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UPPER BOUNDS FOR SPATIAL POINT PROCESS
APPROXIMATIONS

BY DOMINIC SCHUHMACHER1

University of Zürich

We consider the behavior of spatial point processes when subjected to a
class of linear transformations indexed by a variableT . It was shown in Ellis
[Adv. in Appl. Probab.18 (1986) 646–659] that, under mild assumptions,
the transformed processes behave approximately like Poisson processes
for largeT . In this article, under very similar assumptions, explicit upper
bounds are given for thed2-distance between the corresponding point
process distributions. A number of related results, and applications to kernel
density estimation and long range dependence testing are also presented. The
main results are proved by applying a generalized Stein–Chen method to
discretized versions of the point processes.

1. Introduction. Let D1,D2 ∈ N = {1,2,3, . . . } andD = D1+D2. Consider
a point processξ onR

D = R
D1 ×R

D2, which has expectation measureν and meets
three conditions, namely, absolute continuity ofν with a mild restriction on the
density, an orderliness condition in theR

D1-directions and a mixing condition in
theR

D2-directions (formal versions of these conditions can be found at the end of
this section). Letη be a Poisson process with the same expectation measure and let
θT :RD → R

D be the linear transformation that stretches the firstD1 coordinates
by a factorw(T )1/D1 and compresses the lastD2 coordinates by a factorT 1/D2,
that is, forT ∈ R, T ≥ 1, we set

θT (s, t) :=
(
w(T )1/D1s,

1

T 1/D2
t
)

for all (s, t) ∈ R
D1 × R

D2 = R
D,

where w(T ) → ∞ and w(T ) = O(T ) for T → ∞. In particular, we usually
write θ̃T instead ofθT if our stretch factor isT 1/D1.

Most of the time we will restrict our transformed processesξθ−1
T andηθ−1

T to
a bounded cubeJ := [−1,1)D and denote byJT := θ−1

T (J ) the pre-image ofJ ,
but sometimes the bigger cuboidsJ̃T := θ̃T (JT ) = [−( T

w(T )
)1/D1, ( T

w(T )
)1/D1)D1 ×

[−1,1)D2 instead ofJ are more useful.
A consequence of what Ellis (1986) showed is that, for bounded measur-

able functionsfT :J → R with ‖fT ‖∞ = O(
√

w(T )/T ), the distributions of
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616 D. SCHUHMACHER

∫
J fT d(ξθ−1

T ) and
∫
J fT d(ηθ−1

T ) get more and more alike asT → ∞; or, more
precisely, that the difference between their characteristic functions converges uni-
formly to zero on every compact subset ofR as T → ∞. Therefore, there is
hope thatd(L(ξθ−1

T |J ),L(ηθ−1
T |J )) can be shown to be small for largeT if we

choose ford a probability distance between distributions of point processes which
metrizes a topology that is equal to or not too much finer than the weak topology
(i.e., the topology of convergence in distribution).

Our choice ford will be thed2-distance [see Barbour, Holst and Janson (1992),
Section 10.2], which, besides meeting the aforementioned requirement, has a
number of other useful properties; it is rather easy to handle, and bounds on
d2(L(ξ1),L(ξ2)) for point processesξ1, ξ2 imply bounds on|Ef (ξ1) − Ef (ξ2)|
for a number of desirable functionsf . Thed2-distance can be constructed as two
Wasserstein distances, one on top of the other, in the following way. Consider a
compact setX ⊂ R

D and writeMp for the space of point measures onX. Let d0
be the usual Euclidean distance onR

D, but bounded by 1, andF1 := {k :X →
R; |k(x1) − k(x2)| ≤ d0(x1, x2)}. Define thed1-distance(w.r.t. d0) between point
measuresρ1, ρ2 ∈ Mp by

d1(ρ1, ρ2) :=




1, if |ρ1| 	= |ρ2|,
1

|ρ1| sup
k∈F1

∣∣∣∣
∫

k dρ1 −
∫

k dρ2

∣∣∣∣, if |ρ1| = |ρ2| ≥ 1,

0, if |ρ1| = |ρ2| = 0,

where|ρi | := ρi(X) < ∞. It can be seen that(Mp, d1) is a complete, separable
metric space and thatd1 is bounded by 1. Furthermore, the Kantorovich–
Rubinstein theorem [see Dudley (1989), Section 11.8] when|ρ1| = |ρ2| =: n ≥ 1
yields that

d1(ρ1, ρ2) = min
π∈Sn

[
1

n

n∑
i=1

d0
(
x1,i, x2,π(i)

)]
,(1.1)

whereSn is the set of permutations of{1,2, . . . , n}. Now letF2 := {f :Mp → R;
|f (ρ1) − f (ρ2)| ≤ d1(ρ1, ρ2)} and define thed2-distance(w.r.t. d0) between
probability measuresP and Q on Mp (distributions of point processes onX)
by

d2(P,Q) := sup
f ∈F2

∣∣∣∣
∫

f dP−
∫

f dQ
∣∣∣∣.

By the Kantorovich–Rubinstein theorem, one obtains that

d2(P,Q) = min
ξ1∼P

ξ2∼Q

Ed1(ξ1, ξ2)(1.2)

[the minimum is attained, because(Mp, d1) is complete, see Rachev (1984)].
Furthermore, because of the bound on thed1-distance, thed2-distance can also
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be interpreted as a variant of a bounded Wasserstein distance (see below). Hence,
Theorem 11.3.3 in Dudley (1989) yields thatd2 metrizes the weak convergence
of point process distributions; or, in other words, for point processesξ, ξ1, ξ2, . . .

onX, we have

ξn
D→ ξ iff d2

(
L(ξn),L(ξ)

) → 0,(1.3)

where the convergence in distribution for point processes is defined in the usual
sense [see Kallenberg (1986), Section 4.1]. The fact that is crucial here is that,
for d0 as defined, the topology generated by the metricd1 on Mp is equal to the
vague topology, which is used for the definition of convergence in distribution for
point processes.

d2 is the distance that we are mainly interested in, but we will also deal with two
other probability distances; namely, on the one hand, thetotal variation distance
between distributionsµ1 andµ2 onZ+, which is defined as

dTV(µ1,µ2) := sup
A⊂Z+

|µ1(A) − µ2(A)|

and can be equivalently written in the form

dTV(µ1,µ2) = min
X1∼µ1
X2∼µ2

P[X1 	= X2];(1.4)

and, on the other hand, thebounded Wasserstein distancebetween distributions
µ̃1 andµ̃2 onR, which is defined as

dBW(µ̃1, µ̃2) := sup
f ∈FBW

∣∣∣∣
∫

R

f dµ̃1 −
∫

R

f dµ̃2

∣∣∣∣,
where

FBW := {
f :R → R; |f (x) − f (y)| ≤ |x − y| and|f (x)| ≤ 1

2 for x, y ∈ X
}
,

the set of Lipschitz continuous functions with constant 1 that are bounded by1
2.

For equivalent expressions and properties see Barbour, Holst and Janson (1992),
Appendix A.1 for the total variation distance and Dudley (1989), Section 11.3 for
the bounded Wasserstein distance.

It will be the main goal of our endeavors to find upper estimates for
the distanced2(L(ξθ−1

T |J ),L(ηθ−1
T |J )) (see Section 2.2), but explicit upper

bounds will also be computed fordTV(L(ξθ−1
T (J )),L(ηθ−1

T (J ))) (Section 2.3),

d2(L(ξ θ̃−1
T |

J̃T
),L(ηθ̃−1

T |
J̃T

)) (Section 2.4) andd2(L(ξ θ̃−1
T |

J̃T
),Po(ν′|

J̃T
)) for an

appropriateT -independent measureν′ onR
D (Section 2.5). Throughout the article

we use Po(ν′) to denote the Poisson distribution with parameterν′ if ν′ is a positive
real number and to denote the distribution of the Poisson process with parameter
measureν′ if ν′ is a boundedly finite measure.
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In Section 3 we present some applications of our results. Most importantly,
we calculate an upper bound for the bounded Wasserstein distance between the
distribution of a kernel estimate of the density ofν at a certain point and the actual
value of the density at that point. Furthermore, we briefly describe an application
to testing for long range dependence.

Apart from the paper of Ellis (1986), which provided the initial motivation
for many of the theorems in this article, stretched point processes have also
been investigated in the context of light traffic analysis for queues and in other,
similar topics: see, for example, Borovkov (1996) and the references therein.
These authors, however, were interested in the quite different question of finding
asymptotic expansions for the expectation of functionals of purely stretched
marked point processes, which vanish in the limit on every compact set; our
procedure, in contrast, leads to point processes with, essentially, a stable or
increasing number of points in every compact set.

We conclude this section by having a detailed look at the three conditions for
the point processξ .

CONDITION 1 (Absolute continuity of the expectation measure). Letµ =
µ1 ⊗ µ2, whereµ1 := λD1 is the Lebesgue measure onR

D1, and eitherµ2 := λD2

is the Lebesgue measure onRD2 or µ2 := HD2
0 is the counting measure on

Z
D2 + 1

21 ⊂ R
D2.

Then we require thatν  µ with a Radon–Nikodym densityp, such that
κ ∈ R+ exists with

κT := sup
(s,t)∈JT

p(s, t) ≤ κ for all T ≥ 1.

In the same way, we chooseι ∈ R+ with

ιT := inf
(s,t)∈JT

p(s, t) ≥ ι for all T ≥ 1.

(For the asymptotic result it is enough, of course, to assume both statements only
for all T bigger than someT0 ≥ 1.)

CONDITION 2 (Orderliness). There is a continuous functionᾰ :R+ → R+
with ᾰ(0) = 0, such that for every rectangleC := [a,b) × [c,d) with a,b ∈ R

D1,
a ≤ b, andc,d ∈ R

D2, c ≤ d, we have

E
[
(ξ(C))21{ξ(C)≥2}

]≤ vᾰ(v),

where

v := v(C) = µ1
([a,b)

)
µ2

([c,d + 1)
)
.

For the third condition, there are different versions that can be considered.
According to the type of mixing we are interested in, we write this condition as 3x,
wherex ∈ {β,ρ,ϕ}:
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CONDITION 3x (x-mixing property). For every interval[a,b) ⊂ R
D1, a < b,

there is a decreasing function̆β := β̆a,b :R+ → R+ with the two following
properties:

(a) β̆(u) = o( 1
uD2/2 ) for u → ∞.

(b) If c,d ∈ R
D2 with c < d, t ∈ R+ and theσ -fieldsFint andFext are defined

asFint := σ(ξ |[a,b)×[c,d)) andFext := σ(ξ |[a,b)×[c−t1,d+t1)c), then

x(Fint,Fext) ≤ β̆(t),

wherex is one of the three mixing coefficientsβ,ρ or ϕ with

β(Fint,Fext) := Eesssup
B∈Fext

∣∣P(B|Fint) − P(B)
∣∣,

ρ(Fint,Fext) := sup
X∈L2(Fint)

Y∈L2(Fext)

|corr(X,Y )|,

ϕ(Fint,Fext) := sup
A∈Fint
B∈Fext

∣∣P(B|A) − P(B)
∣∣.

In the following we suppress the indication of the interval[a,b) and write
simply β̆. The corner pointsa andb are to be chosen appropriately; for example,
a = −supT ≥1(

1
w(T )

)1/D1 · 1, b = supT ≥1(
1

w(T )
)1/D1 · 1 is always an appropriate

choice.

No further explanation is needed for the first condition. It simply states the
absolute continuity of the expectation measure with respect to what is basically
Lebesgue measure, with a mild condition on the density. The fact that we admit
the counting measure for theD2-part of the reference measureµ allows us to
apply our future estimates to (mixing) sequences of certainR

D1-valued point
processes. In order to simplify certain formulas, we will always tacitly assume
thatT ∈ {nD2;n ∈ N} if µ2 is the counting measure.

The second condition is a form of orderliness in theR
D1-directions. For a

detailed account of orderliness, see Daley (1974). For what we are interested in
here, it is enough to understand that the upper bound forE[(ξ(C))21{ξ(C)≥2}]
implies that

4P[ξ(C) ≥ 2] ≤ vᾰ(v),

and that Condition 2 implies the simplicity ofξ (i.e.,P[ξ({x}) ≤ 1 ∀x ∈ R
D] = 1).

The latter implication is due to Theorem 2.6 in Kallenberg (1986).
The various versions of the third condition are mixing conditions of different

strength. It can be seen [Doukhan (1994)] that

β(B,C) ≤ ϕ(B,C),

ρ(B,C) ≤ 2ϕ1/2(B,C)ϕ1/2(C,B)
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for arbitraryσ -fields B, C ⊂ F on some common probability space(�,F ,P).
Thus, the concept ofϕ-mixing is the strongest of the three, followed by the
β-mixing andρ-mixing concepts, which are not generally comparable with each
other, although from an empirical point of view,β-mixing often turns out to be the
stronger of the two. Two mixing concepts that are not treated here areα-mixing,
which would be weaker, andψ-mixing, which would be stronger than any of
the three mentioned concepts [see Doukhan (1994)]. The kind of mixing used
in Ellis (1986) isρ-mixing. However, it is important to notice that we need a
stronger mixing condition, in the sense that the set underlying theσ -field Fext may
enclose the set underlying theσ -field Fint from all of the 2D2 possible directions
of theR

D2. As partial compensation, the order we need for the convergence of our
mixing coefficient to zero is only half the order that was needed for Ellis’ result,
and what is more, we could actually manage with a mixing condition where the
σ -fieldsFext andFint are quite a bit smaller (namely, generated by the numbers of
points ofξ in the corresponding discretization cuboids that we will need for the
proof).

2. The main results. The results given within this section have somewhat
similar flavor, and their proofs all follow the same path; first discretizing the point
processes and then applying a local Stein theorem. An outline of this method can
be found in Section 2.1; thereafter, in Sections 2.2–2.5 the different results are
presented. A detailed, self-contained proof is given only for Theorem 2.A; for the
other statements the necessary adaptations are given.

2.1. The approach. All statements in Section 2 are about upper bounds for
distances between the distribution of a transformedξ -process and the distribution
of a transformed Poisson process (or a function of the respective process, as in
Section 2.3). For the sake of clarity of presentation, we formulate the ideas of
the proof only ford2(L(ξθ−1

T |J ),L(ηθ−1
T |J )). However, except for the obvious

changes in notation (like writingξ θ̃−1
T |

J̃T
instead ofξθ−1

T |J in Section 2.4), the
arguments presented here can be appliedliterally (or almost literally in the case
of Section 2.3) to calculate the presented upper bounds for any of the distances
appearing in this section.

As mentioned before, our basic strategy of proof is to discretizeξθ−1
T andηθ−1

T

(in general, the point processes involved) and then apply an estimate, obtained by
a generalized version of the Stein–Chen method, to the discretized point processes
(in fact, the classic Stein–Chen method will be enough for Section 2.3, where only
the numbers of points are involved). The corresponding estimate can be found in
the Appendix.

The discretizations are carried out as follows. For everyT ≥ 1 and forh(T ) ≥ 1,
set n1 := �h(T )1/D1� − 1 andn2 := �T 1/D2� − 1, where�x� denotes, for any
x ∈ R, the smallest integerz ≥ x. We subdivideJT into smaller “discretization
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cuboids”Ckl with lengths 1 in theRD2-directions and widths 1
(w(T )h(T ))1/D1

in the

R
D1-directions, whenever theCkl are not too close to the boundary ofJT . Here

h(T ) can be thought of as order of the number of discretization cuboids in the
R

D1-directions [there are 2�h(T )1/D1� in every dimension ofRD1]. To be more
precise, we set, for everyT ≥ 1,

Ckl := C
(T )
kl

:=
(

D1∏
r=1

[
− n1

(w(T )h(T ))1/D1
+ kr − 1

(w(T )h(T ))1/D1
,

− n1

(w(T )h(T ))1/D1
+ kr

(w(T )h(T ))1/D1

)

×
D2∏
s=1

[−n2 + (ls − 1),−n2 + ls
))∩ JT

for all k = (k1, k2, . . . , kD1) ∈ {0,1, . . . ,2n1 + 1}D1 and l = (l1, l2, . . . , lD2) ∈
{0,1, . . . ,2n2 + 1}D2, so thatJT = ⋃̇

k,lC
(T )
kl . Note that in order to reduce the

complexity of presentation, we will make use of simplified notations for multi-
indices that should be obvious in their meaning. For instance, we write, in
short,

∑2n1+1
k=0 ak instead of

∑2n1+1
k : k1,...kr=0 ak or k ∈ {0,1, . . . ,2n1 + 1} instead of

k ∈ {0,1, . . . ,2n1 + 1}D1. Also, where not stated otherwise, the ranges of the
indices in expressions like

∑
k,l or

⋃
k,l are given byk ∈ {0,1, . . . ,2n1 + 1},

l ∈ {0,1, . . . ,2n2 +1}. Some more notation is needed. We denote byαkl the centre
of Ckl and define in the image space of the transformationθT

Rkl := R
(T )
kl := θT

(
C

(T )
kl

)

=
D1∏
r=1

[
− n1

h(T )1/D1
+ kr − 1

h(T )1/D1
,− n1

h(T )1/D1
+ kr

h(T )1/D1

)

×
D2∏
s=1

[
− n2

T 1/D2
+ ls − 1

T 1/D2
,− n2

T 1/D2
+ ls

T 1/D2

)

for all k, l and writeρkl for the centre ofRkl [correspondingly, we usẽRkl :=
θ̃T (C

(T )
kl ) andρ̃kl in Section 2.4].

The discretization� of the point processξ is obtained by setting a point in the
middle of every discretization cuboidCkl which contains any points ofξ . Formally,
we set

Ikl := I
(T )
kl := 1{ξ(Ckl)≥1}, pkl := EIkl for all k, l,

W := W(T ) :=∑
k,l

Ikl, λ := EW =∑
k,l

pkl,
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and define� as

� :=∑
k,l

Iklδαkl .

The error we make in the transition fromξθ−1
T |J to �θ−1

T in terms of the
d2-distance (with a slight alteration, the argument holds also for thedTV-distance
between the numbers of points; see Section 2.3) is small for largeT , because, on
the one hand, the orderliness condition (Condition 2) takes care that the probability
of two points within the same discretization cuboid (and, as a consequence, of any
point vanishing in the transition) is small, and, on the other hand, we have chosen
our discretization in such a way that we only have to move points by ad0-distance
of, at most, half a body diagonal of a discretization cuboidRkl (R̃kl in Section 2.4)
in the image space, which is small for largeT as well.

As a discretization (at least “in distribution”) of the Poisson point processη, we
take

H :=∑
k,l

Uklδαkl,

where Ukl are arbitrary independent Po(pkl)-distributed random variables for
0 ≤ k ≤ 2n1 + 1, 0≤ l ≤ 2n2 + 1. Again, the error we make in the transition from
ηθ−1

T |J to Hθ−1
T is small for reasons quite similar to those stated above for the

transition fromξθ−1
T |J to �θ−1

T (note that the two discretizations were not realized
in the same way, and that we have to argue a little more carefully in Section 2.5,
where a limiting Poisson process that is independent ofT is considered).

We then have an indicator point process� with a local dependence property
(stemming from the mixing Condition 3x) and a discrete Poisson point process
with the appropriate intensity measure, so that we are in the position to apply
the local Stein Theorem A.D for point processes (or, in case of Section 2.3,
Theorem A.A for sums of indicators), which in each case yields the stated result.

There is one point about the refinement of our discretization that is worth noting.
In our mainρ-mixing case we retain the highestpossible flexibility by introducing
the variableh(T ). Although it will often turn out to be a natural and relatively
good choice to seth(T ) := T , doing so is, in many cases, not optimal. The optimal
choice ofh(T ) depends on the specific orderliness and mixing conditions that can
be obtained forξ . The weaker the orderliness condition [the slowerᾰ(v) goes to
zero forv → 0], the higher the optimalh(T ) will be; conversely (and somewhat
surprisingly at the moment), the weaker the mixing condition [the slowerβ̆(u)

goes to zero foru → ∞], the lower the optimalh(T ) will be. In contrast, no
such considerations are necessary for the discretization in theR

D2-directions.
A discretization cuboid length of 1 can easily be seen to be both natural and
optimal. A length of higher order inT only increases the distance, by which
we have to move points for discretizing, a length of lower order inT increases
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the number of discretization cuboids without changing the order of the length
that the orderliness condition “sees” [i.e., without changingv(Ckl) with v as in
Condition 2].

2.2. The d2-distance between the point processes.In this section the
d2-distance between the transformed point processesξθ−1

T |J andηθ−1
T |J is con-

sidered. In all the results we use the notationO(f1(T ), . . . , fj (T )) as short hand
for O(max{f1(T ), . . . , fj (T )}).

2.2.1. Results.

THEOREM 2.A (“The principal theorem”). Suppose that the prerequisites of
Section1 hold, including the Conditions1, 2and3ρ, and letι > 0.

Then we obtain for arbitrarym := m(T ) ∈ Z+ andh(T ) ≥ 1 for everyT ≥ 1:

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)
= O

(
1

h(T )1/D1
,

1

T 1/D2
, log↑

(
T

w(T )

)
mD2 + 1

w(T )
,

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,
√

T h(T )β̆(m)

)

for T → ∞,

where we writelog↑(x) := 1+ (log(x) ∨ 0) for x > 0.

For a quantitative form of the upper boundsee (2.10) and (2.11) at the end of the
proof. Note that the powers of 2 and 5 that appear in these inequalities have been
chosen (for the convenience of calculations) to be unnecessarily large and might
be dramatically improved.

One now might ask the question under what conditions thed2-distance
converges to zero.

COROLLARY 2.B (Convergence to zero in Theorem 2.A).Suppose that the
prerequisites of Theorem2.A hold. Furthermore, suppose thatw(T ) ≥ kT δ for
k > 0, δ ∈ (0,1] and that

ᾰ(v) = O(vr ) for v → 0 with r > 0,

β̆(u) = O

(
1

u(1+s)D2/2

)
for u → ∞ with 1+ s > max

(
1− δ

δ

1+ r

r
,

1

δ

)
.

Then

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

) → 0 for T → ∞.

REMARK 2.C (Convergence to zero, simplified).
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(a) By adjustingm and h(T ) to the functionβ̆ it can be shown easily that
for w(T ) � T , the convergenced2(L(ξθ−1

T |J ),L(ηθ−1
T |J )) → 0 holds under the

general prerequisits of Theorem 2.A. This is consistent with Corollary 2.B for
δ = 1 (note that the requirements for the functionsᾰ and β̆ are a bit stronger in
Corollary 2.B).

(b) From Corollary 2.B follows that for arbitraryδ ∈ (0,1] and for r > 1−δ
1+δ

,

1 + s > 2
δ
, we haved2(L(ξθ−1

T |J ),L(ηθ−1
T |J )) → 0 for T → ∞. These simpler,

but stronger requirements on the functionsᾰ and β̆ reflect the case where we
refrain from adaptingh(T ) to the concrete problem and simply seth(T ) = T .

In the principal Theorem 2.A, it may seem a little unsatisfactory that our “dis-
cretization depth”h(T ) in theR

D1-directions appears in the term
√

T h(T )β̆(m),
which stems from the mixing condition in theRD2-directions, and that, in fact,
a finer discretization could increase the overall upper bound we get for the
d2-distance. Whereas it might well be that the factor

√
h(T ) is superfluous, it has

not been possible to prove this so far. However, there are other ways in which this
problem can be, if not remedied, then at least circumvented, simply by assuming
one of the other two mixing conditions.

THEOREM 2.D (Other types of mixing). Suppose that the requirements for
Theorem2.A are met, with the exception that Condition3x holds in place of
Condition3ρ.

(a) If x is β, thend2(L(ξθ−1
T |J ),L(ηθ−1

T |J )) has the same order as that stated
in Theorem2.A, except for the term

√
T h(T )β̆(m), which is replaced by the two

terms
√

T/w(T )ᾰ(2D/w(T )) and
√

w(T )T β̆(m); hence[since h(T ) ≥ 1 was
arbitrary],

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)
= O

(
1

T 1/D2
, log↑

(
T

w(T )

)
mD2 + 1

w(T )
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,

√
T

w(T )
ᾰ

(
2D

w(T )

)
,
√

w(T )T β̆(m)

)
for T → ∞.

(b) If x is ϕ, thend2(L(ξθ−1
T |J ),L(ηθ−1

T |J )) has the same order as that stated

in Theorem2.A, but the term
√

T h(T )β̆(m) can be replaced by
√

T/w(T )β̆(m);
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hence, as above,

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)
= O

(
1

T 1/D2
, log↑

(
T

w(T )

)
mD2 + 1

w(T )
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,

√
T

w(T )
β̆(m)

)

for T → ∞.

REMARK 2.E. Note that in the above theorem, a certain price must be paid
for the elimination ofh(T ) in the term that comes from the mixing condition:
In statement (a) we obtain for our upper bound an order which is, in many
cases, worse than the corresponding order we get for an optimal choice ofh(T )

in Theorem 2.A; only for sufficiently highD1 is the upper bound order from
Theorem 2.D(a), in general, better. In statement (b) we require a much stronger
kind of mixing condition than in Theorems 2.A and 2.D(a).

On the other hand, we do not have to require a strictly stronger mixing condition
in statement (a) and we get a strictly better upper bound in statement (b).

EXAMPLE. A typical choice of parameters for illustrating the above
mentioned points is given by̆α(v) = v, β̆(u) = 1

u2D2
and w(T ) = T , whence

we immediately getO(T −1/3) and O(T −2/3) as upper bound orders for the
d2-distance under theβ-mixing andϕ-mixing conditions, respectively; solving
a little optimization problem yields the orderO(T −3/(D1+6)) under theρ-mixing
condition, which forD1 < 3 is better and forD1 > 3 is worse than the order under
β-mixing.

2.2.2. Proofs. The following simple lemma will be useful.

LEMMA 2.F. For all k, l, we have

ν(Ckl) − 2D2−2 1

w(T )h(T )
ᾰ

(
2D2

1

w(T )h(T )

)
≤ pkl ≤ ν(Ckl).

PROOF. The second inequality is immediate, the first one is obtained as

ν(Ckl) − pkl = Eξ(Ckl) − P[ξ(Ckl) ≥ 1]

=
∞∑

r=2

(r − 1)P[ξ(Ckl) = r]

≤ 1

4
E
[
(ξ(Ckl))

21{ξ(Ckl)≥2}
]

≤ 2D2−2 1

w(T )h(T )
ᾰ

(
2D2

1

w(T )h(T )

)
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by the orderliness condition withv(Ckl) ≤ 2D2 1
w(T )h(T )

. �

PROOF OFTHEOREM 2.A. We use the notation introduced in Section 2.1; in
particular, we write

� :=∑
k,l

Iklδαkl and H:= ∑
k,l

Uklδαkl

for the discretized point processes, whereUkl are independent Po(pkl)-variables
for 0 ≤ k ≤ 2n1 + 1, 0≤ l ≤ 2n2 + 1.

The overalld2-distance can now be split up accordingly:

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)
≤ d2

(
L(ξθ−1

T |J ),L(�θ−1
T )

)
+ d2

(
L(�θ−1

T ),L(Hθ−1
T )

)+ d2
(
L(Hθ−1

T ),L(ηθ−1
T |J )

)
.

(2.1)

We first take a look at the discretization errors. For theξ -discretization we can
obtain, via the Kantorovich–Rubinstein equation (1.2),

d2
(
L(ξθ−1

T |J ),L(�θ−1
T )

)
≤ Ed1(ξθ−1

T |J ,�θ−1
T )

= E
[
d1(ξθ−1

T |J ,�θ−1
T )1{ξθ−1

T (J )=W(T )}
]+ 1 · P

[
ξθ−1

T (J ) 	= W(T )
]
.

(2.2)

The second summand can easily be estimated as follows:

P
[
ξθ−1

T (J ) 	= W(T )] = P

[⋃
k,l

{ξ(Ckl) ≥ 2}
]

≤ ∑
k,l

P[ξ(Ckl) ≥ 2]

≤ 1

4

∑
k,l

E
[
(ξ(Ckl))

21{ξ(Ckl)≥2}
]

≤ 22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)

(2.3)

by the orderliness condition withv(Ckl) ≤ 2D2 1
w(T )h(T )

.
In order to estimate the first summand in (2.2), we use the representation of

thed1-distance given by (1.1). LetX1, . . . ,Xξθ−1
T (J )

be the points ofξθ−1
T |J and

Y1, . . . , YW(T ) the points of�θ−1
T and suppose w.l.o.g. that they are numbered in an

optimal way on{ξθ−1
T (J ) = W(T )}, that is, in such a way thatYi is the centreρkl

of the cuboidRkl which containsXi . Thus, by (1.1), and since in the transition
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from ξ to � we do not move the points any farther than half a body diagonal of a
cuboidRkl,

d1(ξθ−1
T |J ,�θ−1

T )1{ξθ−1
T (J )=W(T )}

=
(

1

W(T )

W(T )∑
i=1

d0(Xi, Yi)

)
1{ξθ−1

T (J )=W(T )≥1}

≤ 1

2

√
D1

(
1

h(T )1/D1

)2

+ D2

(
1

T 1/D2

)2

1{ξθ−1
T (J )=W(T )≥1}

≤ 1

2

( √
D1

h(T )1/D1
+

√
D2

T 1/D2

)
,

(2.4)

whence we get for the totalξ -discretization error

d2
(
L(ξθ−1

T |J ),L(�θ−1
T )

)
≤ 1

2

( √
D1

h(T )1/D1
+

√
D2

T 1/D2

)
+ 22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)
.

Next we consider the discretization error forη. Let H′ := ∑
k,l η(Ckl)δαkl and

qkl := ν(Ckl). We split up the error as

d2
(
L(Hθ−1

T ),L(ηθ−1
T |J )

)
≤ d2

(
L(Hθ−1

T ),L(H′θ−1
T )

)+ d2
(
L(H′θ−1

T ),L(ηθ−1
T |J )

)
.

(2.5)

The first summand gives us a little more trouble. Since for any two point processes
ξ1 andξ2 on a compact setX the inequality

Ed1(ξ1, ξ2) = E
(
d1(ξ1, ξ2)1{ξ1 	=ξ2}

) ≤ P[ξ1 	= ξ2]

holds, it can be seen from (1.2) and the analogue of (1.4) for probability
distributions on more general spaces [see Barbour, Holst and Janson (1992),
Appendix A.1] that

d2(P,Q) ≤ dTV(P,Q)
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for any distributionsP , Q of point processes onX. Hence, by another application
of the more general version of (1.4) in the second inequality,

d2
(
L(Hθ−1

T ),L(H′θ−1
T )

) ≤ dTV
(
L(Hθ−1

T ),L(H′θ−1
T )

)
≤ min

U
(1)
kl ∼Po(pkl), |=

U
(2)
kl ∼Po(qkl), |=

∑
k,l

P
[
U

(1)
kl 	= U

(2)
kl

]

= ∑
k,l

dTV
(
Po(pkl),Po(qkl)

)

≤ ∑
k,l

(qkl − pkl)

≤ 22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)
,

(2.6)

where the last two inequalities follow from Proposition A.C and Lemma 2.F,
respectively. For the second summand in (2.5), we obtain

d2
(
L(H′θ−1

T ),L(ηθ−1
T |J )

) ≤ Ed1(H′θ−1
T , ηθ−1

T |J )

= E
[
d1(H

′θ−1
T , ηθ−1

T |J )1{H′θ−1
T (J )=ηθ−1

T (J )}
]

≤ 1

2

( √
D1

h(T )1/D1
+

√
D2

T 1/D2

)(2.7)

by the same argument that was used in (2.4). So, an estimate for the total
η-discretization error is given by

d2
(
L(Hθ−1

T ),L(ηθ−1
T |J )

)
≤ 1

2

( √
D1

h(T )1/D1
+

√
D2

T 1/D2

)
+ 22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)
.

Last, we look at the remaining termd2(L(�θ−1
T ),L(Hθ−1

T )), which is perfect
for the application of a Stein estimate. In the notation of the Appendix we write

� = {0,1, . . . ,2n1 + 1}D1 × {0,1, . . . ,2n2 + 1}D2

[accordingly, we write elements of� as(i, j), meaningi ∈ {0,1, . . . ,2n1 + 1}D1,
j ∈ {0,1, . . . ,2n2 + 1}D2], and for the sets of strongly and weakly dependent
indicators, respectively,

�s
kl = {(i, j) ∈ �kl; |j − l| ≤ m},

�w
kl = {(i, j) ∈ �kl; |j − l| ≥ m + 1},

for everyk, l, where|j − l| := max1≤s≤D2 |js − ls | andm := m(T ) ∈ Z+ for every
T ≥ 1 is chosen arbitrarily. We can assume w.l.o.g. thatm ≤ 2n2 + 1 [note that for
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m > 2n2 + 1 we haveekl = 0, so that (2.9) below is still true]. As in the Appendix,
we set

Zkl := ∑
(i,j)∈�s

kl

Iij, Ykl :=
∑

(i,j)∈�w
kl

Iij.

From the local Stein Theorem A.D for point processes we know that

d2
(
L(�θ−1

T ),L(Hθ−1
T )

)
≤
{
1∧ 2

λ

(
1+ 2 log+

(
λ

2

))}∑
k,l

(
p2

kl + pklEZkl + E(IklZkl)
)

+
(

1∧ 1.65
1√
λ

)∑
k,l

ekl,

(2.8)

with

ekl = 2 max
B∈σ(Iij;(i,j)∈�w

kl)
|cov(Ikl,1B)|.

Starting from the right-hand side, most further estimates are very easy. First, we
have

pkl ≤ ν(Ckl) ≤ κT

1

w(T )h(T )

and

EZkl =
2n1+1∑

i=0

(l+m)∧(2n2+1)∑
j=(l−m)∨0
(i,j) 	=(k,l)

pij ≤ κT [(2n1 + 2)D1(2m + 1)D2 − 1] 1

w(T )h(T )
;

furthermore, by the mixing condition,

ekl = 2
√

pkl(1− pkl) max
B∈σ(Iij;(i,j)∈�w

kl)

√
P[B](1− P[B])|corr(Ikl,1B)|

≤ 2
√

pkl
1

2
β̆(m) ≤ √

κT

√
1

w(T )h(T )
β̆(m);

(2.9)

and, by Lemma 2.F,

λ = ∑
k,l

pkl ≥
∑
k,l

(
ν(Ckl) − 2D2−2 1

w(T )h(T )
ᾰ

(
2D2

1

w(T )h(T )

))
∨ 0

=
(
ν(JT ) − (2n1 + 2)D1(2n2 + 2)D2

2D2−2

w(T )h(T )
ᾰ

(
2D2

1

w(T )h(T )

))
∨ 0

≥ 2D T

w(T )

(
ιT − 2D+D2−2ᾰ

(
2D2

1

w(T )h(T )

))
∨ 0,
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whence we get a “magic factor” estimate of

1

λ
≤ (

1+ ε(T )
) 1

2DιT

w(T )

T
,

with

ε(T ) :=


(

1− 2D+D2−2 1

ιT
ᾰ

(
2D2

1

w(T )h(T )

))−1

− 1, if (1− · · ·) > 0,

∞, otherwise,

an expression of orderO(ᾰ(2D2 1
w(T )h(T )

)) for T → ∞, provided thatι > 0.
For the remaining term,E(IklZkl), a little trick is required. We subdivide

the set� = {0,1, . . . ,2n1 + 1}D1 × {0,1, . . . ,2n2 + 1}D2 along the lastD2
dimensions inD2-cube sections of extension 2m + 1 in every dimension (except
for possible left over cuboids), and look at the individual sections separately. For
s = (s1, s2, . . . , sD2) ∈ {1,2, . . . , �2n2+2

2m+1 �}D2, set for thesth section, that is, the
section containing thesj th collection of 2m + 1 numbers in thej th coordinate,

c(1)(s) := c(1)(s,m) := (
c
(1)
1 (s), . . . , c(1)

D2
(s)

)
:= (

(s1 − 1)(2m + 1), . . . ,
(
sD2 − 1

)
(2m + 1)

)
,

which is the “lower left” corner index (the multi-index that is in each coordinate
minimal among all indices belonging to thesth section), and

c(2)(s) := c(2)(s,m) := (
c
(2)
1 (s), . . . , c(2)

D2
(s)

)
:= ([s1(2m + 1) − 1] ∧ (2n2 + 1), . . . ,

[
sD2(2m + 1) − 1

]∧ (2n2 + 1)
)
,

which is the “upper right” corner index (the multi-index that is in each coordinate
maximal among all indices belonging to thesth section). Furthermore, we set

Ds := D(m)
s :=

2n1+1⋃
i=0

[c(2)(s)+m]∧(2n2+1)⋃
j=[c(1)(s)−m]∨0

Cij,

the subset ofJT that naturally belongs to them-neighborhood cube of thesth
section. Using our usual multi-index notation and index range convention for sums,
we now obtain for the remaining term∑

k,l

E(IklZkl)

= E

(2n1+1∑
k=0

2n2+1∑
l=0

2n1+1∑
i=0

(l+m)∧(2n2+1)∑
j=(l−m)∨0
(i,j) 	=(k,l)

IklIij

)
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≤ E

{�(2n2+2)/(2m+1)�∑
s=1(2n1+1∑

k=0

c(2)(s)∑
l=c(1)(s)

2n1+1∑
i=0

[c(2)(s)+m]∧(2n2+1)∑
j=[c(1)(s)−m]∨0

(i,j) 	=(k,l)

IklIij

)
1{ξ(D

(m)
s )≥2}

}

≤ E

{�(2n2+2)/(2m+1)�∑
s=1

(2n1+1∑
i=0

[c(2)(s)+m]∧(2n2+1)∑
j=[c(1)(s)−m]∨0

Iij

)2

1{ξ(D
(m)
s )≥2}

}

≤
�(2n2+2)/(2m+1)�∑

s=1

E
[(

ξ
(
D(m)

s
))21{ξ(D

(m)
s )≥2}

]

≤ 2D+D2(T 1/D2 + m + 1)D2
1

w(T )
ᾰ

(
2D(2m + 1)D2

1

w(T )

)

by the orderliness condition withv(D
(m)
s ) ≤ 2D(2m + 1)D2 1

w(T )
.

All that is left to do now is to combine the various estimates for the right-hand

side terms of the Stein inequality (2.8). Then, adding the discretization errors and

setting

L(T ) := 1∧
[
2
(
1+ ε(T )

) w(T )

2DιT T

](
1+ 2 log+

(
2D−1κT

T

w(T )

))

yields for the overalld2-distance

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)
≤

√
D1

h(T )1/D1
+

√
D2

T 1/D2
+ L(T )22D+2D1κ2

T

T (2m + 1)D2

(w(T ))2

+ 22D+D2−1 T

w(T )
ᾰ

(
2D2

w(T )h(T )

)

+ L(T )2D+D2
(T 1/D2 + m + 1)D2

w(T )
ᾰ

(
2D (2m + 1)D2

w(T )

)

+
(

1∧ 1.65
√

1+ ε(T )

√
w(T )

2DιT T

)
22D√

κT

√
h(T )

w(T )
T β̆(m).

(2.10)
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For ι > 0 and preferablyT large enough, we get the rougher, but less nasty looking
upper bound

d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)
≤

√
D1

h(T )1/D1
+

√
D2

T 1/D2

+ 2D+2D1+2κ2

ι

(
1+ ε(T )

)
log↑

(
2D−1κ

T

w(T )

)
(2m + 1)D2

w(T )

+ 22D+D2−1 T

w(T )
ᾰ

(
2D2

w(T )h(T )

)

+ 2D2+25D2
1

ι

(
1+ ε(T )

)
log↑

(
2D−1κ

T

w(T )

)
ᾰ

(
2D (2m + 1)D2

w(T )

)

+ 2
3
2D+1

√
κ

ι

√
1+ ε(T )

√
T h(T )β̆(m),

(2.11)

which is of the required order.�

PROOF OF COROLLARY 2.B. For T ≥ 1, we have to findh(T ) ≥ 1 and
m := m(T ) ∈ Z+, such that all six terms on the right-hand side of the equality
in Theorem 2.A go to zero asT → ∞. We seth(T ) = T q andm := [T x], with
q > 0 and 0≤ x < δ

D2
. Thus,

1

h(T )1/D1
→ 0,

1

T 1/D2
→ 0,

log↑
(

T

w(T )

)
mD2 + 1

w(T )
→ 0 and

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
→ 0;

so the only two terms we have to worry about are

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
= O(T 1−δ−δr−qr)

and √
T h(T )β̆(m) = O

(
T 1/2(1+q−(1+s)D2x)

)
,

which both converge to zero if there existq > 0 and 0≤ x < δ
D2

such that

q >
1− δ − δr

r
and q < (1+ s)D2x − 1.
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This last is true provided that

(1+ s)δ − 1 > max
(

1− δ − δr

r
,0
)
,

whence we obtain the statement.�

PROOF OFTHEOREM 2.D. Since the mixing condition is used only once in
the proof of Theorem 2.A, namely, in (2.9) for obtaining the upper bound of theekl
from the Stein estimate, we can simply transfer the proof and re-calculate this
upper bound under our new mixing conditions.

(a) Letl ∈ {0,1, . . . ,2n2 + 1}D2 be fixed, setC·l := ⋃2n1+1
k=0 Ckl, and define

X̃
(l)
int := (

Iil; i ∈ {0,1, . . . ,2n1 + 1}D1
)
, F̃ (l)

int := σ
(
X̃

(l)
int
)
,

X̃
(l)
ext :=

(
Iij; (i, j) ∈ �w

kl
)

regardless ofk, F̃ (l)
ext := σ

(
X̃

(l)
ext
)
.

Note thatF̃ (l)
int ⊂ F (l)

int := σ(ξ |C·l) andF̃ (l)
ext ⊂ F (l)

ext := σ(ξ |⋃
(i,j)∈�w

kl
Cij), regardless

of k. It is seen for everyk ∈ {0,1, . . . ,2n1 + 1}D1 that

ekl = 2 max
B∈F̃ (l)

ext

|cov(Ikl,1B)|

= 2 max
B∈F̃ (l)

ext

∣∣P[B ∩ {Ikl = 1}] − P[B]P[Ikl = 1]∣∣
≤ 2 max

B∈F̃ (l)
ext

∣∣P[B ∩ {
X̃

(l)
int = xk

}]− P[B]P[X̃(l)
int = xk

]∣∣

+ 2 max
B∈F̃ (l)

ext

∣∣∣∣∣P
[
B ∩ {Ikl = 1} ∩

{∑
i

Iil ≥ 2

}]

− P[B]P
[
{Ikl = 1} ∩

{∑
i

Iil ≥ 2

}]∣∣∣∣∣,
wherexk is the element of{0,1}{0,1,...,2n1+1}D1 , which has a 1 in thekth and a 0
in every other component. We denote the first summand byAkl, the second byBkl
and look at the sums overk separately. For theAkl-sum we obtain

2n1+1∑
k=0

Akl = 2
2n1+1∑
k=0

max
B∈F̃ (l)

ext

∣∣P[B|X̃(l)
int = xk

]− P[B]∣∣P[X̃(l)
int = xk

]

≤ 2E

(
max

B∈F̃ (l)
ext

∣∣P[B|X̃(l)
int

]− P[B]∣∣)

= 2β
(
F̃ (l)

int , F̃
(l)

ext
) ≤ 2β

(
F (l)

int ,F
(l)

ext
) ≤ 2β̆(m),
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where the monotony of theβ-mixing coefficient is immediate if it is written in
its dual form as a supremum over measurable partitions [see Doukhan (1994),
Section 1.1]. For theBkl-sum, the upper bound is obtained by application of the
orderliness condition:

2n1+1∑
k=0

Bkl ≤ 4
2n1+1∑
k=0

E
(
Ikl1{∑i Iil≥2}

)

≤ 2E
[
(ξ(C·l))21{ξ(C·l)≥2}

]
≤ 2D+1 1

w(T )
ᾰ

(
2D 1

w(T )

)
.

We thus have for the totalekl-sum overk the estimate
2n1+1∑
k=0

ekl ≤ 2β̆(m) + 2D+1 1

w(T )
ᾰ

(
2D 1

w(T )

)
.

(b) In the case of theϕ-mixing condition, the corresponding estimate is very
easy. It follows that

ekl = 2 max
B∈F̃ (l)

ext

|cov(Ikl,1B)|

= 2
(

max
B∈F̃ (l)

ext

∣∣P[B|Ikl = 1] − P[B]∣∣)P[Ikl = 1]

≤ 2β̆(m)
κT

h(T )w(T )
. �

2.3. ThedTV-distance between the numbers of points.Since for everyA ⊂ Z+
the functionfA :Mp → R+ that is defined byfA(ρ) := I[|ρ| ∈ A] is in F2, it
follows for any two point processesξ1, ξ2 on a compact setX, that

|P[ξ1(X) ∈ A] − P[ξ2(X) ∈ A]| ≤ d2
(
L(ξ1),L(ξ2)

)
,

hence, also

dTV
(
L(ξ1(X)),L(ξ2(X))

) ≤ d2
(
L(ξ1),L(ξ2)

)
.

Thus, the upper bounds we obtained in the theorems of Section 2.2 are also upper
bounds fordTV(L(ξθ−1

T (J )),L(ηθ−1
T (J ))). However, using the same method as

above and making only slight modifications in the proofs, one can do a little better.
Note that although now we are only concerned about numbers of points and not
about their positions, we can still improve(but possibly also impair, depending on
the leading term in our estimate) our upper bound by choosing a finer discretization
in theR

D1-directions. This is because the advantage we get from the orderliness
condition if we have smaller discretization cuboids surmounts the disadvantage of
having more of them.
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THEOREM 2.G. Suppose that the prerequisites of Section1 hold, including
the Conditions1, 2and3ρ, and letι > 0.

Then we obtain for arbitrarym := m(T ) ∈ Z+ andh(T ) ≥ 1 for everyT ≥ 1:

dTV
(
L
(
ξθ−1

T (J )
)
,L

(
ηθ−1

T (J )
))

= O

(
mD2 + 1

w(T )
,

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
, ᾰ

(
2D(2m + 1)D2

w(T )

)
,
√

T h(T )β̆(m)

)

for T → ∞.

REMARK 2.H. Of course, all theorems stated in Section 2.2 have their
equivalents for thedTV-distance between the distributions of the numbers of
points. The corresponding upper bounds can simply be obtained by leaving out
the log↑-terms, as well as the terms

1

h(T )1/D1
and

1

T 1/D2
.

Note, however, that the conditions in Corollary 2.B for convergence to zero of the
principal upper bound remain unchanged.

PROOF OFTHEOREM2.G. Although our task now seems to be quite different,
we can proceed exactly as we did in the proof of Theorem 2.A. First, we split up
the distance as

dTV
(
L
(
ξθ−1

T (J )
)
,L

(
ηθ−1

T (J )
))

= dTV
(
L(ξ(JT )),Po(ν(JT ))

)
≤ dTV

(
L(ξ(JT )),L(W)

)
+ dTV

(
L(W),Po(λ)

)+ dTV
(
Po(λ),Po(ν(JT ))

)
.

Here the two discretization errors can be estimated very easily. By the orderliness
condition, we obtain

dTV
(
L(ξ(JT )),L(W)

) ≤ P[ξ(JT ) 	= W ]

= P

[⋃
k,l

{ξ(Ckl) ≥ 2}
]

≤ 1

4

∑
k,l

E
[
(ξ(Ckl))

21{ξ(Ckl)≥2}
]

≤ 22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)
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and by Proposition A.C,

dTV
(
Po(λ),Po(ν(JT ))

)
≤ min

(
1,

1√
λ
,

1√
ν(JT )

)
|λ − ν(JT )|

=
(

1∧ 1√
ν(JT )

)∑
k,l

(
ν(Ckl) − pkl

)

≤
(

1∧ 1

2D/2√ιT

√
w(T )

T

)
22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)
.

As for the remaining term,dTV(L(W),Po(λ)), we can proceed exactly as we
did with d2(L(�θ−1

T ),L(Hθ−1
T )), with the only difference that now we use the

classical local Stein–Chen Theorem A.A. Thus,

dTV
(
L(W),Po(λ)

)
≤ min

(
1,

1

λ

)∑
k,l

(
p2

kl + pklEZkl + E(IklZkl)
)+ min

(
1,

1√
λ

)∑
k,l

ekl

with

ekl = 2 max
B∈σ(Iij;(i,j)∈�w

kl)
|cov(Ikl,1B)|.

All notation has exactly the same meaning as it had in the proof of Theorem 2.A,
so except for the logarithmic factor in front of the first sum, and the constant 1.65
in front of the second, we get exactly the same upper bound fordTV(L(W),Po(λ))

as we did ford2(L(�θ−1
T ),L(Hθ−1

T )).
Assembling of all the different pieces yields the result claimed.�

2.4. Results for measure preserving transformationsθ̃T . When we consider
a stretch factorw(T )1/D1 = o(T 1/D1), the expected number of points of the
transformed processξθ−1

T contained within the fixed cubeJ goes to infinity as
T → ∞ if ι > 0, which for some applications is not desirable (e.g., if we want
to approximateξθ−1

T |J by a Poisson process that does not depend onT , see
Section 2.5). We therefore formulate another theorem in this section, which deals
with the case where we adjust the volume of the cuboidJ to the volume of the
cuboidsJT , and thus produce space for the additional points.

In this regard, let̃θT and J̃T , defined as in Section 1, be our substitute for the
transformationθT and our enlarged version of the cuboidJ , respectively. We then
obtain the following result, where once more the quantitative form of the upper
bound can be found at the end of the proof.
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THEOREM 2.I. Suppose that the prerequisites of Section1 hold, including the
Conditions1, 2and3ρ, and letι > 0.

Then we obtain for arbitrarym := m(T ) ∈ Z+ andh(T ) ≥ 1 for everyT ≥ 1:

d2
(
L
(
ξ θ̃−1

T |
J̃T

)
,L

(
ηθ̃−1

T |
J̃T

))

= O

((
T

w(T )

)1/D1 1

h(T )1/D1
,

1

T 1/D2
,

log↑
(

T

w(T )

)
mD2 + 1

w(T )
,

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,
√

T h(T )β̆(m)

)

for T → ∞,

which is the same order as in Theorem2.A, apart from the factor(T /W(T ))1/D1.

PROOF. For a large part we can adopt the proof of Theorem 2.A. We use the
same notation and the same discretization as we did there, replacing onlyθT by θ̃T

andJ by J̃T . First note that there is no change at all for the estimate of the Stein
term, now written asd2(L(�θ̃−1

T ),L(Hθ̃−1
T )), because in the Stein estimate only

objects in the pre-image of̃θT have to be considered (the Stein estimate does not
take into account the distances between the points!).

But the changes for the estimates of the approximation errors are not exactly
huge either: As we have seen in the proof of Theorem 2.A, these errors can be
split up into two additive parts, one stemming from the fact that the original
and the discretized point process need not have the same numbers of points in
every discretization cuboid [see (2.3), resp. (2.6), in the proof of Theorem 2.A]
and one stemming from the fact that even when we have the same numbers of
points in every discretization cuboid, their positions are, in general, a bit shifted
[see (2.4), resp. (2.7)]. From those two parts only the second is affected by
the transition fromθT to θ̃T and fromJ to J̃T (inasmuch as the discretization
cuboids in the image space get a little bigger), because for the first, we have
to deal once more only with objects in the pre-image ofθ̃T . A short calculation
taking into account the above considerations [reproducing inequalities (2.4) and,
accordingly, (2.7)] provides as upper bounds for each of the discretization errors
d2(L(ξ θ̃−1

T |
J̃T

),L(�θ̃−1
T )) andd2(L(Hθ̃−1

T ),L(ηθ̃−1
T |

J̃T
)),

1

2

((
T

w(T )

)1/D1
√

D1

h(T )1/D1
+

√
D2

T 1/D2

)
+ 22D+D2−2 T

w(T )
ᾰ

(
2D2

1

w(T )h(T )

)
.

Thus, we obtain as possible upper bounds for the overalld2-distance those of

(2.10) and (2.11) with
√

D1
h(T )1/D1

replaced by( T
w(T )

)1/D1
√

D1
h(T )1/D1

, which yields the

required qualitative estimate.�
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Again we can formulate versions of the other results of Section 2.2 with only
slight (and very obvious) changes; in particular, we get the following:

COROLLARY 2.J (Convergence to zero in Theorem 2.I).Suppose that the
prerequisites of Theorem2.I hold. Furthermore, suppose thatw(T ) ≥ kT δ for
k > 0, δ ∈ (0,1] and that

ᾰ(v) = O(vr ) for v → 0 with r > 0,

β̆(u) = O

(
1

u(1+s)D2/2

)
for u → ∞ with 1+ s > max

(
1− δ

δ

1+ r

r
,

2− δ

δ

)
.

Then

d2
(
L
(
ξ θ̃−1

T |
J̃T

)
,L

(
ηθ̃−1

T |
J̃T

)) → 0 for T → ∞.

Note that under theβ-mixing or theϕ-mixing condition, no changes in the
respective upper bound order obtained in Theorem 2.D are necessary.

2.5. Results for a fixed limiting process.So far we have only examined
approximations of the transformed processξθ−1

T (resp. ξ θ̃−1
T ) by a Poisson

process which has the expectation measureνθ−1
T . Of course, this implies that the

expectation measure may (and, unless it is a constant multiple of the Lebesgue
measure, does) change asT tends to infinity: The approximating Poisson process,
in general, will not be stable. One might therefore ask under what circumstances it
is possible to approximate the transformedξ -process by a fixed Poisson process,
whose distribution does not depend onT , and what loss in terms of thed2-distance
one has to face.

First of all, the correctT -independent intensity measure for our new Poisson
process has to be found. Clearly, forι > 0, using the transformationθT with a
stretch factorw(T ) = o(T ) is unnatural, because in that case the expected number
of points ofξθ−1

T contained inJ goes to infinity, whereas, of course, for any fixed
Poisson process, the expectation of the number of points inJ is always finite. So
the natural choice for generalw(T ) is the measure preserving transformationθ̃T ,
together with the enlarged cuboid̃JT from Section 2.4.

For the following heuristics we ignore the fact thatµ2 might be a counting
measure. Then, restricted to the cuboidJT for T relatively large, the measureν
with densityp with respect toλD should be relatively “close” to the measure
ν′ := p(0)λD, provided thatp is constant in theRD2-directions [hence, the
notationp(s) = p(s, t) for all s ∈ R

D1, t ∈ R
D2] and thatp satisfies a regularity

condition in theRD1-directions at0. Thus, restricted tõJT , νθ̃−1
T should be close to

ν′θ̃−1
T [which is againp(0)λD, hence, not dependent onT ] as well, and, therefore,

Po(p(0)λD|
J̃T

) should be a good choice for approximatingL(ξθ−1
T |

J̃T
).

The following makes the above considerations rigorous. First, we formulate the
additional regularity condition forp.
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CONDITION 4 (Regularity ofp). The densityp = dν/dµ is constant in the
R

D2-directions, so that we can write

p(s, t) = p(s) for all s ∈ R
D1, t ∈ R

D2
(
resp.t ∈ Z

D2 + 1
21

)
.

Moreover,p satisfies the following regularity condition in theRD1-directions:
There existL ≥ 0 andz > 0, such that

|p(s) − p(0)| ≤ L|s|z for all s ∈ R
D1

(or for s ∈ [−( 1
w(T )

)1/D1, ( 1
w(T )

)1/D1)D1 for theT one wishes to consider).

We are now in the position to formulate the theorem.

THEOREM 2.K. Suppose that the prerequisites of Section1 hold, including
the Conditions1, 2, 3ρ, as well as the new Condition4 above. Let ι > 0,
T ≥ 1 (remember that we always assume thatT ∈ {nD2;n ∈ N} if µ2 = HD2

0 ),
m := m(T ) ∈ Z+, andh(T ) ≥ 1. Then

d2
(
L
(
ξ θ̃−1

T |
J̃T

)
,Po

(
p(0)λD|

J̃T

))
≤ Ã(T ) + 2(z+D1+2D2)/2 D1

z + D1
LτD1

T

w(T )1+z/D1

= O

(
T

w(T )1+z/D1
,

(
T

w(T )

)1/D1 1

h(T )1/D1
,

1

T 1/D2
,

log↑
(

T

w(T )

)
mD2 + 1

w(T )
,

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,
√

T h(T )β̆(m)

)

for T → ∞,

whereÃ(T ) := Ã(T ,m,h(T )) is the explicit upper bound that we obtained in
Theorem2.I [ formula (2.10)or (2.11)with the corresponding modifications] and
τD1 = πD1/2/�(D1

2 + 1) is the volume of theD1-dimensional unit ball.

COROLLARY 2.L. Under the prerequisites of Corollary2.Jplus Condition4,
with z > 1−δ

δ
D1, we obtain

d2
(
L
(
ξ θ̃−1

T |
J̃T

)
,Po

(
p(0)λD|

J̃T

)) → 0 for T → ∞,

hence, if δ = 1 (z > 0),

ξ θ̃−1
T |J D→ Po

(
p(0)λD|J ),

by result(1.3).
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PROOF OF THEOREM 2.K. Once again we can largely adopt the proof of
Theorem 2.A (or, more precisely, that of Theorem 2.I). This time only the estimate
for the discretization errord2(L(Hθ̃−1

T ),L(ηθ̃−1
T |

J̃T
)) has to be replaced by an

appropriate estimate for our new errord2(L(Hθ̃−1
T ),Po(p(0)λD|

J̃T
)). We proceed

just as we did in Theorem 2.A.
Let η′ ∼ Po(p(0)λD) [consequently, alsoη′θ̃−1

T ∼ Po(p(0)λD)], H′′ :=∑
k,l η

′(Ckl)δαkl , and split up the error as

d2
(
L(Hθ̃−1

T ),Po
(
p(0)λD|

J̃T

))
= d2

(
L(Hθ̃−1

T ),L
(
η′θ̃−1

T |
J̃T

))
≤ d2

(
L(Hθ̃−1

T ),L(H′′θ̃−1
T )

)+ d2
(
L(H′′θ̃−1

T ),L
(
η′θ̃−1

T |
J̃T

))
.

Inequality (2.7) (or, more precisely, the corresponding modification from the proof
of Theorem 2.I) yields for the second summand, as before,

d2
(
L(H′′θ̃−1

T ),L
(
η′θ̃−1

T |
J̃T

)) ≤ 1

2

((
T

w(T )

)1/D1
√

D1

h(T )1/D1
+

√
D2

T 1/D2

)
.(2.12)

For the first summand we get, by the same method as in (2.6),

d2
(
L(Hθ̃−1

T ),L(H′′θ̃−1
T )

)
≤ ∑

k,l

dTV
(
Po(pkl),Po

(
p(0)λD(Ckl)

))

≤ ∑
k,l

(
ν(Ckl) − pkl

)+∑
k,l

|ν(Ckl) − p(0)λD(Ckl)|,
(2.13)

where the first sum was already estimated in (2.6). Its upper bound, to-
gether with the upper bound from (2.12), forms the bound we arrived at for
d2(L(Hθ̃−1

T ),L(ηθ̃−1
T |

J̃T
)). Therefore, all that is left to do is to show that the sec-

ond sum on the right-hand side of (2.13) can be estimated by the claimed additional
term. This, however, is done very easily:∑
k,l

|ν(Ckl) − p(0)λD(Ckl)| = ∑
k,l

∣∣∣∣
∫
Ckl

(
p(s) − p(0)

)
µ(d(s, t))

∣∣∣∣
≤

∫
JT

|p(s) − p(0)|µ(d(s, t))

≤ 2D2L · T
∫
[−(1/w(T ))1/D1,(1/w(T ))1/D1)D1

|s|zλD1(ds)

≤ 2D2D1LτD1 · T
∫ √

2(1/w(T ))1/D1

0
rz+D1−1dr

= 2(z+D1+2D2)/2 D1

z + D1
LτD1

T

w(T )1+z/D1
. �
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3. Applications. The results of Section 2 can be applied in a number of
different ways. For example, they yield useful upper bounds for certain theoretical
statements about Poisson process approximation, such as classical thinning and
superposition theorems (by projection of the point processes involved on theR

D2-
directions and theRD1-directions, resp.). There are also statistical problems where
the results of Section 2 can be of help. To obtain an idea of what is possible, we
look at two examples in more detail: in Section 3.1 we consider a fairly general
density estimation problem, examined by Ellis (1991), and in Section 3.2 we
consider a problem of testing for long range dependence.

3.1. Density estimation. First of all, we need a new regularity condition for
the densityp.

CONDITION 4′ (Regularity ofp). The densityp = dν/dµ is constant in the
R

D2-directions, so that we can write

p(s, t) = p(s) for all s ∈ R
D1, t ∈ R

D2
(
resp.t ∈ Z

D2 + 1
21

)
.

Moreover,p satisfies the following regularity condition in theRD1-directions:

p ∈ C2(RD1).

Of course, it is enough ifp|Z ∈ C2(Z) for a sufficiently large neighborhoodZ of
0 ∈ R

D1.

Suppose that Condition 4′ holds (along with the usual conditions from
Section 1), and that we want to estimate the densityp at the point0 ∈ R

D1, say.
By way of illustration, it is convenient to think of theRD1-space as the

“data space” (i.e., the space of possible data points) and theR
D2-space as the

“ascertainment space” [i.e., the space of points at which data is obtained, typically
by continuous observation over time (R

D2 = R = time axis) or by repetition of
experiments (RD2 with reference measureµ2 = HD2

0 )]. An example suggested
by Ellis (1986, 1991) is the estimation of the rate at which earthquakes above a
certain magnitude occur per unit area and unit time in a certain region. Here we
haveD1 = 2 andD2 = 1, and the points inR3 represent the positions and times of
the observed earthquakes.

Among various methods for density estimation, we choose kernel estimation
with a data-independent window width, that is, the window width in theR

D1-
directions does not depend directly on the data, but does depend on the
“observation span” (which in the discrete case corresponds to the sample size).
For a detailed account of density estimation see Silverman (1986). We adapt the
usual notation in connection with density estimation to the notation we used in
Section 2. Thus, 2T 1/D2 is our observation span (inD2 directions), 2/w(T )1/D1 is
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the window width (inD1 directions) and our density estimator at the point0 takes
the form

p̂ξ (0) := 1

|JT |
∫
JT

2D1K
(
w(T )1/D1s

)
ξ(d(s, t)),

where the functionK is our Kernel, which fulfills the following condition:

CONDITION 5 (Shape ofK). The kernelK :RD1 → R+ satisfies:

(i) K(s) = 0 for s /∈ [−1,1)D1;
(ii) K|[−1,1)D1 is Lipschitz (w.r.t.d0 restricted toRD1) with constantl(K);
(iii)

∫
K(s) ds = 1;

(iv)
∫

K(s)s ds = 0.

Note thatK does not have to be continuous on the boundary of[−1,1)D1, and
that it is reasonable to choose a KernelK that is radially symmetric (or at least an
even function in each coordinate), in which case Condition 5(iv) is satisfied. We
now write

f (x) := 2D1K(s) · 1[−1,1)D2(t) for x := (s, t) ∈ R
D1 × R

D2 = R
D,

so that f |J is Lipschitz (w.r.t. d0 on R
D) with constant 2D1l(K); by the

transformation theorem for integrals, we obtain

p̂ξ (0) = 1

|JT |
∫

RD
f (x)ξθ−1

T (dx).

The way is now clear for the application of Theorem 2.A. Our primary goal will
be to estimate a probability distanced between the distribution of our estimator
p̂ξ (0) and the distribution that is concentrated at the true valuep(0). To do this,
we will first estimated(L(p̂ξ (0)),L(p̂η(0))) with the aid of Theorem 2.A, and
then utilize the excellent properties of Poisson point processes to obtain an upper
bound for d(L(p̂η(0)), δp(0)). The two corresponding results are contained in
the following theorems. For the distanced , we choose the bounded Wasserstein
distance, as defined in Section 1, because the other distances that we have used so
far are too strong to be useful:dTV(L(p̂ξ (0)), δp(0)) is generally too big, and is
even always equal to 1 wheneverp̂ξ (0) is a continuous random variable, because
then

1 ≥ dTV
(
L(p̂ξ (0)), δp(0)

) ≥ |P[p̂ξ (0) = p(0)] − P[p(0) = p(0)]| = 1;
and for the Wasserstein distancedw(L(p̂ξ (0)),L(p̂η(0))), there seem to be
unsurmountable difficulties in obtaining a useful upper bound in Theorem 3.A.

THEOREM 3.A. Suppose that the prerequisites of Section1 hold, including
the Conditions1, 2, 3ρ, as well as the additional Conditions4′ and5. Let ι > 0,
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and for T ≥ 1, let m := m(T ) ∈ Z+, h(T ) ≥ 1 and alsow(T ) = O(T δ∗
) for

T → ∞ with δ∗ ∈ (0,1). Then

dBW
(
L(p̂ξ (0)),L(p̂η(0))

)
≤
(

l(K)

2D2

w(T )

T
M + 1

)
d2
(
L(ξθ−1

T |J ),L(ηθ−1
T |J )

)+ 2D1l(K)δT (M)

= O

(
1

h(T )1/D1
,

1

T 1/D2
, log↑

(
T

w(T )

)
mD2 + 1

w(T )
,

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,
√

T h(T )β̆(m)

)

for T → ∞,

whereM := M(T ) ∈ N
∗ with M ≥ 3ν(JT ) arbitrary and

δT (M) = 2κ
ν(JT )M

M! e−ν(JT ),

which decays exponentially inM asT tends to infinity. Thus, we obtain the same
order for the upper bound as in Theorem2.A

REMARK 3.B. The upper bound given in Theorem 3.A remains true for
generalw(T ) = O(T ). However, ifw(T ) goes to infinity at a rate that is too close
to T , thenM(T ) has to be chosen to grow somewhat faster thanT/w(T ), and then
the order of the upper bound is a little worse (by a logarithmic factor inT ) than
the one stated in Theorem 3.A.

PROOF OF THEOREM 3.A. Let ξ ′ ∼ L(ξ), η′ ∼ L(η) = Po(ν), andX :=
p̂ξ ′(0), Y := p̂η′(0). Then we have

dBW
(
L(p̂ξ (0)),L(p̂η(0))

) = sup
g∈FBW

|Eg(X) − Eg(Y )|

with

|Eg(X) − Eg(Y )|
≤ E

(|g(X) − g(Y )|1{ξ ′θ−1
T (J )=η′θ−1

T (J )}
)

+ E
(|g(X) − g(Y )|1{ξ ′θ−1

T (J ) 	=η′θ−1
T (J )}

)
≤ E

(|X − Y |1{ξ ′θ−1
T (J )=η′θ−1

T (J )}
)+ P[ξ ′θ−1

T (J ) 	= η′θ−1
T (J )]

(3.1)
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for everyg in FBW. For the first summand, we obtain

E
(|X − Y |1{ξ ′θ−1

T (J )=η′θ−1
T (J )}

)

= E

(
1

|JT |
∣∣∣∣
∫

RD
f (x)ξ ′θ−1

T (dx) −
∫

RD
f (x)η′θ−1

T (dx)

∣∣∣∣1{ξ ′θ−1
T (J )=η′θ−1

T (J )}
)

≤ 2D1l(K)E

(
η′θ−1

T (J )

|JT | d1
(
ξ ′θ−1

T |J , η′θ−1
T |J )

)
,

the latter inequality by the definition of thed1-distance and becausef |J is
Lipschitz. Next we utilize the fact that sinceη′θ−1

T (J ) is Poisson distributed
with parameterνT := ν(JT ), it exceeds a certain boundM := M(T ) ∈ N

∗ with
M + 1 ≥ 2νT only with very small probability. As noted in Barbour, Holst and
Janson (1992), Proposition A.2.3, the relation

P[Po(νT ) ≥ M] ≤ M + 1

M + 1− νT

P[Po(νT ) = M] ≤ 2
νM
T

M! e
−νT

holds, and, thus,

E

(
η′θ−1

T (J )

|JT | d1(ξ
′θ−1

T |J , η′θ−1
T |J )

)

≤ E

(
M

|JT |d1(ξ
′θ−1

T |J , η′θ−1
T |J )1{η′θ−1

T (J )≤M}
)

+ E

(
η′θ−1

T (J )

|JT | 1{η′θ−1
T (J )>M}

)

≤ M

|JT |E
(
d1(ξ

′θ−1
T |J , η′θ−1

T |J )
)+ νT

|JT |P[η′θ−1
T (J ) ≥ M]

≤ 1

2D

w(T )

T
ME

(
d1(ξ

′θ−1
T |J , η′θ−1

T |J )
)+ δT (M),

where we use the notation

δT (M) = 2κ
νM
T

M! e
−νT .

Furthermore, forM ≥ 3νT , the DeMoivre–Stirling formula gives

δT (M) ≤ const·
(

νT

M

)M

eM−νT ≤ const·
(

e

3

)M

e−νT .

The second summand from (3.1) is estimated as

P[ξ ′θ−1
T (J ) 	= η′θ−1

T (J )] = E
[
d1(ξ

′θ−1
T |J , η′θ−1

T |J )1{ξ ′θ−1
T (J ) 	=η′θ−1

T (J )}
]

≤ Ed1(ξ
′θ−1

T |J , η′θ−1
T |J ).
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Hence, we obtain altogether in (3.1),

|Eg(X) − Eg(Y )|
≤
(

l(K)

2D2

w(T )

T
M + 1

)
E
(
d1(ξ

′θ−1
T |J , η′θ−1

T |J )
)+ 2D1l(K)δT (M)

for every g ∈ FBW and every pair of random variablesξ ′, η′ with ξ ′ ∼ L(ξ),
η′ ∼ L(η). Forming the infimum overξ ′ andη′ yields on the right-hand side the
d2-distance (θT is bijective), and forming the supremum overg on the left-hand
side, the bounded Wasserstein distance. Thus, we obtain the statement.�

The second result that was discussed above is contained in the next theorem.
We write‖ · ‖2 for theL2-norm with respect to the Lebesgue measure onR

D1.

THEOREM3.C. Suppose that the prerequisites of Section1hold, including the
Conditions1, 2, 3ρ, as well as the additional Conditions4′ and5. Let ι > 0, and
for T ≥ 1, let m := m(T ) ∈ Z+, h(T ) ≥ 1 and alsow(T ) = O(T δ∗

) for T → ∞
with δ∗ ∈ (0,1). Then

dBW
(
L(p̂ξ (0)), δp(0)

)
≤ dBW

(
L(p̂ξ (0)),L(p̂η(0))

)

+
√

κ

2D2
‖K‖2

√
w(T )

T
+ L′

w(T )2/D1
+ o

(
1

w(T )2/D1

)

= O

(√
w(T )

T
,

1

w(T )2/D1
,

1

h(T )1/D1
,

1

T 1/D2
,

log↑
(

T

w(T )

)
mD2 + 1

w(T )
,

T

w(T )
ᾰ

(
2D2

w(T )h(T )

)
,

log↑
(

T

w(T )

)
ᾰ

(
2D(2m + 1)D2

w(T )

)
,
√

T h(T )β̆(m)

)

for T → ∞,

whereL′ is a nonnegative constant(depending onp andK); if K possesses certain
symmetry properties(especially ifK is radially symmetric), we can write

L′ := 1
2�p(0)

∫
s2
1K(s)λD1(ds),

where� denotes theD1-dimensional Laplace operator.

PROOF. Due to Theorem 3.A we only have to estimatedBW(L(p̂η(0)), δp(0))



646 D. SCHUHMACHER

for η ∼ Po(ν). We decompose this distance as

dBW
(
L(p̂η(0)), δp(0)

) ≤ dBW
(
L(p̂η(0)), δEp̂η(0)

)+ dBW
(
δEp̂η(0), δp(0)

)
≤ E|p̂η(0) − Ep̂η(0)| + |Ep̂η(0) − p(0)|
≤ sd(p̂η(0)) + bias(p̂η(0)).

For the standard deviation we obtain

sd(p̂η(0)) =
√

var
(

1

|JT |
∫

RD
f (x)ηθ−1

T (dx)

)

= 1

|JT |

√∫
RD

f 2(x)νθ−1
T (dx)

≤ 1

|JT |

√
κT

(
1

w(T )

∫
R

D1
22D1K2(s)λD1(ds)

)
µ2

([−T 1/D2, T 1/D2)D2
)

≤
√

κ

2D2
‖K‖2

√
w(T )

T
,

where the second and third steps are applications of Campbell’s theorem for
the variance of an integral w.r.t. a Poisson point process [see Kingman (1993)]
and Fubini’s theorem, respectively [note that(λD1 ⊗ µ2)θ

−1
T = 1

w(T )
λD1 ⊗

µ2(T
1/D2ID2), where ID2 :RD2 → R

D2 is the identity]. An application of
Campbell’s theorem for the expectation [see Kingman (1993)] and Fubini’s
theorem again then yields

Ep̂η(0) = 1

|JT |
∫

RD
f (x)νθ−1

T (dx)

= 1

|JT |
(

1

w(T )

∫
R

D1
2D1K(s)p

(
1

w(T )1/D1
s
)
λD1(ds)

)

× µ2
([−T 1/D2, T 1/D2)D2

)
=

∫
R

D1
K(s)p

(
1

w(T )1/D1
s
)
λD1(ds).

Thus, we obtain for the bias

|Ep̂η(0) − p(0)|

=
∣∣∣∣
∫
[−1,1)D1

K(s)
(
p

(
1

w(T )1/D1
s
)

− p(0)

)
λD1(ds)

∣∣∣∣
≤
∣∣∣∣
∫
[−1,1)D1

K(s)
1

w(T )1/D1
∂p(0)s λD1(ds)

∣∣∣∣
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+
∣∣∣∣
∫
[−1,1)D1

K(s)
1

2w(T )2/D1
∂2p(0)(s, s)λD1(ds)

∣∣∣∣
+
∫
[−1,1)D1

K(s)
1

2w(T )2/D1

× max
0≤h≤1

∥∥∥∥∂2p

(
h

1

w(T )1/D1
s
)

− ∂2p(0)

∥∥∥∥|s|2λD1(ds)

by Taylor’s approximation, where‖ · ‖ is the standard norm for bilinear forms
on R

D1. Of the last three summands, the first is always zero because of
Condition 5(iv), the second can be estimated byL′ 1

w(T )2/D1
with a constantL′,

which for “nice” Kernels (e.g., ifK is radially symmetric) can be written as

L′ = 1
2�p(0)

∫
s2
1K(s)λD1(ds),

and the third is of ordero( 1
w(T )2/D1

) because of the continuity of∂2p at 0. Thus,

bias(p̂η(0)) ≤ L′ 1

w(T )2/D1
+ o

(
1

w(T )2/D1

)
. �

Once more we formulate the conditions under which the upper bound goes to
zero.

COROLLARY 3.D (Convergence to zero in Theorem 3.C).Suppose that the
prerequisites of Theorem3.C hold. Furthermore, suppose thatw(T ) ≥ kT δ for
k > 0, δ ∈ (0,1) and that

ᾰ(v) = O(vr ) for v → 0 with r > 0,

β̆(u) = O

(
1

u(1+s)D2/2

)
for u → ∞ with 1+ s > max

(
1− δ

δ

1+ r

r
,

1

δ

)
.

Then

dBW
(
L(p̂ξ (0)), δp(0)

) → 0 for T → ∞,

and, therefore, since thedBW-distance metrizes convergence in distribution[see
Dudley(1989),Theorem11.3.3]and sinceδp(0) is the distribution of a constant,
we obtain

p̂ξ (0)
P→ p(0) for T → ∞,

that is, the consistency of the estimatorp̂ξ (0).
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REMARK 3.E. The consistency of̂pξ (0) was already obtained as a conse-
quence of Theorem 2.5 in Ellis (1991) under conditions that were similar, but for
the most part somewhat more general. So Corollary 3.D is not so much a new re-
sult, but rather a crosscheck on the suitability of the explicit upper bound obtained
in Corollary 3.C.

PROOF. Let M := �3ν(JT )� in Theorem 3.A. We then get immediately by
applying Theorems 3.C and 3.A and Corollary 2.B thatdBW(L(p̂ξ (0)), δp(0))

converges to zero.�

3.2. Testing for long range dependence.Supposeξ is a stationary point
process onRD with expectation measureν = � ·λD (� known or estimated) which
satisfies the conditions of Section 1, except for Condition 3. We would like to
test from a single realization ofξ if there is important long range dependence
in the R

D2-directions or not (our null hypothesis). “No important long range
dependence” means here that Condition 3x is satisfied for givenx ∈ {β,ρ,ϕ}
and β̆, corresponding to the minimal mixing rate one wants to test for. For the
sake of illustration, think of theRD1-direction(s) as time and theRD2-directions
as space. Imagine that for fixedT ≥ 1, the points ofξ in JT denote the times and
locations of incidences of a certain rare disease, which is observed in a large area
(e.g., a country or a continent) over a relatively short period of time (e.g., some
months or a year).

Under the null hypothesis, by Theorem 2.A, respectively, Theorem 2.D, the
distribution of ξθ−1

T |J will be close to the distribution ofηθ−1
T |J , which here

is just the homogeneous Poisson process onJ with intensity (T /w(T )) · �.
There are various reasonable statistics for testing the hypothesis of “complete
spatial randomness” in point patterns; one such statistic,U :Mp → R, is the
average nearest neighbor distance in the data, which can be shown to be Lipschitz
continuous with respect to thed1-distance with a Lipschitz constant that we denote
by LD.

We wish to find an approximate critical valuetα for, say, a one-sided test of
sizeα of the null hypothesis against an aggregated alternative (i.e., the alternative
that there is a certain amount of “long range” clustering), using the statisticŨ ,
whereŨ (ρ) := U(ρθ−1

T |J ) for every point measureρ onR
D. To do so, fixK > 0

and choosetα so that

Eftα,K(Ũ(η)) + KLD · ε = α,

whereε is our upper bound ford2(L(ξθ−1
T |J ),L(ηθ−1

T |J )), and

ft,K(x) :=




1, if x ≤ t,

1− K(x − t), if t ≤ x ≤ t + 1

K
,

0, if x ≥ t + 1

K
,
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is aK-Lipschitz approximation of the indicator1(−∞,t]. This yields

0 ≤ α − P[Ũ (ξ) < tα]
≤ Eftα,K(Ũ(η)) − Ef(tα−1/K),K(Ũ(η)) + 2KLD · ε.

Thus, if ε is very small (i.e., the conditions for Theorem 2.A, resp. Theorem 2.D,
are strong enough), a largeK can be chosen, and, consequently, we can adjust the
size of our test to be only slightly belowα.

It should be noted that the distribution ofŨ(η) is not known, but it can be simu-
lated very easily. Also, there are good normal approximations ofL(Ũ (η)||η| = N)

for N not too small which can be of use. See Ripley [(1981), Section 8.2] for fur-
ther details.

APPENDIX: LOCAL STEIN THEOREMS

The central results of this article are achieved by applying estimates that were
obtained in one or another form by Stein’s method. Since it is far beyond the scope
of this article to summarize in detail the classical Stein–Chen method (Stein’s
method for the approximation of a sum of indicator random variables by a Poisson
random variable) or what in this article is sometimes called the “generalized Stein–
Chen method” (Stein’s method for the approximation of an indicator point process
by a discrete Poisson point process), we only present very briefly the required
results. The proofs of these results and the method behind them, as well as a wealth
of related material, can be found in Barbour, Holst and Janson (1992).

Let � be any finite nonempty index set and(Ii)i∈� a sequence of indicator
random variables with a local dependence property, that is, for everyi ∈ �, the
set�i := � \ {i} can be partitioned as�i = �s

i

·∪�w
i into a set�s

i of indicesj ,
for which Ij depends “strongly” onIi , and a set�w

i of indicesj , for which Ij

depends “weakly” onIi . Herein, the terms “strongly” and “weakly” are not
meant as a restriction to the partition of�i , but serve only illustrative purposes.
The same holds true for the term “local dependence,” which does not have to
possess any representation in the spatial structure of� (in our applications in
Section 2 it always does, though). We now writeZi :=∑

j∈�s
i
Ij , Yi :=∑

j∈�w
i

Ij ,
pi := EIi > 0 (w.l.o.g.) for everyi ∈ � and setW := ∑

i∈� Ii , λ := EW =∑
i∈� pi . Furthermore, we choose arbitrary points(αi)i∈� in any desired complete,

separable metric space(X, d0) with d0 ≤ 1 and set� :=∑
i∈� Iiδαi

.

A.1. Poisson approximation of the distribution of the sum W of indicators.
By applying the classical Stein–Chen method [see Chen (1975)] the following
result is obtained.
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THEOREM A.A (Local Stein–Chen theorem for sums of indicators).With the
above definitions, we have

dTV
(
L(W),Po(λ)

)
≤ min

(
1,

1

λ

)∑
i∈�

(
p2

i + piEZi + E(IiZi)
)+ min

(
1,

1√
λ

)∑
i∈�

ei,

where

ei = E
∣∣E(Ii |(Ij : j ∈ �w

i )
)− pi

∣∣= 2 max
B∈σ(Ij : j∈�w

i )
|cov(Ii,1B)|.

PROOF. See Barbour, Holst and Janson (1992), Theorem 1.A.�

REMARK A.B. The order of the upper bound in Theorem A.A cannot
generally be improved. See Barbour, Holst and Janson (1992), Chapter 3.

The Stein–Chen method is by no means restricted to approximating sums of
indicator random variables. For instance, as far asZ+-valued random variables are
concerned, one might also consider the case whereW is itself Poisson distributed
with some parameterµ > 0.

PROPOSITIONA.C. Letλ,µ > 0. Then

dTV
(
Po(λ),Po(µ)

) ≤ min
(

1,
1√
λ
,

1√
µ

)
· |λ − µ|.

PROOF. This proposition is a special case of Barbour, Holst and Janson
(1992), Theorem 1.C(i). However, the result can be obtained very easily by direct
calculation, using the Stein–Chen method.�

A.2. Poisson process approximation of the distribution of the indicator
point process �. By applying a natural generalization of the Stein–Chen method
as in Barbour and Brown (1992), the following result is obtained.

THEOREM A.D (Local Stein theorem for indicator point processes).With the
above definitions andπ := ∑

i∈� piδαi
, we have

d2
(
L(�),Po(π)

)
≤
{
1∧ 2

λ

(
1+ 2 log+

(
λ

2

))}∑
i∈�

(
p2

i + piEZi + E(IiZi)
)

+
(

1∧ 1.65
1√
λ

)∑
i∈�

ei,
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where

ei = E
∣∣E(Ii |(Ij ; j ∈ �w

i )
)− pi

∣∣ = 2 max
B∈σ(Ij ;j∈�w

i )
|cov(Ii,1B)|.

PROOF. See Barbour, Holst and Janson (1992), Theorem 10.F.�

REMARK A.E. Note that the upper bound in Theorem A.D depends neither
on the pointsαi , i ∈ �, nor on the specific choice of the metricd0, as long as it is
bounded by 1.
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