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LARGE DEVIATIONS FOR TEMPLATE MATCHING
BETWEEN POINT PROCESSES

By ZHiy1 CHI
University of Chicago

We study the asymptotics related to the following matching criteria
for two independent realizations of point processes- X and Y ~ Y.
Given!l > 0, X N [0,]) serves as a template. For eack 0, the matching
score between the template aiidN [¢,¢ + [) is a weighted sum of the
Euclidean distances from — ¢ to the template over ay € Y N [¢, 1 + ).
The template matching criteria are used in neuroscience to detect neural
activity with certain patterns. We first consid@j (9), the waiting time until
the matching score is above a given threshldVe show that whether the
score is scalar- or vector-valued,/ /) log W;(0) converges almost surely to
a constant whose explicit form is available, wh¥éris a stationary ergodic
process and is a homogeneous Poisson point process. Secornd»as,
a strong approximation forlog[Pr{W;(6) = 0}] by its rate function is
established, and in the case whéfés sufficiently mixing, the rates, after
being centered and normalized k¥, satisfy a central limit theorem and
almost sure invariance principle. The explicit form of the variance of the
normal distribution is given for the case whetds a homogeneous Poisson
process as well.

1. Introduction. In neuroscience, it is well accepted that neurons are the
basic units of information processing. By complex biochemical mechanisms
governing the ion flows through its membrane, a neuron generates very narrow
and highly peaked electric potentials, or “spikes,” in its soma (main body) [6].
These spikes can propagate along the neuron’s axons, which are cables that
extend over relatively long distance to reach the other cells. The spikes can then
influence the activities of those cells. The temporal pattern in which a neuron
generates spikes dynamically depends on its inputs, which are either stimuli from
the environment or biochemicals induced by the spikes from the other neurons. In
this way, information is processed through the neural network. Because spikes are
very narrow and peaked, point processes are the most commonly used models for
neuronal activity, with points representing the temporal locations of spikes.

For many studies in nheuroscience, it is necessary to detect segments of neuronal
activity that exhibit certain patterns [1, 10, 11]. Recently, in a study on the activity
of brain during sleep, a template matching algorithm was developed which uses
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linear filtering to quickly detect such segments (cf. [3]). The algorithm is template
based. Suppose= {x1, ..., x,} is @a nonempty sequence of spikes generated by a
neuron under some specific condition between time (/ aiitis sequence is used
as a template. Given a data sequence of spikes{ys, y2, ...} generated by the
same neuron but at a different time, the goal is to find segmeritstimat have

a temporal pattern similar t8. To do this, for each time point collect all y's
betweerr andr + I and shift them back to the origin. If the temporal distances
between the shifted’s and S are small on average, then it indicates that the
temporal pattern of the activity recorded ¥hbetweent andr + / is similar to

that of S. Therefore one can use the following matching score

1
M) =7 > fldy—129)

y betweery andz+/

to measure the overall distance, wheféx) is a function ofx > 0 that is
nonincreasing, and is the Euclidean distance such that for any R andS C R,
d(y,S) =inf{ly — s|:s € A}. Let 6 be a threshold value fixed beforehand. If
M (t) > 6, then output as a location of matching segment, or “target.” To improve
accuracy, the detection was modified to involve multiple matching criteria so that
both f and® are vector-valued. Then is a target location only ifM(z) > 6

(cf. [3]), where, foru = (u1,...,u,) and v = (vy,...,v,), “u > v” denotes

“u; >v; forall j.” For later use, let#i > v" denote u > v andu #v.”

In the above studies, it is necessary to evaluate how difficult it is to get false
targets if a data sequence is noise. A useful criterion for this is the waiting time
until the matching score is larger than or equdl t@resumably, when the template
is longer, that is] is larger, it would be more difficult to find false targets. But how
much more difficult? In this article, we study the asymptotics of the waiting time
under certain assumptions on the point processes underlying the template and the
data.

To fix notation, realizations of a point process Rrwill be regarded as point
sequences. Fer< b andS C R, denote

S =SN[a,b), S—a={t—a:acs).

We will think of the templateS as an initial segment of an infinite sequerite
of points onR. That is, S = Xé for somel > 0. Given f = (f1,..., fu):{0} U
R — R, if Y is another sequence of points, then for eashO, define

1 -

7 Y fldy—1Xp). if Xp#2,
errH—l

(—00,..., —00), otherwise.

o1 (X, vt =

In practice, it is reasonable to require thfatx), k = 1, ..., n, be nonincreasing
functions inx > 0. However, to get the asymptotics Wf, this requirement can be
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dropped. Given a thresholtle R", the waiting time until the first false target is
detected is

Wi(0, X, Y) =inf{r > 0:p(Xp, ¥/ ') = 6}.

To study the asymptotics d¥; as!/ increases, assuni® andY are random
realizations of two point processsandY on R, respectively. One would think
of stationary Poisson point processes as signals that contain the least amount of
information. In other words, they are plainly noise. We will mainly focus on the
case wher& is Poisson.

The asymptotics of waiting times for pattern detection using random templates
have been studied for the case whire- {X,,,n > 1} andY = {Y,,,n > 1} are
integer indexed processes (cf. [2, 7, 13, 14] and references therein). In these works,
the matching score is defined fax4, ..., X,,) and(Y1, ..., Y,) as the average of
p(Xj,Y;) for some functiorpn. Whereas the temporal relations between points are
essential in the asymptotics considered here, it is apparent such relations are not
relevant in the above results.

When f is scalar-valued functioif, the first main result is:

THEOREM 1. Suppose that X and Y are point processes on R that are
independent of each other and f is a bounded scalar function. Assume;
1. X isastationary and ergodic point process with mean density
N =ENx[0,1) € (0, 00),

where Nx (-) isthe random counting measure associated with X (cf. [5]).
2. PHd(0, X) isacontinuity point of f}=1.
3. P{f(d(0,X)) >0} >0.
4. Y isa Poisson point process with density A € (0, 00).

Define

(1.2) ¢ 1= LE[£(d(0.X))].

(1.2) A(t) := LE[e!/@OX) _ 7],

Then, given 6 > ¢,

(1.3) llim %Iog W0, X,Y) =supft — A1)} w.p.1.
— o0 >0

Theorem 1 can be generalized to the case where the signal is a compound
Poisson process. Such a process can be characterized a¥ a=p@r, {Q(y), y €
R}), whereY is a common Poisson point process with densityand Q(y)
i.i.d. ~ 0 € N are random variables independentofandY. ForY ~ Y, each
y € Y is interpreted as a location where there is at least one pointQangis the
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number of points ay. Then forY ~ Y, the matching score betweéd) and the
segment of in [z, 7 + 1), denoted by is

~ 1
pXo, YT =7 3 00 f(d(y—1, Xp).

erIIH

ProOPOSITION 1. Suppose all the assumptions in Theorem 1 are satisfied.
In addition, suppose G(r) := E[e!2] < oo for all ¢ > 0. Then, given 6 > ¢ :=
ALE[f(d(O, X)IE[Q],

o1 ~ -
lim —logW;@, X,Y) =sudft — A(t)} w.p.1,
l—>o0 [ t>0

where A(r) = AE[G (¢ (d (0, X))) — 1].

The asymptotic in Theorem 1 can also be proved whendim f > 1. Because
the monotonicity property dR used in the proof of Theorem 1 is lost in this case,
some changes in the assumptions are needed.

THEOREM 2. Assume X, Y and f satisfy all but condition 3 in Theorem 1.
Instead, assume:

3. Forany v 0, P(v, £(d(0,X))) > 0} > 0.
Define A(r) = AE[e! @OX)) _ 1] and ¢ asin (1.1). Then for any 6 > ¢,

1
1.4) lim —logW;(0,X,Y) =inf A*(z) w.p.1,
l—o0l z>6

where

A*(z) = sup((z, 1) — A(1)}

teR"

is bounded and continuous.

The proofs for Theorems 1 and 2 rely on the conditional large deviations
principle (LDP) of a family of random variables, becauk¥e~ X is a fixed
realization (cf. [2, 4, 7, 8]). These random variables have close relationship to
,ol(Xé, Ylo). We next consider the asymptotics of the latter and restrict our focus
to the case wher¢ is scalar-valued. First, the following approximation for the
conditional LDP forp; (X%, Y£) holds.
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THEOREM 3. Under the same assumption as in Theorem 1, for any set of
points S C R, let

1
%IogE[exp £y flo, S))H = % f [/ @0~ _ 1] dy,
0
(1.5) Agi(t) = YeYg
if S+,
0, otherwise,

(1.6) A%,(0) = suRqez — Ag (D]
te

Then, given 6 > ¢, almost surely, for X ~ X,
(1.7) —logPr{p; (X}, Y5) > 6) — 1A%y () =o(V1).

Note that Pr{p; (X5, Y§) > 6} = Pr{W,(6) = 0}.

REMARK. Despite the higher-order approximation in Theorem 3, the differ-
ence between the aforementioned random variable;a,&m@, Yg) does not allow
the approximation to be applied to the proof of Theorem 1 and it is not clear to me
how to derive a similar higher-order approximationip.

Finally, under suitable conditions; logPr{p;(X}, Y4) > 6} after being cen-
tered and normalized is asymptotically normal, as the following result combined
with (1.7) shows.

THEOREM 4. Assume X, Y and f satisfy all but condition 2 in Theorem 1.
Instead, assume f = 0 is continuous. Given 6 > ¢, let 1o be the (unique) point
with A*(0) = 819 — A(rg). If X is a Poisson point process with density p, then
almost surely, for X ~ X,

(1.8) A% ) =[610— Ay (0]} = o(W1),  1—o00,
(1.9) Vi(10— Ay (10) — A*(©9)) B N, 4p0?),
with

oot vfo() - s(5) ]} 1[o ) ()5
where U ~ Exp(1), g(x) = /™) and G(x) = /5 g.

REMARK. Following the proof of Theorem 4, it can be shown that, instead
of assumingX to be a Poisson process, ff” /(1) dt < oo and eitherf has
bounded support aE 2 < oo, wherey (t) = suf{|P(AN B) — P(A)P(B)|: A €
o(XQOO), B € o(X?)} andr = min(Xg3°), then (1.8) and the asymptotic normality
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of V1(0tg — Axf),l(tO) — A*(0)) still hold. Indeed, under the assumptions, the left-
hand side of (1.9) is/n(Ax ,(to) — A(70)) + o(1), w.p.1, withn = [/], and the
random variablesZ, = A [""1[¢0/@X) _ 1]4y satisfy the mixing condition

in [12], Theorem 1, yielding the asymptotic normality. However, in general, the
explicit form of the limit distribution is not readily obtained.

The rest of the article is organized as follows. In Sections 2 and 3, Theorem 1
is proved. In Section 4, Theorem 2 is proved. In Section 5, Theorem 3 is proved.
Finally, in Section 6, Theorem 4 is proved.

2. Waiting times for scalar-valued matching scores. In this section, sup-
poseX andY satisfy the conditions in Theorem 1. For any functigndenote
gt =max(g, 0) andg— = max—g, 0), and fore > 0,

ge(x)= sup g().

lt—x|<e

For integem > 1 andX, Y C R with Y discrete, define

1 :
An(X,¥) =~ Yoo inf fT(d(. Xp)

n—1<Ii<n
yery~
1 - I
- sup f(d(y, Xp)),
n— erg”_lflf”
By (X, Y) = Y sup £ (d(y. Xp)
n— nte n—1<i<n
YeY,
1 . _ /
—= Y inf f7(d(y. XD)).
n n—1<I<n
yery—t
Since
21 ff® = sup ffo=rrfw, ffo= Nt ST =0,
t—x|<e —X[=

it is seen thatB, .(X,Y) > A,(X,Y). The following lemmas are needed for the
proof of Theorem 1.

LEMMA 1. Given 0 € R, almost surely, for X ~ X, as n — oo, eventually
thereare
Op. X0 = Pr{A,(X,Y)>6}>0, ﬁn,s,X,Q = Pr{Bn,s(Xa Y)>6}>0.

Because of Lemma 1, the logarithms in the results below are well defined almost
surely.
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LEMMA 2 (Upper bounds foi;). Let 6 be an arbitrary number. Then

(2.2) Pr{llm sup Iog[am x.0 X Wi(0,X,Y)] < 0} =1

[— o0

LEMMA 3 (Lower bounds foW;). Let 6 be an arbitrary number. Then

(2.3) Pr{llm inf = 1og[B1.e.x,0 x max(W; (0, X,Y),1)] > O} =1

LEMMA 4 (LDP). Almost surely, for X ~ X, the conditional laws of
A,(X,Y), n > 2, satisfy the LDP with a good rate function

(2.4) A*(0) =sugdt — A1)},

teR
and the conditional laws of B, .(X,Y), n > 2, satisfy the LDP with a good rate
function

A¥(0) =suf0r — AE[ee@OX) _ 1]},
teR

Assume for now that the above lemmas hold. or ¢, by Lemmas 2 and 4,
almost surely, folX ~ X, Y ~ Y,

(2.5) Ilmsup logW;(0, X,Y) < mfA (2).

[— o0

It is known thatA is strictly convex (e.g., [9]). Becausg is bounded,A is
smooth everywhere with\’(0) = ¢. By condition 3 of Theorem 1A(r) — oo
exponentially ag — co. These imply that for any > ¢, A*(z) > 0 is finite and
achieved on0, c0), andA* is a continuous strictly increasing convex function on
(¢, 00). Then by (2.5), itis seen that

(2.6) lim sup Iog W0, X,Y) < A* ),
[—o0
and to complete the proof of (1.3) it remains to show
(2.7) I|m |nf Iog Wi(0,X,Y) > A*(9).
By Lemmas 3 and 4, for any> 0,
1

liminf —logmaxW;(6, X, Y), 1) > inf AX(z).

[0 [ >0
Similar to the above argument, it is seen that almost surely)ferX, Y ~Y,

(2.8) I|m|nf—Iog maxW;(0, X,Y),1) > A%(6) =supfr — A (1)},

t>0
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where A, (1) = AE[¢'/(@©X) _ 1], Let +* be the unique point whera*(9) =
0t* — A(t*). Then A} () = 0t — A.(¢*). By condition 2 of Theorem 1
and dominated convergencé,(1*) — A(t*), leading to liminf_ oA} (6) >
A*(0) > 0. So by (2.8)

I|m|nf Iog maxW; (6, X,Y),1) > A*(0) > 0.

The lower bound also implie$V; (6, X,Y) — oo. These combined with (2.8)
prove (2.7). O

3. Proofsof lemmas.

PROPOSITION2. For X satisfying condition 1 of Theorem 1,
-5 X!
Pr{ jim L SUPx X € Xol o} —1,
[— 00 [

where, for X5 = @, supx :x € X))} is defined to be —co.

PROOF  BecauseX is stationary and ergodic, almost surely, for a realization
X of X, asl — oo, Nx[0,1)/1— N > 0, implying that for any € (0, 1), Nx[(1—
&)l, 1) — oo. Now

_ l
1= surXo) >¢ = Nx(1Q-e)l.1)=0,

leading to

X!
Pr{limsup —SURlxix € } }:0,

[ — o0 )

which completes the proof.(J

PROOF OFLEMMA 1. BecauseB, . > A,, it is enough to show that almost
surely, forX ~ X, o, x.0 := P{A,(X,Y) > 6} > 0 eventually, as: — oco. Let
X be a realization oX ands, = min(X3™%), 7, = maxx§™1), for n > 2. It is
easy to see,/n— 0 w.p.1. By Proposition 2, almost surety, is well defined for
all largen and(n — t,)/n — 0. Note that fory € Y37, d(y, Xg~ 1) =d(y, X). By
the ergodicity ofX and condition 3 of Theorem 1, almost surely,

n||—>mooE|: Z Y@ xy 1))>0}} —n'Lmoo;/ Lr@o.xn=0dy

= lim —/ Lirw@o x-y)>01dy

n—o0op

= APr{f(d(0, X)) > 0} > 0.
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Then it is seen that for large enough, there ig, > 0 such that

1
Pr[; Y de.xgh) > nn} > 0.

T
yeYy'

Define

1 .
cn:[Y:Yg:Y;",; > fdo.Xgh) >
yery

andVyeYy§, f(d(y, Xo™h) > 0}.

By the property of Poisson processes, it is not hard to see tldte€,} > 0.
Fix N e N with N > 6/n,. Let D, consist of allY with Y being the union of
Z1N[0,n),...,ZyN[0,n) forsomeZz,, ..., Zy e C, with Z; N Z; N[0, n) = &,
i # j. Then PfY € D,} > (P{Y € C,})Y > 0 and for any¥ € D,,, A,(X,Y) >
Nn,>6. O

PROOF OFLEMMA 2. Let{K,} be a sequence of positive numbers to be
determined later. Fix > 2. Let X be a realization oK with «, x¢ > 0 andY
a realization ofY. If there isl € (n — 1, n], such that;(0, X, Y) > K,,, then for
allr €[0, K, 1,

1
7 Y fldy—1.Xp) <0

yeyi*t

1
= 7 2 [Tb-1X)

yer!H

1
<0+ T Y fdy -1t Xp)

yey!H
- inf  fH(d(y—1, X!
ﬁ n ; _ln—lflfn f ( (y ’ 0))
yer/™
<0+ > sup f(d(y—t,Xp)

TS eyrmn—lsizn
t

= A,X,Y —1) <8,

with (a) due tof*, £~ > 0. In particular,W;(0, X, Y) > K,, implies A, (X,Y —
kn) <6 for k =0,...,|K,/n|. BecauseA,(X,Y — kn) only depends onX
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andy**V" py the fact thaty V" are i.i.d.,
PH3l € (n — 1, n] SLW,(6, X, Y) > K}

LK /]
< Pr{ () {An(X,Y —kn) <6}
k=0

LKn/n]
[] PHANX.Y —kn) <0} < (1 —ay x,0)5/" < emnxoKnin,
k=0

ChooseK,, = c(n)n/ay,, x.9, With e M < 00 and% logc(n) — 0. Then

1 1
Pr{EIl e(mn—1,n]s.t 7 loglay, x.0 X Wi(0, X,Y)] > 7 |Og[c(n)n]} < e,

Because the above bound is uniform oXewith «, x ¢ > 0 and summable, by the
Borel-Cantelli lemma and Lemma 1, (2.2) is therefore proved.

PROOF OFLEMMA 3. Fixn>2,¢€ (0,1) andL > 0. LetX be a realization
of X with 8, . x,» > 0 and letY be a realization oY . If there is/ € (n — 1, n] such
thatW;(0, X,Y) < L, then there ig € [0, L] such that

Z fld(y—7.Xp) =6,

yGYT+l

which implies that for some=ke, k=0,1, ..., |L/¢],

1
T sup Y fldy—t.Xp)=0.
Telt, t+s] YTH

Since for anyr € [1,1 +¢], Y/t c yIt < v/t the above equality leads to

sup Y. fTd(y -1, Xp)

n—1
re[t’t+€]er[+"+5

1
- = |nf (d 7, X5)) > 0.
n teft,t+e] ;ﬂ 1f - O)) -
t+e

Becaused(y —t, X)) —d(y—t, Xb)| < e foranyy e Randr € [t, 1 +¢], by (2.1),
the above inequality implies

1 1 _
Z fj(d(y—t,Xé))—— Z fs (d(y—t,Xé))Z@
n err+n+£ n yeyt+n 1
t t+e

= B, (X, Y—1)>0.
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Because = ke, for somek =0, 1, ..., |L/e], by the stationarity o¥,
Pr{3le (n—1,n]stW;®,X,Y)<L)

LL/e]
<P |J (Bue(X,Y —ke) > 6}
k=0
LL/e]
< Y PHBu (XY —ke) 20} = (L/e + 1)fyc x.0-
k=0

For L > 1, this implies
Pr{3le(n—1n]st maxw;(0, X,Y),1) <L} <2LB, ¢ x.0/¢.

The above bound holds fdr € (0, 1) as well. Choosé& = L(n) =e~“™ /B, . x.0
with Y- e=¢™ < oo and <™ — 0 to get
1 c(n)
Pr{EIl e(m—1,n]s.t. 7 log[Bn.e.x.0 x max(W; (0, X,Y),1)] < _T}

<2¢ W /g

By an argument similar to the end of the proof of Lemma 2, (2.3) is provied.

PROOF OF LEMMA 4. The proof is an application of the Gartner—Ellis
theorem. We will only consider the LDP of,(X,Y). The LDP of B, .(X,Y)
can be similarly treated.

The first step is to show that almost surely, for- X,

1
(3.1) “log E[e" X5 A(r)  forallz eR.
n

Let g, () = infy_1<1<p £ (v, X§)) andh, (y) = sup,_1<j<, £~ (d(y, Xb)).
Then giverr € R,

1 n 1 n
;IogE[e tAn(X,Y)] - #ogE[exp{t( Z gn(y) — —] Z hn(y))H

yeYgt YEYG

=1+ I,

A n—1

I = ;/0 [eXp{t(gn(y) - HL_lhn(y))} - 1] dy,
A [0 tn

=" /n_l[exp{——n - 1h,,(y)} _ 1] dy.

with
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Becausef is bounded,[»— 0 asn— oco. Letting s, = min(Xg_l) andt, =
max(XS‘l), it is seen that ifs, <y < 1, then d(y,Xé) =d(y, X), Yyielding
gn(y) = fT(d(y, X)) andh,(y) = f~(d(y, X)). Let

F(y)= eXp{t<f+(d(y, X)) — ﬁf_(d(y, X)))} -1

Clearly s, /n — 0. By Proposition 2, we can assume— t,)/n— 0. Let J, =
[0, s,1U [tn, n — 1]. Then by the boundedness ff asn — oo,

A -1 A A n
n=2 F_Z/n”Z Jn[exp{r(gn@)—n—_lhn(y))}—1]dy

= %/0 [exp{t(f+(d(0, X—y)- ﬁf‘(d(o, X — y)))} -~ 1} dy + o(d).

BecauseX is ergodic, it is seen thaly — A E[¢"/@©-X) _ 1], proving (3.1) for
fixed ¢. It follows that almost surely, (3.1) holds farin a countable dense
subset ofR. On the other hand, by the boundednessfofit is not hard to
show that% log E[e"*4(X-Y)] n > 1, are equicontinuous functions inon any
bounded region and () is continuous. Therefore, almost surely, for~ X, the
convergence in (3.1) holds for ale R.

The functionA (¢) is smooth and strictly convex. By condition 3 of Theorem 1,
A(t) — oo exponentially fast ag— oo. To finish the proof, consider the event
E={f(d(0,X)) <0}.If Pr(E) > 0, then, ag — —o0, A(t) — oo exponentially
fast and henca is essentially smooth (cf. [9], Definition 2.3.5). By the Géartner—
Ellis theorem, the LDP holds foA, (X, Y) with the good rate functiom*. If
Pr(E) = 0, or equivalently,f(d(0, X)) > 0 w.p.1, then by Theorem 2.3.6 and
Lemma 2.3.9 of [9], for any open sé&t,

1
liminf = logPrA,(X,Y — inf  A*(@).
Imint . 0gPHA,( )eG}> ozeGIrQ(O,oo) (@)
Since fora < 0, A*(a) = oo, and for 0< @ < ¢, A*(«) < oo is decreasing, the
above inequality implies

4. Waiting times for vector-valued matching scores. Let comparison or
maximization of vectors be made component-wise, for examplg & (f1, ...,
f)othenf+ = (. £5), supey £(x) = (SUBea F1(X), ... SUBcy fr (X)),
and for vectors = (u1, ..., uy), v=(v1,...,v,), maXu, v) = (Max(uy, v1), ...,
max(uy,, v,)). Giveno € R", defineW; (0, X, Y) as in the case wherg is scalar-
valued.
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PROOF OF THEOREM 2. Lemmas 1-3 still hold. Following the proof for
Lemma 4,

(4.1) IogE[ it AnXON 5 A1),

Let ¢ = f(d(0, X)). Since A(r) < oo on R" and is differentiable, to show
that the laws ofd, (X, Y) follow the LDP with the good rate function*(z), by
the Gartner—Ellis theor, it is enougho show thai VA (r)| = |E[¢e' ¢ — oo
as|t| — oo. Assume for a sequencg € R” with |¢;] — oo, |E[¢e'- 9] < M.
Then there is a subsequencergf.=¢;/|¢;| converging to some with |v| = 1.
Without loss of generality, ssume the whole sequencgconverges taw. Then
|E[(v, £)e'i-€]| < M. By condition 3, there ise > 0 such that Riv, ¢) >
3e} > 0. Becausg is bounded, forj large enoughir; — v[|¢| <. Then

E[(v, £)e' 9| = E[(v, £)e D1y, 1230 ] + E[(v, £)e 144, ¢)<0)]
>E[<v )T )20
E[(v, £)eli1 w491 ) o]
> 36 Pr{(v, ¢) > 3e}e!il — E|;|e8"f‘ — 00,

which is a contradiction.

Let M(t) = E[e"¢)]. For anya > 1, letV = {t: M(t) < a}. BecauseV(r) is
convex and continuoud/ is a convex closed set. Assurieis unbounded, then
there arer; € V with |t;| — oo andt; =t;/|tj| — v for somev with length 1.
Givenr >0, |t;| > r for all large j. As O, [tj|tj € V,rt; € V, implyingrve V.
As a result,M (rv) < a for all r > 0, which is impossible due to conditiori. 3
Therefore,V is bounded. Suppoge| < R for all v € V. Then forz with |¢| > R,
by the Hélder inequalityM (r) > (M (Rt/|t|)!"/R > 4ll/R and henceA(r) =
M(t) —1— oo exponentially fast in¢|. Therefore A*(z) < supcrflzllt| — A1)}
is bounded on any bounded set. Singé is convex, then it is seeml\* is
continuous.

By (2.2) and the LDP for the conditional laws 4f,, almost surely, foX ~ X
andY ~Y,

1 1
limsup-logW;(0, X,Y) < —Iliminf — P{A,(X,Y) > 6}
1= 00 [ n—>o00 p

4.2)
< inf A*(z) = inf A*(z),
z>0 z>0

with the last equality due to the continuity af*. Forz > 6 > ¢, (1, z) > (1, 6) >
(1, ) =AE[{1, ¢)]. Then by Theorem 1

A*(z) = suplt(, z) — AE[e" 9 — 1]} = supz(1, 6) — AE[¢!9) — 1]} > 0.
t>0 t>0
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On the other hand, by the Gartner—Ellis theorem,

o1 . 1
liminf —logmax1, W;(6, X,Y)} > —limsup—Pr{B, .(X,Y) > 6}
=00 [ n—oo N ’

4.3)
> inf A% (2).
>0

Similarly to the proof for Theorem 1, it just remains to show
4.4 lim inf A¥(z) = inf A*
(4.4) Jim  inf = (2) inf (2),

whereA*(z) = supr{(z, 1) — E[et f:@dOXD) _ 1]},
Let M =sup,.o|f(x)|. Since

A¥(z) = supz|t — ™M} — oo, |z| = o0,
t>0

uniformly for ¢ > 0, for some bounded closed setC {z:z > 6}, inf,>g A% (z) =
inf;c4 A%(z). Next show that as a family of functions parameterizedsby 0,
A’} is equicontinuous o for all smalle.

By the boundedness gf and conditions 2 and' 3for anyv e'={z: |z| = 1},
there arey = n(v) > 0,8 = &(v) > 0, and an open neighborhodtd= U (v) C T,
such that

Pr{(v, f:(d(0,X)))>2n}>n  foralle <§

andM|v — u| < n, forallu € U. Becausd" is compact, there arg, ..., v, such
thatI" = U;_1 U (vi). Lets = ming—1 8 (vr) andn = min;_; n(vr). Foranyv e T,
there isk such thatv € U(v;). Then for anys < 8, when (vg, f:(d(0, X))) >
2n(ve),

(v, fe(d(0, X))) = (vk fe (d (0, X))) — |v — vg|M = 2n(vx) — n(vi) =1,
implying Pr{v, f:(d(0,X))) >n > n. Fix L > 0 such thatz| < L forall z € A.
Fort e R\ {0}, write t = |t|v. Then ag¢| — oo,

(z,1) — )\E[e(f,fs(d(O,x))) _ 1]
< L|t| = AE[(e" @O — 1)1 @ xonsn ]+
<L|t] —nre™ 41— —o0,

uniformly for z € A and e < §. Since Af(z) > 0, this implies that there is
R > 0 such that for allz € A and ¢ < §, the maximizert*(z, ¢) of (z, t) —
LE[e!: e@dOX)) _ 1] is in Bg := {z:|z| < R}. Then for anyzi,z» € A4, it is
seenAf(z1) — Af(z2) < (t*(z1,¢€), 21— z2) < Rlz1 — z2|. Likewise, A¥(z2) —
A¥(z1) < Rl|z1 — z2|. SOA(z) is equicontinuous.

Chooses, suchthatlim inf,~¢ A% (z) =liminf,_ ginf,>¢ A% (z), whereA} :=
A; . Letz, € A be such that\}/(z,) = inf;ca A} (2). Thenz, has a convergent
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subsequence. Without loss of generality, suppgse>z € A. Following the
same argument as in the proof of TheoremAl,(z) - A*(z). Then by the
equicontinuity ofA%,

liminf Zlgl; Al(z) = nli_)moo Ay (zy) = nli_)moo Ay(z) =A"(2) > ZIQI; A*(z) > 0.

e—>0

Therefore, (4.3) can be replaced by
o1 ,
liminf —logW;(0, X, Y) > inf A% (2).
l—>o00 [ 76
This together with (4.2) implies that
limsupinf A}(z) < inf A*(z),
e—s0 =0 72260

which completes the proof of (4.4)[]

5. Anapproximation for largedeviations. Givenéd > ¢ :=AE[f(d(0, X))],
it is easy to see thatr — A(¢) achievesA*(0) at a unique pointy. Furthermore,
to € (0, c0) and

(5.1) 0 = A'(to) = LE[£(d(0, X))/ @@X)],

LEMMA 5. Almost surely, for X ~ X, when ! islarge, 61 — Axg,z(f) achieves
A*X, 1(9) on (0, oo) and the maximizer * = t*(X,[) is unique. Furthermore, ¢*
0’
satisfies

)\- ! * 1
(5.2) 0 = A/Xé,l(t*) = 7/0 fd, Xé))e’ fd(y.Xo) gy

and, as! — oo, t* — 19, Axg (%) = A(t) and A;/(Z l(t*) — A(1g).
: L

PrROOF Almost surely, forX ~ X, for all large I, Axf),l(t) is smooth,
strictly convex,AXél(O) =0, and A’X, I(t) — oo exponentially fast ag — oo.
, L,
Furthermore, following the proof of Lemma 1,

! , L
im = [ f(d(y. Xp)dy = lim 7 fo F(d(y. X)) dy = E[£(d(0.X))].

I—-o00l Jo
and hence!\/X, 1(0) < 6, implying 6t — Axé ;(t) has a unique maximizet which
b, ,
is in (0, o). By differentiation, (5.2) is proved. For any- 1y, by (5.1) and (5.2),
asl/ — oo,

o (0= @) > M) =6= Ay (7).



168 Z.CHI
Therefore, t* < t eventually, giving limsup, . t* < 9. Likewise,

liminf; , o t* > tg. This proves™* — . Finally, following the equicontinuity ar-
gument as in the previous sections,

ol
Ay ) =7 / [ T@OX0) _ 1]y —s 3 E[e0/@OXD) _ 1] = A (19)
’ 0
and
P Y e I\ 0" £ (d(y.X5))
wh (=7 [ A0 Xg))e! TN dy

— LE[f2(d(0, X))e®/ @OXN] = A" (1) > 0. 0

PROOF OF THEOREM 3. GivenX ~ X such thatAxéJ has the properties
described in Lemma 5, let

Ji=exp(lAy, ,(6)) Pr{ > fd(y.Xp) =10}
° er{-)
First, becausd; < exp(lA*;(, l(@))E[exp{t*(Zerzof(d(y, Xé)) —19)}1=1, we
0’

have

1
limsup—logJ; <O0.

| —> o0 \/Z

It remains to show that

P |
(5.3) |Ilrﬂlglof 7 log J; > 0.

For! > 0 large enough, le¢(y) := f(d(y, X5)). Let* > 0 be the maximizer of
ot — AX_{),l(t) as in Lemma 5. Define measures= vy, ; andu = py: ; on[0, 1],
respectively, by

d % d
ﬂ =180 and du(y) = v(y) ,
dy K

with K = [é dv(y). Thenu is a probability measure. It is easy to see that
(54) K =I(Ay (") +21)=1(0r* — *xg (©)+2) and 10 =KE[g(&)],
with & ~ u. Also,

K
(8:5) — =AMy, (") +1—>Alto) + 4= AE[e®/@OXN] 50 asl— oo.
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Lettingm = E[g(£)], by (5.4) and the properties of Poisson processes,

J elA*Xf)J(e) i e—kl AN . dy dy
' P n . 1--
n=0 n! [0,1]" {21:1801)219} n
lA*l @)—r+K X K" .
—K
e 2 ! Joap L, g(on=10) €XPL =17 D (i)
n=0 - JI0.] part

n t*o(y;
re g(yi)
<[1
i=1

. [ee] K" "
=% e‘KWE [1{zy_1g(si)zle} expy —1* ) g(&) H

dy1---dyn

n=0 i=1
=2 FE[1{2?_1(g<si)—nz)>(K—n)m} eXp[—f* > (s — m)”e’ (=,
n=0 ’ i=1

with &1, ..., &, i.i.d.~ u.
Fix § > 0. Recallr* > 0. If m > 0, then

_x K" .
VERED D [1{2;’_1(g(s,«)—m)20}eXp{—f*Z(é’(fz‘)—W)H
K<n<K+5vK ‘ i=1
x e~"VKm3

A similar bound can be obtained when < 0, by summing ovek — §/K <
n < K instead. Without loss of generality, assume- 0. Let

_ Y i(eE) —m)
JnVarg®)]

Let! — oo. Thent* — tg and by (5.5) K — oo. There is a constaai = ¢1(8) > 0,
such that for largeX, YK <n<K+5VEK e KK"/n!'> ¢1 and hence

G

K" . .
e_K E[l{OSGnSB}e_t n Var[g(s)]Gn]e—l‘ «/?mB

!

Ji = >

K<n<K+svK
Kn * *f
> Z e—K_' Pr{oS Gn < 6}8—2‘ V2K Var[g(é)]ae—t Kmé
K<n<K+sJK "

>¢;  min  P0<G, <8)e I"VKDS
K<n<K+$JK
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with D = /2Varg(¢)] + m. It is not hard to see that fof ~ u and n =
£(d(0, X)),

Varg(ey) = DEE N dy (fég@)ef*g@) dy>2

Olet*g(Y)dy folet*g(Y)dy
E[n?e'] (E[nefon])z 0
— >
E[efon] E[efon]

and hence Vdp (¢)] is uniformly bounded below from 0 for all large Because
gy) = f(d(y,Xé)) is uniformly bounded,G,, satisfy Lindeberg’s condition,

giving G, 2 N (0, 1). Together with (5.5), these imply that there is a constant
¢2 > 0 which is independent of and §, and somepo = p(§) > 0, such that

J > pe="V18 yielding

liminf —1 |OgJ > —colgd
l_ CZO .
\/_

[ — o0 l

Becausé is arbitrary, (5.3) is proved.]
6. Asymptotic normality.

PROOF OF THEOREM 4. From Lemma 5, it is seen that almost surely, for
large/ > 0, there are unique, 7; > 0 with Ay, =07 — A(z), A*)‘(, 1(9) =0n —

0
AXf),l(tl)' Furthermoresy;, ; — tg asl — oco. Fix§, M > 0, suchthat;, 1; € (1g—3,

10+ 8) for all largel > 0 andi|e’/ @0-X0) _ 1| < M2 forr € (tg — 8, to + 8) and
all y. Following the argument in the proof of Lemma 1, @g— §, 10 + 9),

(6.1) |[Ax.1(1) = Ayt ()] < (MIN(X) +di) M/ 1,

where d; = I — max(X}). Clearly, minX}) = 0(1) w.p.1. Lettingn = |/],
dj<sp=n+1-—maxX"_)21-maxx°_ )21+ pU, with U ~ Exp(1).
Givene > 0, Pfs, > /en} < P{(U 4+ 1)2 > en}. SinceEU? < oo, applying the
Borel-Cantelli lemma ta,,, it is seen that/; = o(+/1), w.p.1, and hence the left-
hand side of (6.1) is(1/+/1) w.p.1. Then, by;, ; € (fo — 8, 10+ 8),
IA*X,Z(Q) - }61(9)| < ‘ SU‘p8|Ax,1(t) - Axé’,(t)l =0(1/«ﬁ)
’ t—tol<

(6.2) °

w.p.1.
On the other hand, it is easy to see that for ldrge0 andn = |/,

(6.3) [Ax(t) — Ax ()| <2M/1
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forall t € (19 — 6, to + 8). In particular, letting = 7,,, ; leads to

(6.4) A% (0) = Ak, (@) < sup |AX6,1(I) — Axf),l(t)| <2M/I.

lt—to]<8
From (6.1)—(6.4), it is seen that (1.8) holds if we can show
2n =1 [0(ty — 10) — (Ax.n(Ta) — Ax 2 (t0))] = 0(1) w.p.1.

Sincez,, = A%, (0) — (010 — Ax n(t0)) = O, it is enough to prove limsup <0,
or equivalently,

(6.5) liminf o/ [Ax (ta) — Ax.a(to) = 0z, — 10)] = O.

Becauser, € (fop — 8,0 + §) and Ax ,(¢) is smooth, by Taylor's expansion, for
somer* € (fgp — 68, g + 8),
Bt =10 A

2 - 2Bn’[* ’

Ax n(t) — Ax n(to) —0(t —1g) = Ap(t —10) +
where

1 n
A, = _/ f(d(y, X))etof(d(y,x))dy -0,
nJo

1 n ,
By. = ;/O F2(d(y, X))e! @00 gy 5 0,

Becausef is bounded anK is ergodic, there exists a constant 0, such that
B, : > n for all largen andt € (1o — 8, to + &). The random variables

n
Z, = / F(d(y. X))o @030 gy
n—1

are bounded and form a stationary process such fhat %Zzzl Zr — 0.
Since tg maximizesft — E[e'/@OXN] 9 = E[£(d(0, X))o/ @dOX)) = E7,.
Let a(k) :=SUQ|P(F1N F2) — P(F)P(Fo)|:F1 € 0(Zy,n <m), Fo e o(Z,,
n>m+k), m>1}. We shall show) ;2;a(k) < oo, once this is done, it
follows thatﬁA,zl—> 0 almost surely (cf. [12], Theorem 2). Then the left-hand
side of (6.5) is bounded below by lim im\/ﬁAﬁ/Zn) = 0, which completes the
proof of (1.8).

Givenk > 1, foranym > 1, let

I = Lxnmm+k/3)22y  and  J = Lixnen+2k/3,m+k)#£2)-

From the definition ofZ,, it is seen that whenl = 1, for n < m, Z,

only depends or?(’f;k/3. Therefore, for any evenfy € o(Z,,n <m), F1 N

{1 =1} € o(XT;k/3). Likewise, for any eventF, € 0 (Z,,,n > m + k), Fo N
{J =1} € a(X;’f+2k/3). Consequently, by the property of Poisson processes,
P(FiNF>,1=1,J=1)=P(F1,1 =1)P(F>, J =1). BecauseX is stationary
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and has density > 0,
O<P(Fi1NF)—P(F1NF,1=1J=1)

<P{I=0}+ P{J=0}=2P{XN[0,k/3) =T} =2 Pk/3

and similarly, 0< P(Fy)P(Fo) — P(Fy, 1 = 1)) P(F>, J = 1) < 2¢=Pk/3_ There-

fore,| P(FLNF2) — P(F1) P(F>)| < 4ePk/3 leadingto) a(k) <4 e P*/3 < 0.
By (6.1) and (6.3), in order to show (1.9), it is enough to demonstyat@ o —

Axan(to) — A*(8)) 3 N(0,4p0?), or

]_ n
ﬁ</0 g(d(y,X))dy — nv) 4 N (0, 4po?),
wherev = E[g(d(0, X))]. Becausel (0, X) ~ 55U, with U ~ Exp(1),

£¢(5,)] =20 (3,)]
V= —_— = R .
s\ 2, o 2
For X3 = {x1,...,xn}, With x; < x;41, letting xo =0, xy11 =n and [ =
N Xi41=Xi
i=0G(57),

| " g(d(y. X)) dy

(xi+xi+1)/2 n
gy —xi)dy +/ gy —xn)dy
XN

=/0xlg<y>dy+212_ll/x

i

=21 +G(x1) + G(n —xy) —2G(x1/2) — 2G((n — xn)/2).

The last four terms are(n—l/z), so it suffices to consideri2 Given a specific
value of N,

nUo  n(Uo+Uy) n(Uo+ Ui+ ---+Uy)

(61, %2, ., XN) ~ _, n -
(N+DHU (N+DHU (N +1)U

with Uy, ...

LUy iid.~ Exp(l), and Uy = 327 X1oUs- So by Taylor's
expansion,

N

<
o) S
<

20N + DUy 2N+ )TN/ LN+ 1Ty 120
U;

np
N+DAy| ———M —1
)+< +1) N[(NH)UN ]

N Ui AN AN
- Z[G<5) - 2w - 1)} + 2o =N -1,
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where¢ € (0,1) and

P i (n(l—é)ui £U; )g
YEN SR e )Ty T2+ )Ty 20

Therefore,

1 mw\p 1 N[ (Uiy_ v Ay
7("7>‘ﬁ§0[6<2p) 2 TV 1)}

As n— 00, (N +1—np)/Jip 2 N©,1). And asm — 0o, Uy <> 1, Ay <>
E[g(%)%] (becausg is continuous). These combined with CLT then give (1.10).
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