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MASS EXTINCTIONS: AN ALTERNATIVE
TO THE ALLEE EFFECT

BY RINALDO B. SCHINAZI
University of Colorado

We introduce a spatial stoaktic process on the latti## to model mass
extinctions. Each site of the lattice may host a flock of ugvtindividuals.
Each individual may give birth to a new individual at the same site atgrate
until the maximum ofN individuals has been reached at the site. Once the
flock reachesV individuals, then, and only then, it starts giving birth on each
of the 2/ neighboring sites at ratg N). Finally, disaster strikes at rate 1, that
is, the whole flock disappears. Our model shows that, at least in theory, there
is a critical maximum flock size above which a species is certain to disappear
and below which it may survive.

1. Introduction and results. It seems that the main mass extinction theory
proposed in ecology, for species that reproduce sexually, is the so-called Allee ef-
fect: if the density of a certain species is driven sufficiently low, then encountering
mates of the opposite sex becomes unlikely and the population is driven to extinc-
tion even if left alone by predators or disease; see Stephens and Sutherland (1999).
While the Allee effect seems suitable to explain extinction of animals living by
themselves or in small flocks, it does not look suitable to explain the extinction or
near extinction of animals such as passenger pigeons which apparently remained
in large flocks almost to their end; see Austin (1983).

We propose a mathematical model that, at least in theory, shows that animals
living in large flocks are more susceptible to mass extinctions than animals living in
small flocks. More precisely, we will show that if the maximum flock size is above
a certain threshold, then the population is certain to become extinct, while if the
maximum flock size is below the threshold, there is a strictly positive probability
that the population will survive.

Our model is a spatial stochastic model on the latBiéetypically d = 2. Each
site of the lattice may host a flock of up 16 individuals. Each individual may
give birth to a new individual at the same site at ratentil the maximum ofN
individuals has been reached at the site. Once the flock rea¢hadividuals,
then, and only then, it starts giving birth on each of tlkerzighboring sites at
rate A(N). This rule is supposed to mimic the fact that individuals like to stay
in a flock and will give birth outside the flock only when the flock attains the
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maximum numben that a site may support. Finally, disaster strikes at rate 1, that
is, the whole flock disappears. This rule mimics an encounter with greedy hunters
or a new disease. Both disasters seem to have stricken the American buffalo and
the passenger pigeon.

We now write the above description mathematically. Eachisité Z¢ may be
in one of the states:,Q, 2, ..., N and this state is the size of the flockxatThe
model is a continuous-time Markov process that we denoteg;biet ny (x, n;)
be the number of neighbors of site among its 2 nearest neighbors, that are in
stateN at timer.

Assume that the model is in configuratign then the state at a given siie
evolves as follows:

i—i+1 atrateip + A(N)ny(x,n) forO<i <N —1,
i—0 atrate 1 for lxi < N.

Schinazi (2002) has introduced a model related to the present one for a different
guestion.

We will be interested in extinctions in two different senses. We say that finite
populations die out if, starting from any finite population, there is a finite random
time after which all sites are empty. We say that infinite populations die out if,
starting from any infinite population, for any given site there is a finite random
time after which the site will be empty forever.

The model in the special cagé = 1 is well known and is called the contact
process [see Liggett (1999)]. For the contact process, we know that there exists
a critical valuea. (that depends on the dimensidrnof the lattice) such that the
population dies out (in the two senses defined above) if and onlyif...

We now state our main result.

THEOREM1. Consider the model with parameters N, A(N) and ¢ and let

N-1
1
= 2dA(N 1— for N > 2
" (),-:Hl< 1+i¢+2dA(N)) orN=s

m=2di(1) for N =1.

(a) Assumem < 1;then any finite population dies out.
(b) Assumem < 1;then any infinite population dies out.

Next we show that ifA(N) does not grow too rapidly withv, then the
population dies out for larg®'.

COROLLARY 1. Assumethat A(N) and ¢ > 0 are such that

A
am T = %
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then any finite or infinite population dies out when N islarge enough.

A little calculus is eough to prove Corolig 1 so we skip the proof. Note also
that the conclusion of Corollary 1 also holds whgr= 0 provided there exists
a <1 such that

A(N

lim (V) =
N—oo N¢

Our main application is the following easy consequence of Corollary 1.

0.

COROLLARY 2. Assume A(N) = A and that A > A, (the critical value of the
contact process), ¢ > 0. Then, there is a critical positive integer N (), ¢) such
that any finite population diesout for N > N, and survivesfor N < N.. The same
istrue for infinite populations for a possibly different critical N..

ProOOF According to Corollary 1, finite and infinite populations die outfor
large enough for constant. On the other hand, ik > A. we know that the
model with N = 1 has a positive probability of not becoming extinct. Finally,
as a consequence of the construction provided in Section 2 we will see that for
constantr, the smaller theV the more likely it is for the population to survive.
Putting together these three facts, we get the existence of the critical Nalue
This completes the proof of Corollary 2]

We believe that the critical valu&v. is the same for finite and infinite
populations but this is still unproved.

Next we show that a low internal birth rafemay be compensated by a large
external birth raté.(N) but that the converse is not true.

THEOREM 2. (a)For all ¢ >0, N > 1 and all initial configurations starting
with at least one site in state N, there is a positive probability, for finite or infinite
populations, not to die out, provided A(N) is large enough.

(b) If A(N) < A, then finite and infinite popul ations die out for all ¢ € [0; oc].

2. Construction of the process and proof of Theorem 1. We now give an
explicit graphical construction for the procegs Let || - || denote the Euclidean
norm. Consider a collection of independent Poisson procegs&s; F*, D*:
x,yeZé |lx —yll=1,1<i <N —1}. Forx andy in Z¢ such thatjx — y| = 1,
let the intensity of.*Y beA(N). Forx in Z¢ and an integer between 1 andV — 1,
let the intensity ofF*! bei¢. Finally, for x in Z¢, let 1 be the intensity oD*.
The graphical construction takes place in the space-time réffion (0, co). At
an arrival time ofL*-Y (]lx — y|| = 1), if site x is in stateN and there ar&v — 1
or fewer individuals at siteg, then we add an individual at. At an arrival time
of F*! andifx isin statei, 1<i < N — 1, then we change the statexofo i + 1.
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Finally, at an arrival time oD* we putx in state 0. In this way we obtain a version
of our spatial stochastic process with the precribed rates. For more on graphical
constructions, see, for instance, Durrett (1995).

Assume N1 < N2 and A(N) = A. Using the graphical construction above,
construct the modely,;, for parametergi, N2, ¢). We can also construct the
model n1, with parametergi, N1, ¢) in the same probability space by using
the same Poisson procesdes”’, D* and by using the process&s-’ only for
i < N1— 1. Startn1 , andny ; with a single individual at the origin. Both processes
are in the same configuration until they reach shtat the origin. At this pointin
time, the flock at the origin fow; ; starts giving birth to individuals in neighboring
sites while the flock at the origin fop, ; continues increasing internally. Since the
death rates and the external birth ratare the same for both processes, it is easy
to check the following. No transition can break the inequalities

min(nz2,;(x), N1) < n1(x).

In this sense, the lower th&¥ the more spread out the population and the more
likely it is to survive. Note that this coupling works only for constaniThe fact
that the model is more likely to survive for smallis all that was missing to the
proof of Corollary 2.

One can see that some attempted births will not occur because the site on which
the attempted birth takes place has already reached the maximuny sikeis
creates dependence between the size of the offspring of different individuals.
Because of this lack of independence, explicit probability computations seem
impossible. In order to prove Theorem 1, we introduce a branching-like process
for which explicit computations are possible and that dominates, in a certain sense,
our process; .

We now describe the new process informally. It may be constructed in the same
way asn, by using appropriate Poisson processes. For a formal construction of a
similar process, see Pemantle and Stacey (2001). Whilg thiere is a maximum
of one flock per site (with a maximum size of), for the new branching-like
process, that we denote Iy, there is no limit on the number of flocks per site
but each flock is again limited t& individuals maximum. Fob;, as forn, and
with the same rate.(N)ny, each new flock is started by a birth from one of its
neighbors. However, fab,, once a flock is started it grows only through internal
births. That is, a flock that has started does not receive births from neighbors. We
take the internal birth rate for a flock in to go fromi toi 4+ 1 to bei¢ + 2d A (N).

Note that this rate is the maximum growth rate for a flock;ifthat rate is achieved
only if all its 24 neighbors are in stat%’). Each flock ofb, that reaches siz&/

starts giving birth to individuals in neighboring sites at rat&v). Each of these
births starts a new flock, since there is no bound on the number of flocks per site
for b;. Finally, each flock dies, independently of everything else, at rate 1.

We now give a more mathematical description of the proéesgach sitex
of Z¢ is in state 0 (empty) or in staté,i,...,i,), wherer > 1 represents
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the number of flocks at site andiy, ..., i, represent the number of individuals
(between 1 andV) of each flock. Lety (x, b;) be the number of flocks of sizg
in the neighborhood of site. The transition rates fds; at a sitex are given by

(ryit, ..., i) > (r+21,i1,...,ir, 1) atrater(N)ny(x, by),
(ryit, .o ip) = (ryit, .. .vij_1,ij + 1,041, ...,0)  atrateij¢ + 2dr(N)
forl<j<randifi; <N —1,
(ryin, ooy ip) = (r=Ldn, oo 01,041, .0, 0p) atrate 1
forl<j<randr=>2,
0— (1 at ratea(N)ny (x, by),
1,i1) —> 0 atrate 1

Note that birth rates are higher for than forz;, that death rates are the same
and that all attempted births actually occurfpmhile they may or may not occur
for n;. Techniques such as in Liggett [(198Fheorem 1.5 in Chapter Ill] can be
used to construct the procesggsandn; in the same probability space in such a
way that, if they start with the same initial configuration, if there is a flock of size
on a sitex for n,, then there is at least one flock of size at ledst b; on the same
sitex.

We start by proving Theorem 1(a).

Consider the proceds starting with a single individual at the origin @.

We call such an individual, who is the first individual of a flock, a founder. We
are going to compute the expected number of founders a given founder gives birth
to. Let A be the event: “the founder’s flock will eventually reach the maximum
size N.” In order to reachN, the flock must add one individual at a time,

N — 1 times before getting wiped out. Using properties of the exponential
distribution one gets

N=1 ip+ 2dr(N)

P4)= 1:[1 1+i¢+ 2dA(N)’

Let X be the number of founders given birth to by a single founder. In order to give
birth to k founders, the founder must first start a flock that will reaAtkand then

the flock must give birttk times before disappearing. Again by using properties of
the exponential distribution we get for> 1

2d)\(N) )k 1
2dA(N)+1) 2dA(N)+1
Therefore, the expected number of founders is

P(X:k):( P(A).

E(X)=2dA(N)P(A).
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Note thatE (X) = m, wherem has been defined in the statement of Theorem 1.

Let the first founder be the zeroth generation andZlgt 1. This first founder
gives birth to a random number of founders, before dying, and these form the first
generation. Denote their number By. More generally, lek > 1; if Z,_1 =0,
thenZz, =0; if Z,_1 > 1, thenZ, is the total number of founders th&,_;
founders, of then — 1)st generation, give birth to before dying. It is clear that
the proces¥,, is a Galton—Watson process and it dies out if and only if

m<1.

Note that if Z, becomes extinct, so doés and thereforey;. It is easy to see that
the same is true if we start with any finite number of individuals instead of 1. This
completes the proof of Theorem 1(a).

We now prove Theorem 1(b).

Let 5, be the process; starting withN individuals per site. Using the graphical
construction one can construgtandn; so thaty; (x) > n;(x) for every sitex, all
timesr > 0 and any initial configurationg. Therefore, it is enough to show that
dies out. That is, for any site in Z¢ there is a timel" such thatj, (x) = 0 for all
t > T. We will actually prove this claim for the process starting with one flock
of sizeN at each site.

Note that if there is at least one individual at sitat timer for the proces$;,
then it must be the case that this individual is the descendent of an individual who
was on some sitg at time 0. LetZ, (y) be the number of founders [as defined
in the proof of Theorem 1(a)] of theth generation of the process startedyat
with one flock of N individuals. For an individual ag to be the ancestor of an
individual atx, the procesg,, (y) must have survived at least — y|| generations.
This is so because each generation gives birth on nearest-neighbor sites only. So
nth-generation founders are at distamcer less fromy. Since there is one flock
of N individuals at time 0 ap, the expected number of founders in generation 1
is 24\ (N). From generation 1 onwards, (y) is a Galton—Watson process with
mean offspringn. Thus, letn = [||x — y||] + 1, where[a] is the integer part of,
and using thatz < 1 we get

P(Zn(y) 2 1) < E(Zn()) = 2dA(N)m" ™ < 2d).(N)m* =171,
Therefore,

2dAN) -3l _ o

Y P(Zuy) =)< )

yezd yezd

The Borel-Cantelli lemma implies that almost surely there is an integech that
if ||y —x|| > £, theny cannot be an ancestor of On the other hand, according
to Theorem 1(a), any finite population dies out. Thus, the population which was
initially on sitesy such that|y — x| < ¢ is dead after a finite random tinfé This
shows that site remains empty after .

This completes the proof of Theorem 1(b).
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3. Proof of Theorem 2. Theorem 2(a) can be proved in a pretty standard way
so we will only sketch its proof. We deal with the cake- 1. it is easy to see that
if the process survives i = 1, then it will survive in any other dimension. Let

B=(—4L,4L) x [0, T].

Assume that each site pf L, L] is in stateN. Consider the process restricted to
the space-time regioB; that is, assume that there are no births from outdde
into B.

Lete > 0; it is easy to see that we can pi€k(depending orz and L) so that
the probabilitythat there are no deaths in the space-time Bax at least - ¢/2.

Note that even ifp = 0, the flock at. can fill up the sitel. + 1. This can happen
provided the state at is N. Once the sitd. + 1 is in stateN it can start filling
the site inL 4+ 2 and so on. More formally, we define the procgs&s rightmost
site) asrg = (L, N), for which the first coordinate indicates the site position and
the second coordinate indicates the state of that site. The evolution rulesafer
given by

i N)—-G+11) atrater(N)for L <i <4L — 1,
@G, jH)—30j+2 atrateA(N)for L+1<i<4L—-1and1l<j<N -1

In the absence of deaths i all the sites betweer L and & will be in stateN by
time T providedr, reaches3L, N) by timeT'. Ignoring the internal births, that is,
assuming thap = 0, only delays the filling process. It is easy to see that counting
all the successive transitions fer gives a Poisson proces with rate A(N).
We have thaty = (3L, N) if and only if Ry is at least(2L + 1)N. This has
probability at least - ¢/4 providedi(N) (that depends oW, L, T ande > 0)
is large enough. The same may be done to show that, in the absence of deaths,
with probability at least 1 ¢/4 all the sites betweer3L and L will be filled
by time T. Therefore, one sees that with probability at least 4 one block of
sites, in[—L, L], in stateN gives birth to two blocks of sites, in-3L, —L] and
in [L, 3L], in the same state. Moreover, this is true for the process restrictgd to
and uniformly on all possible states of the boundarpof

Now, well-known techniques [see, e.g., Theorem 4.4 in Durrett (1995)] allow
us to compare the procegsto a (very) supercritical oriented percolation on

L ={(m,n)€Z? m+niseven.

This comparison implies survival for finite and infinite populations.

Note that if at least one site is in sta¥e then there is a positive probability, even
if ¢ =0, to geta block of 2 + 1 sites in staté&v and we may start the construction
above. This completes the sketch of the proof of Theorem 2(a).

We now turn to the proof of Theorem 2(b). It is essentially the same proof as
the one of Theorem 1(b) in Schinazi (2002). Since it is short we include it.
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Consider the model witkh = oo. In this case, as soon as there is one individual
at a site itimmediately fills t&V. So each site has only two possible states: 0/nd
The transition rates are given by

0—> N  atrater(N)ny(x,n),
N—=>0 atrate 1

Therefore, the model above is a contact process with birtiu&fe. If A(N) < A,
this contact process dies out.

Using the graphical construction, it is easy to see that the modelgnithoo
can be coupled to a model with any finitein such a way that, starting from the
same configuration, the model wigh= co has more individuals, site per site, than
the model with finitep. Since the model witlkp = oo dies out, so does the model
with a finite ¢. This completes the proof of Theorem 2(b).
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