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In this paper, we study the problem of expected utility maximization of
an agent who, in addition to an initiahpital, receives random endowments
at maturity. Contrary to previous studies, we treat as the variables of the
optimization problem not only the initial capital but also the number of units
of the random endowments. We show that this approach leads to a dual
problem, whose solution is always attained in the space of random variables.
In particular, this technique does not require the use of finitely additive
measures and the related assumption that the endowments are bounded.

1. Introduction. A classical problem in financial economics is that of an
agent who invests his or her initial capital into a security market so as to
maximize the expected utility of terminalealth. In the context of continuous-time
models, this problem was first studied by Merton (1969, 1971). Using dynamic
programming arguments, he derived a nonlinear partial differential equation
for the value function of this stochastic control problem and obtained closed-
form solutions for different specifications of the agent’s utility function. The
introduction by Harrison and Kreps (1979), Harrison and Pliska (1981) and Ross
(1976) of the notion of equivalent martingale measures created the possibility
of solving such problems by martingale duality methods. Under the assumption
of complete markets, which implies that the family of martingale measures is
a singleton, this approach was developed by Cox and Huang (1991, 1998),
Karatzas, Lehoczky and Shreve (1987) and Pliska (1986). The essentially more
difficult case of incomplete financial markets was considered by He and Pearson
(1991a, b), Karatzas, Lehoczky, Shreve and Xu (1991) and more recently by
Kramkov and Schachermayer (1999, 2003). In particular, the papers of Kramkov
and Schachermayer (1999, 2003) containimal conditions on the agent’s utility
function and the financial market model which imply the key assertions of the
theory.

In this paper, we study the expected utility maximization problem of an agent
who, in addition to an initial capital,eceives random endowments (e.g., the
payoffs of contingent claims) at maturity. In complete markets, the agent’'s random
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endowments can be perfectly replicated by a controlled portfolio of the traded
assets. As a result, the optimal investment problem becomes equivalent to one
without random endowments but with an augmented initial capital [see Karatzas
and Shreve (1998), Chapter 4]. In incomplete markets, such a transformation
becomes impossible in general. In this case, the problem was studied by Cuoco
(1997), Cvitant, Schachermayer and Wang (2001) and Duffie, Fleming, Soner
and Zariphopoulou (1997). In particular, CvitaniSchachermayer and Wang
(2001) consider a general semimartingale model of a financial market and give
a characterization of the optimal terminal wealth in terms of the solution to
a dual problem. The results of Cvité&niSchachermayer and Wang (2001) have
recently been extended by Karatzas and Zitkg2002) to allow for intertemporal
consumption.

The dual problem in Cvitafi Schachermayer and Wang (2001) is defined over
the space(lL>°)* of finitely additive measures. Unfortunately, this formulation
requires the stringent assumption that the random endowments are bounded. The
novelty of our approach is that we treat as the variables of the optimization problem
not only the initial capital as in Cvitagdj Schachermayer and Wang (2001) but also
the number of units of random endowments. We show that this extension leads to
a dual problem, which does not require the use of finitely additive measures and
therefore does not rely on any boundedness assumption.

2. Main results. We consider a finite-horizon model of a financial market
which consists ofl + 1 assets: a savings account ahdtocks. As is common
in mathematical finance, we assume that the interest rate is 0; that is, the capital
invested into or borrowed from the savings accountis constant over time. The price
processs = (5%)1<;<4 Of the stocks is assumed to be a semimartingale on a given
filtered probability spacé&?, ¥, F = (¥;)o<:<71, P), where the filtratiorF satisfies
the usual conditions of right continuity and completion ghi a finite maturity.

A probability measuré) is called arequivalent local martingale measuifat
is equivalent toP and if S is a local martingale undep. We denote bymM the
family of equivalent local martingale measures and assume that

1) M#0D.

This rather mild condition is essentially equivalent to the absence of arbitrage
opportunities in the model; see Dakkn and Schachermayer (1994, 1998) for
precise statements as well as for further references.

A self-financing portfolio is defined as a pair, H), wherex € R represents the
initial capital andH is a predictableS-integrable process specifying the number
of shares of each stock held in the portfolio. MrealthprocessX of the portfolio
evolves in time as the stochastic integralibiwith respect taS:

t
@) X,éx—i—(H-S)t:x-i—/ H,dS,  0<i<T.
0
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Forx > 0, we denote byX(x) the set of nonnegative wealth processes whose
initial value is equal tor, that is,

(3) X(x) £ {X > 0:X satisfies (2) an&o = x}.

Since a procesX¥ € X (x) is a honnegative stochastic integral with resped,ti
is a local martingale and a global supermartingale under eé@exyM [see Ansel
and Stricker (1994)].

A nonnegative wealth process¥(x) is said to benaximalif its terminal value
cannot be dominated by that of any other procesX {m). According to Delbaen
and Schachermayer (1997) Theorem 2.5, a process is maximal if and only if there
existsQ € M under which it is a uniformly integrable martingale. Note that the
set of maximal strategies coincides with the set of “good” numéraires in the model
[see Delbaen and Schachermayer (1995)].

The nonnegative processes from the X&) constitute the optimization set
in the classical problem of optimal investment if the utility function is defined
on the positive real line. In the presence of random endowments, one has to
extend the domain of the problem and to consider portfolios with possibly negative
values. If the endowments are uniformly bounded, as in C\ité®thachermayer
and Wang (2001), then the optimization set coincides with the sati@ifissible
strategies whose wealth processes are uniformly bounded from below. In the
general case of unbounded endowments, the optimization set has to be extended
further to the set ofcceptablestrategies.

Following Delbaen and Schachermayer (1997), we say that a wealth process
X is acceptablef it admits a representation of the for’i = X’ — X", where
X' is a nonnegative wealth process axidlis a maximal process. Note that if the
maximal process ¥ X" is chosen as a numéraire, then the discounted process
X/(1+ X”) is uniformly bounded from below and hence is admissible under this
numéraire. The definitio of acceptable strategies tserefore verynatural: they
represent the numéraire-invariant version of admissible strategies.

We also consider an economic agent whose preferences over terminal consump-
tion bundles are represented by a utility functin (0, co) — R. The function
U is assumed to be strictly concave, strictly increasing and continuously differen-
tiable and to satisfy the Inada conditions:

(4) U'(0) £ lim U'(x) = oo, U'(c0) £ lim U'(x) =0.
x—0 X—>00
The convex conjugate of the agent’s utility function is defined as follows:

V(y)£supUx) —xy}, y>0.

x>0

It is well known that, under the Inada conditions (4), the conjugaté/ois
a continuously differentiable, strictly decreasing and strictly convex function
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satisfying V/(0) = —o0, V/(c0) =0 andV (0) = U(c0), V(c0) = U(0) as well
as the following bidual relation:

Ux)= infO{V(y)—i-xy}, x> 0.
y>

Assume now that the portfolio of the agent at time 0 consists of an initial capital
x as well as of the quantitieg = (¢;)1<i<y Of nontradedEuropean contingent
claims with maturity? and £7-measurable payment functions= (f;)1<i<n-
We denote by

N
(q. )2 aifi
i=1

the payoff of this portfolio of the contingent claims and by
X(x,q) = {X:X is acceptableXo = x and X7 + (g, f) > 0}

the set of acceptable processes with initial capialvhose terminal value
dominates the random payeff{g, f). Note that in the case whan> 0 andg =0
this set coincides with the set of nonnegativealth processes with initial capital
In other words, we hav&;(x, 0) = X (x) for all x > 0.

The family X (x, g) may very well be empty for some vectér, ¢). From now
on, we shall restrict ourselves to the g€t which is defined as thiaterior of the
set of point(x, ¢), whereX(x, ¢) is not empty:

X 2int{(x,q) e RV L: X(x, q) # o).

As is easily seen, this setis a convex conBiit. Hereafter we shall assume that
it contains any pointx, ¢) such thatc > 0 andg = 0, that is

) (x,0) e X, x> 0.

The condition above means, in particular, that the optimization problem with
random endowments contains the classical problem of optimal investment as
a special case. The following lemma provides a list of equivalent assertions to (5).

LEMMA 1. Assume tha(l) holds true Then the following conditions are
equivalent

(i) The setk satisfieq5).

(i) Foranyg e RV, there existx € R such that the seX.(x, ¢) is not empty
(i) There is a nonnegative wealth proceéssuch thatX; > Z;’zl | fil.
(iv) The payment functiong = (fi)1<i<y Satisfy the integrability conditions

(6) supEql[| fill < oo forall1<i <N.
QeM
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PrROOF The equivalences among (i)—(iii) are straightforward, while the
equivalence between (iii) and (iv) follows from the general duality relationships
between terminal capitals and martingale measures [see, e.g., Delbaen and
Schachermayer (1994), Theorem 5.7]1

The quantityg; of each contingent claim in the agent’s portfolio being held
constant up to maturity, the vectgrrepresents thaliquid part of the portfolio.
On the contrary, the initial wealth can be freely invested into the stocks and the
savings account according to some dynamic strategy. Givamd g, the goal of
the agent is to maximize the expected utility of his or her terminal wealth. This
leads to the following optimization problem:

(7) u(x,q)= sup E[UX7+ (g, )], (x,q9) € K.
XeX(x,q)

REMARK 1. Contrary to Cvitardi, Schachermayer and Wang (2001) and
Karatzas and Zitkow (2002), we consider to be the function oboth x andg.
As we shall see later, this approach will permit us to avoid the use of finitely
additive measures in the formulation of the dual problem and to overcome the
related boundedness assumptionfon

Note that such a definition of the value function is also useful for the study of
utility-based valuation of contingent claims [see Davis (1997), Frittelli (2000) and
Hodges and Neuberger (1989)]. For examplegdainty equivalence pricer the
contingent claimsf given a portfolio(x, ¢) is defined as a vectgi(x, g) € RV
such that

w(x + (g, p(x,q))) =u(x,q),
where

wx) 2 ux,00= sup E[UX7)]
XeX(x)
is the value function of the problem of optimal investment without random
endowments. Further,ility-based pricdor f given(x, q) is defined as a vector
p(x,q) € RN such that the agent's holdingsin the claims are optimal in the
model where the claims can be traded at time O at gfiage ¢). In other words,

u(x,q) zu(x',q") if&.¢g)eX and x+(q,px,9)=x"+(q" p(x,q).

Using standard arguments from the theory of convex functions, we deduce that a
vectorp(x, ¢) € RY is a utility-based price foy given(x, ¢) if and only if it has

the representation:

Plx.q)=—  forsome(y,r) e du(x,q).
Yy

wheredu(x, g) is the subdifferential of: at the point(x, g). In particular, we
deduce that the utility-based price is unique(atqg) if and only if the value
functionu is differentiable at that point.
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We start our construction of a dual problem to (7) by introducing thefset
which is therelative interiorof the polar cone of- X:
(8) L=E2ri{(y,r) eR¥*Lixy + (¢, r) = 0forall (x, ) € X}.

The setL will define the domain of the dual problem at time 0. It can be shown
that the intersection of with the hyperplang = 1, that is,

(9) P={peRV: (1, peL]

defines the set of arbitrage-free prices of the contingent clgims

Following Kramkov and Schachermayer (1999), we denot® by the family
of nonnegative semimartingal®&swith initial value y and such that for any positive
wealth procesX the productXY is a nonnegative supermartingale, that is,

(10) Y(y)£{Y >0:Yp=y, XY is a supermartingale for ak € X (1)}.

In particular, asX/(1) contains the constant process 1, the elementg(oj are
nonnegative supermartingales. Note also that theYg&j contains the density
processes of al) € M.

Given an arbitrary vectoy,r) in £, we denote byY(y,r) the set of
nonnegative supermartingalBss Y (y) such that the inequality

(11) E[Yr(Xr + (g, fD]I <xy+{q.r)

holds true for all(x, ¢g) € X andX € X(x, ¢). Using this notation, we now define
the dual optimization problem to (7) as follows:

(12) v(y.,r)= _inf E[V(Y7)], (y,r) e L.
Yey(y.r)
The following theorems constitute our main results.

THEOREM 1. Assume that condition&), (4)and(5) hold true and
(13) u(x,q) < oo for some(x, g) € K.
Then we have

(i) The functioru is finitely valued onX and for any(y, r) € £ there exists a
constantc = c¢(y, r) > 0 such thatv(cy, cr) is finite The value functions andv
are conjugate

ux,q)=_inf fv(y,r)+xy+(q.r)} (x,q) € X,
(14) (y,r)eL
U()’,r): Sup {u(x7Q)_xy_<Qar>}a (%”)eec
(x,9)eX
(i) The solution (y, r) to (12) exists and is unique for ally, r) € &£ such that
v(y,r) < oo.
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REMARK 2. It might be convenient to verify the validity of (13) at a point
(x,q), wherex > 0 andg = 0 as in this case

u(x,00=wkx)2 sup E[UX7)]
XeX(x)

is the value function of the problem of optimal investment without endowments.

THEOREMZ2. Assume that conditior4), (4)and(5) hold true and
(15) v(y,r) < oo forall (y,r) e L.
Then in addition to the assertions of Theordmwe have

(i) The subdifferential of mapsX into £, that is
(16) du(x,q) C L, (x,q) € XK.

(i) The solutionX(x,q) to (7) exists and is unique for anyx,q) € X.
In addition if (y,r) € du(x, g), then the terminal values of the corresponding
solutions are related by

(17) Yr(y,r) =U'(Xr(x,q) + (g, f)),
(18) E[Y7 (v, r)(X7(x,q) + (g, /)] =xy + (g, 7).

REMARK 3. The relationship (16) has the economical interpretation that the
utility-based prices defined in Remark 1 are arbitrage-free prices for the contingent
claimsf.

It can be shown that contrary to (16) the subdifferential-ofat (y,r) € L is
not necessarily contained iK. However, it is always contained in the closure of
this set.

The proofs of Theorems 1 and 2 will be given in Section 3. The validity of
condition (15) might be difficult to verify directly. The following lemma provides
an equivalent condition in terms of the function

w(y) 2 inf E[V(Y7)], >0,
6)) k%)[(m y

which is the value function of the dual problem in the classical problem of
optimal investment without random endowments [see Kramkov and Schermayer
(1999, 2003)]. Recall that we denote I3 the intersection ofL with the
hyperplaney = 1; see (9).

LEMMA 2. Assume that conditior(4), (4)and (5) hold true Then(15) holds
if and only if

w(y) < 00, y>0.
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Moreoverin this case
(19) w(y) = inf v(y, yp),
pET
where the lower bound is attained

Proor Define the function
w(y)=inf v(y,yp),  y>0.
pET

The functionw is clearly convex and by Theorem 1 it satisfies
(20) wx) 2 u(x,0) = info{t’u\(y) —xy}, x>0.
y>
According to Theorem 2.1 in Kramkov and Schachermayer (1999), the furigtion
satisfies a similar equality:
w(x) = im:){IT)(y) —xy}, x>0.
y>
It follows that the functionsy andw are equal to each other, that is, (19) holds
true.

If the functionv is finitely valued, then so clearly & = w. Conversely, ifiv is
finitely valued, then the closure of the sedefined by

A={(y,r)e L v(y,r) < oo}

contains the origin. Moreover, the sdtis convex,AA C A if A > 1 and, by
Theorem 1(i),
L= U AA.

>0

This readily implies tha#l = £, that is, that the function is finitely valued ont.
Finally, fix y > 0 and letx = —w’(y). From (20), we deduce that

w'(x) =y, w(x) +xy =w(y).

From Theorem 2(ii), we deduce the existencepo€ » such that(y, yp) €
du(x, 0). It follows that

v(y,yp) =ulx,0)+xy=wkx)+xy=w(y). O

Following Kramkov and Schachermayer (1999), we also formulate a convenient
sufficient condition for the validity of the assertions of Theorem 2. We recall that
the asymptotic elasticity of the utility functioli is defined to be

AE(U) £1lim supxll]](g).
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COROLLARY 1. In addition to the conditions of Theorelmassume that
(22) AEWU) < 1.

Then(15) and all the assertions of Theoreérhold true

PrRoOOFE The condition AEU) < 1 is equivalent to the following property
of V [see Lemma 6.3 in Kramkov and Schachermayer (1999)]: for any constant
¢ > 0, there are positive constartsandcs such that

Viy/e)=ealV(y) +e2,  y>0.

Letus fix(y, r) € £. Since, for any > 0,

# . r) =Y(ey,cr)/e,

we deduce thav(y,r) < oo if there is a constant = c(y,r) > 0 such that
v(cy, cr) < oo. However, the existence of such a constant has been established
in Theorem 1. [J

REMARK 4. Note that (21) is theninimal condition on the utility function
only, which implies the finiteness of the dual functionand the assertions of
Theorem 2. See the counterexamples in Kramkov and Schachermayer (1999) for
the case where there are no random endowments.

Although the functionsU and —V are strictly concave and continuously
differentiable, the value functions and —v do not necessarily inherit any of
these properties. Note that, due to the conjugacy relations (14), the continuous
differentiability of one of these two functions is closely related to the strict
concavity of the other. The following easy lemma provides a set of necessary and
sufficient conditions for to be strictly concave and dually forto be continuously
differentiable.

Recall that a random variabjgis replicableif there is an acceptable process
X such that—X is also acceptable an®; = g. Provided that it exists, such
a process is unique and is called threplicationprocess folg.

LEMMA 3. Assume that the conditions of Theor@nhold true Then the
following assertions are equivalent

(i) The functioru is strictly concave oK.
(i) The functiorw is continuously differentiable osf.
(i) For any ¢ € RY such thatg # 0, the random variable(q, f) is not
replicable
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PrROOF The equivalence between (i) and (ii) is a well-known consequence
of (14) and (16); see, for example, Theorems 4.1.1 and 4.1.2. in Hiriart-Urruty
and Lemaréchal (2001). Further, singes a strictly concave function, the value
functionu is strictly concave if and only if for any two distinct points;, ¢;) € X,

i =1, 2, the terminal capitals of the corresponding optimal strategies are different:

P[X7(x1,q1) + (g1, f1) # X1 (x2, 42) + (g2, 2)] > 0.
As is easily seen, this last property is equivalent to condition (iii).

REMARK 5. Lemma 7 provides two additional conditions, which are equiva-
lent to the assertions of Lemma 3.

The situation with the continuous differentiability @fand the strict convexity
of v is more complicated. As mentioned in Remark 1, this property is equivalent
to the uniqueness of the utility-based price. This question is studied in our joint
paper with Hugonnier, Kramkov and Schachermayer (2003), where we show that,
in general, the utility-based price may not be unigue and hence the fumatiay
not be differentiable.

3. Proofs of the main theorems. The proofs of Theorems 1 and 2 are based
on Proposition 1. For arbitrary vectogs, ¢) € X and(y, r) € £, denote
(22)  CG.q)2{gel:g<Xr+(q, f) for someX € X(x,q)},
(23)  D(y,r)2{heLY:h <Y for someY € Y(y,r)}.

With this notation, the value functions andv defined in (7) and (12) take the
form:

(24) ulx,q)= sup E[U(g)],
g€C(x,q)

25 = inf E[V®h)].

(25) v(y,r) he}&y” [V (h)]

PROPOSITION 1. Assume that conditiongl) and (5) hold true Then the
families (C(x, ¢)) (x,q)ex and (D (y, 7))y, er defined in(22) and (23) have the
following properties

(i) For any (x,q) € KX, the setC(x, g) contains a strictly positive constant
A nonnegative functiop belongs toC(x, ¢) if and only if

(26) Elgh]l <xy+{q,r) forall (y,r) e Landh € D(y,r).

(i) For any (y,r) € £, the setD(y,r) contains a strictly positive random
variable A nonnegative function belongs taD (y, r) if and only if

27) Elghl <xy+{q,r) forall (x,q) € X andg € C(x, q).
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The proof of Proposition 1 will be broken into several lemmas. According to
Lemma 1(iii), there is a maximal positive wealth proc&$svhose terminal capital
dominates the sum of the absolute values of the endowments:

N
Xp =Y Ifil
i=1

Denote byM’ the set of equivalent local martingale measu@esuch thatX’ is

a uniformly integrable martingale und@: We have that(’ is a nonempty, convex
subset oftM which is dense inM with respect to the variation norm [see Delbaen
and Schachermayer (1997), Theorem 5.2].

LEMMA 4. Assume that the conditions of Propositidnhold true Let
(x,q9) € K, X € X(x,q) andQ € M'. ThenX is a supermartingale undep.

PrRoOF Denote
c£ max g, ZE2X +cX.
1<i<N

SinceX andX’ are acceptable processé&sis an acceptable process. In addition,
the terminal value o is nonnegative, because

Zr=Xr+cXy>Xr+(q, f)>0.

It follows that Z is a nonnegative wealth process and hence is a supermartingale
underQ. SinceX’ is a uniformly integrable martingale und@, we deduce that
X =Z — cX'is asupermartingale und@. O

The following lemma is a variant of duality relations between the terminal
values of wealth processes and martingale measures.

LEMMA 5. Assume that the conditions of Propositibinold true Let g be
a random variable such thaf > —cX’., wherec > 0 is a positive constanand
denote

(28) a(g) = sup Eglg] < oc.
QeM’

Then there is an acceptable procéésuch thatXg = «(g) and X7 > g.

PrROOE Denote

h=g+cXy, a(h) = sup Eglhl.
QeM’

We haveh > 0, a(h) = a(g) + cXj and

a(h) = supEqlhl,
QeM
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becauseM’ is dense inM with respect to the variation norm. From the duality
relations between the terminal values of wealth processes and martingale measures
[see Delbaen and Schachermayer (1998), Theorem 5.12], we deduce the existence
of a nonnegative wealth procegssuch thatZg = «(h) and Zy > h. Clearly,
X £ 7 — cX’ satisfies the assertions of the lemmal

LEMMA 6. Assume that the conditions of Propositibhold true Then

X ={(x,q) e RN X(x, q) # 2},

wherecl X denotes the closure of the s&tin RV+1,

PROOF Let (x,q) € cl.X and let (x",¢"),>1 be a sequence i that

converges to(x, g). The assertion of the lemma will follow if we show that
X(x,q) # 2. Fix X" e X(x",¢"),n> 1, and denote

¢ £ sup max |g”|.

n>11<i<N

Let ¢ be a dense countable subseRof. The processeg” 2 X"4+cX',n>1,

are nonnegative supermartingales under @ny M, and passing if necessary to
convex combinations [see Lemma 5.2 in Follmer and Kramkov (1997)], we can
assume that they Fatou convergeroio a proces, that is,

Z, =limsuplimsupZz! = liminf liminf Z.
slt,ser n—>0 slt,ser n—>X

Clearly,
Zr —cXp+ (g, ) = |im (ZF — X7 +(q", f))
= lim (X7 +(q", ) = 0.

The procesg being a nonnegative supermartingale under@rmy.M, it admits an
optional decompositior¥Z = Z’ — C whereZ’ is a nonnegative wealth process and
C is an increasing processt initial value 0 [see Krankov (1996)]. Moreover,
we deduce from Fatou’s lemma that

Zo < Iinrn)ipof Z5=x+cXp.
It follows that the process
X:Z/—ch—l-(x—i-cXé—Zo)
belongs taX (x, ¢) and hence the s&(x, ¢) is not empty. [J

LEMMA 7. Assume that the conditions of Propositibiold true Then the
following statements are equivalent
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() The setf is openinRN*1,
(i) For any ¢ € R such thatg # 0, the random variable(g, f) is not
replicable
(ii) For any nonzero vectotx, g) € cl X, there isX € X(x,q) such that
P[Xr + (¢, f) > 0] > 0.

PROOF By the properties of polars of convex sets [see Rockafellar (1970),
Corollary 14.6.1], the first item of the lemma is equivalent to the fact that the set
cl X does not contain any lines passing through the origin, that is,

(29) (x,q) #0, (x,q) €clK = (=x,—q) ¢ cl X,

where clX denotes the closure o&. Now the equivalence of all the statements
of the lemma is a rather straightforward consequence of Lemmal6.

REMARK 6. In some of the proofs below, we shall assume that the equivalent
assertions of Lemma 7 hold true. This is without loss of generality. Indeed, we can
always arrive at this case by replacing the original fanfilyith a subsef’ chosen
in such a way that:

1. Any element off is a linear combination of elements ¢gf and terminal
capitals of acceptable strategies.
2. Any nonzero linear combination of elementsfdfis not replicable.

Note that the sef’ is empty if and only if all the elements gf are replicable.
For a vectorp € RY, we denote byM'(p) the subset ofmM’ that consists

of measures) € M’ such thatEg[f] = p. Recall that the sef” denotes the
intersection of£ with the hyperplane = 1; see (9).

LEMMA 8. Assume that the conditions of Propositidrhold true and let
p € RY. Then the setd’(p) is not empty if and only ip € 2. In particular,

(30) U Mp)y=M"
peP
PrRooOFE Define the set
P 2peRV M (p)# 2}

We have to prove thaf? = #’. Since both of these sets are convex a@nds
relatively open, we have that is contained in?’ if and only if

(31) suplg, p) < sup(q,p)  forallg e RY.

pEP peP’
Fix ¢ € RN and denote

B(q) = suplq, p) = sup Eql(q, f)].
peP’ QeM’
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From Lemma 5, we deduce the existence of an acceptable pr&ceash that
Xo=B(g) and X7 > (g, f). By Lemma 6, this implies thai8(¢), —¢q) € cl X
and hence that

B(g)—{q.p)>0  foranype P,

which proves (31).

For the proof of the inverse inclusion, it is convenient to assume that the
assertions of Lemma 7 are valid. As was noted in Remark 6, this is without any
loss of generality. Lep € #/, (x,g) ecl K, Q € M'(p) andX € X (x, g) be asin
assertion (iii) of Lemma 7, that is, such that

P[X7 +{q, f) > 0] >0.

Taking into account the supermartingale propertyXotunderQ established in
Lemma 4, we deduce that

0 <EqlX7 + (g, /)1 <x + (g, p).
As (x, g) is an arbitrary element of €, this implies thafp € . O

LEMMA 9. Assume that the conditions of Propositidrhold true and let
p € . Then the density process of a@ye M’(p) belongs ta¥ (1, p).

PrRoOOF The result follows from the supermartingale characterization of
wealth processes provided by Lemma 4]

LEMMA 10. Assume that the conditions of Propositibmold true For any
(x, g) € X, anonnegative functiog belongs toC (x, ¢) if and only if
(32) Eglgl <x+ (g, p) forall pe # and Qe M'(p).

PROOFE If g € C(x, q), then the validity of (32) follows from Lemma 9. For

the converse, assume thais a nonnegative random variable such that (32) holds
true and denote

h2g—(q.f),  ¢= maxigl.
We haveh > —cX’. and

a(h) = sup Eglhl = sup sup Eglh]
QeM’ PEP QeM'(p)

=sup sup (Eglgl—{g.p)) <x,
PEP QeM'(p)

where in the second equality we used (30). Lemma 5 implies the existence of an
acceptable process such thatXg = « (k) and Xy > h. It follows that

X7 +{q,f)=g=>0.
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Therefore X belongs taX(x(k), ¢) andg is an element o€ (x, g). O
We are now able to complete the proof of Proposition 1.

PrROOF oFPROPOSITIONL. We start with assertion (i). Lét, ¢g) € K. Since
K is an open set, thereds> 0 such thatx — 68, ¢9) € X. If X liesinX(x — 34, q),
thenZ = X + § belongs taX(x, ¢) and

It follows thats € C(x, q). If g € C(x, g), then (26) follows from the construction
of the setsD(y, r), (v, r) € L. Conversely, let us assume thais a nonnegative
random variable such that (26) holds true. By Lemma 9, the density processes of
Q e M'(p) belong toY (1, p) for all p € # and hence satisfies (32). Lemma 10
implies now thatg € C(x, ¢) and the proof of assertion (i) is complete.

We now turn to assertion (ii). As

cD(y,r)=D(cy,cr) forallc >0, (y,r)e L,

we can restrict ourselves to the case where) = (1, p) for somep € ». From
Lemma 8, we deduce the existence@fe M'(p). By Lemma 9, the Radon—
Nikodym derivativedQ/dPP belongs taD (1, p). Since the measur&g andP are
equivalent, we hav@(dQ/dP > 0) = 1.

If h e D1, p), then (27) follows from the construction of the sgtl, p).
Conversely, let us assume thats a nonnegative random variable such that (27)
holds true. Then, in particular,

E[ghl<1 forallg e C(1,0).

Proposition 3.1 in Kramkov and Schachermayer (1999) implies the existence of
a procesy € Y (1) [the setY(y) has been defined in (10)] such thét > h.
Taking into account (27), we deduce that the procesiefined by

{ Yl‘v < T,
Z; ==

h, t=T,
belongs ta¥ (1, p). Thereforefi € D(1, p). O

For the proof of Theorem 1 we shall also need the following lemma.
LEMMA 11. Leté& be a set of nonnegative random variables which is convex
and contains a strictly positive constaiihen

(33) SUpPE[U (xg)] = sup E[U (xg)], x>0,
geé geclé

wherecl & denotes the closure éf with respect to convergence in probability
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PROOF Without loss of generality, we can assume that thegseontains 1.
Denote, forx > 0,

¢(x) ZSUpE[U (xg)],  ¥(x) = sup E[U(xg)].
geé geclé
Clearly,¢ andyr are concave functions amd< . If ¢ (x) = oo for somex > 0,
then, due to concavity is infinite for all arguments and the assertion of the lemma
is trivial. Hereafter we assume thats finite.
Fix x > 0 andg € cl €. Let (¢g"),>1 be a sequence i@ that converges t@
almost surely. For an§ > 0, we have

E[U(xg)] < E[U (xg +8)] < iminf E[U (xg" +8)] < ¢ (x +6),

where the first inequality holds true becaugeis increasing, the second one
follows from Fatou’s lemma and the third one follows from the facts thas
convex and contains 1. Singeis concave, it is continuous. It follows that

¥(x) = sup E[U(xg)] = £@0¢(x +68) =9 (x).

geclé O

PROOF OFTHEOREM 1. The functionu is clearly concave oK. Since the
setX is open andi(x, g) < oo for some(x, ¢) € K, we deduce that is finitely
valued onX.

For (y,r) € &£, we define the sets

A(y,r) 2 1{(x,q) € K:xy+(q,r) <1},
c: U ey,
(x.q)€A(y,r)
and denote by the closure of® with respect to convergence in probability. From
Lemma 11 and the definition of the st we deduce that

SUPE[U (zg)] = SUPE[U (zg)] = sup  u(x,q), z>0.
gee geC (x,q)€zA(y,r)

Further, we claim that
(34) sup  u(x,q) < oo, z>0.
(x,q)€zA(y,r)

To prove (34), assume that the seis open. As was explained in Remark 6, this
is without any loss of generality. In this case, the 4€ét, r) is bounded and (34)
follows from the concavity of.

From Proposition 1, & deduce that

heD(y,r) < E[ghl<l VgeC.

It follows that the set®, andD (y, r) satisfy the assumptions of Theorem 3.1 in
Kramkov and Schachermayer (1999).ify, r) < oo, then this theorem implies
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the existence and uniqueness of the solufion, r) to (25). It also implies the
existence of a strictly positive constant= c¢(y, r) such thatv(cy, cr) < co as
well as the second conjugacy relationship in (14):

(35) v(y.r) =SUP{SUIOE[U(Zg)] —z} = sup {u(x,q) —xy—{q,r)}
z>0lgee (x,y)eX

Finally, the first equation in (14) follows from the second one by the general

properties of conjugate functions [see, e.g., Rockafellar (1970), Section 12] and

the fact that the relative interior of the domain of the functiotefined by (35) is

asubsetof. O

For the proof of Theorem 2, we shall also need the following lemma.

LEMMA 12. Assume that the assumptions of Propositiohold true Let
sequence§”, r") e L andh” € D(y",r"),n > 1,convergetqy,r) € RN+l and
he '—31 respectivelyif 4 is a strictly positive random variabl¢hen(y, r) € £ and
heD(y,r).

PrROOF Without loss of generality, we can assume that the assertions of
Lemma 7 are valid. Letx, ¢) € cl X and X € X(x,q) be as in assertion (iii)
of Lemma 7, that is, such that

P[X7 + (g, f) > 0] > 0.
Combining this property with Proposition 1 and Fatou’'s lemma, we deduce that
O<E[r(Xr + (g, fDI=xy+(q.r).
As (x,q) is an arbitrary element of &, this implies that(y, r) € L£. Finally,
Fatou’s lemma and Proposition 1 imply thag D (y,r). O
PROOF OFTHEOREM 2. Since
(36) Ux)< V() +xy, x>0,y>0,

we deduce from Proposition 1 that if(y, ) < co for some(y,r) € £, then
u(x,q) < oo forall (x, q) € X. In particular, all of the assumptions of Theorem 1
hold true. Forx, ¢) € X, define the sets

B(x,q) = {(y,r) € Lixy+{gq,r) =1},

22 | o20.n
(v,r)€B(x,q)

and denote byD the closure ofD with respect to convergence in probability.
Using these definitions, we clearly have

inf E[V(zh)] < inf E[V(zh)]= inf v(y,r) < 0o, > 0.
nf [V(z )]_hef) [V(zh)] LI P (y,r) 4
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From Proposition 1, & deduce that
geC(x,q) < Eghl<l VheD.

It follows that the set® (x, ¢) andD satisfy the assumptions of Theorem 4 in
Kramkov and Schachermayer (2003). This implies the existence and uniqueness of
the solutions(x, ¢) to (24) andX (x, ¢) to (7), which are related by the following
equality:

Xr(x,q) =8, q) —{q, f).
Denoting
REU (3(x,q)),  z2E[g(x,q)h],

we also deduce from this theorem thabelongs taz D and is the unique solution
to the optimization problem:

E[V ()] =hier;1:® E[V(h)].

SinceP[h > 0] = 1, we deduce frorg Lemma 12 the existence(ofr) €
B(x, g) such that the seD(y, r) containgk. Clearly, for this(y, r) we have that

(37) xy+(q.r) =z =E[g(x, )h]
and that the solution to (25) satisfies

(38) h(y,r)=h=U'(g(x,9).
Since

U(g(x,q)) =V (Hh) +8x, q)h,
we deduce that
(39) ulx,q)=v(y,r)+xy+I{q,r),

which, according to Rockafellar (1970), Theorem 23.5, is equivaleqi tp) €
du(x, g). In particular, we have

(40) du(x,q)NL #J.

Conversely, if(y,r) belongs to.£ and satisfies (39), that iSy,r) € L N
du(x, q), then

E[|V(h(y.r) + 8. )h(y.r) — U(@(x. )]
=E[V(h(y. ") +8(x.9)h(y.r) = U(Z(x.9))]
=v(y,r)+xy+{q.r)—ulx,q)=0,

which readily implies (37) and (38).



INVESTMENT WITH RANDOM ENDOWMENTS 863

To conclude the proof of the theorem we now need to show that
du(x,q) C L.

Let (y,r) € du(x, g). From (40) and the fact that:(x, ¢) is a closed convex set,
we deduce the existence of a sequefggr,) in du(x,g) N L that converges
to (v, r). As we have proved already, any of the s&tgy,,, r,,) contains the strictly
positive random variabl&’(g(x, ¢)). Lemma 12 implies now thaty, r) € L. [
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