea, (n) = E.[r°(t" " )1,>,] and by (n) = E;[r(z" H1,5,].
Since, by Lemma 20, Sld-rEx[rO(‘c)] < 00, there exists G< p < 1 and a finite
constant such that

by(n) < pby(n — 1)+ c(1—v(C))" 7,
ay(n) < (L—v(C))ax(m — 1) + by (n — 1) SUpE, [r°(1)1;

xeC

andb,(2) = E,[r(1)], ax(2) = E([r%(z)]. The proof is on the same lines as the
proof of [25], Lemma 3.1, and is omitted for brevity. Hen@[ro(Tm,B)] <
c(E,[rO)] 4+ Ex[r(z)]) for somec < oo. The proof is concluded, applying again
Lemma 20 and the bound sup r(1)/r0(t) < oo for all a > 0 (see the proof of
Lemma 19). -

(iii) B is accessible and’ petite so there exish > 0 andy > 0 such that
infyec Py (tp <o+ t) > inf,ec Py(tp <1t0) > V. Setr = 1c(t +19) andu, =1
if for somet" "t <s <t" 141 +19, X, € B; andu, = 0 otherwise. Following
the same lines as in the proof of (ii), it may be proved that there existso
such that, [rO(tz(1))] < cE.[r(tc(r +10))]. The proof is concluded by applying
Lemma 20. [

PROPOSITION23. Suppose assumptions (i) and (ii) of Theorem 1. For any
(W1, W¥2) € 4, C is a (Wa(fy), Y1(ry))-regular set for the process, that is,
sup- G (-, Wa(fi), W1(ry);t) < oo for any + > 0 and any accessible set B.
Gp(x, Wa(fy), V1(ry);t) < oo for all x € 8y and w(Sy) = 1.

PROOF  (Wa(fy), W1(ry))-regularity is a consequence of Young's inequal-
ity (4), the ( fi, 1)-regularity of C ([20], Proposition 4.1) and Proposition 22(iii).
For the second statement, write

GB(X, Wo( f), Wi(ry); f)

‘L'BOQTCU)

< Gl Wa(f), Wa(r): 1) + Ey [ / W14 () W2l f (X)) ds]

c(®)
The result now follows from the strong Markov property, Lemma 20 and the
inequality W1(ri(s + 1)) < W1(r«(s))W1(r«(2)), which holds sincel; o r, € Ag.
Finally, 7 (8y) = 1 by Proposition 21. [
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PROPOSITION 24. Suppose assumptions (i) and (ii) of Theorem 1. The
skeleton chain P™ is yr-irreducible and aperiodic and possesses an accessible
petite set A such that for all (1, ¥2) € J,

Tnoa—1
(27) SupIEx[ > ‘I’l(r*(k))‘Pz(f*(ka))] < 00.

xeA k=0

PrROOE For the definitions of accessibility, smallness, petiteness and aperi-
odicity of a discrete-time Markov chains, see [21]. From Proposition 22(iis
small for the skeletorP™ and the skeleton is aperiodic (Theorem 5.4.4, [21]). In
addition, by R2, the skeleton is positive andf,) < co. Let C,, be a petite set (for
the skeletonP™) such thatd = C N C,, is of positivev-measure

Tnp—1

(28) SUpEx[ > f*(ka)] < 00,
xECn k=0

for any accessible seB (for the skeleton); the existence of such a set is a

consequence of Theorems 14.2.3 and 14.2.11 in [21] and Proposition 22(ii). The

set A is accessible and petite for the skeleton. (27) now results from Young's

inequality (4), (28) and Proposition 22(ii) ]

PROOF OF THEOREM 1. By Proposition 24 and [35], Theorem 2.1 and
Proposition 3.2, lim_, oo Y1 (r«(n)[| P (x, -) — w()llwy ) =0 forr a.a.x. By
Jensen’s inequality, the upper bound sypla(at)/ W2(t) < oo for all a > 0, and
assumption (iii), we have for all < m, P"Wy(fy) < cW2(fyx). In addition, since
Wi(ry) € A, Wi(rs(n + 1)) < cW1(rs(n)) for all r < m ([34], Lemma 1). Hence,

(29)  Jim WinO)IP () =T Ollwgry =0, 7aax.

We now prove that this convergence occurs foradl 8§y which is of r-measure
one, by Proposition 23. To that goal, we mimic the proof of [22], Theorem 7.2. By
Egorov’s theorem, there exists a setr (A) > 0, such that (29) holds uniformly
for all x € A. For all Borel functions,g € Ly,(y,), setg := g — n(g). Since
W1(ry) € Ap,

W1 (re () [Ex [§(X )1y <]| < lIfl(r*(t))/o SUEIPI_Sél(y)Px(TA €ds)
ye

= M{Ex [W1(r(ta))] + Ey [lyl(r*(TA))]erzt/Z]}s

where M = SUR,c4 SURo7+ ()PP gl(y). Let x € Sy; from Proposition 23,
E,[W1(r«(ta))]< ocandlim_, o Ex[W1(ry(t4))1:,>:/2] = 0. Since the limit (29)
holds uniformly for allx € A, M is finite. Hence, lim, oo W1(r« () |Ex[g(X,) %
1:,</1l =0 uniformly for allg € Ly, ().
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Sincen(f*) < 00, |Ex[g(Xz)]erzt]| =< CEx[\I"Z(f*(Xt))jerzt]- F0||0Win9 the
same lines as in the proof of [22], Theorem 7.2, using again sup" fi < cf,
we obtain

‘I’l(r*(l))Ex[‘Pz(f*(Xz))]erzz]
< cW1(re(m)) 0<i,r)£m W1 (re(t — ) Ex [ W fu (Xy—u))Ley>i—u]-
By Proposition 23,G 4 (x, Y2(fx), Y1(r4); 0) < oo, which implies that the up-
per limit in the right-hand side is zero, proving that ligy, W1(r«(?)) x

E,[W2( f«(X)1e,>]1 = 0. Hence, uniformly fog € Ly, £,), iM; 00 W1(r« (1)) x
|Ex[8(X:)1;,>:1] = 0. This concludes the proof.(]

4.2. Proof of Corollary 6. Set f, := V1% andr.(r) := (t + D)/* 1,

LEMMA 25. Supposeassumption (ii) of Corollary 6.Foranya <n <1, >0,
and any F;-stopping-time 7,

TN

eyEs [ f Ty xy) ds] FE VI (Xer)] < VI(x) + bE, [ / Le(Xy) ds].
0 0

PROOF By definition of AV,

TAINT,
CUEX[/C; Vn_a(Xs)ds] +Ex[vn(Xr/\t/\Tn)]

TAtAT,
§V"(x)+bEx[/ ]lC(XS)ds].
0

The right-hand side is upper bounded BbYx) + b and by the monotone
convergence theorem, it convergesUax) + bE.[ O’“ 1c(X5)ds] asn — oo.
The lemma now results from Fatou’s lemma.

PROPOSITION26. Supposeassumption (ii) of Corollary 6. For all § > 0, there
existsc < oo suchthat for all x € X, Ge(x, 1, ry; 8) <cV(x).

PROOFE Setgq := |1/«], where |-] denotes the lower integer part. By
Lemma 25, we havéE,[tc] < ¢V¥(x) and by Jensen’s inequality, we obtain

-1
Eclre 71 < eV1i79%(x). We prove by induction that for all integer4/ < g,

Ex[rg_l‘l] < ¢V (x). The casd = ¢ holds; assume it is verified for some
2 <1 < g. The induction hypothesis and Lemma 25 yield

_ T _
E, [t l_l+1] <cE, [/(; CIEXS [t& l_l]a’s}

c
< cE, [ / yi-lex ) ds} < cyileta gy
0
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which concludes the induction. Fér= 1, this yieldsG¢(x, 1, r4; 0) < ¢V (x).
Finally, by standard manipulations and Lemma 25, we h@yéx, 1, ry; §) <
c(l+Pv(x) <cV(x). O

ProOF OF COROLLARY 6. We check the conditions for the application of
Theorem 1. Lemma 25 and Proposition 26 img@hy(x, fx, 1;8) < cV(x) and
Ge(x,1,ry; 8) < cV(x), from which we deduce the condition (ii) of Theorem 1,
and by R1, condition (i) of Theorem 1. Condition (iii) follows from Lemma 25.
Finally, §y = X. O

Acknowledgment. We are grateful to the referee for his comments, and, in
particular, for bringing [2] to our attention.

REFERENCES

[1] BARNDORFFNIELSEN, O. E. and ®EPHARD, N. (2001). Non-Gaussian Ornstein—
Uhlenbeck-based models and some of their uses in financial econdrit<tat. Soc.
Ser. B Sat. Methodol. 63 167—241.

[2] Dal, J. G. and MYN, S. P. (1995). Stability and convergence of moments for multiclass
queuing networks via fluid limit model$EEE Trans. Automat. Control 40 1889-1904.

[3] Davis, M. (1993).Markov Models and Optimization. Chapman and Hall, London.

[4] Douc, R., FORT, G., MOULINES, E. and ULIER, P. (2004). Practical drift conditions for
subgeometric rates of convergendan. Appl. Probab. 14 1353-1377.

[5] DowN, N., MEYN, S. P. and WEEDIE, R. L. (1995). Exponential and uniform ergodicity of
Markov processe#nn. Probab. 23 1671-1691.

[6] DYNKIN, E. (1965)Markov Processes. Springer, New York.

[7] FELLER, W. (1971).An Introduction to Probability Theory and Its Applications |1, 2nd ed.
Wiley, New York.

[8] FORT, G. and MoULINES, E. (2003). Polynomial ergodicity of Markov transition kernels.
Sochastic Process. Appl. 103 57-99.

[9] GANIDIS, H., ROYNETTE, B. and $SMoNoOT, F. (1999). Convergence rate of semi-groups to
their invariant probabilityStocastic Process. Appl. 79 243—-263.

[10] GETOOR, R., ed. (1980). Transience and recurrence of Markov proceSsasnar on
Probability XIV. Lecture Notes in Math. 784 397—-409. Springer, New York.

[11] HAs'MINSKII, R. (1960). Ergodic properties of recurrent diffusion processes and stabilization
of the solution to the Cauchy problem for parabolic equatidieory Probab. Appl. 5
179-196.

[12] HAS'MINSKII, R. (1980).Sochastic Stability of Differential Equations. Sijthoff and Noord-
hoff, Groningen.

[13] JARNER, S. F. and RBERTS G. O. (2001). Convergence of heavy tailed MCMC algorithms.
Technical report, Lancaster Univ. Available at www.statslab.cam.ac.uk/mcmc.

[14] JARNER, S. F. and RBERTS G. O. (2002). Polynomial convergence rates of Markov chains.
Ann. Appl. Probab. 12 224-247.

[15] KENT, J. (1978). Time-reversible diffusionadv. in Appl. Probab. 10 819-835.

[16] KRASNOSELSKII, M. and RuTICKIl, Y. (1961). Convex Functions and Orlicz Spaces.
Noordhoff, Groningen.

[17] LAWLER, G. and ®KAL, A. (1988). Bounds onL?2 spectrum for Markov chains and
Markov processes: A generalization of Cheeger’s inequdligns. Amer. Math. Soc. 309
557-580.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 1589

[18] LunD, R. B., MEYN, S. P. and WEEDIE, R. L. (1996). Computable exponential convergence
rates for stochastically ordered Markov processes. Appl. Probab. 6 218-237.

[19] MALYSHKIN, M. (2001). Subexponential estimates of the rate of convergence to the invariant
measure for stochastic differential equatiofiseory Probab. Appl. 45 466-479.

[20] MEYN, S. P. and WEEDIE, R. L. (1993). Generalized resolvents and Harris recurrence
of Markov processes. IDoeblin and Modern Probability 227—250. Amer. Math. Soc.,
Providence, RI.

[21] MEYN, S. P. and WEEDIE, R. L. (1993).Markov Chains and Stochastic Sability. Springer,
London.

[22] MEYN, S. P. and WEEDIE, R. L. (1993). Stability of Markovian processes Il: Continuous-
time processes and sampled chaiudb.. in Appl. Probab. 25 487-517.

[23] MEYN, S. P. and WEEDIE, R. L. (1993). Stability of Markovian processes IIl: Foster—
Lyapunov criteria for continuous-time processidyv. in Appl. Probab. 25 518-548.

[24] NUMMELIN, E. (1984).General Irreducible Markov Chains and Nonnegative Operators.
Cambridge Univ. Press.

[25] NUMMELIN, E. and TUOMINEN, P. (1983). The rate of convergence in Orey’s theorem for
Harris recurrent Markov chains with applications to renewal theSinchastic Process.
Appl. 15 295-311.

[26] ROBERTS G. O. and RSENTHAL, J. S. (1996). Quantitative bounds for convergence rates of
continuous time Markov processédectron. J. Probab. 1 1-21.

[27] RoBERTS G. O. and SRAMER, O. (2002). Langevin diffusions and Metropolis—Hastings
algorithms.Method. Comput. Appl. Probab. 4 337-357.

[28] ROBERTS G. O. and WEEDIE, R. L. (1996). Exponential convergence of Langevin diffusions
and their discrete approximatiorernoulli 2 341-364.

[29] RoBERTS G. O. and WEEDIE, R. L. (2000). Rates of convergence of stochastically
monotone and continuous time Markov modélsAppl. Probab. 37 359-373.

[30] RoBERTS G. O. and WEEDIE, R. L. (2003).Understanding MCMC. Springer, Berlin.

[31] SHARPE, M. (1988).General Theory of Markov Processes. Academic Press, San Diego, CA.

[32] STRAMER, O. and WEEDIE, R. L. (1999). Langevin-type models I: Diffusions with given
stationary distributions, and their discretizatiohdethodol. Comput. Appl. Probab. 1
283-306.

[33] STRAMER, O. and WEEDIE, R. L. (1999). Langevin-type models II: Self-targeting candidates
for MCMC algorithms.Methodol. Comput. Appl. Probab. 1 307-328.

[34] THORISSON H. (1985). The queue GG/1: Finite moments of the cycle variables and uniform
rates of convergenc&ochastic Process. Appl. 19 83—99.

[35] TUOMINEN, P. and WEEDIE, R. L. (1994). Subgeometric rates of convergence @rgodic
Markov chainsAdv. in Appl. Probab. 26 775-798.

[36] VERETENNIKOV, A. (1999). On polynomial mixing and convergence rate for stochastic
difference and differential equatioritheory Probab. Appl. 44 361-374.

CNRS/LMC-IMAG DEPARTMENT OFMATHEMATICS
51 RUE DESMATHEMATIQUES AND STATISTICS

BP 53 LANCASTER UNIVERSITY
38041 RENOBLE CEDEX 9 LANCASTERLAL 4YF

FRANCE UNITED KINGDOM

E-MAIL : Gersende.Fort@imag.fr E-MAIL : g.o.roberts@lancaster.ac.uk



