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LARGE DEVIATIONS OF A MODIFIED JACKSON NETWORK:
STABILITY AND ROUGH ASYMPTOTICS

BY ROBERTD. FOLEY! AND DAVID R. MCDONALD?
Georgia Institute of Technology and University of Ottawa

Consider a modified, stable, two node Jackson network where server 2
helps server 1 when server 2 is idle. The probability of a large deviation
of the number of customers at node one can be calculated using the flat
boundary theory of Schwartz and Weidsafge Deviations Performance
Analysis (1994), Chapman and Hall, New York]. Surprisingly, however, these
calculations show that the proportion of time spent on the boundary, where
server 2 is idle, may be zero. This is in sharp contrast to the unmodified
Jackson network which spends a nonzero proportion of time on this boundary.

1. Introduction. In this paper we derive the rough (logarithmic) asymptotics
for the steady state probability of a particular two node queueing network as
the queue at server 1 gets large. The analyzed queueing network is a variation
of a two node Jackson queueing network in which server 2 when idle can assist
server 1. Allowing one of the servers to help can completely change the behavior of
the network. This network clearly exhibits a large deviation phenomenon, which
we call a bridge. For certain parameters, as the queue length at node 1 grows,
the queue length at node 2 stays small, but generally positive so that server 2 is
prevented from helping server 1. Instead of jittering alongxtfaxis, the process
skims above the-axis and only rarely touches the axis.

This bridge phenomenon seems to have been somewhat overlooked. In
particular, the theory in [8, 11] for analyzing exact asymptotics does not apply.
In a companion paper [9], we extend the theory and develop an approach to
obtaining the exact asymptotics of networks exhibiting the bridge phenomenon.

The bridge phenomenon in the modified Jackson network is not an isolated
case—the bridge phenomenon is ubiquitous. Since becoming aware of it, we are
encountering it frequently in a variety of contexts. In Section 5 we use this theory
to revisit thebathroom problem discussed by Shwartz and Weiss [15].

In Section 2 we describe the Jackson network and the modified network. We
then discuss the possible large deviation paths for overloading node 1. Section 3
determines the stability conditions tiie modified Jackson network. Section 4
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analyzes the rough asymptotics of the modified Jackson network; the analysis of
the exact asymptotics appears in [9]. Section 5 briefly describes another model
where the bridge phenomenon occurs.

2. Notation and main results. Consider a Jackson (1957) network with two
nodes. The arrival rate of exogenous customers at nodes 1 and 2 form Poisson
processes with rateg anda,, respectively. The service times are independent, ex-
ponentially distributed random variables with meaiui and 1/ 5, respectively.
Each customer’s route through the network forms a Markov chain. A customer
completing service at node 1 isuted to node 2 with probability; » or leaves
the system with probability; o := 1 — r1 2. Routing from node 2 is defined analo-
gously. So without loss of generality, we are assuming= r2 2 = 0. The routing
process, service processes and arrival processes are independent.

To ensure that the network is open, we assume that> 1 < 1. Since the
network is open, the traffic equations

(2.1) A=A +A3_ir3—i fori=1,2,

have a unique solutiolii1, A2) = ((A1 + A2r21)/(1 — r12r21), (A2 + A1r1.2)/
(1 —r1.2r21)). To eliminate degenerate situations, we assume ithat O and
Ao > 0.

The joint queue length process of this Jackson network forms a Markov process
with state space = {0, 1, .. .}2. Definep; = A;/u;, fori = 1, 2. From Jackson
(1957), it follows that the stationary distribution for the joint queue length process
being in the statgx, y) € S is (1 — p1)p7 (1 — pz),o%', provided that the stability
conditionsp1 < 1 andp» < 1 hold.

The network that we analyze is a small change from the above network. Suppose
that server 2 has been cross-trained and helps server 1 whenever queue 2 is empty.
Let u] > 1 be the combined service effort of the two servers at node 1 when
server 2 is empty. The transition rates for the joint queue length process of the
modified network are shown in Figure 1. By comparing jump rates, the total
number of customers in this modified network is stochastically smaller than the
total number in the associated Jackson network. Hence, the modified network will
be stable if the associated Jackson network is. However, cross-training server 2
may allow the modified network to be stable evepiif> 1. In particular, ifo; < 1
andui > (A1 — u1p2)/(1— p2), then the modified network is stable; see Section 3
for the argument.

We are interested in the rare event of a large deviation in the number of
customers at node 1; that is, more thtanustomers at node 1 wheteis large.

The steady state probability of thisreaevent is proportional to the number
of visits to Fy = {(x,y):x > £,y > 0} between returns to the origin. For the
Jackson network, we can determine the most likely path from the origify to

by looking at the reversed process starting from steady staf¢ @nd look at
sample paths that leav@ on the first step and never return. The reversed process
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Fic. 1. Jump rates for the modified network.

has external arrivals entering nodewith rate A;r; 0. The service rates at the
nodes are unchanged, but the routing probabilities for the reversed process are
r;‘-"i = Airi j/Aj for i and j in {1,2}. Start the reversed process in statey),
wheret is large buty is small. As long as there are customers at node 1, customers
leave node 1 at rates. Thus, customers enter node 2 at rages o + wary ,. If

this rate is less than the maximum rate at which customers can leave node 2, that
is,

(2.2)  Aoroo+ erfz < 2 Or, equivalently, ,02_1 >ro0+ },2’1,0;1’

then the number of customers at node 2 remains small, and the reversed process
starting fromF, bounces along the-axis to(0, 0). If the inequality is reversed,

-1 -1
Py~ <r20+r2101 ",

then the process starting frof®, 0) leaves thec-axis and heads roughly northwest
(with an easily determined slope) as the customers in node 2 grow until node 1
empties, that is, hits the-axis.

From there, the process bounces alongjtkexis south to the origin because
customers in the time reversed network enter node 1 abaie + M2r§,1- This
rate is less than the maximum rate at which customers can leave node 1, that is,

(2.3) Ario+ ,uzrzl < u1 or, equivalently, pl_l >r10+ rl,zpz‘l,

given (2.2) fails (otherwise just add the two inequalities together and derive a
contradiction).

If the inequality in (2.2) is changed tmaquality, then the number in node 2 in
the reversed process behaves like a simple, symmetric random walk, which would
hit the y-axis at a height proportional tg’¢. Thus, in the Jackson network, there
are three possibilities for the most likely approach from the origiftothough
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the approach correspondingegquality in (2.2) occurs only for a set of parameters
with Lebesgue measure zero.

Now consider the modified network withj = 1. Of course, this is identical to
the Jackson network. Suppose the most likely path for a large deviation at node 1 of
this Jackson network bounces along thexis. Letu] increase. Ag.] increases,
the approach going out the-axis becomes more difficult and may eventually
become more difficult than some other approach. In addition to the obvious
possibility of going up the-axis, it turns out that there is a third possibility hinted
at by the case of equality in (2.2): the process travels along-idres, but instead
of jittering along thex-axis, the process skims above and only rarely touches the
x-axis. This third approach we refer to alsrédge path, which is slightly optimistic
since we hope to prove properties in a later paper that would justify the word
“bridge.”

Section 4 contains our preliminary investigation of this modified Jackson
network by looking at the behavior under the fluid scaling. For the fluid scaling,
speed up the transition rates byand measure customers in units g# lwhich
results in a functional s.l.l.n. In particular, we apply the flat boundary theory of
Schwartz and Weiss [15] to obtain rough asymptotics, as well as the fluid scaled
large deviation path. In the fluid scaling, both the bridge path and the path that
jitters along thex-axis collapse to a constant speed line alongatfexis, which
suggests that the flat boundary theory might not be able to distinguish between
the two. However, the calculations also give the proportion of time spent on the
boundary. In some cases, the proportion of time spent on the boundary is zero,
proving the existence of this third possible approact¥ioln fact, we define a
bridge path to be such a large deviation path which follows a line, for example, an
axis though the proportion of time the process spends on the line is zero. Although
the term is defined with respect to the fluid scaling, the basis for the term is the
conjectured behavior of the unscaled process. Even though we suspect that it has a
bridge shape, there are other possibilities. For example, the most likely path when
equality holds in (2.2) jitters up the-axis proportional ta/¢ before drifting toF,
also spends zero time on the boundary and collapses to-#xés under the fluid
scaling. We intend to sort out these questions in a future paper.

A jitter path follows a line, for example, one of the axes, while spending a
nonzero proportion of time on the line. Though jitter path is defined with respect
to the fluid scaling, the term reflects the behavior of the unscaled process, which
jitters along the line as it travels 6.

We will use the phrase “with large deviation r&teto mean that

1
lim ~log P(W € F,|W(0) = (0,0)) = —#,
t—o00 £

whereF (£) is the set of cadlag paths Fstarting at the origin and associated with
a large deviation o#¥ to F, before returning to the origin; that is, to describe the
rough asymptotics. Not& (£) is a set of paths hitting the sé}.
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Basically, we will show that the rough asymptotics can be determined from three
points; see Figure 2. The coordinates of the easternmost point of the egg-shaped
curve is labelled?. If the curveM ~ = 0 intersects the egy * = 0 betweerp?
and the@s-axis, then the intersection is labelléd; otherwise,0/ = 6. If the
horizontal line at height Io@z‘l) intersects the egg betweéf and thed;-axis
and (2.3) holds, then the intersection is labelépotherwisep© = 6°.

The first coordinate of”, 6/ and6¢ gives the large deviation rate of the best
bridge path, jitter path and cascade paths, respectively. The minimum of the three
first coordinates is the rate associated with a large deviation at node 1. Theorem 4
summarizes these results.
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Fic. 2. M™ =0isthe egg-shaped curve; the other curveis M~ =0.
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3. A bound and stability. We will need the following bound in [9]. Since the
stability argument and the derivatiohtbe bound use the same coupling, we have
included both in this section.

LEMMA 1. For the stable, modified network,

(3.1) > 7. )) = cp3.
jzy

ProOOF The proofis divided into two parts. First, we use a coupling argument
to consider the casg; < u1. We associate a regioR(x, y) with each point
(x,y) € §. The argument shows that there is a coupling of the queue length
processes of the Jackson and modified networks so that if the modified network is
in state(x, y), then the state of the Jackson network igi¢x, y). It immediately
follows that the stationary probability of the modified network being in state)
is bounded by the stationary probability that the Jackson network R(in y).
Similarly, it follows that the stationary probability that the modified network is in
B C S is less than or equal to the stationary probability that the Jackson network
isin U(x,y)eB R(x,y).

Now we describe the coupling. We can consider them to be a pair of
discrete time Markov chainsW[n] for the Jackson network andf[n] for
the modified network, subordinated to a common Poisson process with rate
A1+ A2 + pni + pe, which we assume without loss of generality to be one.
Basically, W[r] and Y[n] “attempt” to move in the same direction. More
precisely, generate an i.i.d. sequence of random variables (directions) tak-
ing values{E, N, W,NW, S, SE, W*, NW*} with probabilities{r1, A2, u1(1 —
r1,2), mary2, w2 — r21), porz1, (up — p)(l — ri2), (W] — paryel,
respectively. For thath step, botiW[n] andY [n] “attempt” to take a single step
in the direction given by theth random direction. The directiori®* and N W*
indicate west and northwest, but only for the modified network when it is on the
x-axis; otherwiseW* and N W* indicate that the process stays put. By “attempt,”
we mean that the process moves to the neighboring state in that direction unless it
would result in the process leaving the state space; for example, if either process
were on they-axis and the attempted step were to be in the dirediiomote that
if both processes move, they move in the same direction. However, one process
may move while the other stays put.

For the regions, define

Rex,y)={G, j)eSli>x,j> -1}
U{d, j) e SIG, j)=(x -1,y

Note that for(x, y) > (1,1), both(x — 1,y) and(x,y — 1) are inR(x, y), but
(x—21y+ 1 and(x — 1, y— 1) are not. We claim that i [n] € R(Y[n]), then
W(n+1] € R(Y[n+1]). Thisis clear when both processes are in the interior since

(3.2)
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they both move in the same direction. Consider the ¢dsé¢= (1, y) with y > 1
andW[r] = (0, y). Both processes move in the same direction unless the direction
is W or NW; in all casesW|[n + 1] will still be in R(Y[n + 1]). Now consider
the case whe[n] = (1,0) and W[n] = (1, 0). Consider the movemenfé W*,
thenW and thenSE. This makedV[n+3] = (0,0) andY[n+3] =1 andW[n +k]
will still be in R(Y[n + k]) for k =1, 2, 3. This trajectory explains whi (x, y) is
defined as it is. We leave it to the reader to finish checking the claim.

Now startW[0] andY[0] off in the same state with distribution. Notice that

> mG, j)=P(¥Y[n]l€ RO, y+1)
i>0,j>y
= P(W[n]€ R(Y[n]),Y[n]l € R(0,y + 1))

< P(W[nl€ R(0,y)) < péy_l)+

for sufficiently largen becauséV[n] converge to steady state. This completes the
argument under the condition < 1. [R(x, y) is the smallest set that will work

for this coupling. This can be seen by starting both chains at the origin and arguing
that there is a sequence of random directions such#{af, W[n]) = (x, v, i, j)

for every(x, y) € S and (i, j) € R(x, y). Most points can be reached by having
both processes move sufficiently far east, then the modified network moves west
back to the origin, then the Jackson network moves sufficiently far northwest, and
finally both processes move north and east sufficiently far. The few remaining
points can be reached by getting the Jackson network to the origin while the
modified network is af0, 1).]

Now consider the case when > 1. The number of customers at node 2 is
stochastically smaller than a birth—death process on the nonnegative integers with
birth rate, + wnir12 and death ratew; on the positive integers, and birth rate
Ao+ uiri2 in state 0. Thus, the probability of more tharcustomers at node 2
is smaller thare[(A2 + n1r1,2) /2]’ for a suitably chosen constantUsing (2.1)
and that\; > p1, it follows that[(A2 + p1r1.2)/p2] < p2. O

3.1. Sability of the modified network.

ProPOSITION1. The joint queue length process of the modified network is
positive recurrent if Ao < w2 and Ay < pop1 + (1 — p2)u]. If either inequality is
reversed, then the processis transient.

PrRoor The result follows from comparing the modified and Jackson net-
works in the casep1 < 1; for the coupling, see the first part of the proof of
Lemma 1. Now consider the case wherg> 1. The following definitions of
T, and X,, are only used in this proof. Leff, denote the time that theth busy
period starts at node 2, and g}, be the number of customers in queue 1 just prior
to the start of theith busy period at node 2. The proceés X3, ... is a Markov
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chain. To prove the result, it suffices to show th@l,F1 — 7,/ X,,] < oo and that
Xo, X1, ... is positive recurrent.

The random variabl&, 1 — T,, represents theth busy cycle at node 2, which is
the sum of the:th busy period and theth idle period at node 2. Sinde > 0, the
expected length of theth idle period is finite. The length of theth busy period at
node 2 is stochastically increasingir) ; hence, it is stochastically smaller than the
busy period in arM /M /1 queue with service rate, and arrival raté., + 11171 2.
Fortunatelyd, + 1712 < p2 Sincera + u1r1 2 < A2 Wheniy > ;. The expected
length of this bounding busy period ig(2 — (A2 + 11171.2)).

To show thatXg, X1, ... is positive recurrent, we will show that for ak,,
greater than some large constat E[X,, 11 — X,,|X,] < —& < 0, which is a
Foster—Lyapunov type condition guaranteeing stability. The condtacan be
chosen large enough so that the busy period at node 2 is arbitrarily close to the
busy period of arl /M /1 queue with service rate, and arrival raté., + U1r12
and that the departure process from node 1 during this busy period is arbitrarily
close to a Poisson process with rate The change in the queue length at node 1,
X,+1 — X,, can be decomposed into the sum of the change during the busy
period at 2, and the change during the idle period at 2. HenceXfos M,
E[X,+1 — Xn|X,]is arbitrarily close to

(M + p2r21 — 1) (1 — i)

(33) = b * )
(m2— A2+ p1r12)) (A2 + uiri2)

which is strictly less than zero ji] > (A1 — n1p2)/(1— p2) and is equivalent to
p2i1+ (L= p2)u] > 1.

To show transience, first assume that< pp, but iy > pou1 + (1 — p2)u].
From the argument above, fof, > M sufficiently large, EX,,11 — X,|X,] >
¢ > 0; hence, forM sufficiently large,X,, behaves arbitrarily closely to a random
walk with strictly positive drift and is transient.

Now consider the case wherp > . Note thati; represents the long run
average arrival and departure rate from no@ssuming that the network, either
Jackson or modified, is recurrent. Assuixig is recurrent; otherwise, we would
be done. Sincg,, is recurrent, the departure rate from node 1 equals the arrival
rate. If this rate is less thary, then the queue length at node 2 must be diverging.
However, if the departure rate from node Lig then node 2 is also diverging
since the arrival rate would be. In either case, the network is transient]

4. Flat boundary approach. We are interested in describing how a modified
Jackson network overloads. In particular, we will be interested in the rare event
when the system starts out empty and node 1 reaches &lbedbre the system
empties again.
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If we speed up the jump rates by a factpbut reduce the jumps by a factofél
then we get the scaled procé#s. From the theory in [15],

Jim % log P(W € F(£)|W(0) = (0, 0))

= ZIim % log P(W¢ € F(1)|W,(0) = (0, 0))

(4.1) =—inf[I(p)],
peF

wherel (p) = foT A(‘fl—f;’(s), p(s))ds is the rate function associated with a path

in the set of absolutely continuous patfisstarting from(0, 0) which hits the set

{(1,y):y >0} at some timel' before returning tq0, 0). Note that after time’,

the path follows the natural drift path back to the origin, ah(dfl—f;’(s), p(s)) =0

along the drift path. We will use better, cheaper and smaller action, synonymously.
SinceW has constant (but different) jump rates on and off the flat boundary, the

local rate functionA (v, w) = AT (v) if w is in the interior; that is, ifw = (x, y)

with y > 0 andA (¥, w) = A~ (@) if w = (x,0). It follows from the calculus of

variations that the cheapest pathAnis a sequence of line segments of constant

speed which changes direction only on thaxis. [If a path changes direction

on thex-axis, either leaving the interior to travel along thexis or by leaving

the x-axis at some point other than the origin to travel through the interior, there

is a cheaper path from the origin {01, y):y > 0}; the cheaper path might hit

{1, y):y = 0} at a different point like(1, 0).] Consequently, the cheapest path

in F must lie in one of the following set&;, F,, F., where:

F; isthe setof all constant speed paths with positive slope acrogg¢hier until
hitting (1, y) with y > 0,

F, is a constant speed path jittering or forming a bridge alongxtagis until
hitting (1, 0), and

F. is a constant speed path jittering up thexis, then changes direction and
heads for the pointl, 0) at constant velocity. Thus, the customers first build
up in node 2, and thecascade into 1.

In each of these three cases, we will be able to reduce the problem to a
differentiable, constrained nonlinear optimization problem. We use the Karush—
Kuhn—Tucker conditions, which are given in a variety of texts including [3, 13],

to determine the minimal action in each of the three cases. These results are then
combined to determine (4.1).

4.1. A bridge is better than any path through the interior. In this section we
consider the interior pathg; C F. That is, we consider paths that initially have
the form p(s) = (v1s, vas) until hitting (1, vo/v1) attimeT = 1/v1, wherevy > 0
andvy > 0. After time T, the path follows the natural drift path until reaching the
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origin. We will find the inf,c . [/ (p)] and show that this inf is not attained i.
However, there will be a bridge path which attains the inf. Hence, there will always
be a bridge that is better than every interior path.

Define the log moment generating function of the compound Poisson process
associated with jumps in the interior

M*(61,62) = ha(e™ — 1) + parpole™ " — 1) + parg 2™ — 1)
+ )_‘2(392 -1+ M272,0(€_92 -1+ M2r271(€91—92 —1).

The Hessian off ™ is positive definite; hencey™ is strictly convex. We also
know thatM* (0, 0) = 0. Now, we argue that there exists a paifit, 62) > (0, 0)
with M+ (@1, 62) < 0. To see this, first consider the casge< 1. In this case,
VM*(0,0) - (1,1) < 0. Hence,(1,1) is a decreasing direction. Now assume
o1 > 1. In this case(0, 1) and(e, 1) are decreasing directions for a suitably small
e>0.

Next, the local rate function in the interior in directior= (v1, vp) is

AT (@) = sup(61v1 + O2v2 — M (64, 62)),
01,02

which is clearly convex. For a path € F; with velocity v, A(%(s), p(s)) =
AT(@) for s > 0. Hence,I(p) = AT(v)/v1 is a good rate function; see
Theorem 5.1 of [15]. The remainder of this section is devoted to finding
inf,er[1(p)] = infy,20,v,-0 AT (v1,v2)/v1. The argument consists of 3 steps.
First, we argue that ipf.o y,~0A™(v1, v2)/v1 = MiNy =040 AT (v1, v2)/v1.
Second, we argue that every local minimum is a KKT (Karush—Kuhn-Tucker)
point, which will be defined shortly. Third, we argue that there is exactly one
KKT point (v1, v2) € (0, 00) x [0, c0); hence, this KKT point must be the global
minimum of miny,~0,v,>0 A" (v1, v2)/v1.

For v1 > 0 and v» > 0, clearly, A*(v1,v2) > —M™*(f1,6,) > 0. Hence,
AT (v1,v2)/v1 is bounded below by 0 and explodes as decreases to zero.
Furthermore, by Proposition 3.1 in [4) " (v1, v2)/v1 explodes as the norm &f
becomes large. Also, for eaech > 0, we know thatA* (v1, v2)/v1 iS continuous
in vz as vy converges to 0. Hence, iRf.o 4,~0 A1 (v1, v2)/v1 must be a local
minimum (with v1 > 0) of

(4.2) minA™ (v, v2)/v1
(4.3) s.t. vp>0.

It is known that every locally optimal solution to a constrained, differentiable,
nonlinear optimization problem with linear constraints must be a KKT point;
see 14.37 of [13] or Section 3.5 of [3]. Now, we argue that our constrained,
nonlinear optimization problem is differentiable.
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The compound Poisson distribution has an infinite support over the integers;
hence, by Proposition 3.1 in [4], there are unique valijed), 65 (v), such that

(4.4) AF(@) = 6] )v1+6; @)vz2— M7 (07 (@)).

To explore the relationship betweémndd ™ (v), fix v and findd ™ that maximizes
61v1 + 602 — M (61, 62). Taking derivatives and setting them equal to zero yields

AMT (") -

+ + +_pt +_pgt
(4'5) V1= 789 = ()»1691 — ,LLlrl’oe_el — erl,2€92 —01 + M272,1€91 —0; )’
1
3M+ 9+ - + + +_ g+ +_ g+
(4.6) vo= % = (h2e" — porp0e™% + pary2e% T — porp et 7%2).
2

Thus,0;" (v1, v2) and6; (v1, v2) determinevs andv,. Furthermore, this mapping
from 6T to v is a smooth bijection. Since the Jacobian, which is positive definite
since it is also the Hessian of the strictly convéx , has a nonzero determinant,
it follows from the inversion theorem (see [2]), th@t (v1, v2) and 65 (v1, v2)
are smooth functions afvy, v2). Hence, our nonlinear programming problem is
differentiable.

For our problem(v1, v2) is a KKT point if there exists a Lagrange multiplier
with

4.7) uvy =0 (complementary slackness)

(4.8) u>0 (sign restriction)
(4.9) (2) = V(AT (v1, v2)/v1) (gradient equation)

(4.10) v2>0 (constraint)

Among other things, the proof of our next result shows that any KKT point
(v1, v2) € (0,00) x [0,00) must haveu > 0; hence, complementary slackness
implies thatvo = 0. Consequently, there is no “best” path H; that is, the
inf,cr, 1 (p) is not attained inF;.

THEOREM1. For the pathsin theinterior, we have

inf [1(p)]=inf A" (v1,v2)/v1 =067,
peF; v1>0,v2>0

where#” = 6+ (%) and ¥ = (v4, v5) isthe unique KKT point in (0, 00) x [0, 00)
point for (4.2)and (4.3). The point v” is the unique solution to

(4.11) w2 >0,
(4.12) v =0,
(4.13) MT (6T @@") =0.
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Equivalently, but more usefully, 6 is the unique solution to

(4.14) 07 > 0,
+nb pb
(4_15) w =0,
06>
(4.16) M%) =0,

PROOE First,

+
(4.17) A1) o, v0),

which can be seen by starting with (4.4) and using the left most equation in
(4.5) and (4.6). It follows that
A[AT (v1, v2)/v1]

(4.18) 5 = [v167 (v1, v2) — AT (v, v2)]/v2
U1

and

A[AT (v1, v2)/v1]
dv2

In the remainder of this proof assume thiaf, v2) is a KKT point, and we know

that there exists at least one such point. Thus, using (4.19), the Lagrange multiplier
iSu= 0;(1}1, v2), and using complementary slackness, (4.18) becomes

AT (v1, v2)/v1]
dvy

Now, we argue that > 0. Assume the contrary, that is, that= 0. Thus, the
gradient of A" (v1, v2)/v1 at (v1, v2) is zero, which means thatt ~ (9" (v)) =0
andé, (v1, v2) = 0. SolvingM* (6, 0) = 0 yields exo;") = i1/ (h1 + p2r2.1).

Substituting into (4.5) and (4.6) yields

(4.19) =05 (v1, v2).

= MT (67 (@))/v%.

v1(07,0) = u1 — (A1 + parz 1)

and
- (A1 + parz1) 1
v2(07, 0) = A2 — porp 0+ pirLo————"" — porp 1 ——————
n1 (A1 +poro1)
_ - M1
= A2 — 22,0 +F12A1 + U2r2 1712 — U2l 1—=———
(A1 + por2 1)
Y Ha
= (A2 +A1r12) — pu2(l—rp1) + porpar1,2 — porg 1 ———
(A + por21)
p1
=Ao(1—ry2r21) — p2(l—ryoro1) + MZ”Z,l(l - -7)
(A1 + por21)
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1
=A2—pu2)(A—ryor1) + MZ”Z,l(l - -7)
(A1 + por21)
v1(6;, 0)

= (A2 —u2)(A—ryorz1) — porg1—=————"—-
(A1 + poro 1)

<0 sincels < o, v1 > 0,

which is a contradiction. Henca, > 0, and from complementary slackness, we
havev, = 0.

Equations (4.12) and (4.13) follow from the gradient equation, and are
rephrased in terms @f in (4.15) and (4.16). Equation (4.14) follows from (4.11)
since (4.18) must equal 0. Thus, the two sets of equations are equivalent. To
show uniqueness, consider the second set of equations and recal thag
a strictly convex function withM*(0,0) = 0. The set of all(91, #>) such that
M™(61,6) =0 is the boundary of a strictly convex set, the egg shaped region
in Figure 2, containing0, 0) and (1, 62) > (0, 0). There are exactly two points
on the boundary of this convex set that are tangent to vertical lines, that is,
satisfy (4.15), but only one of the two, the eastern most point on the boundary,
satisfies (4.14). O

4.2. Thejitter path onthe x-axis In this section we consider paths that bounce
along thex-axis; that is, we consider paths ifi that initally have the form
p(s) = (v1s,0) until hitting (1,0) at time T = 1/vy, wherev, > 0 and after
time T, the path follows the natural drift path until reaching the origin. Egtc F
denote the set of all such paths, which will be the jitter paths and the bridge path.
To analyze these paths, we view thaxis as a flat boundary as in Definition 8.7
in [15] andW as a flat boundary process.

Define the log moment generating functions of the compound Poisson process
associated with jumps on theaxis,

M~ (01,02) = k(™ — 1)+ A(e2 — 1) + pirioe™™ — 1) + piry2(e27% — 1).
The associated local rate function is

A~ (v1, v2) = sup(f1vy + Gavp — M~ (61, 62)).
601,02

Using the same arguments as in the previous section, there exists a unique pair
0~ (v) such that

A~ (v1,v2) =67 (v1, v2)v1 + 65 (v1, v2)v2 — M~ (07 (V).
The local rate function for the path with velocity= (v1, 0) is given by

A*(v1,0)= (BATE@H +A-pA~ @),

inf
0<B<1,BVT+(1-B)v~=(v1,0)
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which is a good rate function; see (v) of Lemma 8.20 of [15]. Intuitively, the path
is a mixture withg representing the proportion of time above thaxis, while

1 — B is the proportion of time on the-axis. The bridge path hg% = 1; jitter
paths haves < 1. Finally, we must calculate ipt £, [/ (p)]; that is,

4.20 inf v vf L3, v, v5),

200 oosperpitiapi—no’ BV VT2 UL V)

where f (B, v1, vy, v3, vy, v5) = (BAT(@F) + (L= B)A~(37))/v1. Our argu-
ment will be similar to the last section. First, we argue that (4.20) equals

4.21 min ,V1, V7,03, 01, v5).

( ) v1>0,0<B=<1, U +(1-B) T~ =(v1,0) (B o1, vi vz vp vp)

Just as forA™, A~ (v™) goes to infinity agv—| diverges. Furthermore\~(v™)
goes to infinity as, | 0 and is infinite ifv, < 0. Hence,f goes to infinity as
B 1 0.1f 8 >0, f goestoinfinity a®; | 0. Hence, (4.20) must be a local minimum
of

(4.22) min f(B, v1, vf, v2+, V1, V5)

(4.23) s.t. g1(8, v, vf, v;, v, V) =B <1,
(4.24) g2(B, v1, vy, v3, 7, vy) = —v1 + Buf + (1 — Buy =0,
(4.25) g3(B, v, vf, vl v, vy) = Bud + (1— v, =0.

To show that this constrained, nonlinear optimization problem is differentiable is
almost identical to the argument in the previous section including the argument
that 6, (v1, v2) is smooth. The constraints are no longer linear since there are

terms like ﬁvf. However, the gradients of the three constraint equations are
linearly independent; hence, from 14.37 of [13] or Section 3.5 of [3], all points
are regular and every local minimum must be a KKT point. The remainder of
the argument is to determine the KKT poin(8, vi, v, v5, vy, v,) € (0,1] x
(0, 00) x (—00, 00) X (—00, 0] x (—00, 00) x [0, c0). Note that we did not include
v3 > 0 andv, < 0; these will be suboptimal sinca™(v;,v5) = co when
v, <0.

For our problem(s, v1, vf, v2+, vy, vy ) is @ KKT point if there exists Lagrange
multipliersu1, us andus satisfying

u1(1—p8)=0 (complementary slackness)

u1 <0 (sign restriction)
3
Y uiVgi=Vf  (gradient equation)
i—1
=<1 (constraint 1)
—v1+ Bvy + (1 —Bv; =0 (constraint 2)
Bvy + (1 —Bv, =0 (constraint 3)
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Now assume thatp, vi,v{, v5, vy, v,) is a KKT point. The bottom four
components of the gradient equation imply that, = Gf(vﬂ =6, (v7) and
viu3 = 92+(v+) =6, (v7). Using these in the second component of the gradient
equationimpliesthg@ M+ @ @)+ A —-B)M (0 (")) =0. Sincevy > 0, the
second component of the gradient equation also impliesi#hat0, which means
thatvius = Qf(vﬂ > 0. The first component of the gradient equation reduces to
uy=—[M*OF @) — M~ O @))]/v1.

First, consider the case wheh< 1. By complementary slackness; = 0
implying that
(4.26) MHet@h) =M (T @) =0.

These level sets enclose convex regions which intersé@t@t and possibly other
points(6;", 65"). However, sincey = 8M;9(29+) must be (strictly) negative, we are
only interested in solutions to (4.26) in the lower portion of the egg in Figure 2;
that is, going clockwise from (but not including¥ along M+ = 0 to the other
solution of (4.15), which is the western most point of the egg shaped region defined
by M+ = 0. Sinces;" (v*) > 0, we can further restrict the region to the arc going
clockwise from the&” to the origin.

By calculation the points [besid&®, 0)] where M+ (@) =0 andM— () =0
cut theé-axis are(log(uy/ (A1 + ®2r2.1)), 0) and(log(;ﬁl‘/il), 0), respectively.
Since the first coordinate of the latter is positive and greater than the first coordinate
of the former, it follows tha#;” > 0 if 6;” > 0; thus, we can restrict attention to the
arc going clockwise from#” to theé;-axis at(max(log(1/ (A1 + u2r2.1)), 0), 0).

There can be at most one such point siﬁ%g_z(—') > 0. If there is such a point, label

this point a®9/ = (91’, 92’); otherwise, defin®@/ = 2. Note that there can be no
other KKT points withg < 1. To see tha#/ determines a KKT point, recall that

v?:% andvi_:ma_if")forizl,ZWith vf>0, v;<Oandv2_>O.

Since(1, 0) lies in the convex hull ob* andv~, there exists a uniqug andv;
with 0 < B < 1 such thatgi™ + (1 — B)v~ = (v1,0). Letus =0, uz = 6] /v
anduz = 63 /v1. It is straightforward to show that these values satisfy the KKT
conditions.

To complete the first case with < 1, we need to argue that there cannot be
another KKT point withg = 1. If there were another such KKT point with= 1,
then our optimization problem is a special case of the one in the previous section;
hence, the solution must correspondtgin which case the first component of the
gradient equation would imply thay = M~ (9?) /v1. However, this would violate
the sign restriction om1 sinceM~(9”) would be strictly positive whef/ = 6°.
Consequently, whes/ # 6%, we have a unique KKT point, which must be the
global minimum.

Suppose there is no solutidd™ to (4.26) on the clockwise arc following
M™T =0 from 6° to the;-axis. Then there cannot be a KKT point with< 1.
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However, we know that there is a global minimum, which must be a KKT point.
Hence, any KKT points must hayg= 1. If 8 = 1, the optimization problem in

this section becomes a special case of the optimization problem in the previous
section, and it follows that there is a unique KKT point correspondiréj to

THEOREM 2. Among thejitter and bridge paths, we have
4.27 inf [1(p)] =6/ .
( ) pIQFX[ (p1=06;4

Furthermore, the following conditions are equivalent:
0/ <6°,

ajitter pathisoptimal in Fy,

p <1,

M~(") >0and

o < 1,where

arwdPE

i i
r2e% + M171,2€_91+92

g Mzrz,oe_e'zl + MZ”Z,leei/ 0

PROOF.  To show (4.27), note that/ determines the global optimum, so we
need only evaluate the objective function at the point determined by 6/ = 6%,
the objective function becomes identical to that of the previous section, which we
know evaluates t6] = 67. If 6/ < 6°, the objective function simplifies ] .

The first three conditions are clearly equivalent from the discussion prior to
the statement of the theorem. For the fourth condition, it suffices to show that
the directional derivative o8/~ at the origin tangent to the level curé¢™ = 0
and going counterclockwise is strictly negative; thatdis, = O pierces the egg
M™ =0. SinceM ~ (0, 0) = 0, it would follow from continuity that the level curves
for MT =0 and M~ = 0 would have to intersect along the segméfit = 0
somewhere betweatt and the origin going clockwise from?. (From the proof
of the previous theorem, we could further restrict attention to the segment lying in
the first quadrant.)

If (x*,y") denotes the gradient of/™ at the origin, then(—y™,x™) is
tangent toM* = 0 at the origin and points in a counterclockwise direction.
If (x~,y”) denotes the gradient od/~ at the origin, then the directional
derivative of M~ at the origin tangent to the level curnvg* = 0 and going
counterclockwise is—y™x~ + xTy™ = puok1 — piriri2 + wika — uipe —

Mik2 + poAora 1 + ripuiii + riouipmere1. This directional derivative is a
strictly decreasing function ofi] since the derivative with respect to] is
pu2(L—r12r21)(p2 —1) <O. If u7 = (A1 — p2t1)/(1 — p2), then the directional
derivative is zero and/* =0 and M~ = 0 are tangent at the origin. However,
from Proposition 1, stability requires that; > (A1 — p2u1)/(1 — p2), which
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ensures that/~ is decreasing in the direction-y™, x™) and pierces the egg
Mt =0.
To complete the proof, using (4.6), it is straightforward to show that the fifth
condition is equivalent t@3 (/) < 0; recall thatvs (6”) = 0 and see Figure 2.
O

COROLLARY 1. For the Jackson network with ] = w1, ajitter path is better
than the bridgeif (2.2) holds.

ProoOF In the Jackson case a}@é) = pl_l and expj@{) = (r20+ rzylpfl).
Using this,p < 1 by substitution and Theorem 2 gives the resulil

Now, we will try to derive an explicit expression fé¥ by locating the points
0 # (0, 0), whereM *(0) = M~ () = 0. SolvingM — () = 0 yields
A4 Ao 4 i — e — piryoe ™

A2+ piry e

(4.28) expdo) =

After substituting this intaV/ ™ (0) = 0 and simplifying, we see that= exp(@{)
must be a positive solution to the quadratic equation

(4.29) ax?+bx +c¢=0,
where
a=(u] — pn1)(h2+ Arr1 21 — Aopo(rarz,s + A1),
b= —(uf — n1)hais + wikire2 + A3 + A3r1.2 + 2h1k0r12 + A1A2rio)
+ wihopo(1 — 2r1 2r21) — WiAior1 2,
¢ = (W} — ppirLoGo + Aare2) + () ?uary 2(r10 + r1,2r2.0)-

Given such a solutiom, then61 = log(x) and6, is determined from (4.28). Now
that we have a poimt where the level curves intersect, we need to determine if
it lies on the arcM* = 0 going clockwise fromd? to the#ds-axis. Sinced; > 0,

we are only interested in > 1. If, in addition,vzr (0) <0, thend = 6/. Note that
there can be at most onegiving a solution that satisfies these conditions. If there
is no such solution, thend’/ = 6%,

REMARK. The paper [10] provides an alternative to the Schwartz—Weiss flat
boundary approach to determining the local rate function for the jitter and bridge
paths. Rather than mixing the two vectorsandv™— with the weights8 and 1- 8,

[10] simply expresseA*(v, 0) = sup,(y - v — A(y)), whereA(6) = Iog(r(fy)),
r(J,) is the spectral radius of, andJ, is the Feynmann-Kac transform of the
kernel J of the Markov additive process associated with the modified Jackson
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network as defined in [9]. If we could show that the mapping freno v is a
smooth bijection, then sinc&(y) is convex, we could represent

AT@,0) IA()
inf _Ir}]f(y—A(y)/ 3y )

v>0 v

Taking derivatives, the minimum occurs when

Aly azA(y)/(aA(w)

Since A(y) is convex by Lemma 2 in [10] and sm@%(/—)’) =v > 0, it follows
that the minimum occurs when(y) = 0 and the large deviation rate is the
associategr. This just means that the large deviation rate is the choigewiich
SetSr(jy) =exp(A(y)) =1, which agrees with the results in [9].

The problem is the assumption that the mapping fremo v defined by
sup, (y - v — A(y)) is smooth. Lemma 3.3 in [12] shows thayife U,, where

U, ={y: oy, A)=1for someA = A(y) < oo},

and if (v, A(y)) € W, as defined in [12], them (-) is differentiable aty.
Unfortunately, we are particularly interested in cases whemay not belong
to U, because these give rise to bridges. It appears that in the two-dimensional
case differentiability may follow from the explicit description af(y) (private
communication with Ignatiouk-Robert), butindimensions this is far from clear.
Hence, at first blush, it appears that the optimization problem would be more
difficult to solve than the optimization problem arising from the Schwartz—\Weiss
approach wher& * is represented as a convex combination of smooth pieces.
Another advantage of the Schwartz—\Weiss approach is that it distinguishes
between the bridges(= 1) and the jitter § < 1) paths. It is not clear that
the approach in [10] makes this distinction. On the other hand, the results
in [10] are much more general since they applyzimdimensions and apply to
permeable orimpermeable boundaries. Note that the condifib®?) > M~ (6?)
in Proposition 10 in [10] inspired condition 4 in Theorem 2.

4.3. Cascade paths climbing the y-axis. Finally, we consider fluid paths that
go up they-axis to a height0, #) and then go down and acro€k 0). Fori > 0,
we will refer to these paths as cascade paths since the customers build up in the
second queue and then “cascade” into the first queue for the large deviation. The
path with# = 0 is none other than the bridge path. Note that a bridge path up the
y-axis followed by a cascade is not optimal because this would give a nonlinear
large deviation path in a domain with constant jump rates. Consequently, the least
action path jitters up the-axis and then cascades. LEetC F be the set of cascade
paths and the bridge path.

We wish to find conditions for a jitter path along theaxis whenp, < 1, butps
but may be greater than one. The investigation of jitter paths in Section 4.2 can be
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used provided we interchange theand y-axes. Le¥) = (91, 62) be the solution
analogous t@’ in Theorem 2. Thus, equivalent to (4.26), we have

M™(61,602) = M(61,62) =0,

where

M (61, 62) = 5»1(69~l -1+ )_»2(662 -1)+ Mzi’z,o(fe~2 -1)+ Mzrz,l(eél_éz -1).
SubtractingM from M+ gives expfy) = r1.0 + r1.2€xpf2). Substituting this
into M () = 0 gives exyr) equal to 1 orup/A2, and the former solution can

be eliminated since it correspondsép= 6> = 0. In order to have a jitter path,
condition 4 in Theorem 2 must hold; that is,

. j1e™ + jiprp et
0= _ — < 1.
pary,0e =% + par pef2 0
Substituting exfhs) = /A2 givesp = a1 expdr)/ 1 < 1; thatis, (2.3) holds.

We conclude there is no cascade path unless (2.3) holds, but if it does, then
the large deviations rate of paths fra® 0) to (O, z) is & |Og(,02_l), which can be
seen by simplifying (4.29) whem; = u] to obtain@{ = ,01_1. Moreover, the large
deviation rate of paths fror0, z) to (1, 0) is

+(y —

ing A7 700

v>0 v
After (1, 0), the process follows the natural drift path back to zero. Thus, if path
p € F. reaches height, we havel (p) = hlog(p; %) + inf,~o w We
wish to find inf,cf. 1(p) or, equivalently, inf-o >0 f(h, v), where f(h,v) =
h IOg(,oz_l) + M Since f is continuous, positive and divergesw@a$ 0 or
asv — oo or ash |, 0, we know inf,>0,,~0 f (4, v) must be a local minimum of

(4.30) min £ (h, v)
(4.32) st. h>0.

This constrained nonlinear optimization problem is differentiable with a linear
constraint so every local minimum must be a KKT point. In order(forv) to
be a KKT point for this problem, there needs to be a corresponding Lagrange
multiplier u so thath, v andu satisfy the following:

(4.32) uh=0 (complementary slackness)
(4.33) u=>0 (sign restriction)

log(p; ™) — 65 (v, —vh)
4.34 ”‘) =V f(hv)= ( 2 2 )
(4.34) <0 S v) M* (0% (v, —vh))
(4.35) h>0 (constraint)

(gradient equation)
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As in the previous sections, there will be a unique KKT pdintv) € [0, c0) x
(0, 00).

THEOREM 3. Defined® =6" (v, —vh), where (v, h) minimizes (4.30)subject
to (4.31).1t follows that

(4.36) inf [1(p)] = 6%.
peF,

If ,01‘1 >r10+ rl,z,oz‘l and |Og(p2_1) < 95’, then the minimum action pathin F, is
acascadeof height 2 > Owith 6¢ = (log(p; 1), log(p, )); otherwise, the minimum
action path in F, isa bridge with ¢ = 6°.

ProOF We will argue thadv“ corresponds to the unique KKT point(h, v) €
[0, 00) x (0, 00); hence, this point must correspond to the global minimum.
Note that the second component of the gradient equation implies that we must
be looking for a solution corresponding to a pofht with M+ (@) = 0. This
point 6+ determinesy, » andu sincev = v{ (61), h = —v3 (1) /v, andu =
log(p; ) — 65

In order to have a KKT poiné™ with u > 0 we would have to havé = 0,
which corresponds to a bridge path. Henseé = #” and by (4.34), this occurs if
and only if (2.3) is false or Io@z‘l) > 05. (4.36) follows by substitution.

Alternatively, in order to have a solution with= 0, we would have to have
h > 0, which corresponds to a cascade path. Hefiites #¢ and this occurs if and
only if (2.3) is true and logo, ) < 65. Next, (4.34) requires;” = log(p, ) < 65
and M+ (0* (v, —vh)) = 0. Moreover,VM*(01) = (v, —vh). The two solutions
to M*(©* (v, —vh)) = 0 and 65 = log(p; 1) are (log(p; ), log(p; 1)) and
(Iog(r1.0+r1.205 ), 10g(p; ).

Substituting the second solution into (4.5) and (4.6) gives

- + ot _
VMT () = (k1 + Aorp1)e® — pae™ (ri0+ p3'r12),

- _ _ _pt +

A205 = Aora04 par12py e — Aara1e®1).

Notice that the first coordinate equz;\l§e91+ —pu1=Ar1((ri0+ rl,zpz_l) - ,01‘1).
This is negative if (2.3) is true and this is impossible siNdg ™+ (6) = (v, —vh)
with v > 0.

Substituting the first solution into (4.5) and (4.6) gives

VM™T(61) = (u1—Airio— Mrl,zpz_l, H2 — A2rz.0— Kzrz,lpl_l) = (v, —vh).

The first component ig1(o; * — (r1.0 + r1.205 1)) and this is positive since (2.3)

is true. The second component @ +(6T) is negative sincé™ is on the level

curveM*(0) =0 andd, < 65. (2.2) fails. Equation (4.36) follows by substitution.
O
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4.4. sSummary of flat boundary approach. Combining yields the following
result.

THEOREM4. For the modified Jackson network,

lim % log P(W € F(£)|W(0) = (0,0))

= Zlim %IogP(Wg € F(1)|W¢(0) = (0, 0))

=—inti(pI== _inf (]

If 65 < min{log(p; 1), 62}, then minimum action is#{ and the minimal action path
isajitter path along the x-axis. If |Og(,02_1) < min{eg, 93}, then the minimal action
is@] and the minimal action path is a cascade path that initially climbsthe y-axis.
Otherwise, 62 = 6] = 65, the minimal action is 67, and the minimal action path is
abridge.

PrROOF The only part of the proof that is not straightforward is showing that
if log (o5 1) < min{6J, 62}, then the conditiop; > r1.0+ r1.20; * of Theorem 3
holds automatically. To prove this, we will show thatdf™ < rio 4 ri205 "
and logp, 1) < 62, then6s < log(p;1). In other words, a jitter path will be the
minimal action path—not a cascade.

The (convex) functiorg~ defined byM~ (61, g~ (61)) = 0 is given at (4.28).
Simplifying,
il —e ™™ 4+ 11(1— ™)

- 91 =1+ =
s A2+ piry2e0

Differentiating ¢~ with respect tou] gives (1 — exp(—61))/(ho + niry2 X
exp(—@l))2 and this is strictly positive fob € [0, Iog(;ﬁ{/il)], where the_ end-
points are the zeros @f". Thus,g™ is strictly increasing inu] on[0, log(u]/A1)].
Furthermore, lim:_, o g~ (I0g(r1,0 + r1.205 1)) =log(p, 1), which is a point on
M+ =0.1f p* <ri0+ ri205 %, then the easternmost solutiérto M+(6) = 0
with 6, = log(p, ) is (log(ri0 + r1.205 ), l0g(p; ). It follows that M+ =0
and M~ = 0 intersect at a point in the positive quadrant going clockwise from
(log(r1,0 4 1,205 1), log(p; 1)) alongM* = 0 before hitting the axis. If, in addi-
tion, |Og(,02_1) < 95, then the point of intersection defineés, which must be the
minimal action path.

There is one boundary case which also must be eliminated. We must show
it is impossible thatd/ = 6¢ < 6%, If this did happen, therp/ = ¢ =
(log(py ), log(p;1). Since 6/ lies on M* and M~, it follows that
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g (log(pr™)) = p;*. Sinced’ < 6, it follows thatp < 1 and this reduces to
p5t <120+ rz107 . Now notice that whendt = g, that is, in the Jackson
case, we havg~(log(p; 1)) = ra2.0 + r2.107 * and this is strictly greater tham, *

as we just showed. This eliminates this casgjf= 1.1. Moreover, we showed
above thatg™(6y) is increasing inuj, so it will never be possible to solve

g (log(pr) =py . O

COROLLARY 2. For the Jackson network with 7 = u1, if (2.2) fails and
(r2.0+r2.1p7 ) > p5 1, then a cascade path is optimal, whereasif (2.2)fails and
(r2.0 + r2.1p7 1) = p, 1, then a bridge path is optimal. In both cases the minimal
actionislog(p; b, (Thisis no surprise since the steady state  is of product form
even in the cascade or bridge cases.)

PROOF.  In the Jackson case e¥j) = p; * and exh3) = (r2.0 + r2.107 ).
Hence, if (r2.0 + r2107) > p; %, then expds) > p, L. Using this, p > 1 by
substitution and Theorem 2 showé = 6”. This means exp’) > p,* and,
moreover, if (2.2) fails, then (2.3) must hold. By Theorem 3 it follows the minimum
action path is a cascade a#{d= log(p; b,

If (r2.0+ r2107 ) = p; 1, then by the above argument €ap) = p,*. Hence,
by Theorem 3, the bridge path is optimal aﬂfd: 6] = Iog(pl‘l). O

5. Another model exhibiting the bridge phenomenon. We can use the
above methods to obtain the rough asymptotica f, y) for a fork network as
introduced by Flatto and Hahn [7]. This model was later extended and described as
the bathroom problem in Chapter 16 of [15]. Couples arrive at a cinema according
to a Poisson process with rateand immediately visit the men’s and ladies’ room.
The service rate the men’s quauewhile the rate at at the lady’s queuedisThere
are also separate arrival streams, with rater single women and ratefor single
men.

We are interested in a large deviation of the men’s queue, so let this be the
first queue and the ladies’ queue the second. We could use the above methods to
obtain the rough asymptotics af(¢, y), but we don’t have to because the work is
already done in Section 16.2 in [15]. In the (unrealistic) casexv/(A +v) < B,
they show the most likely path for the men’s queue to reach a high kvel
before returning to zero is a jitter path along th@xis and the large deviation
rate is«o/(A + v) in agreement with [11]. In the (more realistic) case when
n+av/(A +v) > B, the results in [15] show the most likely path for the men’s
gueue to reach a high levebefore returning to zero is a path through the interior
(again in agreement with [11]). Moreover, among jitter paths, the large deviation
rate (for the more realistic case) is minimized by paths spending zero time on the
boundary.
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This just means that if, in addition to the men’s queue getting big, we require
that the ladies’ queue remain small, then the large deviation path is a bridge path.
The exact asymptotics af(¢, y) are calculated in [9] and are found to agree with
those in [7]. The derivation of these sharp asymptotics confirms our intuition about
the bridge behavior.
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