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LARGE DEVIATIONS OF THE EMPIRICAL VOLUME FRACTION
FOR STATIONARY POISSON GRAIN MODELS

By LOTHAR HEINRICH
University of Augsburg

We study the existence of the (thermodynamic) limit of the scaled
cumulant-generating functioh, (z) = |W,,|*1IogEexp{z|E N W,|} of the
empirical volume fraction& N W, |/|W,|, where| - | denotes the/-dimen-
sional Lebesgue measure. H&e= | J;-1(E; + X;) denotes @-dimensional
Poisson grain model (also known as a Boolean model) defined by a stationary
Poisson procesdl; = } ;>10x, with intensity A > 0 and a sequence
of independent copie&€q, E»,... of a random compact se€q. For an
increasing family of compact convex set®,, n > 1} which expand
unboundedly in all directions, we prove the existence and analyticity of
the limit lim,— « L, (z) on some disk in the complex plane whenever
Eexpla|Egl} < oo for somea > 0. Moreover, closely connected with this
result, we obtain exponentimequalities and tl exact asymptotics for the
large deviation probabilities of the empirical volume fraction in the sense of
Cramér and Chernoff.

1. Introduction and main results. The Poisson grain model (PGM; also
known as theBoolean model) is the best studied and most used random set
model to describe systems of randomly distributed and irregularly shaped clumps
in a Euclidean spac&‘, d > 1 [see Matheron (1975), Hall (1988) or Stoyan,
Kendall and Mecke (1995)]. It is the basic model in stereology and stochastic
geometry. Statistical analysis of a stationary PGM is mostly based on a single
realization of the union set of clumps in some reg@nhwhich is assumed to
expand unboundedly in all directions [see, e.g., Molchanov (1997)]. To be definite
in describing our problem, we first give a rigorous definition of a stationary PGM
as the union set

(1.1) g2:=JE+X)

i>1

of independent copie81, E», ... (grains) of a random compact s&p (typical
grain) that has distributio®, where the grains are independently shifted by the
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atoms Xy, X», ... (germ points) of a stationary Poisson procé€gs= ;.1 dx;,
with intensity A (=mean number of germ points in the unit cuf® 1)%).
Throughout this paper, all random eleneeare defined on a common probability
space[2, 2, P] and E denotes the expectation with respectPtoln particular,
Eo is a measurable mapping frofg, 2L, P] into the space of nonvoid compact
subsetsk of R? equipped with the Hausdorff metric ar@ coincides with the
image measure o Egl that acts on the corresponding Boeefield 95 (.K) [see
Matheron (1975)]. Note thag is a closed setR-a.s.) IfE|Eg + B, (0)| < oo for
r > 0, whereB, (x) denotes the closed ball with radius- 0 centered at € R¢
and| - | denotes the Lebesgue measur&ih[see Heinrich (1992)].

The main aim of this paper is to prove the existence and analyticity of the limit
(asn — o) of

logEexpiz|ENW,|}  onDa:={zeCt:|z| <1/A}

1
1.2) L,(z):=
" |Wal
for some O< A < oo provided that an exponential moment of the volujag)|
exists, that is,

(1.3) M(a) := Eexpla|Eg|} < o0 for somea > 0O,

and (W,,) is a convex averaging sequence of sets inR?, that is, eachW, is a
(deterministic) compact convex séty,) is nondecreasing and its union R
[see Daley and Vere-Jones (1988)]. Because of the conspicuous analogy to similar
problems in statistical physics [see Ruelle (1969)], we E&l) = lim,,_, oo L, (2)
thethermodynamic limit of (the thermodynamic functior), (z). The second aim,
which is closely connected with the first, is to derive inequalities and asymptotic
relationships (in the sense of Cramér and Chernoff) for probabilities of large
deviations of the empirical volume fractigh), := |E N W,,|/|W,,| from its mean
p:=E|EN[0, )¢ =P(0oe B).

In the special case of a bounded typical grain, thaBis< Br (o) for some
0 < R < o0, both problems were solved satisfactorily by Gotze, Heinrich and Hipp
(1995) using the device efi-dependent random fields with block representation.
The proving technique in the present paper is completely different from that
in Gotze, Heinrich and Hipp (1995) and does not require any strong mixing
properties of the PGM (1.1) as one would expect. In general, (1.3) does not imply
specific mixing rates as needed, for example, in Mase (1982) or Heinrich and
Molchanov (1999). However, in case of a spherical typical grain, (1.3) induces
an exponentially decaying-mixing coefficient [see Heinrich and Molchanov
(1999)]. Note that (1.3) does not even imply the closedne&sinfgeneral; see the
Appendix. For a positive random variab¥with infinite mean, the typical grain
Eo =10, X] x [0, 1/ X] exhibits such an example far= 2.

For this reason we choeshe probability spack, 2, P] (for its existence, see
the Appendix) in such a way that the mappiR§ x Q > (x, ») — 1g(w(x) is
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B(R?) ® A-measurable. This property allows us to apply Fubini’s theorem to the
0-1-valued random field(x) = 1z (x), x € R4, and implies that the function

14y p®(x1.... x) =EE(x1) - E(xx) =P(x1€ B,...,x; € B)

is B(R)-measurable for ang > 1 and|E N W| = [y, £(x)dx is a random
variable over[2, 2, P] for any boundedW% e B(R%). The functions (1.4) are
expressible (and vice versa) by the corresponding probabilities for the complement
Setz¢:

P& 1, x) = E(L—E(xp) - (1— E(xp))
=P(EN{x1,...,xx} = 9).

Since(g; + X;) N{x1,...,x} =2 iff X; ¢ (—8;) + {x1,...,xr}, the shape of
the probability generating functional (A.2) (of a stationary independently marked
Poisson procesH; o) for v(x, K) =1 — L_k)4{x,...x; (x) Yields

pR(x1, .. x)=E [T1@— L+t (X))

i>1

Note thatpg? (x1,...,x) =1—Tg({x1, ..., x;}) for an arbitrary random closed
set E with capacity functionalTz [see Matheron (1975)]. The study of the
sequencgl.2) is closely related with the behavior of the higher-oraeixed
cumulants

(1.7) ®, . ox) =T (EXD), ... E0n)  fork>1

of the random field& (x), x € R?}, where themixed cumulant (semi-invariant) of
any random variableg,, ..., Y; (having a finitekth moment) is defined by

(1.5)

(1.6)

k
= exp[—x U (Eo—xi)
i=1

k

a k
1.8) I'(Yy,....Y):=i kK ——"  logEexpli Y
(1.8) (Y1 k) =i 35195t g ZJX:;S/ 4/}

s1=+=5;=0

and I'r(Y) :=TI'(Y,...,Y) [obtained by puttingl = Y1 = --- = Y; in (1.8)]

denotes théth cumulant of Y. Directly from (1.8) it is seen that, fdr> 2,

(1.9) 1, ...ox)=TA—ExD,....1— &) = (=D ¥ (x1, ..., x0).
We are now in a position to formulate our main result.

THEOREM 1. Let E be the PGM (1.1) with compact typical grain Eg
satisfying (1.3)and let {W,,, n > 1} be a convex averaging sequencein R?. Then,
forany k > 2,

(1.10) /(Rd)“ 0, x2, ... x| d(x2. ... x1) < (k — D!H (@) Aa) 2,
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where H(a) := 8AM(a)(1 + exp(AE|Eol})/a?® and A(a) := 8(a + AM(a)) x
(1 + exp(AE|Eol})/a?. Furthermore, the limit L(z) = lim,_ o L, (z) exists and
is analytic on the open disk D).

The next result states Cramér’s large deviations relationships for the random
sequenceE N W, | and an optimal Berry—Esseen bound of the distance between
F,(x) :=P/IW,|(p, — p) < xo,,) and the standard normal distribution function
®(x) = [ exp(—t2/2)dt /2, where

o Var(|lENWy|)
0, =——
| Wil
:/ (W, 0 (W, — x)|
R4 | Whl
The following Theorem 2 is derived from (1.10) combined with a well-known

lemma on large deviations for a single random variable discussed by Staiusevi
(1966) [see also Saulis and Statufgus (1991), Lemma 2.3].

(exp(—A|Eo U (Eg — x)|) — exp(—24| Zol)) dx

THEOREM 2. Let the assumptions of Theorem 1 be satisfied and, in addition,
let E|Eg] > 0. Then 0,2 converges to a nonzero limit fRdc )(0 x)dx and,
for 0 < x < 0,/IWil/2A(a)(1 + 4H,) with H, = H(a)/20?2, the asymptotic
relationships

(1.11) 11__72’((;) p{ ZM(")<% an|>k}<1+0<%)>

and

(1.12) 2’((_)()) p{ \/—Zu(")( TWM)k}(”O(%))

hold asn — 00, where the coefficients

W = 1
kT k+2)(k+3)
k+1

k+1+1
ey () I
=1 k1+-+kj=k+1i=1
ki>1,i=1,...,1

(1.13)
L4218 N W)

02| Wy (ki +1)!

satisfy the estimate |1\ | < 4H, A(a)(2A(a)(1+4H,))* /(k+2) (k+3) for k > 0.
Furthermore, there exists some constant ¢ > 0 [depending on a, A, M(a) and 2]
such that

C
1.14 Fp(x) — ®(x)| < :
(1.14) xseljﬁl (x) —®(x)| < W
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Our next Theorem 3 provides large deviations inequalities for the unbiased
estimators

AW R EN(E-x)NW
| | and Gy = ENETDOW]

, xeRd,
(W] (W]

(1.15) pw:=
of the volume fractionp = P(o € E) and the covarianc& (x) = P(o € E,

x € B), respectively, in the case when the PGM (1.1) is observed on a sampling
window W e B(R?). Note that, in contrast to the volume fractign the
covarianceC (-) reveals information on the inner structure of the randontEqste
Matheron (1975) and Stoyan, Kendall and Mecke (1995)]. The deviation of the
estimators (1.15) from their meapsandC (x) is estimated under finite-order as
well as exponential moment assumptions put on the volume of the typical®gain

THEOREM 3. Let E be the PGM (1.1) with compact typical grain Eq that
satisfy E|Eg|® < oo for somereal s > 2. Furthermore, let W C R4 be a bounded
Borel set with inner points. Then there exist positive constants c§1) (A) and c§2) Q)
(depending on A and the moments E|Zol%, k=1,...,[s], s) such that, for any
e >0,

(1.16) P(Ipw — pl = &) <cPe*|w| /2
and
(1.17) P(ICw(x) —C@)| = &) <cP e~ |1W|™*/2  forall x € R%.

If Eg satisfies condition (1.3), then the Bernstein-type inequality

P(pw —p=¢)
1-p , : H(a)p
(1.18) - eXp{_ZH(a)g lWl}’ T0=e= Ala)(1-p)’
exp{_L8|W|}’ |f82 M,
2A(a) A(a)(1—p)

holdsfor any0 < p < 1and H (a), A(a) fromTheorem1. Exactly the same bounds
hold for the probability P(py — p < —¢).

In Theorem 4 below, we derive a Chernoff rate function [see Dembo and
Zeitouni (1998) and references therein] for the sequence of empirical volume
fractions p,, in terms of the thermodynamic limiL(z), which provides an
extension and refinement of the relationship (1.12) for thealuesx(e) =
e/IWyl/o, with ¢ € (0,¢*), where ¢* is determined by the slope of the
functionL(h) ath = 1/A(a).
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THEOREM 4. Under the assumptions of Theorem 2 the large deviations
relationship

. logP(pn—p=¢) . _
(1.19) Jim A = Oshl%(a) g(h) = g(ho(e))

holds in the interval 0 < & < &* := limy41/a@) L' (h) — p, where g(h) =
L(h) — h(e + p) and ho(e) is the unique solution of the equation g’(h) = 0,
that is, L'(h) = ¢ + p. A corresponding relationship is valid for the probability
P(p, — p < —¢), where the function g(h) is defined for # € (—=1/A(a), 0] and
with —¢ instead of ¢.

This result touches the question of whethgr satisfies the large deviation
principle, the answer to which seems to be unknown so far. Without giving details
we mention only that the limit lig, « L, (k) exists, on the negative real axis,
which can be shown by the methods of Ruelle [(1969), Chapter 3.4]. For related
problems concerning large deviation principles for stationary independently
marked Poisson processes, refer to Georgii and Zessin (1993). Similar results for
Young measures related to Poisson grain models have been proved by Piau (1999).

The rest of this paper is organized as follows: In Section 2, we investigate (1.2)
for a quite general random set model (Lemmas 1 and 2) and put together the
required tools from point process theory presented in a rather general setting
(Lemma 3). In Section 3, we are concerned with the proof of Theorem 1, which is
divided into several steps (Lemmas 4-7), whereas the proofs of the Theorems 2,
3 and 4 are deferred to Section 4. The Appendix contains, among other things, the
construction of a measurable random field) = 1z(x), x € R, and a criterion
for (non-)closedness of the PGHEIgiven by (1.1).

2. Preliminary results and relationships to point processes. We first
investigate the behavior of the cumulariig(|2 N W,|) and give a condition
which guarantees the existence and analyticity of the limit of (1.2) for the support
setE = suppé) of an arbitrary 8(R?) ® )-measurable, 0-1-valued, stationary
random field{ (x), x € R?}. We use the same notation as in Section 1. Lemma 2
states that this condition can be expressed by the total variation of the reduced
cumulant measures of the Cox process

(2.1) g = (1-1a(¥)dy,,

i>1
which is directed by the random measurg,. 1) (x)(1 — £(x))dx =z|E° N ()],
where IT; = Y ,.18y, iS a stationary Poisson process with intensity- O
that is independent of. In the second part of this section we introduce a
family of correlation measures for arbitrary stationary point processes and derive
(Lemma 3) a recurrence relationship for the corresponding Lebesgue density
functions provided they exist. Lemma 3 is the key to prove Theorem 1 and it seems
to be of interest on its own.
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LEMMA 1. Let {£(x),x € RY} be a measurable, 0O—1-valued, stationary
random field on R? with support set E := {x € R?:£(x) = 1}. Then, for any
bounded W € B(R?) and k > 2, we have

(2N WD < [W|Gr(E)

with G4 () ::/

(k)
(Rt cg'(0,x2,..., xk)|d(x2, e XE).

Furthermore, let (W,),>1 be a convex averaging sequence. If G¢(E) < oo for
some k > 2, then

. TR(JEN WD) / (k)
2.2 im —— = co’'(0,x2, ..., xp)d(x2, ..., Xxk),
(2.2) Jim A (aye1 B (0, x2 ) d(x2 19

and if Gx(E) < k!lHA*2 for some H, A > 0 and any k > 2, then the
thermodynamic limit L(z) =lim,,_,» L,(z) exists and is an analytic function on
the open disk Da, where L, (z) is given by (1.2) with & := {x € R?:&(x) = 1)
[instead of (1.1)]. For z € Dx, thefunction L(z) admitsthe power seriesexpansion

2
L(z)=zp+ ZE'/R‘I(C(x) _pZ)dx

k
z (k)
+Zk! /;Rd)k—lca (0,x2,...,x)d(x2,...,Xk),
k>3

where p .= p(El)(o) (volume fraction of E) and C(x) := p(EZ)(o,x) (covariance
of ).

PrROOF Using Fubini's theorem and the definition (1.4) we may write

k k
EHlEﬂBilk:EH/ §(x;) dx;
o i—1”Bi
(2.3) i '

k
= P(g)(xl,-..,Xk)d(XL-..,Xk)-
B1x---X By

A direct calculation of the logarithmic derivatives in (1.8) leads to
k

J
(24) I'(Y.....Y0=Y -D/G-n Y HE(H Yki)

j=1 KiU--UKj=Ki=1 kieK;

[see, e.g., Saulis and Statuléiis (1991)], where the inner sum is taken over all
decompositions oK = {1, ..., k} into j disjoint nonempty subset, ..., K.

From (2.4) and (2.3) and by repeated application of Fubini’'s theorem, we see that
the integraI[BlX,.,XBk F'Exy), ..., E(xk)d(x, ..., xx) coincides with["(JE N
Bil,...,|E N By]). This means, settin§1 = - -- = By = W and using (1.7), that

@5 rEnwh= [ @m0 dr .0,
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The stationarity of the random field (x), x € R?} implies the invariance of the
mixed cumulants (1.7) under diagonal shifts, that is,

k
(2.6) B g, x2, . x0) = %0, x0 — x1, .. 0 — x1),

whence, by substituting; = x; — x1, j =2, ..., k, it follows that

— k
Fk<|mW|>=/ / ® 0, y2. ...,y L (x1)
(Rd)kfl Rd

k

x [11w(y; —xDdxid(ya. ... ye)
j=2

— (k)

= /(Rd)k_l cg (0,x2,...,Xk)
X|WNW—=x)N---N(W —xp)|d(x2,...,x1),

proving the first part of Lemma 1. The limit (2.2) is an immediate consequence

of Lebesgue’s dominated convergence theorem and the fact that, in view of the

geometric properties of th&,,’s [see Fritz (1970)],

Wy (W, —x1) NN (W — xp—1)|

lim =1
for any fixedxy, ..., xy_1 € R%.
The power series expansion of (1.2) is
Tr(IEN W, ) ¢
Ly(2)=pz+) ——"
=2 |W,| k!
and, hence, by our assumptions,
|z|k
|Ly(z) — pz| <
k>2
_ z|°H 1
<1zIPH Y (Izla) sz forfzl < =

k>2

Thus, for anyn > 1, L,(z) is analytic on the open distb, and, by (2.2),
L, (z) converges toL(z) uniformly in any closed subset ab,, proving the
analyticity of L(z) on Dp. O

To obtain estimates of the fornﬁ} (E) < n'HA"2 in the case of the

PGM (1.1), we first show that— 2)"c® coincide with thenth-order cumulant
density of the Cox process (2.1). In the second step we introduce a family of

correlation measureg."" and their Lebesgue densities, and study them for
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v = H(El). In Section 3 we perform a somewhat involved and rather lengthy
inductive estimation technique to derive bounds of the total variation of these
correlation measures in terms of moments|&@p| when E is given by (1.1).
The basic idea of this method goes back to Ruelle (1964) [see also Ruelle
(1969), Chapter 4.4], who developed it (without using the terminology of point
processes) to prove the existence of thermodynamic limits for grand canonical
Gibbs ensembles with pair interactions. An extension to ensembles with higher-
order interactions was tried by Greenberg (1971), but it fails in our situation.

To begin with, we briefly recall the definition of theth-order factorial
moment (and cumulant) measwg’) (andy(”)) of a point proces¥ =3 ";. 16z
that satisfiesEW” (K) < oo for K € X by means of its probability generating
functional Gy [w] = E([[;>1 w(Z;)), wherew: R? > [0, 1] is Borel measurable
such that - w has bounded support [see, e.g., Daley and Vere-Jones (1988)].
Settingwp-Br(x) = 14 3_ (v, - Dl () forl—2 <v;<1,i=1....n

.....

and boundedy, ..., B, € %(Rd), we define

oy i 9" Bi.....B
X Bj|:= Im ————Gy[wit)lr
(]—1 ) Ul,uv,UnTl avlavn \IJ[ Vl,.eeny Up ]
and
j=1 vi,nvptlduy - - v, - Vb n

If ozf;) (resp.yé,”)) is absolutely continuous with respect to the Lebesgue mea-
sure onR%", then we denote the corresponding (factorial) moment (resp. cumu-

lant density) bypl” (resp.cl”). In the sequel we often writp(’ (X,,) instead
\I,)(xl, ..., Xp), WhereX, stands for the (unordered) point det, ..., x,}. In

case the point procedsis stationary, there exists a unique (signed) meagfjfﬁgd

onB(R4"—1D)—callednth-orderreduced cumulant measure—such that

(n)( ) / Vé;n?ed< X (Bj —X)>

(2.7)
for any boundedy, ..., B, € B(R?).

Finally, a stationary point process is said to beBrillinger-mixing [see, e.g.,
lvanoff (1982) or Heinrich and Schmidt (1985)]Ef" ([0, 1)¢) < oo and the total
variation vaty,eq) on R4~ is finite for alln > 2.

LEMMA 2. Let E be the support set of a measurable, 0—1-valued, station-

ary random field {&(x),x € R?}. Then the nth-order reduced cumulant mea-

sure y(’?) of the Cox process (2.1) exists for any n > 2 and its total variation
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(if it exists) takes the form

var(y 1ty ) =2"Gu(8)
with y(") d(B) = (—Z)"/ c(E")(o, X2, ..., xp)d(x2,...,X,)
B

for B € B(RI"~D). Consequently, 1’ is Brillinger-mixing iff G,,(E) < oo for
aln>2.

PrROOF From the shape of the probability generating functional of a Cox
process directed by an arbitrary random measure [see Daley and Vere-Jones
(1988), page 262], we deduce that

GH(EZ) [w] = EeXp{Z/I;d(U)(X) — 1)13(7(){?) dX},

which in turn, using the above definitions of moment and cumulant measures,
provides

n
(n) r—~c
o N B;]
n9<,_1 ) H

and

é’%(x B; ):z”F(IEcﬂBll,...,|EcﬂBn|),

Hence, repeating the steps in the proof of Lemma 1 that lead to (2.3) and (2.5)
(with E¢ instead ofZ), we recognize that, foB € B(R),

<") L (B) =2 / p®(X,)dX, and y(") (B)=z"/c(5nc)(Xn)an,
B B

WhereX ={x1,... x,,}anddX =d(x1,...,x,). Thus, thenth-order cumulant

density ofl‘I(Z) equaIsZ”c . The proof is completed by appealing to (2.6),
(2.7) and the very definition of total variationd

We now introduce a further family of (signed) measuré’%’”) onB(R™*") for
n, m > 0 associated with the point procegswhich is assumed to admit moment
measures of orden + n. For boundediy, ..., A, B1,..., B, € B(R?) define

y(m")<XA x XB)
i=1 j=1

A1,..,Am,B1,..., B,
an+m G\I/[wul umnjvl,...,vn n]

.....

Ug,eosttiy 1 OV -+ - 0V, QUL - - Ollpy qu[wvll""blj"]

.....
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For the sake of distinction, let us caz{f,’"’”) the (factorial)correlation measure
of order (m,n). In case the moment densipyf " exists,y"" has a Lebesgue
densﬂyc(’" " which we callcorrelation density of order (m, n). Note that Ruelle

(1964) apparently first introduced the densitié%’”) via an algebraic method to
study cluster properties of the correlation functions of classical gases.

It is evident thaty"" is symmetric in the firstz as well as in the second
n components, but not completely symmetric. By logarithmic differentiation

with respect tov; in the above definition oﬁ/(”) we see thaty(") coincides

with y(l "D forn > 1 and, thuscf;’) = cfl,l "Diorn>1 provided the densities

exist. Moreover, for fixedn > 1 and any: > 1, the relationship between factorial
moment and correlation measures,

(m+n)<XA X XB)

l 1 j:l
(2.8)
= X " ”')(XA x X B) o “( X Bj>,
GCJCN i=1 jel JEN\J
N={1,...,n}

holds, where the summation extends over all subset§ N with |J| elements.
For reasons of consistency, g% (X", A;) =« (X", A;) (= 1 form = 0)
andy(o”)(x’}lej) =0forn>1.

To verify (2.8), let us briefly write D, for 9"/dvy---dv, and D, for
9™ /duy - - - du, and put

Then (2.8) is obtalned by applying Leibniz’s rule for higher-order derivatives of
products of functions to the right-hand side of the identity

Du(f (., v)) = Dy(g(w) - h(v))  with h(v) = W.

We conclude this section with a recursive representation of the correlation

denS|tyc( ™) in terms of the den3|t|ezsf1’," Lrjin=p i _1 ... n.For notational
convenience, we omit the superscripts (if confusion is excluded) and write

cy (X, Y,) instead ofc(m Xy« vy Xy V1o -+ oy V), Where X, = {x1, ..., Xm)
andY, = {y1, ..., y,} are two disjoint sets of distinct points R¢. Furthermore,
put X, , =X, \ {x1} and let|Y| denote the cardinality of a finite point set

Y C R

LEMMA 3. Let W be a point process on R with strictly positive factorial
moment densities p\(f) fork=1,...,m+n > 1.Thenwe have
2.9) cwoXm,Yi)= ) (- 1>‘Y'Kw<xm, Y)ew(Y UX,, 1, Y\ 1),

oYY,



LARGE DEVIATIONS FOR POISSON GRAIN MODELS 403

where

Ko (X, Y) = Z (—1)V! py(VUX,)
gcvcy pw(V U Xl/n—l)
(2.10) o
form,|Y|>1,YCY,

and Ky (X, @) = pu(Xm)/pw(X,,_4) form>1land Ky(2,Y,) =0forn > 1.

PrROOFE The relationship (2.8) reads, in terms of densities, as

(211) pyv (X, UY,) = Z co(Xm, V) pu (Y, \ V).
BCYCY,

Given the moment density functiops; (Y), Y C Y, with py (@) = 1, there exist

unique symmetric functiongy,(Y), ¥ C Y,, with p§ (@) = 1 that satisfy the
equations

(2.12) Y Pi(WMpe(Y\V)=0 forg#Y CY,.
VY

By means of the functiongy, (Y') we may invert the “convolution equation” (2.11)
by calculating the sum

Y P\ V)pu (X UY)

oYY,

= > Py \Y) D> coXp, VIpu (Y \ V)

@cyYcy, @cvey

= Y cwXnV) Y. piT\V)pe(Y\V).
PCVCY, Y:VCYCY,
Since, by (2.12), the second sum in the last line vanishes for all proper subsets
V C Y,, the whole last line is equal toy (X,,, ¥,). Using this identity and the
relationship

Z —DWVKy (X, V) = M

; forocycCy,
@gvgy p\IJ(YUXm_l)

obtained from (2.10) by using the Mdbius inversion formula [see Rota (1964)], we
may proceed with

C\Il(XnuYn)
= Y pyu\VpeYUX,_p) Y (DVIKg(Xn, V)
GEYCY, gCvVeYy

= > ODVKeXn. V) D pLMa\V)pe(YUX, )
VY, Y:VCYCY,
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= Y DVKeXu, V)

GCVCY,

xS P\ VAU pe(UUVUX,_y.
SCUCY,\V

Applying again the above derived identity, we see that the second sum in the last
line equalsey (V U X, 4, Y, \ V), proving the asserted relationship (2.9)]

3. Absoluteintegrability of thecorrelation densitiesof the Cox processl'I(El)
and proof of Theorem 1. Throughout this section we consider the factorial mo-
ment and correlation densitigg, andcy merely with respect to Cox proceEé_u-l)
defined by (2.1) for the PGM (1.1). For notational ease, we indicate this by omit-
ting the subscrip® at py, cy andKy. Our aim is to obtain bounds of the integrals
Jgan lc({0}, Y)|dY, [= G,(E) by Lemma 2] under suitable moment conditions
on |Epl. To do this, however, our inductive proving technique requires us to esti-
mate the integral$gan |c (X, Y,)|dY, uniformly in X,, € R for anym > 1.

Let X,,, X/,_, andY, be the finite point sets introduced at the end of Section 2.
Furthermore, for any finite subsetc R4, putZo(Y) := Uyer (Eo —y) [and thus
E6(Y) =(yey (Eg — »)]. Foranyn > 1 andY C Y,, define

(3.1) SXm, Y):i= Y. (—D"VexplE(x1; X),_1, V)},
VY
where
Ex;U,V) ::AE|(E0—x)ﬂEg(U)ﬂEo(V)| forx ¢ U
and, foranyY C Y,_1:=Y, \ {y.},
B2  TOwXm V)= > (DVexp—E(x1, yu: X;,_1. V).
VY

where E(x, y; U, V) := AE[(Ep — x) N (Eg — y) N EG(U) N Eo(V)] for x #y,
x¢U and y ¢ V. Note that E(x,y;U,2) = E(x;U,2) = 0, implying
S(X}’l’h @) = T(ym Xma @) = 1
From (1.6) it is clear that
p(VUXy)

p(VU—X;n_l) = exp{—AE|Eg| + AE[(Eo — x1) N Eo(V U X,,_I}

= exp{—AE|(Eo — x1) N EG(X,,_ I} exXplE (x1; X;,_1, V)1,
so that, by (2.10) and (3.1),

(3.3) KXy, Y)=exp{—AE|(Eg—x1) N ES(X;n_l)l}S(Xm, Y).

Next we establish a recursive representatiors @, ¥,,) with respect toy,, in
combination with the nonnegative termiyy,, X,,,Y) for ¥ C Y,,_1. It turns
out (see Lemma 5 below) that the integrdlg, 7 (y,, Xm. Y,—1)dY, can be
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represented as functionals of certain PGM (3.6), which enables us to derive
upper bounds of them under reasonable moment conditions on the volume of
the typical grainEqp. By means of these bounds and the following Lemma 4
we find corresponding bounds @fa. |S(X, Y,)|dY, which in turn, using (2.9)

with (3.3), enable us to establish the desired boundgef|c(X,,, Y,)|dY,; see
Lemma 7 below.

LEMMA 4. Wehave
SXm, Yn) = SXm, Yu—1)(L— explE(x1: X, _1. {(yaD})
— exp{E (x1; X, 1, {y])}
x Y TOwXmY)

ICYCY, 1
x eXpE (x1; X, _1, Y)IS(Xu UY, Y1\ Y).
PROOF By the definition of the term& (x; U, V) andE (x, y; U, V), and the
relationshipA| + |B| — |A N B| = |A U B| for boundedd, B € B(R%), we get
E(x1; X, 1, Y U{yn})
=E(x1; Xp_1. (o) + E(es Xp_1, Y) — E(x1, yu; X1, ¥)
foranyY C Y,_1. Furthermore, we may rewrite the su§0xX,,, ¥,) as

Yo DM explE(xy; X),_1. Y)} — exp{E(x1; X;,_1. Y U {ya})}).
GCYCYy-1
This combined with the foregoing relationship leads to
S(Xom, Yn) = S(Xm, Yn-1)
—exp{E(x1: X,, 1. {(yaD}
< Y (—DMexplE(x1: X, _1.Y) — E(x1. yu: X),_1. 1)}
PIYCY, g
A simple application of the Mdbius inversion formula [see Rota (1964)] to the
terms (3.2) yields
eXp{—ECGeL yu: X, 1. V=14 Y DYIT(,. X, U), YCVY,1
gcucy
Inserting this identity on the right-hand side of the previous equality we arrive at

SXm, Yy)
=SXm, Yn—1) (1 —expl E(x1; X, _1, {yu}D})
—exp{E(x1; X),_1, (v D}

x Y > (=), X, U) eXpE (x1; X, 1. V)
FCYCY,_1oCUCY
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By interchanging the sums and substitutivig= Y \ U we obtain that
Yoo Y ()T, X, U) explE (x1; X;, g, Y))

PCYCY, 19CUCY

= > > )"HEIT (G, X, U)
@CUCY,_1Y:UCYCY,_1
x eXplE(xy; X! 1, (Y \U)UU)

m—1>

= Y TOwXuU) Y (DVexpE(y X),_1. VUU)).
oCcUCY,-1 GCVCY,_1\U

Since|A U B| = |B| + |A N B€| for any boundedi, B € B(R?),
whence, by definition (3.1), it follows that

> )VexplE(x1: X),_1, VUU)}
GCVCY,_1\U

= exp{E (x1; X,/n_]_, DOISX, VU, Y, 1\ U).

Finally, assembling all the above identities we obtain the assertion of Lemma 4.
O

LEMMA 5. Let E bethe PGM (1.1) with compact typical grain Egp satisfying
E|Z0/"t! < oo for somefixed n > 2. Then, for any m > 1,

SUp/ T(ynv Xm’ Yn—l) dYn
Xom Rdn

(3.4) <(n—1)!

y fﬁ 5 E|Zo|" 2 E|Eo"2*t  E|EoI™ !

k! '

k=1 """ ni+no+--+nx=n—1
ni,...,np>1

If condition (1.3) is satisfied, then the estimate

n n—2
(3.5) SUp/ T(yn,Xm,Yn_l)dynfn!(E) AM (a) (1+AM(a))
Xm Rdn

a

np! no! ny!

a a

holdsfor all n > 2and m > 1.

PROOF According to the definition (3.2),

T(n, X, Y1) = Z (_1)|Y‘ exp—E (x1, yn; X]//n_l7 Y)}.
@CYCY, 3
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Now, for any nonempty C Y,,_1, we introduce a new PGME (x1, y,; X;n_l, Y)
governed byIl; = 3 ;.1 8x, and the typical grainEo — x1) N (Eo — yu) N
E§(X! ;) N Eo(Y), thatis,

E(x1, Yn; Xjp_1,Y)
= J((Bi —x1) N (Ei — ya) N ES(X),_1) N E;(Y) + X;),

i>1

whereg;(Y) = Uyey (Ei —y) andE{(X;,_) = ﬂ’]’?:z(Ef —Xj).
Obviously, for each realization of the PGM (3.6), we have

(3.6)

EGL s Xy 1. V)= J EGayns X g, 0D fory <y, a.
yeY

Applying the well-known formuleP (o € E) = 1 — exp{—AE| Eo|} [which is valid
for the PGM (1.1)] to the stationary PGM (3.6) we see that

eXP—E (x1, Y3 X1, )} =P(o ¢ B(x1, yui X}, 1, 1))
—1-— P(U o€ 8(x1, yn; X,,_1, {y})})-
yeyY

SinceY gcycy, ,(—1Y' =0, it follows from the inclusion—exclusion princi-
ple that

TOn X, Yom)=— Y <—1)'YP(U{oeE(xl,yn;X,Qz_l,{y})})

GCYCYy1 yey

n—1
= P(ﬂ {o € B(x1, yn; X)_1, {yi})})

i=1
n—1
= E(H 1E(x1,yn;X£n_1,{yi})(0)>'
i=1
Thus, by Fubini’s theorem,

n—1
Adn T (yn, Xm, Yn-1)dY, =,/RdE(,/Rd 1E(x1,yn;X;n_l,{y})(0)dy) dyn

and, for each realization of (3.6),

/Rd Le(trnyahx;, pyp(@dy < /Rd Y LN (Ei—yon(Ei—y) (Xi) dy

i>1

<> 18ilLE—xpn(@i—ym (Xi),

i>1
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whence, by applying the polynomial formula and using Fubini’'s theorem again,
we get that

n—1

nmly (n — 1)!
ny!---ng!

k
XE( Z* 1_[(1(Eij_xl)m(aij_yn)(Xij)lEij|nj)>
i1

i1 ensip>1 j=1

n—1 )»k

=(n—1)!zF

k=1"" ni+--+n=n—-1j=1

k — — — .
Z l—[ E[(Eo —x1) N (Eo — yu) | Eol™

-
nj.

Here the sun}_* stretches ovelt-tuples of pairwise distinct indices and the last
equality is obtained by applying the Campbell-type formula (A.3)falx, K) =
Lk —xpn(k —y,) (X)|K|". Together with the obvious relationship

(3.7) [, 10— (o= )l dy, = |0l
we finally arrive at the desired estimate (3.4).
The existence of the exponential mome¥ia) of |Eg| implies E|Eg|* <

k!M(a)a=* for all k > 1. Inserting this moment bound in the right-hand side
of (3.4) and taking into account

k
S+ [[e+D < (Z: 2) 2'n,

ny+--+ng=n—1 i=1

we obtain that

n—1
/R dE( /R o 20,y X\ e () (0) dy) dyn

- "—!nf (:M (@)* (n - 2) o

San &k k-1
n n—2
Sn!(%) AM (a) <1+ kM(a)) |
a a a

This is exactly the desired estimate (3.5). Thus, Lemma 5 is completely proved.
O
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LEMMA 6. Let E be the PGM (1.1) with compact typical grain Eq that
satisfies E|Eg|" 1 < oo for somefixed n > 1. Then, for any m > 1,

(38) SUp‘/;gd [S(Xm, Y)|dY, < cu(X) < 00,
Xm n

where the constant ¢,(1) depends on A and the first n + 1 moments of |Eg|.
Moreover, if condition (1.3) is satisfied, then (3.8) holds with

(3.9) ca(M) =n!A"B(1+ B)" !

for all n > 1 andm > 1 with A = 2(1 + exp{AE|Eol}) = ggjig and B = 2@

PROOF In view of the obvious inequalities
E(x1; X;,_1, {y1)) <E[(Eo — x1) N (Eo — y1)| < AE|Eo|

ande* — 1 < xe* for x > 0 together with (3.7) we see that
/Rd 1S(Xom, {y1)|dy1 = /Rd (exp{E (x1; X;,_1, {y1))} — 1) dy1

< expAEIBol) [ | EI(E0—x1) N (Bo— yp)ldys
A
= ——E|Eol*.
1-p
Define

Am,n =3sup |S(Xm, Yn)| dYn and Bm,n = SUp/ T(yn, Xm, Yn—l)dYn
X, J R X,, J R

for m,n > 1. From Lemma 4 and (x1; X’ Y) < AE|Ep| for Y C ¥,,_1 we get

. A m—1°
the inequality
-~ 12
Am,n =< Am,n—ll _ pEl Eol
(3.10)
P nijl (” - 1) By ir1A
(1 — p)z P k m,k+1m+k,n—k—1

with A,,.0=1 andA,, 1 < AE|Eo|?/(1 — p) for anym > 1. Since, by Lemma 5,
By k+1 < k!ICk for k > 1, whereCy depends ork and the firstt + 2 moments
of |Eg| but not onm, we recognize by induction om, thatA,, , <n!D,, where

Do =1, D1 = AE|E0|%/(1— p) and

n—1

Dy=—*(DyaCot —— > CiD
= —1C0 k —k—1
T @-pn " -ri
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for n > 2 with Cg := AE|Eg|%. Therefore,A,, , does not depend om and is
bounded by terms that involve merelyand E|E¢/F, k = 1,2,...,n + 1. This
proves the first part of Lemma 6.

We also prove (3.9) by induction on From (1.3) we geE|Eq|? < 2M (a)/a?,
implying
20M (a)
a?(1-p)’
which is even slightly stronger than (3.9) far= 1. Assume now the validity
of (3.9) forn =1,..., N — 1. Taking into account the estimat®s, y+1 < k!Ci
with C = (k + 1) B(3)*+1(1 + B)*~1 for k > 1 as stated in Lemma 5 together
with Co < 2B/a, we may write

Dy < =

Y=Na-p)

Am.1 < D1 < AeXP{AE| Eo|}E|Eo|? <

2B
x (AN—lB(l + B)N—2==
a

1 N-1 2\ k+1
+ — Z(k+ 1)B<_) (1+B)k—1AN—k—1(1Jr B)N—k—l).
- p k=1 a

After a short calculation using that,.,(k + 1)(%)" =1-p@-—p), we
arrive at

Dy <AYBA+BN1  forN=>2
Thus, the second part of Lemma 6 is proved]

LEMMA 7. Let E be the PGM (1.1) with compact typical grain Eq that
satisfies E|Eo|’”rl < oo for somefixedn > 1. Then, for anym > 1,

(3.11) Sup[ e(Xom, Yol dYy < e (2) < 00,
Xm RAn

where the constant ¢, ,(A) depends on m, A and the first n + 1 moments of | Eg|.
If condition (1.3) is satisfied, then (3.11) holds with

(3.12) Cmn (W) =n12"T1AB(4A(L+ B))" !
for all n > 1andm > 1 with A and B asin Lemma 6.
PROOF ReplacingK (X,,, Y) in (2.9) with (1.6) leads to
c(Xm, Yn) = eXp{—)\EKEo —x1) N ELO(X;/n_l)l}
x Y (=DYISXp, Ve UX),_1, ¥y \ V).

m—1>
oYY,
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Sincec(X,,, @) = exp{—A|Eo(Xn)|} <1 by (1.6),c(2,Y,) =0forn >1 by
definition andS(X,,, @) = 1 for m > 1, and since botl§ (X, Y) andc(X, Y) are
symmetric inY C Y, for fixed X, we deduce from the latter recurrence relationship
the inequality

[, e ¥l aY,

5/ |C(X1/n—]_a Yn)ldYn+/ |S(Xm, Yn)|dY,
Rdn Rdn
(3.13)

n—1
n
+1;1(k)/de|S<Xm,Yk)|dYk

X sup lc(Ye U X1, Y \ YOI d (Y \ Yi).
Yi Rd(n—k)

For anym > 1 we have
[ 1eCtn. (3D1dy = [ exp-AEIZ0(X) U (B0~ )])
Rd Rd

x (1 — exp(—AE|Eo(Xm) N (Bo — y)|)) dy
< M1 — p)E|Zo(Xn)|Eo| < AmE|Eol*.

Using the estimate (3.8) of Lemma 6 and applying (3.13) successively to the
remaining integrals on the right-hand side of (3.13), we obtain a bound of the
left-hand side of (3.13) in terms @f (1), k =1,...,n, and sup [ri [c(X U Y,
{(yaDldyn, Y € Y,_1, X € X, ;. This combined with the foregoing inequality
proves (3.11).

We now assume (1.3), which giv&$ZEo|? < 2M (a)/a?, so that together with
m < 2m—1’

| 1eCtn. ty1dy <27 2aB,

which implies (3.12) fom = 1 andm > 1. Let now (3.12) hold for alln,n > 1
that satisfym +n < M + N. Then, making use of estimate (3.9) of Lemma 6, it
follows from (3.13) that

[y e Yl Yy

<N2Y=2(4A)VB1+ BN T+ N1AVNB1+ BN
N-1

+ N Y ARBA B 2M 2441 4 B))NTH
k=1

=N12Y¥14ANB@a + BN L 1 + _1 + Nfi
-t 2 22N+M-1 = 2k+1 |[°
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Thus, the validity of (3.12) fom +n = M + N follows because the sum in brackets
does not exceed one faf + N > 2. This completes the proof of Lemma 7]

PROOF OFTHEOREM 1. As an immediate consequence of (3.12)/doe 1
and Lemma 2 applied to the stationary PGM (1.1), we obtain that

(314) Gua(® = [ | lelo) VldY, < cra() <n4AB@EACL+ B)"
R n

for all n > 1. Thus, by the definition oA and B in Lemma 5, we get (1.10) with
H(a) =4AB andA(a) = 4A(1+ B). Finally, the existence and analyticity of the
thermodynamic limit (z) of the function (1.2) on the disR () follows from the
second part of Lemma 1.0J

4. Proofsof Theorems2-4.

PROOF OFTHEOREM 2. From Lemma 1 and (3.14) we get the estimate
(4.2) T (IENW]| < [W|(k — D)!H (a)Aa) 2 fork>2

and anyW e B(R?). For the standardized random varialgle:= (|E N W, | —
PIWu D /ona/TW,| (wWith o, > 0), (4.1) implies that

H(a) k'H,
(4.2) Ml = = D1g oy <o fork=3

n

n

with H, = H(a)/20? and A, = 0,+/TW,[/A(a). Note that the asymptotic vari-
ance |imz_>ooa,12 = [pd C(EZ)(O,x)dx is finite and strictly positive iff

0 < E|Eg|? < oo. In this case we can find suitable upper and lower bounds of
¢@ (0, x) = exp{—AE|EoU (Eo — x)|} — exp{—21E| Eo|} that lead to the inclusion

E|Eol?

exp{—2LE|Eo|}(1 — exp{—AE|Eol}) Elo]

< /dcg)(o,x)dx < AE|E0|2 exp{—AE|Zol}.
R

The estimate (4.2) enables us to apply&p a well-known lemma on large
deviations of a single random variable proved by Statglasi (1966) which
immediately provides the asymptotic relationships (1.11) and (1.12) as well as
the Berry—Esseen bound (1.14) stated in Theorem 2. To be precise, according
to the result by Statuledius (1966), the relationships (1.11) and (1.12) are
only valid in the narrower interval & x < §*A, for any §* < 8o(1 + 80)/2,
wheredp € (0, 1) denotes the unique real root ¢f — §)° = 6H,,8. Indeed, since

H, > 1/2, by (3.14) forn = 1, we haveso(1 + 8g) < 8o/(1 — 80)° = 1/6H,, <
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1/(1+4H,). Using again (4.1) and the inequalify}**) < 2+/, we can estimate

the coefficients (1.13) as
A(a)ki H(a)
> (A

ki+-+k=k+1i=1

_ 2A@Mt R N\ 2H@)
_<k+2><k+3>,221(l—1)< o2 )
_ 4H,A()

T k+2)(k+3)

for k > 0. Therefore, the serie} ;g M,((”) (x/o,/TW,])¥ converges absolutely
for |x| < A,/2(1 4+ 4H,), and theO-terms in (1.11) and (1.12) can be easily
verified by evaluating the remainder terms given by Stattilesi(1966). Thus,
(1.11) and (1.12) are valid for the whole intervakO: < A,,/2(1+ 4H,,), which
completes the proof of Theorem 2

1 k+1

(n) ok+l
= (k+2)(k+3) Z

|14

(2A(a)(1+ 4H,))

The proof of the large deviations inequalities stated in the Theorem 3 relies
on Chebychev’s inequality combined with Lemma 7 and (3.14) [resp. Lemma 1
and (1.10)].

PROOF OF THEOREM 3. For any integerN > 2, the Nth moment of a
random variable¥ can be expressed by its cumulamgY), k =1,..., N [by
inverting (2.4)] in the manner

N
N! DY) Ty (Y)
(4.3) Z_ Z ny! ng!
! ny+--+ng=N : :
n;>1i=1,....k

Consider (4.3) fo¥ = |EN W| — p|W| with p = E|E N[0, 1)¢|. Sincel'1(Y) =
EY =0 and, by Lemma 1 combined with (3.14),(Y)| < c1.,—1(A)|W]| for
n=2,...,N,weare ledto
(v/2]
IEYN| < N!

W y o Ani®) | cnnea®)

|

! !
P ni! ng!

1
<P o)y max{|w, w21,

WherecN)(A) depends on the firg¢ moments of Eg|. Hence, for an even integer
s > 2, (1.16) follows from Chebyshev’s inequality. To prove (1.16) for any real
s > 2 we next show

(4.4) ENENW|—plW||  <cP)|W|2  fors>2
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provided that|W| > 1. For this, we introduce the “truncated” stationary PGM
Ew = U,>1(u + X;) generated byT, = 3", 8, and the typical grain

g2y = Eo N By (0),

where the random variabIR0 :=supr > 0:]89 N Br(0)| < |W|¥} takes the
valueoo if |Eg| < |[W|¥. Here, we put = N/2(N+2—s)if N<s <N +2

for some even integeN > 2. DefineYy := [Ew N W| — [W|E[Ew N [0, 1)¢|

and IetuW denote the PGM with typical grai&g \ :g’ SinceZy C E and
E\ Ew C Ew we have

Y| < |Yw|+max|Ew N W|, [WIE|Ew N[0, 14|},
which implies
4.5) ElY] <2 7E|Ywl + 27 EIEw N WIS + 2 TL(EIBo \ BY W)
By definition of_‘0 ,
E|S0\ Eq' I =EIZ0 N By ()" 2oz wpe) < EIEol' W]~
forO<k <s.

ThusE|Eo\ EY IIW] < E|Eolf|W |}~ < E[E¢|* /[W]. Next, applying (A.3),

N
EIEwNW|® < |W|S_NE<Z|((EZ- gV)+X;)N W|>

i>1
N k n;
N (AIW]) EIuo\ g
qwpny G s BB BT
k=1 : nit-+ng=Ni=1
ni>1i=1,..k

<caWMIWFN max {(LE|Eql*)F|w|FI-estaly
1<k=<N

< ca(N, VW72,

Since, by Lyapun@s inequality, E|Yw|* < (E|Yw|VT2)5/V+2  we need only

to verify that E|Yw |V 2 < ey (W)|W|V+2/2 which in turn follows from (4.3)
(with Yy and N + 2 insteadY and N) whenever|I'yi2(|Ew N W|)| <
c3(N, V)|W|N+2/2 A thorough examination of the proofs of Lemmas 57 reveals
that the constant; , (1) in (3.14) takes on the form

c1..(0) = AE|Eo/" T + bV Q)E|Bo" + b2 (M),

where b,gl)(k) and b,(f)(k) are given polynomials in eXpE|Ep|} and the first
n — 1 moments of Eo|. Hence, byE|EY |V +2 < |W|¢(N+2-9E|E¢|*, we get the
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desired upper bound oF y+2(|Ew N W|)|. Putting together the above estimates
yields (4.4) and hence (1.16) is proved for any real2.

To establish the second inequality (1.17), we use tBat (E — x) is
also a stationary PGM with typical graiBg U (Eg — x) and volume fraction
p(x):=P(o € EU(E — x)). Inview of the obvious decomposition

E-0nwl_, (IEUE-D0W_,)
W] W] ’

we obtain(1.17) by applying(1.16) to the three stationary PGMS, E — x and

E U (E —x). Finally, to prove the exponential inequality (1.18), we again employ a
Chebyshev-type inequality. In this way we obtain, for 0 and 0<% < p/A(a),

that

Cw(x)—C(x) = pw—p+

P(pw — p = &) <exp{—hIW|(e + p) +logEe" ="V}

2
! H(“)|W|Z<hA<a>>k—2}

2 k>2

5exp{—h|W|e+

h?H (a)
wil.
21— p)
Takingh =¢(1— p)/H(a) for 0<e < H(a)p/A(a)(1 — p) proves the first
part of (1.18), whereas the second part is obtained by séitiag/A(a) in the
latter inequality. [

< exp{—thle +

PROOF OFTHEOREM 4. As in the proof of Theorem 3, using (1.2) and the
notationp, = pw,,

P(pn — p = &) < expl{|Wal(Lu(h) — k(e + p))}
for anyh > 0, whence, by virtue of Theorem 1, it follows that

li logP(p, —p>¢)<g(h forO<h .
'anolip|wn| OgP(pn —p=¢) < g(h) or0=< <A(a)

Thus, the limit on the left-hand side is bounded from above kytinfi/aw) g(h).
Relationship (1.19) is proved as soon as we show that

logP(py —p=e)> inf  g(h).

(4.6) liminf >
n—oo |W,| 0<h<1/A(a)

For brevity putz, (¢) := |ENW,|— (¢ + p)|W,|. Then, for any > 0 andh > 0,
P(ﬁn —p=eé)
4.7) >P(pn— p € (6,6 +6])

Eexp{hndn ()} 1z, ()e0,8/W, 1)

> exp{|Wul(Ln(h) —h(s+ p +9))} Eexplh,(e))
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Due to the properties of cumulant-generating functions [see, e.g., Dembo and
Zeitouni (1998), page 27], the functioris,(-) are convex on the whole real
axis and L//(h) > O for every h € R' (provided thats? > 0). In view of
Theorem 1’L;l(h)n:o>o L’(h) and bothL/, (h) (for n > ng) andL’(h) are strictly

increasing for O< 4 < 1/A(a). Likewise,LZ(h)nng L"(h) with L"(h) > 0 for
0<h <1/A(a). Hence, for each € [0, £*) and sufficiently large:, there exists
a uniqueh, = h,(¢) € [0,1/A(a)) that satisfies the equatialy,(h,) = ¢ + p.
Moreover, we haves, njgoho, where hg = ho(e) is the unique solution of
L'(h)y=¢+ p. Sinceh — g(h) is a convex function ang’(hg) = 0, it follows
that g (ho) = info<n<1/A() g(h). Consequently, putting = &, on the right-hand
side of (4.7) and taking into account thiat(4,,) =2 L(hg), we arrive at

log P(ﬁn —p=e)

liminf
(4.8) 1
> g(ho) — hod + liminf l0g(G,(8|W,|) — G, (0)),
> 8(ho) — hod +liminf - 09(Gn(8|Wal) — Gu(0))

where the distribution functiot,, (x) = E exp{h,8,(€)} ¢, (e)<x}/E €XP{hnsn(e))}
possesses the Fourier-Stieltjes transfofm(t) = Eexp{(it + h,)u(e)}/
Eexp{h, ¢, (e)}. Using (1.2) and ) (h,) = ¢ + p we can write

log G, (1) = |Wyl(—it (e + p) + Ln(it 4 hy) — Ly (hy))
1
=—|Wn|t2f (1—15‘)L;l’(i19t+hn)dﬁ if |t| +h, <1/Aa),
0

where the last line is obtained by partial integratiol.ftit v + h,,) with respect to
® € [0, 1]. An application of Theorem 1 shows that l6g (t/“”W"l)n?o)o —12 x

L (hg)/2 for allt € RY, which in turn impliean(x«/|Wn|)njgo ®(x/+/L"(ho))
provided thatL”(hg) > 0. In this case,G,(8|W,|) — G,(0) =2 1/2, prov-

ing (4.6) and, thus, the desired relationship (1.19) hold<.”ifao(sp)) = O for
certaingg € (0, ¢*), then there exists somg> 0 such thatL”(ho(s)) > 0 for
e €leo—n,e0+n]\ {eo}. Since loP(p, — p > ¢) is nonincreasing i, it fol-
lows that

logP(p, — p = €0)

g(ho(eo +m) =< liminf

W
. logP(p, — p>¢
< limsup gP(pn — p = €0)
100 (W,

< g(ho(eo — n)).

Hence, having in mind the continuity ét(-), the proof of Theorem 4 is finished.
O
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APPENDIX

For any random closed seE (defined as(2, oy)-measurable mapping
2:[Q, %A Pl— [F,0r7], whereF is the (metrizable) space of all closed seRif
ando is its Matherorny -field), the mappingx, w) = 1z, (x) is (B(RY) @ A)-
measurable sincéx, F) — 1r(x) is (B(RY) ® or)-measurable [see Matheron
(1975), Chapter 2]. As we see below, the PGM1) is no longerP-a.s. closed
in RY if E|Eg| < oo andE|Eg + B, (0)| = oo for anye > 0.

To preserve théB (RY) ® A)-measurability of the indicator functiohg () (x)
(needed to apply Fubini’s theorem), we define the not necessarily closed PGM (1.1)
as a set-valued, measurable mapping of an independently marked Poisson process
Iy, 0 := > i>10[x;,g;,1 With mark distributionQ (£) =P(Eg € L), &L € B(K).

More precisely, letM x denote the space of all integer-valued measures
on [R4 x X,B(RY) ® B(K)] that satisfyy (B x K) < oo for each bounded
B € B(RY) and letMx be theo-field generated by the setg € My : (B x
£) =n)} for n > 0, bounded € B(R?) and.L € B(K). Eachy € My admits a
representationy = > ;-1 8 ()., (v)] @S a sum of Dirac measures with respect
to the at most countable set of atoms(y), k; ()], i > 1, where each atom
is counted according to its multiplicity. Note that the mappiids > ¢ —
x;(Y), ki(¥)] € RY x X are measurable [see Matthes, Kerstan and Mecke
(1978)]. Finally, define

(A.1) E) = Jx @) +kW)).

i>1

PROPOSITION1. The mapping (x, ¥) = &(x, V) := 1gy)(x) is (B(RY) ®
M 5 )-measurable, that is, {(x, ¥) € R x My :x ¢ E(Y)} € B(RY) @ My.

PROOF. Let B be the countable set of open ballskf that have rational radii
and midpoints with rational coordinates. For any sequdgiGen > 1} in X that
satisfiesk, 1 RY puts,(y) := Ui xek, xi(¥) +k; (¥)). Obviously,E, (V) € X
andE(Y) =U,>1 En(¥).

It can be readily checked thatthe §ef({0}) = {(x, V) € RY x Mx :x¢ E(Y)}
coincides With",,~1 Upgecg (B X { € My : E, () N B = @}). However, this set
belongs taB (RY) X My if {1 Ex(Y)NB =2} = (¥ : 321 1R (K, x50 (i (V)
ki(¥)) =0} € My for anyn > 1 and B € B, where Rp := {(x, K) € RY x
K:(x + K) N B # @}. Since the mapping) — > -1 f(xi(¥), ki(¥)) is
M 5 -measurable whenevet: R? x K — R is (B(R?) ® B(K))-measurable
[see Matthes, Kerstan and Mecke (1978)], we need only to verify fhate
B(RY) ® B(X) for B € B. Since there exists a sequence of closed t®lsuch
that B, 1 B and thusRp, + Rp, it suffices to showRc € B(RY) ® B(KX) for
any closed balC. For this, remember tha'? := {K € X : K N D = @} € B(K)
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for any open ballD [see Matheron (1975)]. Thus, the proof of Proposition 1 is
completed by noting that

(={x,K)eR' x XK:KN(C—x)=a}= ] (B x XPF),
BeB

whereD(B,C)={u—v:u e C,ve B}isanopenball foB € 8. O

Let there be given an unmarked point procdss= Zl>15x on R? and a
random compact seEq with distribution 9 =P o By 1 on [K,B(K)]. The
corresponding independently marked point procégs= > ;-1 d[x; g, ONn R4
with mark distributionQ is then defined [see Daley and Vere-Jones (1988) or
Stoyan, Kendall and Mecke (1995)] to be a random element (fReRl, P])
that takes values My, Mx], the distribution of which is uniquely deter-
mined by its probability generating functionély, [v] = E([];>1v(X;, &) =
Guylvg] (see Section 2), whereg(-) := [4 v(-, K)Q(dK) and the function
v:R? x X [0, 1] is Borel measurable such that-lv(-, K) has bounded sup-
port for all K € X. In the special case of a stationary independently marked
Poisson procesS; o =} ;>19(x;,g,1, the shape o6, [-] implies that

(A.2) G, olv] _exp{ / / v(x, K) — Q(a’K)dx}

and, furthermore, the Campbell-type formula

(A3) E( )y 170 l,,ul,>—xk1‘[f | 11 K)Q@K) d

Lig=1lj=1

holds for any measurable functiorfg,...,fk:Rd x K — [0, 00], where the
sum}_* on the left-hand side of (A.3) stretches o%etuples of pairwise distinct
indices.

As announced, we conclude the Appendix by showing that, under the assump-
tion E|Eg| < oo, the conditionE|Eg + B (0)| < oo for somee > 0 is not only
sufficient as shown by Heinrich (1992), but even necessary for the closedness of
the stationary PGME = E(IT; o).

PROPOSITION2. Let Eg be a compact typical grain of the PGM (1.1) that
satisfies E|Eg| < oo and E|Eg + B (0)| = oo for any ¢ > 0. Then P(E isclosed
inRY) =0

PROOF Choosek, € X, n > 1, such thatk, 1+ R asn — oo and let
E,(¥) be defined as in the proof of Proposition 1. ObviouSlye My : E,,(y) N
B.(0) =2} | {¥ € My :E(Y) N B.(0) = &} asn — oo. Furthermore, since
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(8; + X;) N B.(0) # 2 iff —X; € E; + B.(0), we find, using (A.2), that

P(E,(I;,0) N Be(0) = @) =E [ [(1— 1k, (Xi)1g,+B.(0)(— X))

i1
= exp{—AE|(—K,,) N (Eo + B:(0))]}.
By the monotone convergence theorem and our assumptions,
Jlim E[(=K,) N (Eo+ Be(0))| = E|E0 + B (0)| = o0,
which means for the stationary PGEI= E (I, o) that

P(ENB:(0)#2)=1— nimooP(E”(H*’Q) NB:(0)=9)=1 for anye > 0.

Thus,
P(E is closed = P(E is closed () {E N B1/m(0) # @})
m>1
<Ploe€e E)=1—exp(—AE|Eg|} < 1.
Similarly, P(Eisclosed < P(x1 € E,...,x, € B) for any x1,...,x, € R,

In view of (1.4)—(1.6), the probabilitwg)(xl,...,xn) is arbitrarily close to
(P(o € E))" whenever the distances between the points. ., x, are sufficiently
large. This proves the assertion of Proposition 21

Acknowledgment. | thank one of the referees for helpful comments and
suggestions.
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