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This work concerns controlled Markov chains with finite state and action
spaces. The transition law satisfidse tsimultaneous Doeblin condition,
and the performance of a control policy is measured by the (long-run)
risk-sensitive average cost criterion associated to a positive, but otherwise
arbitrary, risk sensitivity coefficient. Within this context, the optimal risk-
sensitive average cost is characterized via a minimization problem in a finite-
dimensional Euclidean space.

1. Introduction. This work concerns discrete-time Markov decision pro-
cesses (MDPs), where the controller selects actions from a finite set, and the
corresponding controlled process takes values on a finite §éte decision maker
is supposed to be risk-averse with constant risk sensitivity coeffigien0, and
the performance index of a control policy is measured by the (long-run) risk-
sensitive average cost criterion. Under the simultaneous Doeblin condition in
Assumption 2.1, the main result of the paper, stated as Theorem 3.5, provides
a characterization of the optimal value functidri(a, ) for arbitrary A > 0.
Roughly, this theorem shows that the optimal value function is the infimum of
a family ¢ of functions on the state space, a conclusion that, as described in the
following section, is similar to results already available for classical risk-neutral
criteria. However, at the same time this characterization reflects an interesting and
important contrast with the risk-neutral average cost index which is illustrated in
Example 2.2, namely, whenis large enough, the costs incurred while the system
stays at transient states, which can be visited only at “early stages” of the decision
process, have a definite impact in the risk-sensitive average performance criterion.
This feature implies that, even when the Markov chain associated with each
stationary policy has a single recurrent class, the risk-sensitive optimal average
cost is not necessarily constant, and that in this case the optimality equation may
have no solution at all. Such a potentially complex behavidr'@k., -) wheni > 0
is unrestricted is actually covered by the characterization in Theorem 3.5, and
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highlights the main difference between the results in this paper and those already
available, which concern the case in whichs small enough to guarantee that
J*(X, -) is constant and its value is determined via the optimality equation; see, for
instance, [3] or [14] for the discrete case, or [8] for MDPs over Borel spaces.

The study of MDPs endowed with the risk-sensitive average criterion can be
traced back, at least, to the seminal work of Howard and Matheson [17], where
models with finite state and action spaces were studied assuming the following
condition (C): Under each stationary policy the whole state space is an aperiodic
communicating class. In this context, the Perron—Frobenius theory of positive
matrices [7] was used to show that, for every- 0, the A-sensitive average
cost associated to each stationary policy is a constant function, and its value
y can be characterized via the corresponding Poisson equation; see also [11].
The Perron—Frobenius theory provides also a link between risk-sensitive control
and the Donsker—Varadhan theory of large deviations [9]. It is well known that,
under suitable recurrence conditions, the occupation measure of a Markov process
satisfies the large deviation principle, with rate function given by the convex
conjugate of a long-run expected rate of exponential growth function. It is also
worth mention that some optimal investment models can be formulated as risk-
sensitive control problems, for assets dynamics models affected by economic
factors, where the goal is to maximize the growth rate of the expected utility of
wealth [1, 2, 12]. This kind of problems are also linked with the deterministic
model of optimal economic development proposed by Gale and Neumann [10, 13].

The organization of the paper is as follows. In Section 2 a formal description
of the model is presented, the potentially complex dependencE @f, -) on
A > 0 is explicitly shown and, after describing the main theorem, an outline of
the strategy that will be used to prove the characterization result is given. In
Section 3 a fundamental min—max equation satisfied by the optimal value function
is established, and such an equality is used as one of the conditions in the definition
of the family ¢ in terms of whichJ*(%,-) is characterized in Theorem 3.5.
After identifying the difficulties in proving this result, the necessary technical
preliminaries are established in Sections 4—6 and, finally, the main theorem is
proved in Section 7.

NOTATION. Throughout the remaindeR and N stand for the set of real
numbers and nonnegative integers, respectively. Given a finitg, $e¢ space of
all real-valued functions defined ¢his denoted byB(S), and for eaclC € B(S)

1€l :=max|C(w)|
weSs

is the corresponding maximum norm. The indicator function associated to an event
W is denoted by [W] and, even without explicit reference, all relations involving
conditional expectations are supposed to hold almost surely with respect to the
underlying probability measure.
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2. Decision model and outline of the work. Let an MDP be specified by
M = (S, A, {A(x)}, C, P) where the state spa®and the action seA are finite
sets endowed with the discrete topology and, for eaehS, A(x) C A is the
nonempty subset of admissible actions at sigtéhe setK of admissible pairs
is defined byK := {(x,a)|la € A(x),x € S} and is considered as a topological
subspace of x A. On the other hand; : K — R is the one-step cost function,
and P = [py, ()] is the controlled transition law. The interpretation Mf is as
follows: At each timer € N the state of a dynamical system is observed, say
X;=x e S,andan actiol; =a € A(x) ischosen. Thenaco6f(x, a) isincurred
and, regardless of the previous states and actions, the state of the system at time
t + 1 will be X; 11 =y € S with probability p, (a); this is the Markov property of
the decision model.

Policies. For eachr € N the spacdl, of admissible histories up to timeis
recursively defined bl := §, andH, := K x H,_4 for ¢ > 1. A generic element
of H; is denoted by, = (xo, ao, x1, g, ..., x1—1, a;—1, x;), wherex, € Sforn <,
anda; € A(x;) for i <. A policy = = {m,} is a special sequence of stochastic
kernels: For each € N and h; € H;, 7;(-|h;) is a probability measure od
concentrated o (x;). The class of all policies is denoted 8. Given the policy
m € & used to drive the system and the initial stAig= x < S, the distribution
of the state-action proce$gX;, A;)} is uniguely determined via lonescu Tulcea’s
theorem (see, e.g., [15] or [18]); such a distribution will be representedty
whereast] stands for the corresponding expectation operator. Throughout the
remaindetl; denotes the information vector up to timewhich is given by

Io=Xo and I, :=(Xo, Ao,..., X:i—1, Ai—1, X4), =123, ....

Next, definelf :=[], g A(x) so thatF consists of all (choice) functions: S — A
satisfying thatf (x) € A(x) for eachx € S. A policy r is stationary if there exists
f € F such that, when the system evolves ungeat each time € N the action
applied is determined by, = f(X;); the class of stationary policies is naturally
identified withIF and, with this conventiorE C &.

Performance index. As already noted, the controller is assumed to be risk-
averse with constant risk sensitivity> 0, that is, when facing a random cdst
she grades it througB[e*Y]. The certain equivalent of the random varialilés
the (possibly extended) real number defined by

EXY):= %Iog(E[e”]),

so thate***Y) = E[¢*'], and then the controller is indifferent between incurring
the random cost or paying the certain equivalest(i, Y) for sure.
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When the system evolves under £ andx € S is the initial stateJ,, (A, 7, x)
denotes the certain equivalent of the total cost incurred beforeitisn®, that is,

1 n—1
(2.1) TG, x) == log| ET |expt 2 > C (X1, At | ).

A =0
whereas the (long-run expectgesensitive) average cost understarting atx is
defined by

(2.2) JA,m,x):= Iimsup}Jn(k,n,x).

n—»oo N

The optimal {-sensitive) average cost at states given by
(2.3) J*(0,x) i=inf I G, ),

and a policyr* € £ is optimal if J(A, 7*, x) = J*(A, x) for everyx € S. Given
¢ > 0, a policyx is e-optimal at statec € S if J(\,7,x) < J*(\,x) + ¢; If
the policy © is ¢-optimal at every state, them is e-optimal. The following
simultaneous Doeblin condition will be assumed throughout the sequel.

ASSUMPTIONZ2.1. There exists a states S andM € (0, co) such that
E[[T1<M, «xeS,feF,
where
(2.4) T :=min{n > 0| X,, = z}

is the first positive arrival time to stateand, by convention, the minimum of the
empty set io.

The problem. As already mentioned, the main objective of the paper is to pro-
vide a characterization of the optimal value functibf(x, -) for arbitrary A > 0.
This problem has recently received considerable attention in the literature and, un-
der the above simultaneous Doeblin condition, the results already established can
be described as follows: if > 0 is sufficiently small, then the optimal value func-
tion J*(A, -) is constant and, moreover, its valuyds the unique real number for
which there exist : § — R satisfying the optimality equation

2.5 MY O] — i | ACX0) (a)eMO) |, xeS;
( ) aCA() %:ny( )

see [3, 5, 14]. Also, modulo an additive constant, the relative value funktion
in this equation satisfies that for eacle S,

1 =1
h(x) :71'2;1 |og<Ej§ [exp{k Y ICX, Ap) — y]”)

(2.6) =0

' 1 T-1
= inf |og(E;g [exp{x S IC(Xr. A — T, X»]H),

t=0
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whereT is the hitting time in (2.4). However, the situation is substantially different
when > 0 is arbitrary in that (i) Assumption 2.1 does not generally imply that
J*(x,-) is constant, (ii) the rightmost term in (2.6) may be and, moreover,

(iii) even when the optimal value function takes on a single vatyet is not
necessarily determined by (2.5). This potentially complex behavior, which does
not occur under Assumption 2.1 when the performance index is the risk-neutral
average cost, is illustrated in the following example along the lines of Example 2.1
in [6]. In all, this example shows that, when the risk sensitivity coefficient is large
enough, the behavior of the system at transient states, which may be occupied
only at “early stages,” has an important and definite influence on its performance,
establishing a remarkable difference with the risk-neutral case.

EXAMPLE 2.2. LetS ={0,1,2} and A = {0, 1}. The sets of admissible
actions are given bA(0) = A(2) = {0} andA(1) = {0, 1} = A, whereas the cost
function always satisfie€'(x, a) = x. Finally, for somep € (0, 1), the transition
law is determined by

poo@ =1, p22(0) = p? =1 — pao(0)
and

p12() =1, p11(0) = p =1— p10(0).
In this context it is not difficult to see that Assumption 2.1 is satisfied withO.
Now, let f be the stationary policy determined Ify1) = 0 so that, sincea =0 is

the unique action available at the absorbing state 0c0d0) = 0, it follows that
J*(A,0) = J(A, f,0)=0. Assume now that

(2.7) ehp> 1.

Using that 0 is the unique available action at state 2 and that when the system
leaves state 2 it reaches= 0, where a null cost is incurred forever, it follows that
J*(\,2)=J (A, f, 2), whereas for each positive integer

n—1
EJ [exp{k Y o, A,)H

t=0

n k—1
=Y E] [exp{k S cx,, A,)}I[T - k]i|

k=1 t=0
n—1

+E} [exp{k Y o, A,)}I[T > n]:|
t=0

=2 D L= ) + 2 (0P
k=1
(¢ p)? —1

= (e)tp)zn +e?(1- Pz)m
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and then (2.1) and (2.2) together lead th(x, f,2) = 1logl(e*p?)] =

2 Jog(e*p) > 0. A similar argument shows that(x, £, 1) = +log(e* p) > 0 and,

since applying action 1 at state 1 produces a transition to state 2, where the optimal
average cost i§ log(e*p) > J (A, f, 1), it follows that f is also optimal at state 1.

In short, under (2.7),

log(p)
A

Notice that the system will be ultimately absorbed by state0 but, when (2.7)
holds, the costs incurred at the transient states have a definite influence on the
performance of the system. Assume now that the initial stakg is: 2. From the
specification of the model, it follows that, = 2 forr < T, with T as in (2.4)

with z = 0, and in this cas&€ (X;, A;) — J*(\, X;) =2 — 2(1 + log(p)/A) =
—2log(p)/A, so thata Z,T:‘Ol[C(X,, A — J*(\, X;)] = —2T log(p). Therefore,

the relative value function at state= 2, given by the rightmost term in (2.6), is

7(2) = E[e72T1090) = B [p=21] = 332, p % (p))F (1 - p?) = oo; similarly,

it can be established thafl) = co. On the other hand, it is interesting to observe
that there is not any functiol: § — R satisfying that

(2.8) M (L2 FAR(2) 5 ,1C(2,0) Z P2y (0) 0.
3

=J*A, 1) <27, D) =J*(A, 2).

1
J*(A,00=0< - log(e’p) =1+

indeed, the left-hand side of this inequality d& p2¢*"(®, whereas the right-
hand side satisfies'C 29[ p2(0)e?"@ + pr1(0)e* (@] > €20 joy ()M =

e? p2e'" 2 When the risk sensitivity coefficient satisfiedp = 1, similar
calculations yield that (iy* (%, -) = 0 = y, (ii) the relative value function in (2.6)

is oo atx =1 and 2, and (iii) inequality (2.8) is not satisfied by any function
h : S — R; in particular, even in this case in which the optimal average cost
is constant, the optimality equation (2.5) does not have a solution. Finally, if
satisfies that*p < 1, which in this example is the precise meaning of Xifs
sufficiently small,” the optimal value function is identically=0y, the relative
value function in (2.6) is finite, and the pafy, h(-)) satisfies the optimality
equation (2.5); see [3] or [14] for these latter assertions.

The characterization theoremThe main result of this work, which is formally
stated as Theorem 3.5 in the following section, provides a characterization of
J*(\, -) covering the diversity of possible behaviors illustrated in Example 2.2.
For eachh > 0, this theorem determines the optimal value function in terms of a
class of functiong;, and establishes thdt* (%, -) is the infimum of such a family.
This conclusion is similar to the characterization of the optimal (risk-neutral) total
expected cosvV* for MDPs with nonnegative cost function; in this latter case,
V* is the infimum of all nonnegative function& defined on the state space
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and satisfying > DW, whereD is the corresponding dynamic programming
operator; see [18] for details. However, for the risk-sensitive average criterion in
this work, the construction of familg involvestwo conditions resembling the

two equations that characterize the optimal risk-neutral average cost in multichain
MDPs, for which the optimal performance index is not necessarily constant (see,
e.g., Chapter 9 in [18]). The first restriction imposed on the membeggefiects

a fundamental property of the risk-sensitive average index, namely, if the system is
driven by a “good” policy, therfJ* (%, X,)} is nonincreasing for almost all sample
trajectories. This property is a consequence of Lemma 3.1 in the following section,
establishing that the optimal value function satisfies a min—max equation, and the
first condition imposed on the members$fis to satisfy such an equality. The
second condition on a functigne § is motivated by the optimality equation that,

at least formally, is associated with this optimal control problem. This condition
guarantees that is really an upper bound aof*(a, -); it was also used in [6] to
analyze the uncontrolled case, and requires the existence of a (deviation) function
h: S — R such that the paifg(-), k() satisfies (3.4), which is analogous to the
conditionW > DW mentioned above.

Outline of the argument.As might be expected from the diversity illustrated
in Example 2.2, characterizing* (1, -) for arbitraryi > 0 is a somewhat technical
task, so that it is convenient to give a brief outline of the argument used to
achieve this goal. In Section 3 the basic min—max equation satisfigd @y -) is
established, and then the family of functigphss introduced. Next, it is shown that
the optimali-sensitive average cost is a lower bound.pénd the characterization
result of /*(A, ) as the infimum ofg is stated as Theorem 3.5. As it will be
noted below, in general*(A, -) does not belong tg, but the strategy to establish
Theorem 3.5 consists in showing that, for eack (0, 1), the functiong(-) =
aJ*(A, )+ (1 —a)|C| liesin g, from which Theorem 3.5 follows immediately.
The main difficulty in establishing this inclusion is to prove that there exists a
deviation functionz : S — R such that the second condition in the definition of
family ¢ is satisfied. In Definition 4.1 a candidakefor the deviation function
for the functiong above is introduced, and from that point onward, the effort is
mainly dedicated to establishing that) is a finite function, a fact that is proved
in two steps: In Theorem 4.4 it is shown thats finite at the points where the
optimal value function is minimized, whereas in Theorem 5.1 this conclusion is
extended to the whole state space. The argument in this part relies heavily on the
following property: Under arz-optimal policy withe > 0 small enough, along
almost all trajectories the optimal value function is dominated by its value at the
initial state. Section 6 concerns a last technical point on the funatiatroduced
in Definition 4.1, namely, thai(z) is nonpositive, whereis as in Assumption 2.1.
After the preliminaries in Sections 4—-6, Theorem 3.5 is finally proved in Section 7.
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Before leaving this section, it is convenient to point out the following
observation.

REMARK 2.3. (i) Givene > 0, ang-optimal policy exists. Indeed, from the
definition of J*(1, -) in (2.3), it follows that for eachr € S there exists a policy
7* € # which ise-optimal atx, that is,

Jh, w5, x) <J (A, x) +¢

and a new policyr can be defined as follows: For eacke N and h, € Hy,
7 (-|hy) = 7,°C¢|h;). A controller driving the system according to first
determines the initial state, and then picks the actions according tb Xo = x
is observed. From this construction it follows that the equality

ET [exp{k Y cx,, A,)” =ET [exp{k Y cx,, A,)”

=0 t=0

is always valid, and then2.1) and (2.2) together yield that/(x,m,x) =
J(\, T, x) < J*(A, x) + ¢ for every stater, so thatr is e-optimal.
(i) From (2.1)—(2.3) it is not difficult to see that||C|| < J*(A,-) < ||C|I.

3. Min—max equation and main result. According to the program outlined
above, in this section the characterization result for the optimal value function is
stated. First, it is shown in the next lemma that the fundamental min—max equation
is satisfied by the optimal value function, and such an equality is used as one of
the requirements in the definition of the family of functiofsinvolved in the
characterization of *(x, ).

LEmMmA 3.1. For eachi > 0, the functionJ*(x, ) in (2.3) satisfies the
following min—max equatian

J*(x)= min maxJ*(y)|pxy(a) > 0}, x€S.
acA(x)

PROOF Let (x,a) € K ande > 0 be arbitrary but fixed, and let € & be
an e-optimal policy (see Remark 2.3). Next, select a polftg F satisfying that
f(x) = a, and define the new policy € & as follows: 7o({ f (x0)}|x0) = 1 for
eachxg € S, whereas for eache N andh, ;1 € H, 41,

Ti+1C1N41) = 1 (lxg, ag, ..o x42).

When the system is driven By, the action applied at time zero is selected using
whereas from time 1 onwards, the controls are picked using-th@imal policy
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m as if the decision process had started again at time 1. The Markov property
and (2.1) together yield that for every positive integer

n
eIt x) E;T [exp{k Z C(Xy, Ay) ”

t=0

n—1
— O () Z ny(f(x))E;? |:exp{k Z C(Xqy, At)”
y

t=0
— eAC(x,a) Z pxy(a)ekln(k,n,y)
y
so that

N 1/0n)
Jpr1(A, T, x)  C(x,a) n A (1
3.1 < log( | > n(d.1.y) .
3-1) nt1l - n+l nt1 g([y Pxyl@)e

On the other hand, since is e-optimal ands is finite, it follows that for some
no € N,

Jn(h, 7w,y <n(J*(A, ) +¢), n > no.

Therefore,Y",, pry(@)e™n*79) < 37 po(@)e*" "3+ whenn > no, and it
follows that

1/(xn) 1/(xn)
lim SUD[Z pxy(a)e“"()"n’y):| < lim SUp|:Z pxy(a)e)‘”(J*()"y)+€):|
n—oo y n—o00 Y

= max{ej*()"Y)+8|pxy(a) > 0}

— MGy Felpy(@)>0)

where the second equality is due to the fact that the exponential function is
increasing. Combining this with (2.2), after taking limit superiomagoes toco
in (3.1) it follows that

5, x) < Tk, 7, x) <max{J (&, y) + &|pxy(a) > O};
see (2.3) for the first inequality. Recalling that O is arbitrary, this yields
J* (A, x) <max{J*(x, y)|pxy(a) > O},
a relation that, sincéx, a) € K is arbitrary, implies
(3.2) J*(A,x)Sagn/jg)ma)QJ*(A,y)|pxy(a)>0}, xes.

To establish the reverse inequality lete S and 7 € & be arbitrary. Select
b € A(x) satisfying mo({b}|x) > 0, and lety € S be such thatp,,(b) > O.
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Combining (2.1) with the Markov property, it follows that for every positive
integern,

n
M) = BT [exp[A > C(Xy, At)”

t=0

e E,j\fT [eXD{XZC(X,,At)}I[A0=b7X1=y]:|

=0
n—1
= 70({b}|x) pry (B)e* P E) [exp{x Y cix, A,)”
=0

= 710({b}x) pxy (b)e*C XD Hn3.7)

where the “shifted” policy is defined as follows: For everye N andh, € H;,
8:(:|hy) = m,11(:|x, b, hy). Therefore,

n J,(A,8,y)
n+1 n

Jﬂ+l()\'a JT, x) >

AC(x,b)
ni 1l 0T D log(o({b}[x) pxy (b)e ) +

’

and taking limit superior ag goes tooo, it follows that
JO,w,x) = J(A,8,y) = T, ¥);

see (2.2) and (2.3). Since the statsatisfyingp,,(b) > 0 is arbitrary, this implies
that

J(h, 7w, x) = max{J* (x, y)| pxy(b) > 0},

and then
J(h,m,x) = min max{J*(x, y)|pxy(a) > 0}.
acA(x)
Since this holds for every € # andx € S, (2.2) yields that
J*(A, x) = min maxJ*(x, y)|pxy(a) > 0}, x €S,
acA(x)

and the result follows combining this inequality with (3.2).]

DEFINITION 3.2. The clas% consists of all functiong € B(S) satisfying
the following conditions:

(i) Foreachx e S

(3.3) gx) = Q?Ai&) maxg(y)|pxy(a) > 0}.
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(i) There exists a function € B(S), possibly depending og, such that
Ag(x)+Ah(x) i AC(x,a) Ah(y)
(3.4) e > aerg;rgx) |:e Xy:pxy(a)e i|, x €S,
where
(3.5) Bg(x) :={a € A(x)|g(x) = max{g(y)|pxy(a) > O} };
a functioni(-) satisfying (3.4) will be referred to as a deviation function associated
to g(-).

REMARK 3.3. (i) Giveng € B(S) satisfying (3.3), the finiteness of the action
setsA(x) ensures that each sBf (x) is nonempty.

(i) Family g is nonempty. In fact, ifg(-) = ||C||, theng € §, since (3.3) is
clearly satisfied by this function, whereas (3.4) holds with = 0.

The following lemma shows that the optimal value function is dominated by
each member of.

LEMMA 3.4. (i) Suppose thag: S — R satisfieg3.3)and for eachx € S let
B,(x) C A(x) be as in(3.5).Givenx € S, assume that the policye & satisfies
that Pf[A, € B,(X,)] = 1for everyr € N. In this casewhenx is the initial state
and the system is driven Bythe procesgg(X;)} is nonincreasing almost surely
More preciselyfor eachn € N,

g(Xns1) <g(Xp) < <g(Xo)=gx),  Pl-as.

Consequently
(i) Everyg € 4 is an upper bound of the optimal value functiéf(, -).

PROOF (i) Let t € N be fixed, and suppose that, y € S satisfy PJ[X, =
w, X;+1=y] > 0. In this case there exisise B, (w) such thatPf[X, =w,A; =
a, X;41=y1> 0, sinceP’[A, € B,(X,)] =1, and then

0<PX,=w, A, =a, X;41=)]
=P[X;;1=y|X; =w, A, =alP)[X; = w, A, = a]
= puy(@PJ[X; =w, A, =al,
where the second equality is due to the Markov property; therefore,
Puwy(a) > 0.
On the other hand, from (3.5), the inclusie® B, (w) yields that

g(w) =max{g(z)| pwz(a) > 0}
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and combining this with the above inequality, it follows tlgéiv) > ¢g(y). In short,
it has been shown that
PAXi=w, Xi11=y]>0 = g(w)>g(y)

and it follows thatP,f)[g(XHl) < g(Xy)]1=1. Sincer € N is arbitrary, this yields
that PS[g(Xy+1) < g(X,) <--- < g(Xo)] = 1 for eachn € N.

(i) Let g € G be arbitrary, and seleéte B(S) as in (3.4). For each € S, let
f(x) € Bg(x) be a minimizer of the term within brackets in (3.4), so that for every
xes,

PEOTIEW) > ACESW) S ()0,
y

which is equivalent ta*"® > E{ [} C(X0.A40=8(X0)]Ah(XD)]: from this point, an
induction argument yields that

n
M > gf {exp{x YICX A — g(X»]}eWX"H)}, xeSneN
t=0

Observe that, by part (i), under the action of polityhe inequalities
g(Xn) =g(Xp-1) =--- < g(X1) < g(Xo)

hold with probability 1 regardless of the initial state. Therefdré, ,[C(X;, A;) —
g(X)1=>/_oC(Xs, Ar) — (n + 1)g(Xo), so that for each e N andx € S,

n
M > gr [exp{k Y C(X, A) — (n + Dg(Xo) }e““""ﬂ)}

t=0

n
= MntsOp s [exp[,\ > CXy, A }ekh(xwﬂ}
=0

n
> e—)\(n-i-l)g(x)—)tllhllExf [exp{k Z C(X;, Ay }:|

t=0
> e—k(n—l-l)g(X)—?»IIhIIeHn+1(A,f,X)_

Hence,
2]l + h(x) - Jnr1(X, f,x)
n+1 — n+1

and taking limit superior ag goes tooo, this yields thatg(x) > J(A, f, x) >
J*(1, x); see (2.2) and (2.3). Since € S is arbitrary, it follows thatg(-) >
J*(h, ). O

g(x) +

9’

According to this result, the functional*(%,-) is a lower bound for each
member ofg. On the other hand, althoughi (%, -) satisfies (3.3), by Lemma 3.1,
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in general this optimal value function does not belong téndeed, in the context

of Example 2.2, it was shown that whetyp > 1 there is not any functioh such

that (2.8) is satisfied, and this implies that the second part of Definition 3.2 fails
for the functionJ* (%, -). However, under Assumption 2.1, the main result of this
work asserts thal*(A, -) is the largest lower bound .

THEOREM 3.5. Under Assumptio.1,for eachx € S,
J*(A, x) = inf g(x).
8<€§

This result extends Theorem 2.2 in [6] where the uncontrolled case was
analyzed. The somewhat technical proof of this theorem will be given in Section 7
after establishing the necessary technical preliminaries in the following three
sections. Essentially, although it cannot be ensured that the optimal value function
is a member ofg, the idea is to prove that, for eache (0, 1), the functiong
specified by

(3.6) g0)=al*(h, )+ 1L —)C|

lies in g, a fact that immediately yields Theorem 3.5. Using Lemma 3.1 it is not
difficult to see that this functiog satisfies the min—max equation (3.3) and then,

to establish the inclusiog € § it is sufficient to show that there exists a deviation
functionh € B(S) associated t@, so that the paifg, #) satisfies (3.4). The proof

of this existence result requires an important technical effort that is presented in the
following three sections. Throughout the remainder Assumption 2.1 is supposed
to hold even without explicit reference, aade (0, 1) is arbitrary but fixed.

4. Deviation function. In this section a candidaté(.) for the deviation
function of the functiory in (3.6) is introduced and, as already mentioned, a major
objective is to show that such a function is finite. Although this goal is finally
achieved later, the main result of this section, stated as Theorem 4.4, is a first step
in this direction.

DEFINITION 4.1. (i) For eachx € S, defineB*(x) := By« (x); see (3.5).
(i) The class?* consists of all policies € & satisfying
P;’[AteB*(X,)]zl, xeS,teN.

(iii) Given a fixed real numbex € (0, 1), the corresponding deviation function
h:S— [—o00,o0]is defined as

1 =1
h(x) = inf — |og(E;§ [exp{ka STCXr, A — T* (3, x,)]”),

=0
(4.1) !
xes,

whereT is the first positive passage time to statsee (2.4).
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Notice thata € B*(x) if and only if J*(A,x) = maxJ*(x, y)|pxy(a) > O},
and that®* is the class of policies for the MDES, A, {B*(x)}, C, P), which is
obtained by restricting the set of admissible actions at stabethe subseB*(x).
On the other hand, observe that the facdteris used in the exponential inside the
expectation in (4.1); whea = 1, it is not difficult to see from Example 2.2 that
h(-) may take on an infinite value at some points. However, in the present case
in which « lies in (0, 1), it will be proved thatk(-) is finite. The key tool in the
argument leading to this goal is the following consequence of Assumption 2.1.

LEMMA 4.2. Under Assumptior2.1 there existg € (0, 1) and 8o > 0 such
that

PT[T > n] < BoB". xeS,teP,neN.

A proof of this lemma can be seen, for instance, in [16] or [19]. Using this result,
it is now shown that-oco is not a value of the functioa(-) in (4.1).

LEMMA 4.3. Leta € (0, 1) be fixed and leBg and 8 be as in Lemma4.2.
(i) There exists a positive constaBg such that for eaclk € S andx € 2,

T-1
EY [exp{ka Y IC(Xy, A = T, X;)]H > Bo.

=0

Consequentty

(i) h(:) > —oc.

(i) Set

1—a)lo
4.2) gy ; o)
o
If = € P is e-optimal wheree € (0, &), andx € S is such that
J*(h,x) =y,

then

T-1
ET [ex Ao Y [C(Xy, Ap) — y]” < 00.

t=0

PROOFE (i) Let Ng € N be such thapppNot! < 1/2, and observe that the
inequality
PIIT <Nol >3

always holds by Lemma 4.2. On the other hand, using Remark 2.3(ii), it follows
that

T-1

D IC(X: Ap) — J* (A, X)) = =2|CI T,

t=0
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so that for every € S andn € 2,

T-1
ET |:eX PN Z[C(Xt, Ap) — J*(x, Xt)]}:|

t=0
> E;T[E—ZMIICIIT]

No
> E;![e—Z)\HCIIT] > Z PT(T = k]e—mllcllk
k=0

and then
T-1
EY [exp{ka Y IC(Xi A — T3, Xz)]” > ¢~ 2HCINopTIT < Ng]

t=0
e—2+IClINo

> =: Bp.
= 2 0

(i) Combining part (i) with (4.1), it follows thak(-) > —log(Bg) > —o0.
(iif) Observe that Holder’s inequality implies

-1
ET [ex 2 Y [C (X, Ap) — y]”

t=0

00 n—1
=Y ET |:exp[ka D ICX, Ap) — y]}I[T :n]i|

n=1 t=0
o0 n—1 o

<y (E” [exp{x S IC(Xi, A — y]”) (PIIT =nD)®
n=1 t=0

and then (2.1) and Lemma 4.2 together yield

T-1 00
ET [ex A Y [C(X;, Ap) — y]H < B Y reldnm ) —ny] gl
t=0 n=1

SinceJ*(A, x) = y andrn is e-optimal, it follows that/, (A, 7, x)/n < y + e when
the positive integer is large enough, say > ng. Therefore,
eka[Jn(A,n,x)—ny]ﬂn(l—a) < e)\ocenﬂn(l—oc) < (ekasﬂ(l—a))n’ n > no.
On the other hand, sinced¢ < &, (4.2) implies thae**¢g1-® < 1, so that

the last two displayed relations together yield tBd{exp{Acx Zf:_ol[C(X,, Ap) —
Y}l <oo. O

In contrast with the above argument used to establish the inegaélity —oo,
the proof of the inequality:(-) < oo is substantially more technical. As a starting
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point, the main result of this section, stated in the following theorem, establishes
that functioni (-) is finite at the points where the optimal value function attains its
minimum value.

THEOREM4.4. Letyp be the minimum value of* (%, -). In this case

(i) J*(1,z) = yo, wherez is as in AssumptioB.1.

(@ii) If J*(x, x) = yo, thenh(x) is finite

The proof of these results relies on the technical preliminaries in the following
two lemmas; the first one provides a bound {@i (i, X;)} when the system is
driven by ans-optimal policy.

LEMMA 4.5. Letmr € P, x € S andr € N be arbitrary but fixedand suppose
that the vectoh, = (xg, do, ..., X,_1, d,_1, x,) € H, satisfies
Pr[I,=h,]>0.
In this case
O JA,m,x)>JA,86,x)>J*"(A,X,), where the shifted polic§is given by
(4.3)  8(Ih) =mpr (%o, Ao, - Xro1,dr—1, ),  t€N, h, € H,.

Consequently
(ii) If 7 is e-optimal atx, then for eachn € N,

J*h, Xm) < J*(0, x) + ¢, Pl-as.

ProoOF (i) Given an integer > r, observe that

ET [exp{kZC(Xt, A,)”

(4.4) =

> e MIClET [exp[k Y CXy, At)}l[lr = F1r]i|-

t=r
On the other hand, an application of the Markov property yields that

ET [exp{k > CX,, A,)}I[Ir = ﬁ,]ur}

t=r

=I[I, =h,]E2 [exp{k X_j C(X:, Az)H,

t=0



RISK-SENSITIVE CONTROL OF MARKQOV CHAINS 191

where policys is as in (4.3). Taking expectation with respectd in both sides
of this equality, it follows that

E;T [exp{k Z C(Xz, At)}l[lr = I:ir]i|

t=r

= PI[I, =h,]E3, exp[x > CXi, At)”,
L t=0

which combined with (4.4) leads to

ET [exp[,\ Y o CX, A,)}

t=0

> e MIClpI LI, =h,ES [exp{,\ > C(X, A ”
t=0

This inequality and (2.1) together imply that

Ins1 (7. x) log(e M ICIPA[L, =h,]) n—r+1J, 41100, 8,%)
n+1 - A(n+1) n+1 n—r+1

and taking limit superior asincreases too, this yieldsJ (A, 7, x) > J (&, 8, x;) >
J*(\, x,); see (2.2).

(i) Let w € P bee-optimal atx, and suppose th&” [X,, = y] > 0. Observing
that

Xm=yl= |J Un=hul

hy €l xm=y

the finiteness oHl,, implies thatP}[I,, = h,,] > 0 for someh,, € H,, satisfying
xm = y. In this case, part (i) yields that* (1, y) < J(A, 7, x), so that/*(A, y) <
J*(\, x) + &, sincer is e-optimal atx. In short

Pl Xy=yl1>0 = J"(A,y)<J"(A,x)+s¢,
and thenPZ[J*(A, X,y) < J*(h,x) +¢el=1. O
In the following lemma it is shown that, ¥ > 0 is small enough, the set of
minimizers of J*(A, -) is closed under the action of aroptimal policy and that,
“essentially,” such a policy belongs to the claB$ in Definition 4.1. The precise
statement of these facts involves the following notation.
DEFINITION 4.6. (i) Define the positive numbéy as follows:

(@) If J*(x,-) is constant, sef; := 1.
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(b) If J*(A,-) is not constant, ley;, i =0,1,...,d, be the different values
of J*(x, -) arranged in increasing order:

(4.5) Yo<yL<-<Va
In this case set
E1:=min{y; —yi—1li =1,...,d}.
(ii) The positive numbe¢ is given by
& =min{éo, &1};

see (4.2).

REMARK 4.7. Observe that/*(x,y) > J*(1,x) implies that J*(A, y) >
J*(\, x) + &1. Therefore,

ifO <e <&(<61), JOux)+e=T 0 y) = JTOx) =T (A, ).
LEMMA 4.8. Letx € S be such that/*(x, x) = yo = min, J*(%, y), and

suppose thatr € » is e-optimal atx, wheree € (0, £). In this case for each
reN:

() PILJ (A, X)) =yl = 1.
(i) PT[A, € B*(X,)]=1.
Moreover
(iif) there exists a policy € £* such that when the initial state isc, the
distributior(ls of the state-action proce$€X;, A;)} coincides underr and$, that
is, PT = P;.

PrRoOE (i) By Lemma 4.5, P7[J*(A, X,) < J*(A,x) + €] = 1, whereas
the inclusione € (0, &) yields that[J* (A, X;) < J*(A,x) + el C [J*(\, X,) <
J*(1, x)], by Remark 4.7, so that

PI[J*(A, Xp) <J* (0, x)]=1

SinceJ*(x, x) = yo is the minimum value ot/ *(x, -), it follows that PT[J*(X,
Xr) = VO] =1

(i) Suppose thatP][A, = a, X, = w] > 0. If pyy(a) > 0, the Markov
property yields thaP[ [ X, 11 = y|X, = w, A, =a] = py,y(a) > 0, so that

O0<Pl[Ar=a, X, =wlP[X,11=y|X, =w, A, =a]
=P,€[[Xr+l=y7Xr=w,Ar=a]
EPg[Xr:var—l—l:y]

and then part (i) yields thaf* (1, w) = J*(x, y) = yo; Sincey € S satisfying
pwy(a) > 0, is arbitrary, it follows that/*(A, w) = max{J*(x, y)|pxy(a) > 0},



RISK-SENSITIVE CONTROL OF MARKQOV CHAINS 193

so thata € B*(w); see Definition 4.1. ThusPT[A, =a, X, =w]>0=a €
B*(w), so that

1= Y PIA,=a,X,=w]
(w,a)eK

= 3 PT[A,=a, X, =w]= PT[A, € B*(X,)].
(w,a)eK,ae B*(w)

(iii) Take a fixed stationary policy satisfying

f(y) € B*(y), yeS,

and let the policy be determined as follows: For eack N andh, € H,
(4.6) 8:(:Ihy) ;=7 (-Ih;) if xo=1x,8(f(x)lh;):=1 whenxo # x.

In this casesr andé coincide along trajectories starting.atso thatP] = Pf,
and thenP)f[A, € B*(X;)] = Pl[A; € B*(X;)] = 1 for eachr € N. Moreover, by
the choice off, Plf)[At € B*(X;)] = 1 always holds whemw # x, and it follows
thats € *; see Definition 4.1. OJ

After the above preliminaries, the proof of the main result of this section can be
established as follows.

PROOF OF THEOREM 4.4. Letx € S be a minimizer of/*(4, -), so that
J*(X, x) = yo.

(i) By Lemma 4.2, there exists a positive integesuch thatP[X, = z] >
PT[T =r] > 0, and then Lemma 4.8 (i) yields that (A, z) = yo.

(i) Let = be ane-optimal policy, wheres < £(< &p); see (4.2) and Def-
inition 4.6. In this case, using that*(1, x) = yo, Lemma 4.3(iii) yields that
E7 [exp{ia Z,T:_Ol[C(Xt, A;) — yol}] < oo; since P [J*(A, X,) = yol = 1 holds
for everyr € N, by Lemma 4.8(i), it follows that

T-1
EY [ex re D [C(Xy, A — T (M, X,)]H < cc.
t=0

Now, using part (iii) in Lemma 4.8, seleste #* such thatP? = P7, so that the
above inequality yields

T-1
E® |:exp{koz Y IC(X, A = T*(, x,)]” <00

t=0

which, via Definition 4.1(iii) implies that:(x) < oo; since h(-) > —oo, by
Lemma 4.3(ii), it follows that(x) is finite. [



194 R. CAVAZOS-CADENA AND D. HERNANDEZ-HERNANDEZ

5. Finiteness of the deviation function on the state space. Following the
program outlined in Section 2, the objective of this section is to extend the
finiteness result in Theorem 4.4(ii) to the whole state space.

THEOREMDS5.1. Foreveryx € S, h(x) is finite see(4.1).

Sinceh(-) > —o0, by Lemma 4.3(ii), to establish this result it is sufficient to
show thath(x) < oo for every statex € S. This latter inequality holds when
is a minimizer of the optimal value functiaf*(1, -), by Theorem 4.4(ii), so that
the deviation function is certainly finite whek (A, -) is constant. Thus, to prove
Theorem 5.1 it must be shown that-) < oo when the optimal value function
is not constant, and throughout the remainder of the section it is supposed that
J*(x,-) assumes valueg,i =0,1,...,d, whered > 1, which are arranged in
increasing order; see (4.5). With this in mind, let the levek&gebe given by

(5.1) Gi:={xeS|J*(x, x) =y}, i=0,...,d.
Notice that

d
(5.2) s=JGi.

i=0

and define the exit time of s€t; by
(5.3) Tge :=min{n > 1|X,, ¢ G}, i=12,....d.

Since the state in Assumption 2.1 is a minimizer of* (1, -), by Theorem 4.4, it
follows thatz ¢ G; when 1<i < d, by (4.5) and (5.1). Therefore, (5.3) and (2.4)
together imply that

and, via Lemma 4.2, this yields

P [Tge =n] < PI[Tge = n] < PT[T = n] < Bop",
(5.5) ’ ’
neN,i=12,...,d.

The proof of Theorem 5.1, which parallels the ideas used to establish
Theorem 4.4(ii), relies on the following lemma extending conclusions in Lemmas
4.3(iii) and 4.8.

LEMMA 5.2. Lete € (0,&) andx € G; be arbitrary but fixedwherei > 0,
and suppose that € » is e-optimal at statex. In this case assertionsi)—(iv)
below are valid

T C_l
() ET[expira Y20 [C(X;. As) — J*(h, X)]}] < oo.
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@iy PT[J*(A, X,) <y;]=1foreachr e N.
Consequentty

(i) WhenXg = x and the system is driven by, the inclusionA; € B*(X;)
holds beforel: with probability1, that is,

Tge—1
Pf[ () [A e B*(X,)]} =1
t=0
(V) PTIX7, € UiZpGil =

PrRoOOFE (i) The argument is along the lines in the proof of Lemma 4.3(iii).
First, notice that (5.3) yields thaf, € G; if 1 <t < Tge, and thenJ*(A, X;) = y;
for 0 <t < Tge when Xo € G;. Therefore, using that € G;, via Holder's
inequality it follows that

TGic—l
ET [exp{m > [C(X,,At)—J*(A,Xt)]H
t=0
TG?—l
:E;’[exp{xa > [C(Xt,Az)—V,-]H
=0
o0 n—1
n=1 t=0
00 n—1 o 1
< Z(E” [exp{k > IC(Xe, Ay —V;]H) (P{ [Tgs =n]) -
n=1 =0
so that
Tge—1
[ {ka Z [C(Xy, A)) = T, Xt)]”
(5.6) ~
Z oS, (A, T, x)—ny;] (PN[TGC _n])l—a;

see (2.1). Sincel*(k,x) =1y; andw is e-optimal atx, it follows that, for some
positive integeng, J, (A, , x) < n(y; + ¢) whenn > ng. This leads, via (5.5), to

e)»ot[],,()\,n,x)—ny,'](P;T[TG? — n])l—a < ﬂ(f)L—a (ekasﬂl—ot)n’ n>no.

Observing that the inclusioa € (0, £) yields thate**¢g1-% < 1 [see (4.2) and

Definition 46] the above-displayed inequality and (5.6) together imply that
ce—1

E7 [exp{ra Z, [C(X,, A) — T* (%, X)1}] is finite.
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(i) Let r € N be arbitrary but fixed. Since policy is s-optimal at x,
Lemma 4.5(ii) yields thatP[[J*(x, X,) < J*(A,x) + ¢] = 1, and using the
inclusione € (0, £), Remark 4.7 allows us to writB [J* (A, X,) < J*(A,x)] = 1.
The conclusion follows sincé* (A, x) = y;.

(i) Let r, k € N be such that < k, and suppose that the pdin, a) € K is
such that

(5.7) PI[X,=w,A, =a,Tge =k]>0.

Sincer < k, from the definition of the exit tim&g: and the inclusion: € G;, it
follows that

wEGi,

and it will be shown that: € B*(w). To achieve this goal, suppose that §
satisfiesp,,(a) > 0 and observe that the Markov property yiel#3[X, 1 =
vIX, =w, A, =al = pyy(a) > 0; sincePT[X, =w,A, =a] >0, by (5.7), it
follows that

PI[Xr41=y1= Pl [Xr41=Yy, X, =w, A, =d]
> Pl X, p1=yIX,=w, A, =alP][X,=w,A, =a]>0.

Therefore, part (ii) yields that*(%, y) < y;. Sincey € § satisfyingp,,,(a) > 0 is
arbitrary, it follows that

max{J* (&, )| puy(a) > 0} < y; = J* (A, w),
where the inclusiom € G; was used to set the equality. Then
max(J* (., )| puy (@) > 0} = J*(1, w),
by Lemma 3.1, so that € B*(w); see Definition 4.1(i). In short, when< k,
PI[X,=w,A, =a, Tge =k]>0 = aeB*(w),
and it follows that

PI[Tge=k]= Y  PI[X,=w,A =a,Tg =k
(w,a)eK

= > PI[X,=w, A, =a,Tge =k]
(w,a)eK,ae B*(w)

and then

PT[Tge =k] = PT[[A, € B* (X)) N[Tge =K]].
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Since this equality holds whenevek k, it follows that

rk—1
PI[Tge =k]=PT| ([A, € B*(X)]1N[Tge :k]}
Lr=0

Toe—1

=PI () [A, € B*(X)]N[Tge :k]}.
L r=0

Summing up over all positive integetsthis yields
Tge—1
PI[Tge <oo]=PT| [ [Ar € B*(X)]IN[Tge < oo]:|,

X
L =0

and the conclusion follows since, by (5. W[Tgc <] =
(iv) Notice that (4.5), (5.1) and part (ii) together yleld that, for each positive
integerr,

P;[X, cU Gk} =1

k=0

On the other hand, from (5.3) it follows that. ¢ G; on the evenf{Tge =r], SO
that the above displayed equation implies that

i—-1 i—-1
Py [TG( =7, X1, € Gk} [TGC =r.X, e Gk} T [Tge =r].

k=0 k=0
Hence,

i-1 i—1
P [TGc <00, Xrg € Gk} = ZP” [TGc =7, X1z € J Gk}

k=0 r=1 k=0
= Z Pl [Tge =r]= P [Tge < o0],
and the conclusion follows using th&g: is finite with probability 1. [
PrROOF OFTHEOREM5.1. Foreaclm =0,1,2,...,d, consider the follow-
ing claim:
(Cn) h(x) < oo foreveryx € G,.

Observe that the conclusion of Theorem 5.1 is equivalent to the truth of every
(C,) a fact that will be established by induction. To begin with, notice tha) (C
holds, by Theorem 4.4(ii); see (4.5) and (5.1). Assume nowitkat is a positive
integer such that (&) holds wherm < i. Under this condition it will be proved
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that (G) is valid. From this induction hypothesis, the definition/af) in (4.1)
yields that for eacly € U;;% G there exists a policy” such that

T-1
(5.8) 8”eP* and EY [exp{ka S IC(Xy, A — T* (A, X,)]” < o0.

t=0
Next, letx € G; ande € (0, &) be arbitrary but fixed, and select a poligye »
which ise-optimal atx. Given a stationary policy satisfying f (w) € B*(w) for
everyw € S, define the new policy as follows: For eache N andh, € H;:

(@ fxo#x,8{f(x)}h) =1
(b) If xo=x andx; € G; foreveryk =1, 2, ...,t, thend;(-|h;) = =, (:|h;).
(c) If xo=x and, for some positive integer< ¢, x; € G; for everyk < r and
xr ¢ G;, then
i-1

8:(-Ih;) = 5zxir Clxr, oo oo Xi—1, Gr—1, X¢) if x, € U Gj,
j=0

S,({fG)llh) =1  whenx, e S\ UG

j=0

A controller driving the system via policy operates as follows: When the initial
state isXg # x, at each decision time the actions are selected according to
On the other hand, wheKkg = x, she uses policyr to choose actions while the
system stays itt;;, but when the system first leavés at time Tge =k, then the
decision maker “forgets” the history observed before tkvand, as if the process
had started again, she switches to pokidy if X; belongs to some set,, with

m < i, orto policy f otherwise. Now, let € N be fixed. When the initial state is

8 andsw coincide while the system stays @, by part (b) so that Lemma 5.2(iii)
yields that

A, € B*(X;)

holds on[7gs <1] Pf—a.s. whereas, by part (c), the choicefoind the inclusion

in (5.8) imply that the above displayed relation also occ®fsa.s. on the event
[Tge = 1l. When Xo = w # x, from the choice off and part (a) in the above

definition, it follows thatP?[A, € B*(X,)] = 1, so that
(5.9) 5 € P*:

see Definition 4.1. Moreover, using again thatand = coincide beforeTGlg
when x is the initial state, it follows that the evenXr,, € Uiz Gyl has
the same probability with respect tﬁ);S and PJ, whereas the expectation
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T (7_1
of exp{ia ztjg, [C(X;, A;) — y;]} with respect to these measures coincides.
Thus, by parts (i) and (iv) of Lemma 5.2,

i—1
(5.10) P} [XTG? e Gk} =1
" k=0
and
TG?_l
(5.11) E® [ex A Y [C(Xy, A — J*(A,X,)]” < 00.
t=0
Next, it will be shown that
T-1
(5.12) E? [ex Ao Y [C(Xy, A — T (A, X,)]” < 00.
t=0

To achieve this goal, notice that

T-1
E® [exp{ka Y IC(X, A = T*(2, X,)]}I[ng = T]i|

=0
_ Tge—1
= E| exp] Aa Z [C(X;, A) — T* (A, X0)] I[Tcg=T]}
L =0
_ Tge—1
< E2| exp A Z [C(X:, Ap) — T* (A, X))] }
L =0
and then
r T-1
(5.13) Eﬁ exp[ka Z[C(X,, A =T (A, X,)]}I[TG;- = T]} < 00,
L =0

by (5.11). Next, observe that for each positive integer

r T-1
ES|expira Y [C(X,, Ap) — T* (3, X,)]}I[r =Tge < T]|I,}
L t=0

r—1

t=0
1,}

= exp

T-1
X Eg |:eX A Z[C(Xz, Ap) — J* (A, Xt)]}

t=r
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Tge—1
:eXp{)ﬂ > ICXy, Ap) — T, Xt)]}l[” =Tgs <T]

t=0
1,}

and that, on the everfge = r, X, lies in U’/;%) G; P’-as., by (5.10). Thus,
part (c) in the definition of policys yields, via the Markov property, that the
following holds with probability 1 with respect t8?:

1,}

T-1
X Eﬁ [exp{ka Z[C(Xt, Ap) =T (x, Xz)]}

t=r

T-1
I[r =Tge < T)E} [exp{m S (CX, A — T, X,)]}

t=r

i—-1
=1[r=TG§- <T.X, e Gl}
j=0

T-1
x ES [ex ra Y [C(Xp, A) — T*(h, X,)]H

t=0
< Ml[r = TG;’ < T],

whereM :=max ES’ [expira 3/ IC(X,) — V(X)NIy € U/Z4 Gi} < oo, and
the inequality is due to the induction hypothestombining the last two displayed
relations, it follows that

T-1
Ej? [ex ra Z[C(X,, A —J (O, X,)]}I[r = TGic < T]|I,}
t=0

5MI[r=TGl¢ < T]exp} ra Z [C(Xt,A,)—J*(A,Xt)]}, Pl-as.,

X
t=0

so that

T-1
ES |:exp[ka STC(X A — T*(, Xt)]}l[r = Tge < T]i|

t=0
Tge—1
<ME?® |:I[r = Tge < T]expy ra > ICXy, Ay — T, X,)]”.
t=0

Since this inequality is valid for every positive integeand Tge is finite P)f—a.s.,
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it follows that

T-1
E? |:exp{ka STCX A — T* (2, X,)]}I[TGEr < T]i|

t=0
_ TGg—l
<ME? I[Tge <T]exp{,\a > [C(X,,A,)—J*(,\,X,)]”
L t=0
_ Tge—1
< ME®| exp{ ra > [C(X,,A,)—J*(,\,Xt)]”.
L t=0

SinceM is finite, this relation and (5.11) yield th&f [exp{i« Z,T:_Ol[C(Xt, Ap) —
J*(A,Xt)]}I[TGic < T1] is finite, and this fact, (5.4) and (5.13) together imply
that (5.12) occurs. To conclude, observe that, by the definition of funétion

in (4.1), the inclusion in (5.9) and (5.12) together yield that) < oo; since
h(-) > —o0, by Lemma 4.3, it follows that(x) is finite and, sincex € G; is
arbitrary, this shows that claim {holds, completing the induction proof]

6. A keyinequality. This section contains the last technical tool that, together
with the finiteness result in Theorem 5.1, will be used to establish Theorem 3.5.
The main objective is to establish the following.

THEOREM®G6.1. Letz be the state in Assumpti@nl.In this casethe deviation
function in(4.1) satisfies that
h(z) <0.
The proof of this theorem relies on Lemma 6.3, whose conclusions involve

the random times at which the system occupies the distinguished zstate
Assumption 2.1.

DEFINITION 6.2. (i) The sequencd}} of successive arrival times to state
is recursively determined as follows:
T1:=T and T;:=min{n > T_1|X, =z}, k>1;

see(2.4) for the definition ofT.
(i) Givene > 0, definey (¢) by

1. =1
Y(e) = n aler}; Iog(E;S [exp[k Z[C(X,, A —yo— 25]”)

t=0
where, as beforep = J*(A, 2).
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It is not difficult to see that eack, is a stopping time with respect to the family
of o-fields{o (1,)}, that is, the evertT;, = m] always lies ino (I,,,), and that

(6.1) o>k k=12 ...

LEMMA 6.3. Lete € (0, &) be fixedand suppose that € & is e-optimal at
statez. In this case

(i) For each positive integek,

Tr—1
(6.2) MVE < ET [exp{k > ICXi A) —yo— ze]H.

=0
(i) There existsg such thatfor everyk > n,

Tx—1 e—)\sk
EZ |:exp{k Z [C(X:, Ay) —yvo— 28]” =< 1_ e

t=0
Consequentty
(iii) ¥(e) <—e.

ProOOF (i) The argument is by induction. Since is ¢-optimal atz and
¢ € (0,8&), Theorem 4.4(i)) and Lemma 4.8(iii) together yield that there exists
8 € P* such thatP” = PZ‘S. In this case, using thdy = T, it follows that

T —1
ET [exp{k > ICXe A) —yo— zg]H

t=0

T-1
= E? |:6Xp{)\ Z[C(Xt, Ay —yo— 25]}i| > e)”//(s)’

t=0

where the inequality is due to Definition 6.2(ii), so that (6.2) is validfet 1.
Let n be an integer larger than 1, and suppose that (6.2) holds when. In
this situation, take a positive integelandh, = (xo, ao, - .., Xr—1, dr—1, X,) € H,
satisfying that
(6.3) P™[T,_1=r,1,=h]>0;
since X7, , = z when T,,_1 is finite, it follows thatx, = z. Notice now that
T, > T,—1 so that, on the eveff,,_1 =r],

T—1

D IC(Xs, Ap) — yo — 2¢]
t=0

r—1 T,—1
=Y IC(X, A) —vo— 261+ 3 [C(X,, A)) — yo — 2]

t=0 t=r
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and an application of the Markov property yields, via Definition 6.2, that

T,—-1
E} {exp[x Y IC(Xr A) —yo— 2e]}

t=0

Ti-1=r1,= ﬁri|

r—1
= exp{k D IC(X:, A —yo— 251}

t=0

Ty
x E? [exp{k Y IC(Xi A — yvo — ze]H,
=0

where the shifted policy is as in (4.3). Sincer is e-optimal atz, Lemma 4.5(i)
yields thatJ (1, 8,2) < J(\, 7w, z) < J*(A,z2) + ¢, so thats itself is e-optimal
at z. Therefore, applying the cage= 1 of (6.2) to this policys, it follows that
ES[explh XL 0[C(X,, Ay) — yo — 2¢]}] = ¢V, which combined with the above
displayed equation leads to

T,—1
ET [exp{k > ICXe A) —yo — 2e]}

t=0

Ti-1=r1,= ﬁr:|

r—1

> exp{x Y IC(Xi, A) — yo— zg]}ew ©,
t=0

Since this inequality is valid whenever (6.3) holds, it follows that

T,—1
ET [eXD{K Z [C(X:, A) —y0— 28]}:|

t=0

Tnfl_1
= E? |:eXp[)u Z [C(Xt, At) — Y0 — 28]}i|e)‘-10(e) > en)ﬂ/f(e)’
=0

where the induction hypothesis was used to set the second inequality. This
establishes the cage=n of (6.2) and completes the induction argument.

(i) Since & is e-optimal atz, there exists a positive integep such that
Ju(h, 1, 2) <n(J*(A, 2) + &) =n(yg+ €) whenn > ng. Observing that

n—1
ET [exp{x SIC(Xi A~ y0— Ze]”

t=0

n—1
_ e—ZnAS—nVoE? |:exp{k Z C(X;:, Ap) H

t=0
_ e—ZnAe—nyoeJn ()»,TI,Z)’
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it follows that

n—1
(6.4) ET [exp[k Z[C(X,, Ap) —yo— Ze]” <e e n > ng.
t=0

Next, let the positive integet and p € (0, 1) be fixed. In this case, (6.1) and
Holder’s inequality yield that

Tr—1
E? [GXD{MJ Z [C(X:, Ar) —vo— 25]}:|

t=0

oo n—1
=Y ET |:exp[k,0 Y IC(X, A) —vo— 28]}I[Tk = n]}

n=k t=0
o0 n—1 14

< (E;’ [exp{x > IC(Xi, A) — yo - 28]”) (PTIT} = n)
n=k t=0

00 n—1 P
<> (E;’ [exp[k Y ICXi A) = yo = 28]”) :
n=k

t=0
Combining this with (6.4) it follows that

Ti—1 00 e kero
ET [exp{k,o Y IC(X A = yo - Ze]” =Y "=

t=0 n=k
k > no.

Given a sequendg,,} of positive numbers increasing to 1, this inequality implies,
via Fatou’s lemma, that for every positive integer ng,

Tr—1
E7 [eXp{/\ Y ICX, A — yo— Ze]H

t=0

Tr—1
= E7 [',migj eXp[Apm tg [C(X:, Ar) — 0 — 281H

m—

Tr—1
<lim i(r)gc ET [exp{kpm Z [C(X;, Ay) —yo— 28]”

t=0
L e kerpm
<liminf ———
m—>00 1 — e—Mom
and then
Tr—1 e—ke)\_
E?|:exp{)» X(:)[C(X,,A,)—yo—Ze]}:| Sm, ano

t=
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(i) Observe that parts (i) and (i) together yield theltV©) < ¢—ke* /(1 —
e~%*) whenk is large enough, and in this case

VY(e) < —e— % log(1 — ),

so that the conclusion follows lettirigincrease tao. O

PROOF OF THEOREM 6.1. It will be shown that there exists a polidy
satisfying

T-1
(6.5) seP* and Ef [exp{k Z[C(X,, Ap) — yo]” <1

t=0

Assuming that such a policy exists, Theorem 6.1 can be established as follows:
First, recall that/*(, -) satisfies the min—max equation in (3.3), by Lemma 3.1,
and thatB* = Bj+(,.), by Definition 4.1(i). Therefore, the inclusiéne £* yields

that PZ‘S[A, € By, (X;)] = 1 for everyt € N, by Definition 4.1(ii), so that an
application of Lemma 3.4(i) implies that, for eaglE N,

J*(A, X)) < J*(h, Xo) = J*(A, 2) = 0, Pl-as.

Sinceyy is the minimum value of *(, -), it follows thatPf[J*(k, X)) =pl=1
for everyn € N, so that the inequality in (6.5) is equivalent to

T-1
E? [exp{k Z[C(Xt, Ap) — J*(A, Xz)]}:| <1l

t=0

From this point, an application of Holder’s inequality yields that

T-1
E? [exp{ka D IC(Xs, Ap) — T, X,)]”

t=0
T-1 o
= (Eﬁ[exp{k > ICXy, A = T, X,)]H) <1
t=0

recall that the fixed number lies in (0, 1). Combining this inequality with the
inclusions € £* and (4.1), it follows that

1 T-1
h) <+ Iog(E;S [exp{ka STCX A — TH(, X,)]H) <0,

t=0

completing the proof of Theorem 6.1. To conclude, (6.5) will be established. Let
{ex} C (0, &) be a sequence converging to zero and notice that, for kach,
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Lemma 6.3(iii) yields thag*¥ ) < ¢=*e < ¢=*2/2 Thus, by Definition 6.2, for
everyk e N there exists a policyt* € £* such that

-1
(6.6) E?k |:exp{)L Z [C(X;, A) —yo— 28k]}i| < e he/2,
=0

LetP(A) be the class of probability measures defined on the subsets of the action
spaceA. For eachr e N andh, € H,, {n,k(-|h,)|k € N} is a sequence iR(A) and,
since A is finite, there exists, (-|h,) € P(A), as well as a subsequence{af},
denoted by{z™}, such that

6.7) lim_m"(FIh) =:8,(FIh,),  FCA.

Moreover, since J72 o H, is denumerable, applying Cantor’s diagonal method it
can be assumed that this convergence holds for everyA, r € N andh, € H,,
and it will be shown tha := {8, } satisfies (6.5). To achieve this goal, first notice
thatz*(A(x,)|h,) = 1 always holds, since* € #* c £, so that (6.7) yields that
8, (A(x,)|h,) =1 for everyr € N andh, € H,, that is,é is a policy. Next, observe
that the equality

PI[1, =h,] =8, xymo(aolxo) pxox, (@o)m1(ailxo, ag, x1) X ---
x 1y —1(ar-1lxo, ao, .. ., xn—l)Px,,_lx,, (an—a)

is always valid, wheré, , := 1 if x = y andg, , := 0 otherwise. Combining this
equation with (6.7), it follows that for everye S, r e NandD :H, — R,

(6.8) lim_ET"[DU)] = ES[DU)].

In particular, for eaclh € N andx € S, P)f[A,, € B*(X,)] =lim,;— P;Tm [A, €
B*(X,)] = 1, where the inclusiom™ € £* was used to set the second equality,
so that

(6.9) § e P*;

see Definition 4.1. Moreover, (6.8) yields that for every N,

r T-1
lim_E7" exp{x Y IC(Xs, Ap) — )/o]}l[T <r]
L t=0

(6.10)

B T-1
exp{/\ Y ICX, Ap) — yo]}I[T <rl|.
L t=0

=2

=F

2~
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Observing that

T-1
exp{k Y ICXi, A —yvo— 28k]}I[T <r]
t=0

T-1
> e—ZArsk exp{)\ Z [C(X;, Ay) — yo]}I[T <rl,

=0
it follows that

T-1
ET" [exp{k Y [C(Xp, Ap) — Vo]}I[T = r]}

t=0

T-1
< Pron " |:exp{k Y ICXi A) —yvo— 28m]}I[T < r]i|
t=0

T-1
<ePremgT” [exp{x Y IC(Xe, A) — vo— 2sm]H

t=0

so thatEZ" [expiA YT C(X,, A;) — yoMI[T < r]] < e®/enthen/2 [see (6.6)];
since {¢,,} converges to zero, this inequality and (6.10) together yield that
E?[exp{x Z,T:_Ol[C(X,, A) — yol} [T < r]] <1 for everyr € N and, via the
monotone convergence theorem, this implies that

T-1
E} [exp[x Y IC(Xs. Ar) — Vo]” <1

t=0

Combining this inequality with the inclusion in (6.9), it follows that the conditions
in (6.5) are satisfied by policy. O

7. Proof of the main result. After the previous preliminaries, in this section
the characterization result in Theorem 3.5 will be finally proved. The argument
combines Theorems 5.1 and 6.1 with the properties of the policie®"in
established in the following lemma.

LEMMA 7.1. Given a policyr € £*, suppose that for somg, a) € K the
inequality P'[Ag = a] > 0 holds and define the shifted poligyy
(7.1) 8:(-Ihy) = 11(-|x, a, hy).

In this casefor eachy € S satisfying thatp,, (a) > 0, assertiongi) and (ii) below
hold.

(i) PY[A; € B*(X,)] = 1foreveryr € N.
(i) There exist$ € £* such thatP{ = P.
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PROOF. (i) Suppose thap,,(a) > 0 and observe tha[[X1 =y, Ag=a] =
PT[X1=ylAg=alP[[Ag=al= py,(a)P[[Ao=a] > 0.Thus, forevery e N,

PI[Ai41 ¢ B*(X,11)]
> Pl [Ai+1 ¢ B*(Xi41), X1=y, Ao =a]
= P][A11¢ B*(Xi4D|X1=y,Ao=alP][X1=y,Ag=al.

Observing thatP[[A;+1 ¢ B*(Xi+1)|X1 = y, Ao = a] = P;?[Az ¢ B*(X»],
which is due to the definition of policy and the Markov property, it follows that

PT[Ai1¢ B*(Xi40)] = P)IA: ¢ B*(X)IP][X1=y, Ao=al.

SinceP[[A;+1 ¢ B*(X;+1)]1 =0, by the inclusionr € #*, andP][X1 =y, Ag=
a] > 0, it follows thatP)[A, ¢ B*(X,)] =0, thatis,PJ[A; € B*(X,)] = 1.

(i) Pick a stationary policyf such thatf(y) € B*(y) for eachy € S, and
define the policy as follows: For eache N andh; € H,

8:(-Ih) =8:CIhy)  if pyxgla) >0,
SUfYh) =1 if pyy(a) =0.

From this definition it follows thaP? = P3 whenp,,,(a) > 0, andP$ = P} if
Prw(@) =0. Therefore}’y‘S = Py‘s, sincep,y(a) > 0, whereas the choice ¢f and

part (i) together imply thaPyg[A, € B*(X;)] = 1 always holds, that i, e £*, by
Definition 4.1. [J

PrRoOOF oF THEOREM 3.5. Recall that the fixed nhumber belongs to
(0,1) and letg(-) be the function defined in (3.6). It will be shown that this
function belongs to the familyg in Definition 3.2. Using thaix is positive,
from Lemma 3.1 it is not difficult to see the min—max equation (3.3) holds,
so thatg(-) satisfies the first requirement in Definition 3.2. Moreover, for each
(x,a) € K, the equalityg(x) = max{g(y)| pxy(a) > O} is equivalentta/*(, x) =
max{J* (A, y)| pxy(a) > 0}, so that

Bg(X):BJ*()\’.):B*(X), x €S;

see (3.5) and Definition 4.1(i). It will be verified that the second part of
Definition 3.2 is satisfied by the palg(-), 2(-)), whereh(-) is given in (4.1). To
achieve this goal, first notice that this functib6) is finite, by Theorem 5.1. Next,
select a policyr € * and letx € S be arbitrary. For each actiansatisfying that
PT[Ap =a] > 0, it follows thata € B*(x), sincer € $£*, whereas the Markov
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property yields

-1
EY [ex Ao Y [C(X, A — T*(A, Xt)]} ‘Ao = a:|
t=0

T-1
= Ejf |:exp{ka Z[C(Xt, A) —J*(, X,)]}I[T =1]|Ag= ai|
t=0

-1

+ET [exp{ka Y IC (X, Ap) — T*(, X,)]}I[T > 1]]Ag :a:|
t=0

— e)mt[C(x,a)—J*()\,x)]pxZ ()

+ eka[C(x,a)—J*()ux)]

T-1
x 3 pey(@E? [exp{xa S ICXr, A = J*0, X’)]H’

y#z t=0

wheres is the shifted policy in (7.1). By Lemma 7.1, there exists 2* such that
P} = P} whenp,,(a) > 0, so that

T-1
ET |:exp{ka S IC(Xe, A — T, Xt)]} |40= ai|

t=0
— eka[C(x,a)—J*(A,x)]pxz(a)

+ em[C(x,a)—J*(A,x)]

} T-1
x 3" pry(@ES [exp{xa S ICXo, A — T* 0, X’)]H

y#2 1=0
> eka[C(x,a)—J*()\,x)]pxz(a) +e)\oc[C(x,a)—J*(A,x)] Z pxy(a)e)\h(y)’
y#z

where the inequality is due to the inclusidrne #*; see (4.1). Recalling that
a € B*(x), this leads to

-1
EY [ex ro Y [C(Xy, A — T (A, Xt)]} ’Ao = a:|
t=0

. ra[C(x,b)—J*(X,x)]
> min |e b
_beB*(x)|: Pxz(b)

4 HCE D) =T Gux)] pry(b)e)\h(y):|’
y#z
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and then, since this inequality holds for every actiosatisfying thatP] [Ag =
a] >0,

T-1
EY [exp{ka Y IC(X, A = T*(2, X,)]”

t=0

. Aa[C (x,b)—JT*(A,x))]
> min |e b
_beB*(x)|: Pxz(D)

+ eka[C(x,b)—J*(A,x)] Z Py (b)e)\h(y)i| )
y#Z
Using thatr € £* andx € S are arbitrary, via (4.1), this inequality yields

A > min [em[cu,b)—f*(x,x)]p“(b)
beB*(x)
(7.2)
+eka[C(x,b)—J*(A,x)] pry(b)e)\h(y)i|’ xes.
Y#z
On the other hand, by Theorem 6.1
e)‘-h(z) S 1

which, combined with (7.2), implies that for everye S,

A (x) ; A[C (x,b)—J* (A, x)] Ah(y)
e > min |e E ,(b)e ,
= beB*(x)|: . ny( ) :|

and then, multiplying both sides of this inequalitydy ) = el /" 4.1+ CI1

PHEEOHM) 5 ber?i?x) |:eAaC(x,b)+(1—a)IICII Xy: pxy(b)e)‘h(y)i|;
sincexC(x,b) + (1 — a)||C|| > C(x, b), this yields that

PHEOFAR() S bergi?x) [excoc,b) Xy: pxy(b)e)‘h(y)i|, xes.
Therefore, the paifg(-), 4(-)) satisfies the second condition of Definition 3.2, and
it follows that

aJ* A, )+ A —a)|C] €§.
This inclusion is valid for each € (0, 1), so that
J*(A, x) > inf g(x), xes,
8<€§

and, via Lemma 3.4, this implies thdt' (i, x) = inf,cg g(x) for every stater,
completing the proof of Theorem 3.5
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REMARK 7.2. As a consequence of the results presented in this paper, two
main problems remain open:

(i) Find (nontrivial) conditions under which the optimal value functib., -)

belongs to se§. and there exists a solution to the dynamic programming equation.
(i) Find an efficient algorithm to approximate the optimal value function and
obtaine-optimal stationary policies.
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