
The Annals of Applied Probability
2005, Vol. 15, No. 1B, 984–991
DOI 10.1214/105051604000000819
© Institute of Mathematical Statistics, 2005

MASS EXTINCTIONS: AN ALTERNATIVE
TO THE ALLEE EFFECT

BY RINALDO B. SCHINAZI

University of Colorado

We introduce a spatial stochastic process on the latticeZd to model mass
extinctions. Each site of the lattice may host a flock of up toN individuals.
Each individual may give birth to a new individual at the same site at rateφ

until the maximum ofN individuals has been reached at the site. Once the
flock reachesN individuals, then, and only then, it starts giving birth on each
of the 2d neighboring sites at rateλ(N). Finally, disaster strikes at rate 1, that
is, the whole flock disappears. Our model shows that, at least in theory, there
is a critical maximum flock size above which a species is certain to disappear
and below which it may survive.

1. Introduction and results. It seems that the main mass extinction theory
proposed in ecology, for species that reproduce sexually, is the so-called Allee ef-
fect: if the density of a certain species is driven sufficiently low, then encountering
mates of the opposite sex becomes unlikely and the population is driven to extinc-
tion even if left alone by predators or disease; see Stephens and Sutherland (1999).
While the Allee effect seems suitable to explain extinction of animals living by
themselves or in small flocks, it does not look suitable to explain the extinction or
near extinction of animals such as passenger pigeons which apparently remained
in large flocks almost to their end; see Austin (1983).

We propose a mathematical model that, at least in theory, shows that animals
living in large flocks are more susceptible to mass extinctions than animals living in
small flocks. More precisely, we will show that if the maximum flock size is above
a certain threshold, then the population is certain to become extinct, while if the
maximum flock size is below the threshold, there is a strictly positive probability
that the population will survive.

Our model is a spatial stochastic model on the latticeZd , typically d = 2. Each
site of the lattice may host a flock of up toN individuals. Each individual may
give birth to a new individual at the same site at rateφ until the maximum ofN
individuals has been reached at the site. Once the flock reachesN individuals,
then, and only then, it starts giving birth on each of the 2d neighboring sites at
rate λ(N). This rule is supposed to mimic the fact that individuals like to stay
in a flock and will give birth outside the flock only when the flock attains the
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maximum numberN that a site may support. Finally, disaster strikes at rate 1, that
is, the whole flock disappears. This rule mimics an encounter with greedy hunters
or a new disease. Both disasters seem to have stricken the American buffalo and
the passenger pigeon.

We now write the above description mathematically. Each sitex of Zd may be
in one of the states: 0,1,2, . . . ,N and this state is the size of the flock atx. The
model is a continuous-time Markov process that we denote byηt . Let nN(x, ηt )

be the number of neighbors of sitex, among its 2d nearest neighbors, that are in
stateN at timet .

Assume that the model is in configurationη; then the state at a given sitex
evolves as follows:

i → i + 1 at rateiφ + λ(N)nN(x, η) for 0 ≤ i ≤ N − 1,

i → 0 at rate 1 for 1≤ i ≤ N.

Schinazi (2002) has introduced a model related to the present one for a different
question.

We will be interested in extinctions in two different senses. We say that finite
populations die out if, starting from any finite population, there is a finite random
time after which all sites are empty. We say that infinite populations die out if,
starting from any infinite population, for any given site there is a finite random
time after which the site will be empty forever.

The model in the special caseN = 1 is well known and is called the contact
process [see Liggett (1999)]. For the contact process, we know that there exists
a critical valueλc (that depends on the dimensiond of the lattice) such that the
population dies out (in the two senses defined above) if and only ifλ ≤ λc.

We now state our main result.

THEOREM 1. Consider the model with parameters N , λ(N) and φ and let

m ≡ 2dλ(N)

N−1∏
i=1

(
1− 1

1+ iφ + 2dλ(N)

)
for N ≥ 2,

m ≡ 2dλ(1) for N = 1.

(a) Assume m ≤ 1; then any finite population dies out.
(b) Assume m < 1; then any infinite population dies out.

Next we show that ifλ(N) does not grow too rapidly withN , then the
population dies out for largeN .

COROLLARY 1. Assume that λ(N) and φ > 0 are such that

lim
N→∞

λ(N)

N1/(1+φ)
= 0;
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then any finite or infinite population dies out when N is large enough.

A little calculus is enough to prove Corollary 1 so we skip the proof. Note also
that the conclusion of Corollary 1 also holds whenφ = 0 provided there exists
a < 1 such that

lim
N→∞

λ(N)

Na
= 0.

Our main application is the following easy consequence of Corollary 1.

COROLLARY 2. Assume λ(N) ≡ λ and that λ > λc (the critical value of the
contact process), φ > 0. Then, there is a critical positive integer Nc(λ,φ) such
that any finite population dies out for N > Nc and survives for N < Nc. The same
is true for infinite populations for a possibly different critical Nc.

PROOF. According to Corollary 1, finite and infinite populations die out forN

large enough for constantλ. On the other hand, ifλ > λc we know that the
model with N = 1 has a positive probability of not becoming extinct. Finally,
as a consequence of the construction provided in Section 2 we will see that for
constantλ, the smaller theN the more likely it is for the population to survive.
Putting together these three facts, we get the existence of the critical valueNc.
This completes the proof of Corollary 2.�

We believe that the critical valueNc is the same for finite and infinite
populations but this is still unproved.

Next we show that a low internal birth rateφ may be compensated by a large
external birth rateλ(N) but that the converse is not true.

THEOREM 2. (a)For all φ ≥ 0, N ≥ 1 and all initial configurations starting
with at least one site in state N , there is a positive probability, for finite or infinite
populations, not to die out, provided λ(N) is large enough.

(b) If λ(N) < λc, then finite and infinite populations die out for all φ ∈ [0;∞].

2. Construction of the process and proof of Theorem 1. We now give an
explicit graphical construction for the processηt . Let ‖ · ‖ denote the Euclidean
norm. Consider a collection of independent Poisson processes:{Lx,y,F x,i,Dx :
x, y ∈ Zd,‖x − y‖ = 1,1≤ i ≤ N − 1}. Forx andy in Zd such that‖x − y‖ = 1,
let the intensity ofLx,y beλ(N). Forx in Zd and an integeri between 1 andN −1,
let the intensity ofFx,i be iφ. Finally, for x in Zd , let 1 be the intensity ofDx .
The graphical construction takes place in the space-time regionZd × (0,∞). At
an arrival time ofLx,y (‖x − y‖ = 1), if site x is in stateN and there areN − 1
or fewer individuals at sitey, then we add an individual aty. At an arrival time
of Fx,i and ifx is in statei, 1≤ i ≤ N − 1, then we change the state ofx to i + 1.
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Finally, at an arrival time ofDx we putx in state 0. In this way we obtain a version
of our spatial stochastic process with the precribed rates. For more on graphical
constructions, see, for instance, Durrett (1995).

AssumeN1 < N2 and λ(N) ≡ λ. Using the graphical construction above,
construct the model,η2,t , for parameters(λ,N2, φ). We can also construct the
model η1,t with parameters(λ,N1, φ) in the same probability space by using
the same Poisson processesLx,y , Dx and by using the processesFx,i only for
i ≤ N1−1. Startη1,t andη2,t with a single individual at the origin. Both processes
are in the same configuration until they reach stateN1 at the origin. At this point in
time, the flock at the origin forη1,t starts giving birth to individuals in neighboring
sites while the flock at the origin forη2,t continues increasing internally. Since the
death rates and the external birth rateλ are the same for both processes, it is easy
to check the following. No transition can break the inequalities

min
(
η2,t (x),N1

) ≤ η1,t (x).

In this sense, the lower theN the more spread out the population and the more
likely it is to survive. Note that this coupling works only for constantλ. The fact
that the model is more likely to survive for smallN is all that was missing to the
proof of Corollary 2.

One can see that some attempted births will not occur because the site on which
the attempted birth takes place has already reached the maximum sizeN . This
creates dependence between the size of the offspring of different individuals.
Because of this lack of independence, explicit probability computations seem
impossible. In order to prove Theorem 1, we introduce a branching-like process
for which explicit computations are possible and that dominates, in a certain sense,
our processηt .

We now describe the new process informally. It may be constructed in the same
way asηt by using appropriate Poisson processes. For a formal construction of a
similar process, see Pemantle and Stacey (2001). While forηt there is a maximum
of one flock per site (with a maximum size ofN ), for the new branching-like
process, that we denote bybt , there is no limit on the number of flocks per site
but each flock is again limited toN individuals maximum. Forbt , as forηt and
with the same rateλ(N)nN , each new flock is started by a birth from one of its
neighbors. However, forbt , once a flock is started it grows only through internal
births. That is, a flock that has started does not receive births from neighbors. We
take the internal birth rate for a flock inbt to go fromi to i +1 to beiφ +2dλ(N).
Note that this rate is the maximum growth rate for a flock inηt (that rate is achieved
only if all its 2d neighbors are in stateN ). Each flock ofbt that reaches sizeN
starts giving birth to individuals in neighboring sites at rateλ(N). Each of these
births starts a new flock, since there is no bound on the number of flocks per site
for bt . Finally, each flock dies, independently of everything else, at rate 1.

We now give a more mathematical description of the processbt . Each sitex
of Zd is in state 0 (empty) or in state(r, i1, . . . , ir), where r ≥ 1 represents
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the number of flocks at sitex and i1, . . . , ir represent the number of individuals
(between 1 andN ) of each flock. LetnN(x, bt ) be the number of flocks of sizeN
in the neighborhood of sitex. The transition rates forbt at a sitex are given by

(r, i1, . . . , ir) → (r + 1, i1, . . . , ir ,1) at rateλ(N)nN(x, bt ),

(r, i1, . . . , ir) → (r, i1, . . . , ij−1, ij + 1, ij+1, . . . , ir ) at rateijφ + 2dλ(N)

for 1 ≤ j ≤ r and if ij ≤ N − 1,

(r, i1, . . . , ir) → (r − 1, i1, . . . , ij−1, ij+1, . . . , ir ) at rate 1

for 1 ≤ j ≤ r andr ≥ 2,

0 → (1,1) at rateλ(N)nN(x, bt ),

(1, i1) → 0 at rate 1.

Note that birth rates are higher forbt than forηt , that death rates are the same
and that all attempted births actually occur forbt while they may or may not occur
for ηt . Techniques such as in Liggett [(1985), Theorem 1.5 in Chapter III] can be
used to construct the processesbt andηt in the same probability space in such a
way that, if they start with the same initial configuration, if there is a flock of sizei

on a sitex for ηt , then there is at least one flock of size at leasti for bt on the same
sitex.

We start by proving Theorem 1(a).
Consider the processbt starting with a single individual at the origin ofZd .

We call such an individual, who is the first individual of a flock, a founder. We
are going to compute the expected number of founders a given founder gives birth
to. Let A be the event: “the founder’s flock will eventually reach the maximum
size N .” In order to reachN , the flock must add one individual at a time,
N − 1 times before getting wiped out. Using properties of the exponential
distribution one gets

P (A) =
N−1∏
i=1

iφ + 2dλ(N)

1+ iφ + 2dλ(N)
.

Let X be the number of founders given birth to by a single founder. In order to give
birth to k founders, the founder must first start a flock that will reachN and then
the flock must give birthk times before disappearing. Again by using properties of
the exponential distribution we get fork ≥ 1

P (X = k) =
(

2dλ(N)

2dλ(N) + 1

)k 1

2dλ(N) + 1
P (A).

Therefore, the expected number of founders is

E(X) = 2dλ(N)P (A).
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Note thatE(X) = m, wherem has been defined in the statement of Theorem 1.
Let the first founder be the zeroth generation and letZ0 = 1. This first founder

gives birth to a random number of founders, before dying, and these form the first
generation. Denote their number byZ1. More generally, letn ≥ 1; if Zn−1 = 0,
then Zn = 0; if Zn−1 ≥ 1, thenZn is the total number of founders theZn−1
founders, of the(n − 1)st generation, give birth to before dying. It is clear that
the processZn is a Galton–Watson process and it dies out if and only if

m ≤ 1.

Note that ifZn becomes extinct, so doesbt and thereforeηt . It is easy to see that
the same is true if we start with any finite number of individuals instead of 1. This
completes the proof of Theorem 1(a).

We now prove Theorem 1(b).
Let η̄t be the processηt starting withN individuals per site. Using the graphical

construction one can constructη̄t andηt so thatη̄t (x) ≥ ηt (x) for every sitex, all
timest > 0 and any initial configurationη0. Therefore, it is enough to show thatη̄t

dies out. That is, for any sitex in Zd there is a timeT such thatη̄t (x) = 0 for all
t > T . We will actually prove this claim for the processbt , starting with one flock
of sizeN at each site.

Note that if there is at least one individual at sitex at timet for the processbt ,
then it must be the case that this individual is the descendent of an individual who
was on some sitey at time 0. LetZn(y) be the number of founders [as defined
in the proof of Theorem 1(a)] of thenth generation of the process started aty

with one flock ofN individuals. For an individual aty to be the ancestor of an
individual atx, the processZn(y) must have survived at least‖x −y‖ generations.
This is so because each generation gives birth on nearest-neighbor sites only. So
nth-generation founders are at distancen or less fromy. Since there is one flock
of N individuals at time 0 aty, the expected number of founders in generation 1
is 2dλ(N). From generation 1 onwardsZn(y) is a Galton–Watson process with
mean offspringm. Thus, letn = [‖x − y‖] + 1, where[a] is the integer part ofa,
and using thatm < 1 we get

P
(
Zn(y) ≥ 1

) ≤ E
(
Zn(y)

) = 2dλ(N)mn−1 ≤ 2dλ(N)m‖x−y‖−1.

Therefore,
∑

y∈Zd

P
(
Zn(y) ≥ 1

) ≤ ∑
y∈Zd

2dλ(N)

m
m‖x−y‖ < ∞.

The Borel–Cantelli lemma implies that almost surely there is an integer� such that
if ‖y − x‖ > �, theny cannot be an ancestor ofx. On the other hand, according
to Theorem 1(a), any finite population dies out. Thus, the population which was
initially on sitesy such that‖y − x‖ ≤ � is dead after a finite random timeT . This
shows that sitex remains empty afterT .

This completes the proof of Theorem 1(b).
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3. Proof of Theorem 2. Theorem 2(a) can be proved in a pretty standard way
so we will only sketch its proof. We deal with the cased = 1: it is easy to see that
if the process survives ind = 1, then it will survive in any other dimension. Let

B = (−4L,4L) × [0, T ].
Assume that each site of[−L,L] is in stateN . Consider the process restricted to
the space-time regionB; that is, assume that there are no births from outsideB

into B.
Let ε > 0; it is easy to see that we can pickT (depending onε andL) so that

the probabilitythat there are no deaths in the space-time boxB is at least 1− ε/2.
Note that even ifφ = 0, the flock atL can fill up the siteL+1. This can happen

provided the state atL is N . Once the siteL + 1 is in stateN it can start filling
the site inL + 2 and so on. More formally, we define the processrt (as rightmost
site) asr0 = (L,N), for which the first coordinate indicates the site position and
the second coordinate indicates the state of that site. The evolution rules forrt are
given by

(i,N) → (i + 1,1) at rateλ(N) for L ≤ i ≤ 4L − 1,

(i, j) → (i, j + 1) at rateλ(N) for L + 1≤ i ≤ 4L − 1 and 1≤ j ≤ N − 1.

In the absence of deaths inB, all the sites between−L and 3L will be in stateN by
timeT providedrt reaches(3L,N) by timeT . Ignoring the internal births, that is,
assuming thatφ = 0, only delays the filling process. It is easy to see that counting
all the successive transitions forrt gives a Poisson processRt with rate λ(N).
We have thatrT = (3L,N) if and only if RT is at least(2L + 1)N . This has
probability at least 1− ε/4 providedλ(N) (that depends onN , L, T andε > 0)
is large enough. The same may be done to show that, in the absence of deaths,
with probability at least 1− ε/4 all the sites between−3L andL will be filled
by time T . Therefore, one sees that with probability at least 1− ε one block of
sites, in[−L,L], in stateN gives birth to two blocks of sites, in[−3L,−L] and
in [L,3L], in the same state. Moreover, this is true for the process restricted toB

and uniformly on all possible states of the boundary ofB.
Now, well-known techniques [see, e.g., Theorem 4.4 in Durrett (1995)] allow

us to compare the processηt to a (very) supercritical oriented percolation on

L = {(m,n) ∈ Z2 :m + n is even}.
This comparison implies survival for finite and infinite populations.

Note that if at least one site is in stateN , then there is a positive probability, even
if φ = 0, to get a block of 2L+1 sites in stateN and we may start the construction
above. This completes the sketch of the proof of Theorem 2(a).

We now turn to the proof of Theorem 2(b). It is essentially the same proof as
the one of Theorem 1(b) in Schinazi (2002). Since it is short we include it.
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Consider the model withφ = ∞. In this case, as soon as there is one individual
at a site it immediately fills toN . So each site has only two possible states: 0 andN .
The transition rates are given by

0 → N at rateλ(N)nN(x, η),

N → 0 at rate 1.

Therefore, the model above is a contact process with birth rateλ(N). If λ(N) < λc,
this contact process dies out.

Using the graphical construction, it is easy to see that the model withφ = ∞
can be coupled to a model with any finiteφ in such a way that, starting from the
same configuration, the model withφ = ∞ has more individuals, site per site, than
the model with finiteφ. Since the model withφ = ∞ dies out, so does the model
with a finiteφ. This completes the proof of Theorem 2(b).
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