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MIXING TIMES OF LOZENGE TILING AND
CARD SHUFFLING MARKOV CHAINS1

BY DAVID BRUCE WILSON

Microsoft Research

We show how to combine Fourier analysis with coupling arguments to
bound the mixing times of a variety of Markov chains. The mixing time
is the number of steps a Markov chain takes to approach its equilibrium
distribution. One application is to a class of Markov chains introduced by
Luby, Randall and Sinclair to generate random tilings of regions by lozenges.
For an �×� region we bound the mixing time by O(�4 log �), which improves
on the previous bound of O(�7), and we show the new bound to be essentially
tight. In another application we resolve a few questions raised by Diaconis
and Saloff-Coste by lower bounding the mixing time of various card-shuffling
Markov chains. Our lower bounds are within a constant factor of their upper
bounds. When we use our methods to modify a path-coupling analysis of
Bubley and Dyer, we obtain an O(n3 logn) upper bound on the mixing time
of the Karzanov–Khachiyan Markov chain for linear extensions.

1. Introduction. Using a simple idea, we obtain improved upper and lower
bounds on the mixing times of a number of previously studied Markov chains:

• A lozenge is a rhombus with angles of 120◦ and 60◦ and sides of unit length.
Figure 1 shows a random lozenge tiling of a hexagon. Random lozenge tilings
were originally studied in physics as a model for dimer systems, and have more
recently served as an exploratory tool for people in combinatorics. Section 5
gives further background. Luby, Randall and Sinclair (1995) proposed a Markov
chain to generate random lozenge tilings of regions, proved that it runs in time
O(n4) when there are n lozenges, and in later unpublished work reduced the
bound to O(n3.5). (They also analyzed domino-tiling and Eulerian-orientation
Markov chains.) For a regular hexagon with side length �, for example, their
methods give a bound of O(�7). We show here that the correct mixing time of
this Markov chain is �(�4 log�) = �(n2 logn), by showing the state to be very
far from stationarity after ∼ (8/π2)�4 log� steps and very close to stationarity
after ∼ (48/π2)�4 log � steps. The correct constant appears to be 16/π2. For
general regions of size n and width w, our upper bound is ∼ (3/π2)w2n logn.
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FIG. 1. Random lozenge tiling of the order 10 hexagon, chosen uniformly at random
from the 9,265,037,718,181,937,012,241,727,284,450,000 possible such tilings. Here � = 10,
w = 20 and n = 300.

• Consider the following shuffle on a deck of n cards: with probability 1/2 do
nothing; otherwise transpose a random adjacent pair of cards. How many of
these operations are needed before the deck becomes well shuffled? In the
years since Aldous [(1983), Section 4] showed that O(n3 log n) shuffles are
enough and that �(n3) shuffles are necessary to randomize the deck, there have
been a couple of heuristic arguments [Aldous (1997) and Diaconis (1997)] for
why �(n3 log n) shuffles should be necessary, but unruly technical difficulties
prevented a rigorous proof from being written down. Using our method these
technical difficulties vanish. With little more than algebra and trigonometry, we
show that (1/π2 − o(1))n3 log n shuffles are necessary to begin to randomize
the deck, and that (2/π2 + o(1))n3 log n shuffles are enough. The best previous
published explicit upper bound was (4 + o(1))n3 logn shuffles. The correct
constant appears to be 1/π2.

• We lower bound the mixing time of a few other shuffles analyzed by Diaconis
and Saloff-Coste (1993a). They considered shuffles for which the cards appear
on the vertices of a graph, and the shuffle picks a random edge and transposes
the cards at its endpoints. They obtained upper bounds on the mixing time for
shuffles based on the

√
n×√

n grid and on the (log2 n)-dimensional hypercube,
but did not have matching lower bounds. We provide lower bounds, showing
that their upper bounds are correct to within constant factors.
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• Counting the number of linear extensions of a partially ordered set is
#P-complete [Brightwell and Winkler (1991)], making it computationally in-
tractible. (One application of counting linear extensions is in a data mining
application that infers partial orders [Mannila and Meek (2000)].) One can ap-
proximately count linear extensions by randomly generating them, so there have
been a number of articles on generating random linear extensions. The latest, by
Bubley and Dyer (1998), proposed a Markov chain in which pairs of elements
in the linear extension are randomly transposed if doing so respects the partial
order. To make the analysis easy, their Markov chain selects a random site with
probability proportional to a parabolic curve and then attempts to transpose the
elements at this random site. We show here that the uniform distribution on sites
works as well, obtaining a constant factor that is only marginally worse.

We give further background on these various Markov chains in later sections
where we analyze them. In Section 2 we provide basic definitions, such as what it
means formally for the state of a Markov chain to be close to random. We study
in Section 3 a Markov chain for generating random lattice paths, since it is simple,
yet illustrates the key ideas that we use to analyze the various other Markov chains.
We use Fourier analysis to define the state space of the Markov chain a function �

that has a certain contraction property. With S denoting the current state of the
Markov chain and the random variable S′ denoting the next state of the chain, we
have E[�(S′)|S] = (1 − γ )�(S). We derive both upper bounds and lower bounds
using this contraction property. After Section 3 the remaining sections may be read
in any order. We see in Section 4 how to apply the results about the path Markov
chain to the chain for shuffling by random adjacent transpositions. In Section 5
we generalize the upper bound for the path Markov chain to upper bound the
mixing time of the lozenge-tiling Markov chain introduced by Luby, Randall and
Sinclair (1995). In Section 6 we modify Bubley and Dyer’s path-coupling analysis
of the Karzanov–Khachiyan Markov chain to obtain the O(n3 logn) mixing time
bound. When using a local randomizing operation to update a high-dimensional
configuration, one typically either updates a random coordinate each step or
updates the coordinates in a systematic order. In Section 7 we compare these
two methods for the chains that we are studying; our analysis indicates that the
second method is better. We take a second look at the lattice path and permutation
Markov chains in Section 8, and refine our previous arguments to obtain tighter
constants. We consider exclusion and exchange processes in Section 9, where
among other things we resolve the aforementioned questions of Diaconis and
Saloff-Coste. Many of the mixing time upper and lower bounds we give differ
by small constant factors. We give in Section 10 heuristic arguments and present
experimental evidence for determining the correct constant factors in the mixing
times. We summarize in Table 1 many of these mixing time bounds and their
(conjectural) correct values. Section 10 also contains several open problems for
further research. We make some concluding remarks in Section 11.
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TABLE 1
State space, Markov chain (Summary of mixing time bounds for several classes of Markov chains.)

Parameter
(Conjectural)

Correct answer
Rigorous

lower bound
Rigorous

upper bound

Paths in n/2 × n/2 box, random adjacent transpositions
Coupling threshold 2/π2n3 logn 2/π2n3 logn 2/π2n3 logn

Variation threshold 1/π2n3 logn 1/π2n3 logn 2/π2n3 logn

Separation threshold 2/π2n3 logn 1/π2n3 logn 4/π2n3 logn

Spectral gap
1 − cos(π/n)

n − 1

1 − cos(π/n)

n − 1

1 − cos(π/n)

n − 1

Permutations Sn, random adjacent transpositions
Coupling threshold 4/π2n3 logn 2/π2n3 logn 4/π2n3 logn

Variation threshold 1/π2n3 logn 1/π2n3 logn 2/π2n3 logn

Separation threshold 2/π2n3 logn 1/π2n3 logn 4/π2n3 logn

Spectral gap
1 − cos(π/n)

n − 1

1 − cos(π/n)

n − 1

1 − cos(π/n)

n − 1

Lozenge tilings of order � hexagon, Luby–Randall–Sinclair chain
Coupling threshold ?? 8/π2�4 log � 48/π2�4 log �

Variation threshold 16/π2�4 log � 8/π2�4 log � 48/π2�4 log �

Separation threshold 32/π2�4 log � 8/π2�4 log � 96/π2�4 log �

Spectral gap
1 − cos(π/(2�))

�(2� − 1)

1 − cos(π/(2�))

�(2� − 1)

1 − cos(π/(2�))

�(2� − 1)

Linear extensions of partially ordered set, Karzanov–Khachiyan chain
Variation threshold Depends on poset Sometimes tight to 4/π2n3 logn

within constants

Spectral gap Depends on poset
1 − cos(π/n)

n − 1
Sometimes tight

Lozenge tilings of region of n triangles and width w, Luby–Randall–Sinclair chain
Variation threshold Depends on region Sometimes tight to 3/π2w2n logn

within constants

Spectral gap Depends on region
1 − cos(π/w)

n
Sometimes tight to

within constants

Notes. The variation and separation thresholds are defined in Section 2. The bounds for lattice
paths and permutations are proved in Sections 3 and 8, the bounds for lozenge tilings are proved in
Section 5, and the bounds for the Karzanov–Khachiyan chain are proved in Section 6. The coupling
times are for the natural monotone grand couplings described in Sections 3–5. The conjectural
correct answers are derived in Section 10. The spectral gap for permutations was previously known
(Diaconis, unpublished).

2. Preliminaries. Here we review some basic definitions and properties
pertaining to mixing times and couplings. For a more complete introduction to
these ideas, see Aldous (1983) or Aldous and Fill (2004).

When a Markov chain is started in a state x and run for t steps, we denote the
distribution of the state at time t by P t

x , where P is the state-transition matrix of
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the Markov chain. If the Markov chain is connected and aperiodic, then
as t → ∞ the distribution P t

x converges to a unique stationary distribution which
is often denoted by π . Since we use π to denote the ratio of the circumference of a
circle to its diameter, here we use µ to denote the stationary distribution. In all our
examples, the stationary distribution is the uniform distribution, which we denote
with U .

To measure the distance between the distributions P t
x and µ one usually uses

the total variation distance. With X denoting the state space, the variation distance
is defined by

‖P t
x − µ‖TV = max

A⊂X
|P t

x(A) − µ(A)| = 1
2

∑
y∈X

|P t
x(y) − µ(y)| = 1

2‖P t
x − µ‖1.

The variation distance when the chain is started from the worst start state is denoted
by

d(t) = max
x

‖P t
x − µ‖TV,

although it is often more convenient to work with

d̄(t) = max
x,y

‖P t
x − P t

y‖TV,

since d̄(t) is submultiplicative whereas d(t) is not. It is easy to see that d(t) ≤
d̄(t) ≤ 2d(t).

The (variation) mixing time is the time it takes for d̄(t) to “become small” (say
less than 1/e). It is a surprising fact that for many classes of Markov chains there
is a threshold time T such that d̄((1 − ε)T ) > 1 − ε but d̄((1 + ε)T ) < ε, where
ε tends to 0 as the “size” of the Markov chain gets large; see Diaconis (1996) for
a survey of this “cutoff phenomenon.”

Most of our mixing time upper bounds are derived via coupling arguments. In a
(pairwise) coupling there are two copies Xt and Yt of the Markov chain that are run
in tandem. The Xt ’s by themselves follow the transition rule of the Markov chain,
as do the Yt ’s, but the joint distribution of (Xt+1, Yt+1) given (Xt , Yt ) is often
contrived to make the two copies of the Markov chain quickly coalesce (become
equal). It is a standard fact that

d̄(t) ≤ max
x,y

Pr[Xt �= Yt |X0 = x,Y0 = y],
so that a coupling which coalesces quickly can give us a good upper bound on
the mixing time. Most of the variation threshold upper bounds in Table 1 follow
from this relationship and a corresponding coupling time bound, and lower bounds
on the coupling time likewise follow from corresponding lower bounds on the
variation threshold time. The remaining variation threshold upper bounds and
coupling time lower bounds in Table 1 that do not follow from this relationship
are derived in Section 8.
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Many pairwise couplings can be extended to “grand couplings,” where at each
time step there is a random function Ft defined on the whole state space of the
Markov chain, and Xt+1 = Ft(Xt ) and Yt+1 = Ft(Yt ) for any Xt and Yt . For
example, if the state space is the set of permutations on n cards, then the update
rule “pick a random adjacent pair of cards, and flip a coin to decide whether to
place them in increasing order or decreasing order” defines a grand coupling; the
choice of the adjacent pair and the value of the coin flip define the random function
on permutations. In Sections 6 and 8 we also consider pairwise couplings that do
not extend to grand couplings.

All of the grand couplings considered in this article are monotone, which is to
say that there is a partial order � such that if x � y, then also Ft(x) � Ft(y). All
of the partial orders considered here have a maximal element, denoted 1̂, and a
minimal element, denoted 0̂, that is, so that 0̂ � x � 1̂ for each x in the state space.
Monotone grand couplings are particularly convenient for algorithms [see, e.g.,
Propp and Wilson (1996) or Fill (1998)].

In Section 10 we consider not only the variation distance, but also the separation
distance, which is defined by

s(t) = max
x,y

µ(y) − P t
x(y)

µ(y)
.

The function s(t) is also submultiplicative and also often exhibits a sharp
threshold. In general, d(t) ≤ s(t) and, for reversible Markov chains, s(2t) ≤
2d̄(t) − d̄(t)2 [see Aldous and Fill (2004), Chapter 4, Lemma 7]. The rigorous
bounds in Table 1 that pertain to separation distance follow from these relation-
ships and the corresponding bounds for the variation distance.

3. Lattice path Markov chain. Consider an a × b rectangle composed
of 1 × 1 boxes rotated 45◦, so that the sides of length a are oriented north-
west/southeast. A lattice path (see Figure 2) is a traversal from the leftmost corner
to the rightmost corner of the rectangle, traveling along the borders of the 1 × 1
boxes, so that each move is either up and right or down and right. Such lattice
paths can be encoded as strings of length a + b consisting of a 0’s (down moves)
and b 1’s (up moves). There are n!/(a!b!) such lattice paths, where for convenience
we let n = a + b. These lattice paths correspond to sets of 1 × 1 boxes which are
“stable under gravity,” that is, no box lies above an empty cell.

Consider the following Markov chain for randomly generating a lattice path
between the opposite corners of the a × b rectangle. Given a path, the Markov
chain randomly picks one of the (n − 1) internal columns (we assume n ≥ 2)
and then randomly decides whether to try pushing the path up at that point or
to try pushing it down. If pushing the path up (or down) would result in an
invalid path, the Markov chain simply sits idle during that step. Equivalently, in
the binary string representation, the Markov chain picks a random adjacent pair
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FIG. 2. A lattice path through the 4 × 5 rectangle, with the 1 × 1 boxes underneath it shaded. Here
a = 4, b = 5 and n = 9, and the lattice path’s encoding is 011011100.

of letters in the string and then randomly decides to either sort them or reverse-
sort them. Understanding this Markov chain is instrumental to understanding the
Markov chains for random lozenge tilings, card shuffling by random adjacent
transpositions, and other types of card shuffling.

3.1. Contraction property. We analyze this Markov chain by measuring
(1) the “displacement” of a given single path on the a × b square from
“equilibrium” and (2) the “gap” between two such paths when one of the paths
is entirely above the other. We lower bound the mixing time by computing the
displacement of a path when not enough steps have been taken, and showing that it
is typically different from the displacement of a random path. We upper bound the
mixing time by showing that after enough steps, starting from the top and bottom
paths, the expected gap is so small that the paths have almost surely coalesced to
the same path.

It will be useful later to use horizontal coordinates that range from −n/2
to n/2. Let h(x) denote the height of the path at position x relative to the line
connecting the opposite corners of the box. That is, h(x) is the number of up
moves to the left of position x minus the expected number of such up moves.
Thus h(−n/2) = h(n/2) = 0 and h(x) = h(x − 1) + a/n if there was an up move
between x −1 and x, or else h(x) = h(x −1)−b/n if there was a down move. For
the example in Figure 2, the heights change by +4/9 = a/(a + b) for up moves
and −5/9 = −b/(a + b) for down moves, and are as follows:

x −9/2 −7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2 9/2

h(x) 0 −5/9 −1/9 3/9 −2/9 2/9 6/9 10/9 5/9 0
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The displacement function � of h that we find useful is

�(h) =
n/2∑

x=−n/2

h(x) cos
βx

n
,(1)

where 0 ≤ β ≤ π . This function weighs deviations from expectation more heavily
near the middle of the path than near its endpoints. Given two lattice paths with
height functions ȟ and ĥ, where ȟ(x) ≤ ĥ(x) for all x, define the gap function to
be ĥ − ȟ and the gap to be

�(ȟ, ĥ) = �(ĥ − ȟ) = �(ĥ) − �(ȟ).

Note that since 0 ≤ β ≤ π , the gap is strictly positive when the paths ȟ and ĥ differ,
and is 0 otherwise. After the Markov chain has equilibrated, so that each path is
equally likely, E[h(x)] = 0, so the expected displacement is E[�(h)] = 0.

LEMMA 1. Let the displacement function � be defined by (1). Suppose h is
a height function [so �(h) is the displacement] and β = π or h = ĥ − ȟ is a gap
function [so �(h) is the gap] and 0 ≤ β ≤ π . Let h′ be the height or gap function
after one step of the Markov chain. Then

E[�(h′) − �(h)|h] ≤ −1 + cos(β/n)

n − 1
�(h)

with equality when β = π . The coefficient on the right-hand side is bounded by

− β2

2n2(n − 1)
≤ −1 + cos(β/n)

n − 1
≤ − β2

2n3
.

PROOF. Suppose we pick a site x, flip a coin, and adjust the height
accordingly. Then the expected value of the new height at x is just [h(x + 1) +
h(x − 1)]/2. Assume that we pick each site (other than −n/2 and n/2) with
probability 1/p, where p = n − 1 is the number of positions that can be picked.
Then with primes denoting the updated variables,

E[h′(x)|h] = p − 1

p
h(x) + 1

p

h(x + 1) + h(x − 1)

2
,

when −n/2 < x < n/2, so that

E[�(h′)|h] =
n/2−1∑

x=−n/2+1

E[h′(x)|h] cos
βx

n
,(2)

E[�(h′)|h] = p − 1

p
�(h) + 1/2

p

n/2−1∑
x=−n/2+1

[h(x + 1) + h(x − 1)] cos
βx

n
(3)
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and

E[�(h′) − �(h)|h]
= −1

p
�(h) + 1/2

p

∑
−n/2 + 1 ≤ x ≤ n/2 − 1

−n/2 ≤ y ≤ n/2
|x − y| = 1

h(y) cos
βx

n

= −1

p
�(h) + 1/2

p

∑
−n/2 + 1 ≤ x ≤ n/2 − 1
−n/2 + 1 ≤ y ≤ n/2 − 1

|x − y| = 1

h(y) cos
βx

n
(4)

≤ −1

p
�(h) + 1/2

p

∑
−n/2 ≤ x ≤ n/2

−n/2 + 1 ≤ y ≤ n/2 − 1
|x − y| = 1

h(y) cos
βx

n
(5)

= −1

p
�(h) + 1/2

p

n/2−1∑
y=−n/2+1

h(y)

[
cos

β(y − 1)

n
+ cos

β(y + 1)

n

]

= −1

p
�(h) + 1/2

p

n/2−1∑
y=−n/2+1

h(y)2 cos
βy

n
cos

β

n
(6)

= −1 + cos(β/n)

p
�(h) = −1 + cos(β/n)

n − 1
�(h),

where we have used E[h′(±n/2)] = 0 in (2), h(±n/2) = 0 in (4), and the trigono-
metric identity cos(θ − φ) + cos(θ + φ) = 2 cos(θ) cos(φ) in (6). Inequality (5) is
justified if β ≤ π , since by assumption h = ĥ− ȟ ≥ 0 for each x, and cos(β/2) ≥ 0;
when β = π , it becomes an equality.

To upper bound the right-hand side we use cos(x) ≤ 1 − x2/2 + x4/24 =
1 + (x2/2)(−1 + x2/12),

−1 + cos(β/n)

n − 1
≤ 1

n − 1

(β/n)2

2

(
−1 + (β/n)2

12

)

≤ − β2

2n3 ,

where to get the last line we used (1 − c/n2)/(n − 1) ≥ 1/n when n > 1 and
−c/n ≥ −1. Here c ≤ π2/12, so these conditions are satisfied whenever n > 1.
The lower bound is somewhat easier: use the bound cos(x) ≥ 1 − x2/2. �
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3.2. Upper bound.

THEOREM 2. When n is large, after

2 + o(1)

π2 n3 log
ab

ε

steps, the variation distance from stationarity is ε and the probability that the two
extremal paths have coalesced is 1 − ε. [The o(1) term is a function of n alone.]

Felsner and Wernisch (1997) referenced an early version of this article, since
they used the upper bound in this theorem to bound the rate of convergence of the
Karzanov–Khachiyan Markov chain for generating random linear extensions of a
certain class of partially ordered sets. The Karzanov–Khachiyan Markov chain is
discussed further in Section 6.

PROOF OF THEOREM 2. To obtain the upper bound, we consider a pair of
coupled paths ĥt and ȟt such that ĥ0 is the topmost path and ȟ0 is the bottommost
path. The sequences ĥt and ȟt are generated by the Markov chain using “the same
random moves,” so that ĥt+1 and ȟt+1 are obtained from ĥt and ȟt , respectively,
by sorting or unsorting (same random decision made in both cases) at the same
random location x. One can check by induction that ĥt ≥ ȟt . Let �t = �(ĥt − ȟt );
�t = 0 if and only if ĥt = ȟt .

We compute E[�t ]; when it is small compared to the minimum possible positive
value of �t , it follows that with high probability �t = 0. By choosing β to be
slightly smaller than π , we make this minimum positive value not too small and
thereby get a somewhat improved upper bound.

From Lemma 1 and induction, we get

E[�t ] ≤ �0

[
1 − 1 − cos(β/n)

n − 1

]t

≤ �0 exp
[
−β2t

2n3

]
.

However, E[�t ] ≥ Pr[�t > 0]�min. Thus after t ≥ (2/β2)n3 log(�0/(�minε))

steps, Pr[�t > 0] ≤ ε. We have �0 ≤ ab and �min = cos(β(n/2 − 1)/n) >

cos(β/2) ≈ (π − β)/2. The optimal choice of β is π − �(1/ logn), but all
that matters is that π − β → 0 as n → ∞ while log(1/(π − β)) � log(ab).
Substituting, we find that t = (2/π2 + �(log log n/ logn))n3 log(ab/ε) steps are
enough to ensure that the probability of coalescence is at least 1 − ε. �

REMARK. We show in Section 8 that when a = b = n/2, the coupling time is
actually (2/π2)n3 logn.

REMARK. Proving mixing time upper bounds via a contraction property in
the “distance” between configurations is a fairly standard technique. Traditionally
the distance has been measured in terms of Hamming distance or other integer-
valued distance, which for our applications does not yield the requisite contraction
property.
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We get the spectral gap entries in Table 1 using similar reasoning [see also, e.g.,
Chen (1998)]:

PROPOSITION 3. If a function � is strictly monotone increasing in the partial
order of a reversible monotone Markov chain with top and bottom state, and
whenever X � Y , we have E[�(Y ′) − �(X′)|X,Y ] ≤ (1 − γ )(�(Y ) − �(X)),
then the spectral gap must be at least γ .

PROOF. Perturb the stationary distribution by an eigenvector associated with
the second largest eigenvalue λ and run the Markov chain starting from this
distribution. After t steps the variation distance from stationarity is Aλt . If we run
the Markov chain starting from the top and bottom states, after t steps the states are
different with probability at most (�(1̂)−�(0̂))(1−γ )t/minX≺Y (�(Y )−�(X)).
The coupling time bound on the variation distance gives λ ≤ 1 − γ . �

3.3. Lower bound. We obtain a lower bound on the mixing time when the
rectangle is not too narrow:

THEOREM 4. If min(a, b) � 1, then after

1 − o(1)

π2
n3 log min(a, b)

steps, the variation distance from stationarity is 1 − o(1).

We use Lemma 1 with β = π so that we get an exact expression for E[�t ].
Then we bound Var[�t ] to show that the distribution of �t is sharply concentrated
about its expected value. When �t and �∞ are sharply concentrated about values
that are far enough apart, the chain is far from equilibrium. [This second-moment
approach was also used by Diaconis and Shahshahani (1987) to lower bound the
mixing time of random walk on Z

d
2 and by Lee and Yau (1998) to lower bound

the mixing time of the exclusion process on a circle.] The following technical
lemma formalizes this argument and is used to derive the mixing time lower
bounds we give in this article, except the bound proved in Section 9.4, where we
need a generalization. (The coupling time lower bound proved in Section 8.2 uses
a different approach altogether.)

LEMMA 5. If a function � on the state space of a Markov chain sat-
isfies E[�(Xt+1)|Xt ] = (1 − γ )�(Xt), and E[(��)2|Xt ] ≤ R, where �� =
�(Xt+1) − �(Xt), then when the number of Markov chain steps t is bounded
by

t ≤ log �max + 1
2 log(γ ε/(4R))

− log(1 − γ )

and 0 < γ ≤ 2 − √
2 .= 0.58 (or else 0 < γ ≤ 1 and t is odd ), then the variation

distance from stationarity is at least 1 − ε.
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Before proving Lemma 5, we show how to use it to prove Theorem 4.

PROOF OF THEOREM 4. By Lemma 1, our function � satisfies the contrac-
tion property required by Lemma 5 when β = π , and

γ = 1 − cos(π/n)

n − 1

≥
and∼

π2

2n3 .

The constraint on γ is satisfied when n ≥ 3.
To get a bound R, observe that any path h can have at most 2 min(a, b)

local extrema, so Pr[�� �= 0] ≤ min(a, b)/(n − 1). But, |��| ≤ 1, so
maxh E[(��(h))2] ≤ min(a, b)/(n − 1) ≡ R.

The maximal path maximizes �, giving �0 = �(ab). Substituting into
Lemma 5 and simplifying, γ/R ∼ 1/(n2 min(a, b)), so the numerator becomes
log(ab)− logn− (1/2) logmin(a, b)+O(1) = log min(a, b)+O(1) for bounded
values of ε, giving our lower bound of (1/π2 − o(1))n3 log min(a, b). �

PROOF OF LEMMA 5. Let �t = �(Xt). By induction,

E[�t |X0] = �0(1 − γ )t .

By our assumptions on γ , in equilibrium E[�] = 0.
With �� denoting �t+1 − �t , we have

�2
t+1 = �2

t + 2�t�� + (��)2,

E[�2
t+1|�t ] = (1 − 2γ )�2

t + E[(��)2|�t ] ≤ (1 − 2γ )�2
t + R

and so, by induction,

E[�2
t ] ≤ �2

0(1 − 2γ )t + R

2γ
,

then by subtracting E[�t ]2,

Var[�t ] ≤ �2
0
[
(1 − 2γ )t − (1 − γ )2t] + R

2γ
≤ R

2γ

for each t . To get the last line we used our constraints on γ and t : (1 − γ )2 =
1−2γ +γ 2 ≥ 1−2γ , so when t is odd, (1−γ )2t ≥ (1−2γ )t . When t is even, we
need (1−γ )2 ≥ 2γ −1 as well, which is satisfied when γ ≤ 2−√

2 or γ ≥ 2+√
2.

From Chebychev’s inequality,

Pr
[|�t − E[�t ]| ≥ √

R/(2γ ε)
] ≤ ε.

As E[�∞] = 0, if E[�t ] ≥ √
4R/(γ ε), then the probability that �t deviates below√

R/(γ ε) is at most ε/2, and the probability that � in stationarity deviates above
this threshold is at most ε/2, so the variation distance between the distribution at
time t and stationarity must be at least 1 − ε. If we take the initial state to be the
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one that maximizes �0, then

E[�t ] = �max(1 − γ )t ≥ √
4R/(γ ε)

when

t ≤ log[�max ÷ √
4R/(γ ε)]

− log(1 − γ )
. �

3.4. Intuition. Since the expected value of the new height function is a certain
local average of the current height function, the evolution of the height function h

(or rather its expected value) proceeds approximately according to the rule

∂h

∂t
= const×∂2h

∂x2 .(7)

Since the equation is linear in h, it is natural to consider its eigenfunctions,
which are just the sinusoidal functions that are zero at the boundaries. We can
decompose any given height function into a linear combination of these sinusoidal
components and consider the evolution of each component independently. The
displacement function � (when β = π ) is just the coefficient of the principal
mode (the sinusoidal function with longest period) when we decompose the height
function in this way. The coefficient of the principal mode decays the slowest,
making it the most useful for purposes of establishing a lower bound. For purposes
of establishing an upper bound, the difference between two height functions also
obeys (7). We used the fact that when two paths, one above the other, have the
same displacement, then they are the same path. The coefficient of the principal
mode is the only one for which we can guarantee this property, since the other
eigenfunctions take on both positive and negative values in the interior. Thus the
principal mode essentially controls the rate of convergence, making its coefficient
a natural displacement function.

4. Card shuffling by adjacent transpositions. Next, we analyze the card
shuffling Markov chain that transposes random adjacent pairs of cards. [This
Markov chain is a special case of the move-ahead-one update rule that has been
studied in self-organizing linear search; Hester and Hirschberg (1985) gave a
survey.] We consider this Markov chain to be implemented according to the rule:
pick a random adjacent pair (i, i + 1) of cards, flip a coin c, and then sort the
items in that adjacent pair if heads; otherwise reverse-sort them. The same random
update defined by i and c may be applied to more than one permutation to obtain
coupled Markov chains. A permutation on the numbers 1, . . . , n has associated
with it n + 1 threshold functions, where the ith threshold function (0 ≤ i ≤ n) is a
string of i 1’s and n− i 0’s, with the 1’s at the locations of the i largest numbers of
the permutation. The permutation can be recovered from these threshold functions
simply by adding them up (see Figure 3). When a random adjacent pair of numbers



TILING AND SHUFFLING MIXING TIMES 287

FIG. 3. The permutation 2653741 and its eight threshold functions shown as lattice paths.

within the permutation are transposed, the effect on any given threshold function is
to transpose the same adjacent pair of 0’s and 1’s. The identity permutation 12 · · ·n
and its reverse n(n−1) · · ·1 give the minimal and maximal paths for any threshold
function. So when the coupled Markov chains started at these two permutations
coalesce (take on the same value), the grand coupling would take any starting
permutation to this same value. We can therefore use our analysis of the Markov
chain on lattice paths to analyze the Markov chain on permutations.

THEOREM 6. After (1/π2 − o(1))n3 log n shuffles, the variation distance
from stationarity is 1 − o(1) and the probability of coalescence is o(1). After

(6/π2 + o(1))n3 logn shuffles, the variation distance from stationarity is o(1) and
the probability of coalescence is 1 − o(1).

We prove better upper bounds in Sections 6 and 8.1; the point here is to give a
quick and easy proof.

PROOF OF THEOREM 6. The lower bound comes from considering
the �n/2�th threshold function. By Theorem 4, after [1/π2 − o(1)]n3 logn steps
the variation distance of just this one threshold function from stationarity is
1 − o(1). The variation distance from stationarity of the permutation itself is at
least as large.

The upper bound follows from Theorem 2 when we take ε = δ/n. As
ab/(δ/n) ≤ n3/δ, after [2/π2 +o(1)]n3 log(n3/δ) steps the probability of any one
given threshold function differing for the upper and lower permutations is less than
or equal to δ/n. The probability that the upper and lower permutations differ is at
most the expected number of threshold functions for which they differ, which is
at most δ. Taking δ � 1 but log(1/δ) � logn, after [6/π2 + o(1)]n3 log n steps
coalescence occurs with probability 1 − o(1). �
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5. Lozenge tilings.

5.1. Background. Random tilings or, equivalently, random perfect matchings,
were originally studied in the physics community as a model for dimer systems
[see, e.g., Fisher (1961) and Kasteleyn (1963) and references contained therein].
Physicists were interested in properties such as long-range correlations in the
dimers. In the case of lozenge tilings, the dimers are the lozenges and the
monomers are the two regular triangles contained in a lozenge. In recent years
mathematicians have been studying random lozenge tilings (among other types
of random tilings) and have proved a number of difficult theorems about their
asymptotic properties. For instance, when a very large hexagonal region is
randomly tiled by lozenges, with high probability the tiling will exhibit a certain
circular shape and the density of each of the three orientations of lozenges, as a
function of position, is also known [Cohn, Larsen and Propp (1998)]. [See also
Cohn, Kenyon and Propp (2001).] Observations of random lozenge tilings of very
large regions played an important role in the history of these theorems, since
they indicated what sort of results might be true before they were proved, thereby
guiding researchers in their efforts.

Consequently, there have been several articles [Propp and Wilson (1996), Luby,
Randall and Sinclair (1995), Wilson (1997a) and Ciucu and Propp (1996)] on
techniques to randomly generate lozenge tilings and other types of tilings. The
first two of these articles used a Markov chain approach, while the second two used
linear algebra. Propp and Wilson (1996) also introduced monotone–CFTP, which
lets one efficiently generate random structures (e.g., lozenge tilings) using special
Markov chains, without requiring any knowledge about the convergence rate of
the Markov chain. It is the article by Luby, Randall and Sinclair (1995) that is
most relevant to us here. In it they introduced novel Markov chains for generating
lozenge tilings (and two other types of structures). In this case knowledge of
the mixing time of these Markov chains does not help with the specific task of
random generation, because monotone–CFTP, which determines on its own how
long to run a Markov chain, may be applied to each of these Markov chains.
Still there are several reasons to determine the mixing time: (1) in the same way
that designers of efficient algorithms like to prove that the algorithms actually are
efficient, it is desirable to have a proof that the Markov chain is rapidly mixing,
(2) there are physical interpretations of the mixing properties of dimer systems
[see the discussion of Destainville (2002) and references contained therein] and
(3) there has been some speculation [Propp (1995–1997)] that knowledge of the
convergence properties of these Markov chains can be converted into knowledge
about random tilings of the whole plane (but this remains to be seen). For these
reasons, Luby, Randall and Sinclair established polynomial time bounds on the
convergence rates of each of their Markov chains. In this section we substantially
improve the analysis of the lozenge-tiling Markov chain and in many cases our
bounds differ by just a constant factor from the true convergence rate. As discussed
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FIG. 4. Shown starting in the upper left and proceeding clockwise are (1) a random perfect
matching (every vertex paired with exactly one neighbor) of a portion of the hexagonal lattice,
(2) the same perfect matching where edges of the matching are shown as small lozenges, (3) same
as 2, but the lozenges are large enough to touch one another, forming a lozenge tiling of a certain
region and (4) same as 3, but horizontal lozenges are represented as dots, while the other types
are represented as ascending or descending line segments, which form nonintersecting lattice paths.
These transformations are bijective, so that any set of nonintersecting lattice paths corresponds to
a lozenge tiling, which in turn corresponds to a perfect matching of the original hexagonal lattice
graph.

in Section 5.5, Luby, Randall and Sinclair also analyzed other Markov chains
for which it is not clear how to apply the methods of this section. Nonetheless,
empirical studies suggest that these other Markov chains converge about as quickly
as the lozenge-tiling Markov chain.

There is a well-known correspondence between dimers on the hexagonal lattice,
lozenge tilings, and nonintersecting lattice paths of the type we considered in
Section 3. Figure 4 illustrates this correspondence by showing a random perfect
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matching of a region of the hexagonal lattice, an equivalent random tiling of a
related region by lozenges, and an equivalent random collection of nonintersecting
lattice paths. Following Luby, Randall and Sinclair, we use the lattice path
representation of lozenge tilings.

5.2. Displacement function. In this section we apply the same techniques used
to upper bound the mixing time of the lattice path Markov chain to upper bound
the mixing time of a Markov chain for generating random lozenge tilings. There
are several Markov chains for generating random lozenge tilings of regions (each
of which possesses the monotonicity property required by monotone–CFTP): the
one that we analyze was introduced by Luby, Randall and Sinclair. Two of these
Markov chains use the lattice path representation of lozenge tilings and may be
viewed as generalizations of the lattice path Markov chain that we studied already.

Consider the Markov chain that picks a random point on some lattice path and
then randomly decides whether to try pushing it up or down. The Markov chain
is connected because the top path can be pushed to its maximum height, then the
next highest path and so on, so that each configuration can reach a unique maximal
configuration. (Similarly, there is a unique minimal configuration.) The Markov
chain is aperiodic since pushing the same lattice point twice in the same direction
results in no change the second time. The Markov chain is symmetric, so its unique
stationary distribution is the uniform distribution.

REMARK. Luby, Randall and Sinclair assumed that the region to be tiled is
simply connected, since otherwise the lattice paths cannot cross the interior holes
in the region, causing the state space to be disconnected. However, if we restrict
the state space to configurations with a specified set of lattice paths passing under
each interior hole, then this restricted state space is connected by these local moves.
Our mixing time upper bounds will apply to each such connected component of
the state space if the region to be tiled is not simply connected.

Such is the “local moves” Markov chain for lozenge tilings. Unfortunately,
it is difficult to analyze in the same way that we analyzed the path Markov
chain because the paths must remain disjoint. We would like to define the
displacement � of the lozenge tiling to be the sum of the displacements of each of
its paths, but computing E[��] is difficult. We cannot compute the expected new
height of a point on a lattice path simply by looking at the heights of its neighbors,
since another lattice path may or may not be nearby and block its movement. Luby,
Randall and Sinclair introduced “nonlocal moves” to circumvent this problem and
make a Markov chain that is more tractable.

Consider a single lattice path site in isolation. Its height will change only if
it is a local extremum and gets pushed up (if it is a minimum) or down (if it is a
maximum). The idea behind the nonlocal moves is to preserve the expected change
in height even if there are other lattice paths that might block the movement of this
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FIG. 5. A tower move for the Luby–Randall–Sinclair Markov chain for lozenge tilings. If the chain
attempts to push up the third path from the bottom in the gray area, then it and the two paths blocking
it are all three pushed up together with probability 1/3.

local extremum. If there are k paths blocking the movement of the local extremum,
then with probability 1/(k+1) the corresponding points in the k+1 paths are each
moved. (Naturally if the border of the region itself prevents the movement of the
paths, then the probability remains zero.) See Figure 5. This modified Markov
chain is ergodic and symmetric (the probability that these k + 1 paths get pushed
back to their original positions equals the probability that they were moved in the
first place), so the uniform distribution remains the unique stationary distribution.
Additionally, if there were no border effects, we would be able to compute E[��],
since when a site in a lattice path is selected by the Markov chain, the expected
change in the total height function is determined by that point and its immediate
neighbors on the same path. For hexagonal regions the borders cannot obstruct the
movements of the lattice paths, and we are able to get both upper and lower bounds
for these chains. For general regions we still obtain a good upper bound bound on
the mixing time despite these “border effects.”

The constraints that the borders of the region impose are that certain locations
of certain lattice paths have maximal or minimal values. For instance, at the start
and end of a lattice path, the maximal and minimal values are identical.

Let w be the width of the lozenge-tiling region in the lattice path representation.
That is, w is the distance between the leftmost start of a path and the rightmost end
of a path. (For the path Markov chain, w was n.) As in the single path Markov
chain, we find it convenient to center the region about the origin, so that the
x coordinates of the points on the paths range from −w/2 to w/2. For a given set
of nonintersecting lattice paths (also known as routing), let hi(x) be the height of
the ith path in the routing at the given x coordinate. If the path includes x and x−1,
we have hi(x) = hi(x −1)±(1/2), so that pushing the path up or down changes its
height by 1. For convenience, extend the definition of hi to locations x where the
ith path does not have a point, say by letting hi(x) take on its maximum possible
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value consistent with the constraint hi(x) = hi(x −1)±(1/2). The “displacement”
function of h that we use is

�(h) = ∑
i

w/2∑
x=−w/2

hi(x) cos
βx

w
,(8)

where 0 ≤ β ≤ π . This function � is the natural generalization of our earlier
lattice path displacement function, but in the context of lozenge tilings we put
“displacement” in quotes because it does not measure displacement from anything
in particular.

Suppose that the Markov chain picks a particular location x on the ith path to
try randomly pushing up or down. Let h′

i(x) be the updated value of the gap at that
location. If the ith path does not have an extremum at x, then h′

i (x) = E[h′
i (x)] =

hi(x) = [hi(x − 1) + hi(x + 1)]/2, so

E[��(h)] =
[
hi(x − 1) + hi(x + 1)

2
− hi(x)

]
cos

βx

w
.(9)

Suppose instead that the ith path does have an extremum at x. In the absence of
border constraints or interactions with other paths, the extremum is pushed up or
down with probability 1/2, so that we have E[h′

i (x)] = [hi(x − 1)+hi(x + 1)]/2.
Next we take into account interactions among the paths, but not border effects
yet. Suppose the Markov chain attempts to push the given local extremum in
the opposite direction that it is pointing, but that there are k paths blocking its
movement. Because we are using nonlocal moves, with probability 1/(k + 1)

each of these k + 1 paths is moved at location x, with each affecting �(h)

by cos(βx/w). Thus (9) continues to hold true.
The only reason that (9) might fail is if path i has a local maximum at x and

pushing it down violates the border constraints [in which case = in (9) becomes >]
or the path has a local minimum at x and pushing it up violates the border
constraints [where = in (9) becomes <]. For some regions, such as the hexagon,
all the paths start at −w/2 and end at w/2, and the only border effects are that
the endpoints of the paths stay fixed. For such regions (9) always holds for each
path and each x such that −w/2 < x < w/2, and it holds for x = ±w/2 as well
when β = π . Using this equality, we derive a lower bound on the mixing time
when the region is a hexagon. For general regions it is difficult to obtain a lower
bound on the mixing time, but we still obtain an upper bound.

5.3. Mixing time upper bound. To get the upper bound we work with a pair of
routings with heights ĥi and ȟi , such that each path in the first routing lies above
the corresponding path in the second routing. How we extended the definition of
ĥi and ȟi to locations x where path i does not exist was a bit arbitrary, but we
did it the same way in both routings so that at these locations ĥi (x) − ȟi(x) = 0.
Then the gap function between the two routings is g = ĥ − ȟ and the gap is
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�(g) = �(ĥ) − �(ȟ), which is zero when the routings are the same and positive
otherwise.

When we pick the same location x on the same path in both routings and
randomly push in the same direction, then from (9) we get

E[��(g)] = E[��(ĥ) − ��(ȟ)]
=

[
gi(x − 1) + gi(x + 1)

2
− gi(x)

]
cos

βx

w

(10)

unless the borders influence E[��(g)]. Suppose that the borders influence
E[��(ĥ)] to be larger than the value given by (9). Then ĥi(x) takes on its minimal
possible value and is a local maximum, so ĥi (x ± 1) also take on their minimum
possible values. But, ĥi dominates ȟi , so ȟi (x) and ȟi (x ± 1) also assume these
same minimum possible values. Thus the right-hand side of (10) is zero. Since
ĥi (x) and ȟi(x) are immobile, the left-hand side is zero as well, so (10) continues
to be true. Similarly, if the borders influence E[��(ȟ)] to be smaller than the value
given by (9), equation (10) continues to hold true. If on the other hand, the borders
influence E[��(ĥ)] to be smaller than the value specified by (9) and/or influence
E[��(ȟ)] to be larger than that specified by (9), then we may replace the second
equality in (10) with less than or equal to (≤) to obtain a true statement.

Let p denote the number of internal points on the paths in the routing, that is,
the number of places where the Markov chain might try to push a path up or down.
(The p in this section was n − 1 in the section on the path Markov chain.) Then
when we stop conditioning on a particular site of a certain path getting pushed, we
use the same derivation used in the proof of Lemma 1 to conclude that

E[��] ≤ −1 + cos(β/w)

p
�

with equality when β = π , all paths start at −w/2 and end at w/2, and the only
restrictions on the locations of the paths are that that their endpoints are pinned
down and they do not intersect. Then we use the same argument used in the proof
of Theorem 2 to find that the Markov chain is within ε of uniformity after

2 + o(1)

β2
pw2 log

m

�minε

steps, where m is the number of (local) moves separating the upper and lower
configurations, and �min > cos(β/2) ≈ (π − β)/2. Taking β = π − �(1/ logn)

as before yields the following theorem:

THEOREM 7. For the Luby–Randall–Sinclair lozenge-tiling Markov chain on
a region which has width w, has m (local ) moves separating the top and bottom
configurations, and contains p places where a lattice path may be moved, after

2 + o(1)

π2 pw2 log
m

ε
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steps, coalescence occurs except with probability ε. (For regions which are not
simply connected, we mean coalescence within a given connected component of
the state space.)

For the bound stated in the Introduction we used p ≤ n and m ≤ 2n3/2 [Luby,
Randall and Sinclair (1995)].

For the hexagon of order �, p = 2�(� − 1), w = 2� and m = �3, so our mixing
time bound is

48 + o(1)

π2 �4 log �.

5.4. Lower bound for the hexagon.

THEOREM 8. For the regular hexagon with side length �, the mixing time of
the Luby–Randall–Sinclair Markov chain is at least (8/π2 − o(1))�4 log�.

PROOF. We apply Lemma 5 here to lower bound the mixing time of the
lozenge-tiling Markov chain proposed by Luby, Randall and Sinclair, when
the region is a regular hexagon with side lengths �. Our potential function has
the required contraction property, with γ ≈ β2/(2pw2) ≈ π2/(16�4), and �max =
�3/2. Since we are using nonlocal moves, �� can be as large as �. Suppose
that when the Markov chain picks a site on a path and tries to push it, there are
k paths in the way. With probability 1/(k + 1), �� = (k + 1) cos(α); otherwise
�� = 0. Conditioning on this site being selected, E[(��)2] ≤ k + 1 and, in
general, E[(��)2] ≤ R = �. Applying Lemma 5, we obtain a mixing time lower
bound of

(16 + o(1))�4

π2

[
3 log� + 1

2
log

(
ε

�5

)]
= 8 + o(1)

π2 �4 log �. �

5.5. The other Luby–Randall–Sinclair Markov chains. In addition to the
Markov chain for lozenge tilings, Luby, Randall and Sinclair introduced Markov
chains for domino tilings and Eulerian orientations. Randall (1998) pointed out
that our analysis in Section 5.3 is readily adapted more or less unchanged to
their domino-tiling Markov chains. It is much less obvious how to adapt the
analysis to the Eulerian-orientation chains. The reason for this difference is that for
the Eulerian-orientation Markov chains, the nonlocal “tower moves” overlap one
another in a criss-cross fashion, whereas in the lozenge-tiling and domino-tiling
chains, the towers are parallel to one another. We effectively gave each local move
within a given tower the same weight, and if we do the same for the Eulerian-
orientation chain, we get the trivial weighting, which does not have the desired
contraction property.
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5.6. The local-moves Markov chains. For a “normal” � × � region one might
expect that for typical configurations, the towers in the nonlocal tower moves
are fairly short, which suggests that while the Luby–Randall–Sinclair (LRS)
Markov chain is much nicer to analyze rigorously, it may not be much faster on
these regions than the local-moves Markov chain. (However for certain contrived
regions, such as a pencil-shaped region consisting of one long tower, the LRS
Markov chain will be much faster than the local-moves Markov chain.) Thus
we have a heuristic prediction that the local-moves chain takes �(�4 log�) time
to mix in “normal” � × � regions. Cohn (1995) tested this prediction by doing
coupling time experiments and reported that it was “about right.” Then Henley
(1997) did some detailed heuristic calculations and predicted that the relaxation
time (reciprocal of the spectral gap) was �(�4) for a variety of models that have
associated height functions. In an interesting development, Destainville (2002)
experimented with the local-moves chain for rhombus tilings of octagonal regions
where there are 6 =(4

2

)
types of rhombuses and concluded that the �(�4 log�)

estimate holds for these tilings as well.
From a rigorous standpoint, Randall and Tetali (2000) established a polynomial

time upper bound on the mixing time of the local-moves chain. Their approach
was to use the mixing time bound from Theorem 7 on the nonlocal-moves Markov
chain to obtain a bound on the chain’s spectral gap, use techniques developed
by Diaconis and Saloff-Coste (1993b) to compare the spectral gaps of the local
and nonlocal Markov chains, and then derive a mixing time bound for the local-
moves chain from its spectral gap. Their local-moves mixing time bound was
O(n2w2h2 logn), where n is the area, w is the width and h is the height, or in
other words O(�8 log�) for � × � regions. If rather than starting from our mixing
time bound on the nonlocal Markov chain, one instead starts from our bound on the
spectral gap (which was not explicitly given in an earlier version of this article),
then the log factors disappear from the mixing time bound of the local-moves
Markov chain.

6. The Karzanov–Khachiyan Markov chain. As mentioned in the Intro-
duction, random generation of linear extensions can be used to approximately
count the number of linear extensions of a partially ordered set, which is a
#P-complete problem [Brightwell and Winkler (1991)]. Dyer, Frieze and Kannan
(1991) showed one can generate a (approximately) random linear extension of
a partial order in polynomial time using a Markov chain on a certain polytope.
Matthews (1991) gave a different geometric Markov chain for random linear
extensions that runs in time O(550n8 log3 n log 1/ε). Karzanov and Khachiyan
(1991) gave a combinatorial Markov chain for linear extensions and showed
that it mixes in time 8n5 log(|�|/ε) ≤ O(n6 log n), where |�| is the number
of linear extensions. Dyer and Frieze (1991) improved the mixing time bound
to O(n4 log(|�|/ε)) ≤ O(n5 log n). Felsner and Wernisch (1997) showed that
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the Karzanov–Khachiyan Markov chain mixes in time O(n3 log n) for a cer-
tain class of partial orders and that one can obtain an unbiased sample in this
time. Bubley and Dyer (1998) showed that a related Markov chain mixes in time
O(n3 log n) and that the original Karzanov–Khachiyan Markov chain mixes in
time O(n3 logn log(|�|/ε)) ≤ O(n4 log2 n). We show here that the Karzanov–
Khachiyan Markov chain mixes in time O(n3 logn) and we exhibit a partial order
for which the Karzanov–Khachiyan Markov chain and Bubley and Dyer’s varia-
tion of it both need order n3 logn steps before they begin to get close to being
random.

(Despite this progress, it still takes O(n5 log2 n ε−2 log(n/ε)) time to approxi-
mately count linear extensions to within a factor 1 + ε [Bubley and Dyer (1998)].
One can count the linear extensions of series-parallel posets much more quickly, so
the aforementioned data-mining application [Mannila and Meek (2000)] restricted
its attention to these posets.)

Bubley and Dyer (1998) used their simple yet powerful method of path
coupling [Bubley and Dyer (1997)] to bound the mixing time of Markov
chains related to the Karzanov–Khachiyan Markov chain for random linear
extensions. In their generalization, the items at positions i and i + 1 are
considered with probability f (i), and the Markov chain transposes these items
with probability 1/2, provided that doing so does not violate the partial order. For
the Karzanov–Khachiyan Markov chain, f (i) = 1/(n − 1) for i = 1, . . . , n − 1.
Bubley and Dyer showed that if f (i) is given by a parabola, f (i) ∝ i(n − i),
then the Markov chain mixes in time (1/3 + o(1))n3 logn and then they argued
using eigenvalue comparison techniques that the original Karzanov–Khachiyan
chain mixes in time no greater than O(n4 log2 n).

We show here how to generalize Bubley and Dyer’s analysis of these Markov
chains and we obtain an upper bound of (4/π2 + o(1))n3 logn for the Karzanov–
Khachiyan Markov chain. We remark that 4/π2 is about 22% larger than 1/3, but
selecting a uniformly random location is easier than selecting one according to a
parabolic distribution. We will see in Section 7 that by doing updates in “sweeps”
rather than at independent uniformly random locations, the required number of
transpositions can be cut in half. So this analysis marginally improves but does not
significantly impact the time needed to generate random linear extensions. Mainly
it serves to illustrate the utility of the technique used throughout this article for
analyzing the mixing time of a variety of Markov chains that have been studied
before.

What we do is simply add weights to the distance function between linear
extensions. If positions i and j > i are transposed, Bubley and Dyer defined the
“width” of the transposition to be j − i. We define the width to be w(i, j) =∑

i≤k<j w(k), where the w(k) ≥ 0 are to be chosen later. Given two linear
extensions X and Y of the partial order, a transposition sequence was defined to
be a sequence of linear extensions X = Z0,Z1, . . . ,Zr = Y such that Zk and Zk+1
differ by a single transposition. The weight of a transposition sequence is the sum
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of the widths of the transpositions, and Bubley and Dyer defined the distance
δ(X,Y ) between linear extensions X and Y to be the weight of the minimum
weight transposition sequence.

Bubley and Dyer showed in an Appendix that [when each w(i) = 1] δ(X,Y ) =
δS(X,Y ), where δS is Spearman’s footrule, which is defined by δS(X,Y ) =
(1/2)

∑n
i=1 |X(i) − Y (i)|. The proof is also valid in the weighted scenario when

the definition of δS is generalized to δS(X,Y ) = (1/2)
∑n

i=1 w(min(X(i), Y (i)),

max(X(i), y(i))).
Given two permutations A and B that differ by single transposition (i, j) and

which are updated to A′ and B ′ using a coupled Markov chain, Bubley and Dyer
proved that

E[δ(A′,B ′)]
≤ δ(A,B)

+ f (i − 1)w(i − 1) − f (i)w(i) − f (j − 1)w(j − 1) + f (j)w(j)

2
= δ(A,B)(1 − γi,j ),

where

γi,j = 1

2

−f (i − 1)w(i − 1) + f (i)w(i) + f (j − 1)w(j − 1) − f (j)w(j)

w(i) + · · · + w(j − 1)
.

As always, they showed this assuming constant weights w, but the same proof
holds for general positive weights w.

Letting γ = mini,j γi,j , their method of path coupling gives an upper bound
of (1/γ ) log(D/ε) on the number of steps before the variation distance from
stationarity is at most ε, where D is the ratio of the maximum distance to the
minimum positive distance. Observe that γi,j = c (resp. γi,j ≥ c) for each i and j

if and only if γi,i+1 = c (resp. γi,i+1 ≥ c) for each i.
Given constant weights w, the choice of frequencies f that maximizes γ is

given by a parabola. Therefore, Bubley and Dyer chose f (i) = i(n − i)/K , where
the normalizing constant is K = (n3 − n)/6. It is easily checked that γi,j = 1/K

when j = i + 1, so this holds for all i and j . With constant weights one can
show D ≤ �n2/4�, so their bound on the mixing time is (1/3 + o(1))n3 logn.

Given constant frequencies f , the optimal choice of w is sinusoidal. Let w(i) =
cos(β(i/n − 1/2)) with 0 ≤ β ≤ π ; these weights are positive as required. Since

− cos(x − δ) + 2 cos(x) − cos(x + δ)

2 cos(x)
= 1 − cos(δ),

we have

γi,j ≥ 1 − cos(β/n)

n − 1
≥ β2

2n3
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for j = i + 1 [we do not have equality when i = 1 or i = n − 1 since f (0) =
f (n) = 0], so this bound holds for all i and j . As in the proof of Theorem 2, we
take β = π − �(1/ logn) so that γ is large, while not making the ratio D of the
maximum distance to the minimum positive distance too large. Then the upper
bound on the mixing time is

2n3

β2
log

D

ε
= 4 + o(1)

π2
n3 logn.

Of course when designing a Markov chain, we are free to pick both f and w.
Optimizing them together would be an interesting challenge.

7. Sweeps versus independent updates. So far we have focused on updates
where a random site is selected and then a local randomizing operation is
performed at that site. Often in practice the various sites are updated in
systematic “sweeps” rather than at random. For instance, for permutations or linear
extensions, rather than randomize a random adjacent pair of items, one may instead
randomize the items in positions (1,2) (3,4) (5,6) · · · and then do positions
(2,3) (4,5) (6,7) · · · . Likewise for lozenge tilings, one may randomize the lattice
paths at all places where the x coordinate is even, then afterward randomize at all
places where the x coordinate is odd. Call the first set of updates an even sweep and
call the second set an odd sweep. In all cases where we have derived upper bounds
on the mixing time of a Markov chain (i.e., grand-coupling time for a random
path or permutation by random adjacent transpositions, grand-coupling time for
Luby, Randall and Sinclair’s chain on lozenge tilings, and the mixing time for
the Karzanov–Khachiyan Markov chain for random linear extensions), the same
analysis that worked for independent updates at each step also works for sweeps.
If one randomly chooses between even sweeps and odd sweeps, then we have the
same contraction property, with γ scaled up by a factor of (n − 1)/2 (or p/2 in
the case of lozenge tilings). The mixing time bounds are then roughly the same,
though slightly better than the bounds we would get when using the same total
number of transpositions (or path pushes) but at independent uniformly random
locations. Successive even sweeps are redundant, as are successive odd sweeps, so
when we alternate, we perform about half as many moves (in continuous time) to
get the same value of the total variation distance or probability of not coupling.

Note that we have not proved that the mixing time is actually twice as fast,
merely that our upper bound on it is half as large.

Perhaps more important than this factor of 2 savings is that many fewer
random bits are required to do the updates, since the locations of the updates are
deterministic. For Markov chains with simple moves such as these, generating
pseudorandom bits can take an appreciable fraction of the total running time.
Whether for this reason or for simplicity, in practice the algorithms used to
generate random tilings have typically used systematic sweeps.
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8. Lattice paths and permutations revisited. We have already given a
quick-and-easy analysis of the adjacent-transposition Markov chain on lattice
paths and on permutations, obtaining upper and lower bounds on the mixing time
and coupling time that match to within constants. In this section we give a more
refined analysis which improves these constants.

8.1. Upper bounds. Consider the Markov chain on permutations that ex-
changes a random adjacent pair with probability 1/2 and the pairwise coupling
for which the choice of adjacent pair is always the same in the two Markov chains.
The decision of whether or not to exchange is also the same in both chains unless
an exchange in one chain but not the other would decrease the Hamming distance
between the two permutations, in which case the exchange is done in a random one
of the two random permutations but not the other. This coupling was also used by
Aldous (1983). Let us focus on how a given item moves in the two permutations.
The state space is the n × n grid, which represents the location of the item in the
two different permutations. A typical state (x, y) transits to its four neighboring
states (x ± 1, y) and (x, y ± 1), each with probability α = 1/(2(n − 1)), with the
following exceptions: (1) if x = y, then the transitions are to (x + 1, y + 1) and
(x − 1, y − 1), each with probability α, and (2) if the transition would be to a
pair outside the n × n grid, the transition instead self-loops. Observe that the x

coordinate is a simple random walk on a chain of length n and similarly for the y

coordinate. Furthermore, any state (x, y) with x �= y is transient, so that eventually
x = y. This takes about �(n2/α) steps. We need a good estimate of the probability
that coalescence has not occurred after a large multiple of �(n2/α) steps, so we
prove the following lemma:

LEMMA 9. After T steps Pr[xT �= yT ] < 10 exp[−T (1 − cos(π/n))/(n − 1)].
Before proving this lemma, we derive from it our bounds on the coupling times.

THEOREM 10. For the above pairwise coupling on permutations, the number
of steps before the probability of coalescence is at least 1 − ε is at most (2/π2 +
o(1))n3 log(10n/ε).

PROOF. After T steps the probability that the two permutations are still
different is at most the expected number of items that are in different positions
in the two permutations, which is at most 10n exp[−T (1 − cos(π/n))/(n − 1)].
Setting this equal to ε gives the desired bound. �

For the permutation Markov chain, the (2/π2 + o(1))n3 log n upper bound for
the variation distance threshold and the (4/π2 + o(1))n3 logn upper bound for the
separation distance threshold follow immediately. The same bounds for the lattice
path Markov chain follow from projecting the permutation to the lattice path.
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THEOREM 11. For the sort/reverse-sort grand coupling on permutations, the
number of steps before the probability of coalescence is at least 1 − ε is at most
(4/π2 +o(1))n3 log(10n/ε). For lattice paths the sort/reverse-sort grand-coupling
time is at most (2/π2 + o(1))n3 log(10n/ε).

PROOF. What we have analyzed in Theorem 10 is a pairwise coupling of
a Markov chain on permutations, that is, an update rule that updates pairs
of permutations. This pairwise update rule does not extend to a grand coupling,
that is, there is no update rule defined on all permutations such that pairs
of permutations evolve according to the above pairwise coupling. However,
let us look at the evolution of a threshold function of the two permutations.
Normally both permutations are either sorted or reverse-sorted at a location,
which corresponds to a push-down or push-up move in the threshold functions.
The exceptional case where one permutation is sorted while the other is reverse-
sorted occurs when items i and j are in adjacent locations x and x + 1 in one
permutation, while the other permutation has items j and k at these locations, and
either i < j < k or k < j < i. Any given threshold function maps j to either 0
or 1. Then one of the two permutations has either an up slope or a down slope
at locations x and x + 1, and for that permutation an observer is unable to tell
whether a sort or reverse-sort operation was performed. Thus from the standpoint
of an observer, it appears as if the two threshold functions evolved according to
the monotone grand coupling considered earlier, and our bound on the pairwise
coupling time for permutations translates to a bound on the grand-coupling time
for lattice paths.

Next we can convert the bound on grand-coupling time for lattice paths
into an upper bound on the grand-coupling time for permutations for the
straightforward sort/reverse-sort coupling. After (4/π2 + o(1))n3 log n steps,
the pairwise permutation coupling (and hence the lattice path grand coupling) has
coalesced except with probability much less than 1/n, so the permutation grand
coupling has coalesced except with probability � 1. �

Surprisingly, experiments suggest rather strongly that 4/π2 is in fact the correct
constant, so that essentially nothing was lost in converting the coupling time
bounds from permutations to lattice paths and back to permutations.

PROOF OF LEMMA 9. Since we are interested in the probability that the
random walk has not hit the diagonal, and the regions below and above the
diagonal behave symmetrically, let us consider the state-transition matrix Mn for
the random walk above the diagonal (x < y), where the random walker reflects
off the boundaries of the grid and dies when it hits the diagonal. The matrix Mn

resembles a stochastic matrix, except that the row sum is less than 1 for those
rows that correspond to states next to the diagonal. For the reader’s convenience
we proceed to diagonalize the matrix Mn; other triangular regions with different
boundary conditions have been similarly diagonalized, for example, in Kenyon,
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Propp and Wilson (2000).
For 0 ≤ j < k < n, define the function

fj,k(x, y) = cos(jπx/n) cos(kπy/n) − cos(jπy/n) cos(kπx/n).

For convenience let the values of the grid coordinates x and y range from 1/2
to n − 1/2. Since

fj,k(x − 1, y) + fj,k(x + 1, y) + fj,k(x, y − 1) + fj,k(x, y + 1) − 4fj,k(x, y)

= [2 cos(jπ/n) + 2 cos(kπ/n) − 4]fj,k(x, y),

fj,k is an eigenvector of the nearest-neighbor random walk on Z
2 with transition

probabilities α, and its eigenvalue is

λj,k = 1 + α[2 cos(jπ/n) + 2 cos(kπ/n) − 4].
Since furthermore fj,k(x, x) = 0, fj,k(x, y) = fj,k(−x, y), fj,k(x, y) =
fj,k(x,−y), fj,k(x, y) = fj,k(2n − x, y) and fj,k(x, y) = fj,k(x,2n − y), it fol-
lows that fj,k is also an eigenvector of Mn with eigenvalue λj,k .

Next we show that any two of these n(n− 1)/2 eigenvectors are orthogonal and
that each is not identically zero:∑

1/2≤x<y≤n−1/2

fj1,k1(x, y)fj2,k2(x, y)

= ∑
x<y

[
cos

(
j1πx

n

)
cos

(
k1πy

n

)
cos

(
j2πx

n

)
cos

(
k2πy

n

)

+ cos
(

j1πy

n

)
cos

(
k1πx

n

)
cos

(
j2πy

n

)
cos

(
k2πx

n

)

− cos
(

j1πx

n

)
cos

(
k1πy

n

)
cos

(
j2πy

n

)
cos

(
k2πx

n

)

− cos
(

j1πy

n

)
cos

(
k1πx

n

)
cos

(
j2πx

n

)
cos

(
k2πy

n

)]

= ∑
x,y

[
cos

(
j1πx

n

)
cos

(
k1πy

n

)
cos

(
j2πx

n

)
cos

(
k2πy

n

)

− cos
(

j1πx

n

)
cos

(
k1πy

n

)
cos

(
j2πy

n

)
cos

(
k2πx

n

)]

= ∑
x

cos
(

j1πx

n

)
cos

(
j2πx

n

)∑
y

cos
(

k1πy

n

)
cos

(
k2πy

n

)

− ∑
x

cos
(

j1πx

n

)
cos

(
k2πx

n

)∑
y

cos
(

k1πy

n

)
cos

(
j2πy

n

)
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= 1j1=j2 + 1j1=j2=0

2
n × 1k1=k2 + 1k1=k2=0

2
n

− 1j1=k2 + 1j1=k2=0

2
n × 1k1=j2 + 1k1=j2=0

2
n.

Since j1 < k1 and j2 < k2, the second term is zero. The first term is also zero unless
both j1 = j2 and k1 = k2, giving us orthogonality. If (j1, k1) = (j2, k2) = (j, k),
then we find that this inner product is (1 + 1j=0)n

2/4, so the eigenvectors are
nontrivial. Hence, we have an orthogonal eigenbasis of the matrix Mn.

Suppose that the random walker starts at (x0, y0). Let δx0,y0(x, y) be the
function which is 1 at the starting location and 0 elsewhere. Let J (x, y) denote
the function which is 1 whenever x < y. We have

Pr[xT �= yT ] = (δx0,y0M
T
n ) · J

=
(∑

j<k

δx0,y0 · fj,k

fj,k · fj,k

fj,kM
T
n

)
·
(∑

j<k

J · fj,k

fj,k · fj,k

fj,k

)

= ∑
j<k

(δx0,y0 · fj,k)(J · fj,k)

fj,k · fj,k

λT
j,k

<
∑
j<k

(2)
(
2
(n

2

))
(1 + 1j=0)n

2/4
λT

j,k

< 8
∑
j<k

λT
j,k.

We need a bound on λj,k to bound this summation. To this end, consider the
line passing through (0, cos 0) and (t, cos t). When t = π/2, the line is at least
as high as cos s when t ≤ s ≤ π . If t < π/2, the line’s slope increases toward 0,
so it continues to be above cos s when π/2 ≤ s ≤ π , and by concavity of cos s

for 0 ≤ s ≤ π/2, the line is also above cos s when t ≤ s ≤ π/2. Taking t = π/n

(assume n ≥ 2; the lemma is trivial if n = 1) and s = jπ/n, we have

cos(jπ/n) ≤ 1 − (jπ/n)/(π/n)
(
1 − cos(π/n)

)
,

2 cos(jπ/n) − 2 ≤ −2j
(
1 − cos(π/n)

)
,

2 cos(jπ/n) + 2 cos(kπ/n) − 4 ≤ −2(j + k)
(
1 − cos(π/n)

)
,

λj,k ≤ 1 − α2(j + k)
(
1 − cos(π/n)

)
.

Let c = 2α(1 − cos(π/n)) ≈ απ2/n2 so that

λj,k ≤ 1 − (j + k)c < exp[−(j + k)c].
Since α = 1/(2(n − 1)), λj,k ≥ 1 − 8/[2(n − 1)] ≥ 0 when n ≥ 5, and λj,k ≥ 0
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for n = 2,3,4 as well. So we may take the T th power of both sides to get

λT
j,k ≤ exp[−(j + k)cT ],

∞∑
k=j+1

λT
j,k ≤ exp[−(2j + 1)cT ]

1 − exp(−cT )
,

Pr[xT �= yT ] < 8
∑

0≤j<k

λT
j,k ≤ 8

exp[−cT ]
[1 − exp(−2cT )][1 − exp(−cT )] .

The lemma is trivial unless exp[−cT ] ≤ 1/10, in which case 8/[1 − exp(−2cT )]/
[1 − exp(−cT )] ≤ 8 × 100/99 × 10/9 = 8000/891 < 10, so that

Pr[xT �= yT ] < 10 exp[−cT ]. �

8.2. Lower bounds.

THEOREM 12. For the Markov chain on lattice paths in an n/2×n/2 box, the
time it takes the top path and the bottom path to coalesce is with high probability
at least (1 − o(1))2/π2n3 logn.

PROOF. As an upper lattice path ĥ and lower lattice path ȟ evolve together
via the push-down/push-up coupling, let us look at the difference path h = ĥ − ȟ.
If ĥ goes up and ȟ goes down, which we denote U

D , then the difference path h

goes up, which we denote with U. If ĥ goes down and ȟ goes up ( D
U ), then h

goes down (D). In the remaining two cases ( U
U and D

D ), the difference path remains
flat (F). We may view the difference path as a string of U, F, and D particles, and
it is easy to check that the evolution of the difference path is a Markov process:
If the particles at the updated site are UU = UU

DD , then they remain UU
DD = UU. If a

UD = UD
DU is updated, the result is either UD

UD = FF or DU
DU = FF. If a UF is updated,

the underlying paths might be UU
DU and then change to UU

UD = FU or UU
DU = UF, or the

underlying paths might be UD
DD and then change to UD

DD = UF or DU
DD = FU. Likewise,

if an FF is updated, there are four possibilities for the underlying paths, and in each
case the updated configuration is FF. The other cases (DD, DU, DF, FU and FD)
are similar and related to the above cases by symmetry. We summarize the update
rules for the string of U’s, D’s and F’s as follows: Pick a random adjacent pair and
with probability 1/2 exchange them; when a D and U are exchanged past each
other, they both turn into F’s. If we start with the top path and bottom path, then in
the difference path every U is to the left of every D.

We do a number of comparisons between a random permutation σ and the
difference lattice path h. For the kth comparison (0 ≤ k ≤ n), look at the locations
of cards 1, . . . , k and, in particular, their relative order. Let τU(1) denote the first
of these cards encountered in a left-to-right scan and, in general, τU(i), 1 ≤ i ≤ k,
denotes the ith such card encountered. Label the first k U’s of the difference path
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with the numbers τU(1), . . . , τU(k). Similarly let τD(i), 1 ≤ i ≤ k, denote the ith
card from the cards n + 1 − k, . . . , n to be encountered in a right-to-left scan of
the permutation and label the ith to last D of the difference path with τD(i). We
leave the remaining particles of the difference path unlabeled. When we evolve the
difference path via random exchanges, we let labeled particles be exchanged past
each other, but a labeled U or D may not be exchanged past an unlabeled U or D.
This rule for the labels does not affect the evolution of the unlabeled difference
path, but it is important for our understanding of it.

Initially for each 1 ≤ i ≤ k, the position of card τU(i) in the difference path is
weakly to the left of card τU(i) in the permutation, while the position of card τD(i)

in the difference path is weakly to the right of card τD(i) in the permutation.
We pick the same random adjacent pair in the permutation as in the labeled
difference path and make the same decision as to whether or not to exchange the
adjacent items. Consider the first time that the above invariant fails to hold, say
that card τU(i) in the labeled difference path moves to the right of card τU(i) in
the permutation. On the previous step, card τU(i) was in the same location in the
difference path and the permutation. The exchange could not have been to the right
of the card τU(i), because exchanges in the permutation always succeed; neither
could the exchange be to the left of card τU(i), because any particle to the left
of card τU(i) is either an F or a labeled U and such exchanges succeed. Thus the
invariant is maintained.

Consider the locations of two cards i and j in a random permutation σ or two
labels in the difference path h. Let the weighted gap between them be defined
by wgap(i, j) = ∑

x sin(πx/n), where the sum is taken over positions x between
the two cards and is negative if card j occurs before card i. Within a random
permutation σ we have

E[|wgapσ (i, j)|] =
∑n−1

x=1 x(n − x) sin(πx/n)(n
2

)
≈ 2n

∫ 1

0
u(1 − u) sin(πu)du = 8

π3 n.

The area under the difference path is the sum of the locations of the D particles
minus the sum of the locations of the U particles. The potential function (the
weighted area) is

�(h) =
n∑

x=0

h(x) sin
πx

n

=
maxx h(x)∑

i=1

wgaph(ith U, ith D)

≥
k∑

i=1

wgaph(i, n + 1 − i)
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if k ≤ maxx h(x). As wgaph(i, n + 1 − i) ≥ wgapσ (i, n + 1 − i) and also
wgaph(i, n + 1 − i) ≥ 0 whenever i ≤ maxx h(x), we have

�(h) ≥
k∑

i=1

max
(
0,wgapσ (i, n + 1 − i)

)

for any k ≤ maxx h(x), so

�(h) ≥
n/2∑
i=1

1i≤maxx h(x) max
(
0,wgapσ (i, n + 1 − i)

)
.

Since we started with a random permutation and the dynamics are reversible,
then even conditional upon all the past moves, the permutation is still uniformly
random. In particular, wgapσ (i, n + 1 − i) is independent of the maximum height
maxx h(x) of the difference path, so that

E[�(h)] ≥
n/2∑
i=1

Pr
[
i ≤ max

x
h(x)

]
E

[
max

(
0,wgap(i, n + 1 − i)

)]
,

E[�(h)] ≥ E
[
max

x
h(x)

][(
8

π3
+ o(1)

)
n

2

]
,

E
[
max

x
h(x)

]
≤ (

1 + o(1)
)π3

4n
�(h0)(1 − γ )t

and since �(h0)
.= (2/π2)n2,

E
[
max

x
h(x)

]
≤ (

1 + o(1)
)π

2
n(1 − γ )t .

Note that this gives another proof that coalescence is likely after t = (2/π2 +
o(1))n3 logn steps.

Notice that the difference path never changes by more than 1 at a time and only
if a U or a D particle moves. There are 2 maxx h(x) U and D particles, each particle
can move in one of two directions, and a given proposed exchange occurs with
probability 1/2. Thus

E[��2|h(·)] ≤ 2 max
x

h(x)/(n − 1),

E[�2(ht )|ht−1] = (1 − 2γ )�2(ht−1) + E[��2|ht−1(·)],
E[�2(ht)] ≤ (1 − 2γ )E[�2(ht−1)] + E

[
E[��2|ht−1(·)]],

E[�2(ht)] ≤ (1 − 2γ )E[�2(ht−1)] + (
π + o(1)

)
(1 − γ )t−1,
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where here the o(1) term depends only on n. By induction,

E[�2(ht )] ≤ (1 − 2γ )t�2(h0) + (
π + o(1)

)
(1 − γ )t/γ .

Subtracting E[�(ht)]2 = (1 − γ )2t�2(h0),

Var[�(ht)] ≤ (
π + o(1)

)
(1 − γ )t/γ,

Var[�(ht)] ≤ (
2/π + o(1)

)
n3(1 − γ )t ,

Var[�(ht)] ≤ (
π + o(1)

)
n�(ht).

Thus if �t � πn, w.h.p. �(ht) > 0, so that the time until coalescence is w.h.p.
at least (1 − o(1))2/π2n3 logn. �

9. Exclusion and interchange processes. In this section we show how to
apply Lemma 5 to lower bound the convergence rate of exclusion and interchange
processes. Several of these Markov chains where studied by Diaconis and Saloff-
Coste (1993a), who derived upper bounds on their mixing times but did not have
lower bounds that matched to within constant factors. The lower bounds derived
here match (most of) their upper bounds to within constant factors.

The interchange process describes particles moving around on an undirected
(but possibly weighted) graph. At each time step, a random edge of the graph
is selected and the particles at either endpoint of that edge are exchanged. The
particles could be 0’s and 1’s or they could, for instance, be distinct numbers from 1
up to the number n of vertices.

Lee and Yau (1998) studied the logarithmic Sobolev constants and the
L2-mixing times of some exclusion and exchange processes. The exclusion
process can also be viewed as the infinite-temperature limit of Kawasaki dynamics
for the Ising model; see, for example, Cancrini and Martinelli (2000) or Lu and
Yau (1993).

Let Qx,y denote the probability that the Markov chain exchanges the particles
at locations x and y, and for convenience let Qx,x = 1 −∑

y �=x Qx,y . Then Qx,y is
the state-transition matrix for the location of a particular particle. Let v be a right
eigenvector of matrix Q (the matrix is symmetric, so the left and right eigenvectors
are the same) with eigenvalue 1 − γ . The lemma requires γ > 0, but, in general,
one would expect that eigenvectors with smaller γ ’s give better lower bounds.

For convenience let us assume for the moment that all the particles are
distinguishable, so that the state of the Markov chain is a permutation σ of size n.
Define

�(σ) =
k∑

i=1

vσ(i)
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and �max = maxσ �(σ ). After one step of the Markov chain we have

E[�(σ ′)|σ ] =
k∑

i=1

E
[
vσ ′(i)

∣∣σ ]

=
k∑

i=1

∑
y

Qσ(i),yvy

=
k∑

i=1

(1 − γ )vσ(i)

= (1 − γ )�(σ )

so that this � has the contraction property required by Lemma 5 (assuming
0 < γ ≤ 2 − √

2 ). In effect we used an eigenvector of the graph to define an
eigenvector of the interchange process. For further information comparing the
eigenvalues of the graph with those of the interchange process, see, for example,
Handjani and Jungreis (1996).

With �� = �(σ ′) − �(σ) denoting the change in � that occurs after one step
of the Markov chain, let R be an upper bound on the largest value that E[(��)2]
can take. In general, we can take

R ≤ max
x,y : Qx,y>0

(vx − vy)2,

but in some cases we might find a better bound.
In general it need not be the case that all the particles are distinguishable. If

there is a set A of k particles that are distinguishable from the remaining n − k

particles, then we can still define

�(state) = ∑
x : particle of type A at location x

vx.

We arbitrarily label the A particles 1, . . . , k and the remaining particles k + 1,

. . . , n. The evolution of � is exactly the same as it was when all the particles were
distinguishable.

One may add self-loops to the Markov chain to avoid periodicity problems—
say the probability of a nontrivial transition is α. Typical choices for α are α = 1/2
or α → 0 (continuous time).

9.1. Shuffling cards on a hypercube. Here we lower bound the mixing time of
the Markov chain considered by Diaconis and Saloff-Coste that shuffles cards via
random transpositions where each transposition is an edge of the hypercube. The
underlying graph from which we need an eigenvector is the hypercube Z

d
2 , and the

state space of the Markov chain is Z
d
2 ! or

( Z
d
2

2d−1

)
depending on whether we want to

shuffle distinct particles or 2d−1 0’s and 2d−1 1’s (the same lower bound applies to
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both cases). [Here V ! denotes the set of permutations of a set V and
(V
n

)
denotes

the set of subsets of V containing n items.]
We can take our eigenvector to be the function that is 1 on those vertices of

the hypercube that have first coordinate 0 and is −1 on the other vertices. When
we follow a particular particle, the probability that the particle gets moved across
the first coordinate is α/(d2d−1), so our function is an eigenvector for which
γ = α/(d2d−2). Here �max = 2d−1 and our bound on R is 4α. Substituting into
Lemma 5, we obtain a lower bound of

(
1 − o(1)

)d2d−2

α

[
log 2d−1 + 1

2
log

ε

16d2d−2

]
= (

1 − o(1)
) log 2

8α
d22d

for bounded values of ε. It appears that this bound is correct up to constant factors.

9.2. High-dimensional product graphs. For a fixed connected graph G,
consider the nearest-neighbor random walk on Gd . We can imagine that there is a
particle in each of d disjoint copies of the graph G, where the particle in the ith
copy of G gives the ith coordinate of the walker. At each time step a particle chosen
from a random copy of G makes a move. For example, the Ehrenfest urn model
from statistical mechanics is essentially a random walk on Z

d
2 , so here G consists

of two vertices and an edge. A common choice for the factor α by which to slow
down the walk is α = d/(d + 1), in addition to the usual α = 1/2 and α → 0.

The mixing threshold for random walk on Gd has already been determined, so
it is an instructive exercise to check that Lemma 5 gives a sharp lower bound
in this case. For Z

d
2 , Diaconis and Shahshahani (1987) showed that there is a

sharp variation mixing threshold at (1/4 ± o(1))d logd steps. Aldous and Fill
[(2004), Chapter 7, Section 1.7] stated that the same approach works for Gd for
more general graphs G. In continuous time, Diaconis and Saloff-Coste [(1996),
Theorem 2.9] proved an upper bound on the variation mixing time for random
walk on Gd . The lower bound that we get from Lemma 5 differs from the upper
bound by a factor of 1 − o(1).

Aldous and Diaconis [(1987), Section 7] determined the mixing time threshold
of a related random walk on Gd , where at each time step, the particles in each copy
of G get moved. We note that the lower bound from Lemma 5 is tight in this case
as well.

To lower bound the mixing time of random walk on Gd , the underlying graph

for which we need an eigenvector is

d︷ ︸︸ ︷
G + · · · + G. Suppose that we have an

eigenvector v of G with eigenvalue 1 − γ0, where γ0 is the spectral gap. We take
our eigenvector to be the canonical extension of v, that is, the function that assigns
to each vertex x of G + · · · + G the value of the eigenvector v in the copy of G

in which x resides. The probability that a particular particle gets moved at a time
step is α/d , so our function is an eigenvector for which γ = αγ0/d . [For the walks
considered in Aldous and Diaconis (1987), we have γ = αγ0.] Here �max = �(d)
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and our bound on R is �(α). [For the walks considered in Aldous and Diaconis
(1987), the bound on R is �(αd).] Substituting into Lemma 5, we obtain a lower
bound of

log �(d) + 1
2 log(εαγ0/(d�(α)))

log 1/(1 − αγ0/d)
= (

1 − o(1)
)d log d

2αγ0
(11)

when ε does not go to zero too quickly.

REMARK. This application of Lemma 5 is the natural generalization of the
approach that Diaconis and Shahshahani (1987) used to get their lower bound on
the mixing time of Z

d
2 . For the walk on Z

d
2 , the eigenvalues of Z2 are 1 and −1, so

γ0 = 2, which upon substitution into lower bound (11) gives the familiar 1
4d log d .

For Z
d
2 the eigenvector used above just counts the difference between the number

of 1’s and the number of 0’s, which is the same test function that Diaconis and
Shahshahani (1987) used.

9.3. Shuffling cards on a grid. Here the cards (or 0’s and 1’s) are arranged
on an � × m grid. The state space is ([�] × [m])! or

([�]×[m]
��m/2�

)
, and the graph for

which we need an eigenvalue is the �×m grid. (Here [n] denotes {1,2, . . . , n} and
we identify the vertices of the grid with [�] × [m].) When � = m, Diaconis and
Saloff-Coste showed that order (�m)2 log(�m) steps suffice for the Markov chain
to equilibrate and they conjectured that this is the correct order of magnitude (but
see Section 9.4).

Our asymptotic results will be valid as max(�,m) gets large. For convenience
suppose that � ≥ m. Suppose the vertices are labeled as (i, j) for 1 ≤ i ≤ � and
1 ≤ j ≤ m. We can take our eigenvector to be the function that is cos(π(i−1/2)/�)

at vertex (i, j). There are E = �(m − 1) + m(� − 1) edges of this grid graph. One
can verify that this function is an eigenvector with eigenvalue

1 − γ = 1 − 2α/E + (α/E)2 cos(π/�),

so γ ∼ απ2/(E�2). The bound for R is on the order α(1/�)2, and �max is on the
order �m. Applying Lemma 5, we obtain a mixing time lower bound of

(
1 − o(1)

) E�2

απ2

[
log�(�m) + 1

2
log �(ε/E)

]

= (
1 − o(1)

)�2(� − 1/2)(m − 1/2)

απ2 log(�m)

when ε does not get too small too quickly as �m gets large.

REMARK. We can recover our mixing time lower bound for shuffling cards by
adjacent transpositions by substituting m = 1 and α = 1/2 into our lower bound
for the � × m grid.
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9.4. Diaconis and Saloff-Coste’s grid shuffling process. The actual Markov
chain that Diaconis and Saloff-Coste considered had transposition probabilities
that were slightly higher along edges that touched the border of the grid. This was
because their update rule was to pick a random vertex and exchange the particles
along a random edge incident to that vertex. Thus each edge (u, v) is selected with
probability proportional to 1/d(u)+ 1/d(v), where d(u) and d(v) are the degrees
of its endpoints. In some sense it is clear that the slight nonuniformity in the
probability with which we select edges cannot affect the mixing time too much, but
in the Introduction we promised a rigorous lower bound for Diaconis and Saloff-
Coste’s Markov chain, so we shall supply one. Finding an explicit eigenvector
given these boundary conditions seems somewhat painful, as does approximating
one with sufficient accuracy, so we take a different approach. We show how to
obtain mixing time lower bounds using only an approximate contraction property.

Rather than try to approximate an eigenvector, it is easier to make use of the
fact that we have an exact eigenvector � to an approximate state-transition matrix,
namely the state-transition matrix considered in Section 9.3 and the eigenvector �

that we used there:

�(S) = ∑
i,j : state S has particle at (i,j )

cos
(
π(i − 1/2)/�

)
.

[For convenience we slow down the chain in Section 9.3 by a factor of α =
E/(2�m) = 1 − 1/(2�) − 1/(2m) when doing the comparisons, so that the
probability of a transition occurring on a given edge is simply 1/(2�m).] After
one update of the approximate state-transition matrix, we have E[�(S′)|S] =
(1 − γ )�(S) with γ as given above, but with the actual state-transition matrix,
there is an O((� + m)/(�m)) chance that a vertex on the boundary is selected,
causing the exchange process to do something different than the approximate
exchange process. To bound∣∣E[�(S′)|S] − (1 − γ )�(S)

∣∣,
let us focus on a single particle at a time and then make use of linearity of
expectations and the triangle inequality. If the particle is near the boundary,
the corresponding difference is at most O(1/m�3); if the particle is not near
the boundary, then the corresponding difference is 0. Since there are O(� + m)

particles near the boundary, with δ = O(1/�3 + 1/(m�2)) we have

E[�(S′)|S] = (1 − γ )�(S) ± δ.

By induction,

E[�(St)|S0] = (1 − γ )t�(S0) ± δ

γ
.
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Likewise

E[�2(St+1)|St ] = �2(St ) + 2�(St)E[��|St ] + E[(��)2|St ]
= (1 − 2γ )�2(St ) ± 2�(St)δ + E[(��)2|St ],

E[�2(St+1)] = (1 − 2γ )E[�2(St )] ± 2�(S0)δ(1 − γ )t ± 2δ2

γ
+ E[(��)2]

and so, by induction,

E[�2(St )] ≤ (1 − 2γ )t�(S0) + 2�(S0)δ

γ
(1 − γ )t + max E[(��)2]

2γ
+ δ2

γ 2 .

Subtracting off E[�(St)]2 we get

Var[�(St)] ≤ 4�(S0)δ

γ
(1 − γ )t + max E[(��)2]

2γ
+ δ2

γ 2
,

where in the last step we have assumed as in Lemma 5 that 1 − 2γ is not
excessively negative, that is, that 0 < γ ≤ 2 − √

2
.= 0.58 (or else 0 < γ ≤ 1 and

t is odd).
For convenience let us follow Diaconis and Saloff-Coste in assuming � = m,

so that γ = (π2/2 + o(1))/�4 and δ = O(1/�3). We also have �(S0) = �(�2)

when all the particles start on one side, and max E[(��)2] = �(1/�2). Let K be
a suitably large parameter to be selected in a moment. Pick t = log(�/K)/γ ,
so that E[�(St)] = �(K�) and Var[�(St)] = �(K�2). However, in stationarity
E[�(S)] = O(�) (indeed it is 0) and Var[�(S)] = �(�2). Thus for any given ε we
can take K large enough so that, when we start the exclusion process with all the
particles on one side and run it for log(�/K(ε))/γ steps, with probability 1 − ε we
are able to distinguish the configuration from a state drawn from stationarity. This
gives us the desired mixing time lower bound of

log�

γ
=

(
2

π2 + o(1)

)
�4 log�.

10. Heuristic arguments for the true constants. Up until now we have given
upper bounds and lower bounds for various mixing times and coupling times, and
these bounds have typically differed by small constant factors. In this section we
give heuristic arguments and summarize experimental results for determining the
true asymptotic constant factors that were given in Table 1. Readers concerned
primarily with rigorous arguments will find in this section a few theorems and
many open problems.
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10.1. A million shuffles or seven. It is well known that for any Markov
chain, when one considers the distance from stationarity of the distribution at
time t , the variation distance decays as d(t) = (1 + o(1))Ad |λ|t and, similarly,
the separation distance decays as s(t) = (1 + o(1))As |λ|t , where λ is the second
largest eigenvalue (in absolute value). For the Markov chains considered here, we
have rigorous exact values for λ. To paraphrase Diaconis (1996), the goal of finding
mixing times is not to determine precisely how far from stationarity a deck of
cards is after a million shuffles, but to determine if seven shuffles are enough.
For many Markov chains, the variation distance from uniformity stays close to 1
for a time, and then rapidly becomes small and decays exponentially fast [see
Diaconis (1988)]. The seven-shuffle question, which is more relevant to practical
applications, asks where this cutoff occurs. The million-shuffle question has the
virtue of typically being easier to answer and it appears to be relevant to the seven-
shuffle question. Diaconis (1996) himself explained that the long-term behavior of
the Markov chain can be used as a heuristic for predicting which Markov chains
exhibit the “cutoff phenomenon” in the time it takes to randomize. Specifically for
reversible Markov chains, he uses the L2 bound

4‖P t
x − π‖2 ≤

N−1∑
i=1

vi(x)2λ2t
i ,

where the vi ’s are an orthogonal eigenbasis, and uses the lead term for large t ,∑
i : |λi |=λ

vi(x)2λ2t = [
AL2λ

t
]2

,

to make the prediction: If AL2 is large, then the Markov chain probability exhibits a
sharp transition. This extends an earlier heuristic that Aldous and Diaconis [(1987),
Section 7] gave for predicting the order of magnitude of the mixing time cutoff for
random walk on groups.

In this section we work more directly with the separation and variation distances
rather than use the L2 norm, and we hypothesize that

d(t) ≈ min(1,Ad |λ|t ) and s(t) ≈ min(1,As|λ|t ).
A priori it is not clear why the variation distance should be well approximated
by Ad |λ|t whenever this approximation is not obviously bad (i.e., when it is not
larger than 1). Indeed, there are examples where this type of approximation fails:
for walks on random Cayley graphs on Z

d
2 , the variation distance and the L2 norm

bound have essentially the same lead term behavior, but exhibit sharp transitions
at different times [Wilson (1997b)]. Nonetheless the above approximation is valid
for many Markov chains [see, e.g., Diaconis (1988)] and numerical computations
described in Section 10.7 give every indication that this approximation holds for
the Markov chains in which we are interested. We therefore take a moment to
formalize this observation:
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DEFINITION 1. A family of Markov chains exhibits a clean (variation) cutoff
if for every ε there is a K so that for any Markov chain in the family and for any
time t , whenever | log(Adλ

t )| > K ,∣∣log d(t) − min
(
0, log(Adλt)

)∣∣ < ε.

A clean separation cutoff is defined similarly. If a family of Markov chains
exhibits a clean cutoff and A → ∞, then it necessarily exhibits a sharp cutoff
(mixing time threshold) at logA/ log(1/|λ|). Since we already have the second
largest eigenvalue for several classes of Markov chains, our goal in this section is
to compute As and Ad , and report on experiments that suggest rather strongly that
the Markov chains we are considering do in fact exhibit clean cutoffs.

10.2. Preliminaries. To obtain our conjectured values for the true constant
factors in the mixing times of the adjacent transposition Markov chain on
permutations and on lattice paths, and the Luby–Randall–Sinclair chain on lozenge
tilings of a hexagon, we compute As and approximate Ad for these Markov chains.
Before working on these specific chains, for the reader’s convenience we start with
some basic preliminaries that are common to all these examples.

For the Markov chains considered here, we have a “potential function” �

[defined in (1), (8) and (15)] such that E[�(Xt+1)|Xt ] = λ�(Xt). If we view � as
the vector which is �(s) in its sth coordinate (where s is a state of the chain),
then � is an eigenvector of the state-transition matrix with eigenvalue λ. Since the
Markov chains are monotone and � is monotone increasing with respect to this
partial order, we know that λ is the second largest eigenvalue in absolute value.
We do not a priori know the multiplicity of the eigenvalue λ.

Since the Markov chains considered here are reversible, their state-transition
matrices are diagonalizable and there is an orthogonal eigenbasis vi with eigen-
values λi . If the Markov chain is started in state s, the distribution at time t

is
∑

i αiλ
t
ivi , where αi = vi(s)/(vi · vi).

To determine the quantity d(t), we need the worst starting state; for d̄(t), we
need the worst pair of starting states; and for the separation distance s(t), we
need the worst start and destination states. It seems intuitive that for all three
measures the worst states must be the top state 1̂ and bottom state 0̂, although there
are some monotone Markov chains for which this intuition is wrong [Häggström
(2001)]. Let us consider first the Markov chain on the symmetric group. Since it
is vertex-transitive, all starting states are equivalent, so 0̂ and 1̂ are worst starting
states. Furthermore, if the chain starts in 0̂, then the worst destination state is 1̂.
This fact was used in the monotone version of Fill’s algorithm [Fill (1998)]. For
the other Markov chains, we can only argue that 0̂ and 1̂ are the right states to
look at for sufficiently large time t , and then only under the (apparently correct)
assumption that the second largest eigenvalue λ has multiplicity 1. While not
completely satisfying, this will allow us to compute, for example, As under this
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one assumption. Assuming that λ has multiplicity 1, from the above formula we see
that when t is large enough, the worst starting states are the states that maximize
|�(x)| (i.e., states 0̂ and 1̂), the worst pair of starting states are those that maximize
|�(x) − �(y)| (i.e., 0̂ and 1̂), and the worst start and destination states are those
that maximize −�(x)�(y) (i.e., 0̂ and 1̂).

Let us suppose that the eigenvalue λ has multiplicity 1 (the multiplicity is larger
for the permutation chain, but we deal with that later). Recall that P t

x denotes
the distribution at time t when the chain starts in state x and that U denotes
the uniform (stationary) distribution. For large times t , P t

1̂
− U

.= �(1̂)
�·� λt�. If we

view � as the random variable obtained by picking a uniformly random state X

and returning �(X), then � ·� = Var[�]N , where N is the number of states. The
vector � takes on its most negative value at 0̂, so it contributes −�(0̂)N to the
separation distance. Hence for large times t we expect the separation distance to
be −((�(1̂)�(0̂))/Var[�])λt , so that

As
?= −�(1̂)�(0̂)

Var[�] = �(1̂)2

Var[�] ,(12)

where the question mark above the equal sign reminds us that in its derivation we
used the assumption that the second largest eigenvalue has multiplicity 1.

The contribution of � to the variation distance is 1
2NE[|�|]. Typically it is

hard to get an analytic expression for E[|�|], but heuristically it is plausible that
the distribution of � is Gaussian, so that E[|�|] ≈ 2√

2π

∫ ∞
0 xe−x2/2 dx

√
Var[�] =√

2/π
√

Var[�]. There are interesting Markov chains, such as random transposi-
tions on permutations that were analyzed by Diaconis and Shahshahani (1981),
for which the principal eigenvector evaluated at a random state is very far from
being approximated by a normal distribution. Thus, in principle, this approxima-
tion should be proved for the chains that we are considering, but we simply assert
that it is intuitively obvious that this approximate normality holds for these chains.
Assuming this approximate normality, we have

Ad
?= �(1̂)E[|�|]/2

Var[�]
?≈ �(1̂)√

2π Var[�]
?=

√
As

2π
(13)

(where we used the approximate normality assumption in the
?≈ relationship

and the multiplicity-1 assumption in the two
?= relationships). This relationship

between Ad and As is consistent with the folkwisdom that (for reversible chains)
it usually takes twice as long for the separation distance to become small as it does
for variation distance.

REMARK. A notable nonreversible chain where this relationship fails is the
riffle–shuffle Markov chain [Bayer and Diaconis (1992)]. What failed is the
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relationship αi = vi(s)/(vi · vi), which assumes reversibility. With the correct αi ’s
the above heuristic reasoning gives the right thresholds for the riffle–shuffle chain
as well.

10.3. Lozenge tilings. For the Luby–Randall–Sinclair Markov chain on lozenge
tilings of the order � hexagon, we used E[(��)2] ≤ O(�) to get a bound on the
variance of the height function. While there do exist atypical configurations for
which E[(��)2] is this large, it seems that more often E[(��)2] is closer to O(1).
If we substitute this bound on E[(��)2] into Lemma 5, we would get that the
variance in the potential function is O(�4), with typical deviations from the mean
being O(�2). These heuristic bounds are, in fact, correct in stationarity. It is known
that the variance in the total height is �4/4 and, more generally, abc(a + b + c)/12
for the hexagon with side lengths a, b, c, a, b, c [Blum (1996)]. Additionally, as we
see from (14) below, in stationarity the variance in � is abc(a + b + c)/(2π2 +
o(1)). Thus for the order l hexagon in a stationarity, the potential function � is
typically within O(�2) of its expected value 0. If (as seems likely) for each time t ,
�(Xt) is also typically within O(�2) of its expected value, then we would get
a mixing time lower bound of log(�3/�2)/ log(1/|λ|) = (16/π2 + o(1))�4 log�.
Intuitively the lozenge tiling is random when the distribution of its average height
is close to its stationary distribution.

THEOREM 13. Consider the Luby–Randall–Sinclair lozenge-tiling Markov
chain on the hexagon with side lengths a, b, c, a, b, c, with the tower moves
parallel to the c sides. Assuming the second largest eigenvalue has multiplicity 1,

As = �(1̂)2

Var[�] = c[(a + b)2 − 1]
ab(a + b + c)

sin2(πa/(a + b))

1 − cos(π/(a + b))
.

PROOF. The first relationship is just (12), which is where we use the
multiplicity-1 assumption. To compute the variance of � in stationarity, we let Si

denote the total height in column i, −a < i < b, and write

� =
b∑

i=−a

(Si − E[Si]) sin
π(i + a)

a + b
,

Var[�] = ∑
−a<i,j<b

Cov(Si, Sj ) sin
π(i + a)

a + b
sin

π(j + a)

a + b

and use a formula [Wilson (2001)] for the covariances of the Si’s,

Cov(Si, Sj ) = (a + i)(b − j)
abc(a + b + c)

(a + b)2((a + b)2 − 1)
, i ≤ j,
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to find (with the help of Maple) that

Var[�] = 1/4

1 − cos(π/(a + b))

abc(a + b + c)

(a + b)2 − 1

= (
1 + o(1)

)abc(a + b + c)

2π2
.

(14)

To evaluate �(1̂), we write

�(1̂) =
0∑

i=−a

(a + i)bc

a + b
sin

(
π(a + i)

a + b

)
+

b∑
i=1

(b − i)ac

a + b
sin

(
π(a + i)

a + b

)
,

which with the help of Maple simplifies to

�(1̂) = c

2

sin(πa/(a + b))

1 − cos(π/(a + b))
. �

When a = b = c = �, Theorem 13 gives As

?≈ 32/(3π2)�2 and Ad

?≈√
16/(3π3)�. Since γ

.= π2/16/�4, we estimate the separation threshold to be

(16/π2)�4 log(32/(3π2)�2)
.= (32/π2)�4 log� and the variation threshold to be

(16/π2)�4 log�, which matches the intuitive lower bound given above.
As a check of the E[|�|] ≈ √

2/π
√

Var[�] approximation, for the 3 × 3 × 3
cube E[|�|] .= 2.872, while

√
2/π

√
Var[�] .= 2.892, an error of about 1%. Even

for the 2 × 2 × 2 cube, the error between E[|�|] .= 1.307 and
√

2/π
√

Var[�] .=
1.319 is less than 1%.

10.4. Lattice paths. We have effectively already computed As and approxi-
mated Ad for lattice paths in the a × b box—just set c = 1 in the above formulas
for the a × b × c lozenge-tiling region.

For lattice paths we can give some additional intuition. Consider the lattice path
Markov chain on an n/2 × n/2 box. In stationarity, the height fluctuation at a
given site near the center of the path is �(

√
n) and the fluctuations in the potential

function is �(n3/2). Initially the potential function is �(n2) and at any given time,
the fluctuations in the potential function are about O(n3/2) about its expected
value. We used these facts to obtain the lower bound on the variation mixing time
of log(n2/n3/2)/ log(1/|λ|). Intuitively the path is about random when its average
height is close to its stationary distribution, which would imply that the above
lower bound is tight.

10.5. Permutations.

THEOREM 14. For the random adjacent transposition Markov chain on
permutations of order n, assuming the second largest eigenvalue has multiplicity
n − 1, As = n − 1.
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REMARK. It is not clear to what extent it is a coincidence that As is the
multiplicity of λ. This relationship does not hold for the tiling or lattice path
Markov chains, but there the state spaces do not have a group structure. For Z

n
2,

As = n is the multiplicity of the second largest eigenvalue. However, for the
cycle Zn, the second largest eigenvalue has multiplicity 2 for n ≥ 3, while As = 2
only for even n > 3 and As = 2 cos(π/n) for odd n ≥ 3.

PROOF OF THEOREM 14. For random adjacent transpositions on permuta-
tions, for any given card i one can define an eigenvector with eigenvalue λ based
on the location σ−1(i) of that card:

fi(σ ) = cos
[
π

(
σ−1(i) − 1/2

)
/n

]
.

There is one linear dependency among these eigenvectors (
∑

i fi = 0) and it
appears that there are no other eigenvectors with eigenvalue λ. Note that

fi · fi = (n − 1)!
n∑

j=1

cos2
(

π(j − 1/2)

n

)

= (n − 1)!
n∑

j=1

1 + cos(2π(j − 1/2)/n)

2
= n!

2
.

By symmetry considerations, fi · fj = fi · fk when k �= i �= j . Since

0 = fi ·
(∑

j

fj

)
= n!

2
+ (n − 1)f1 · f2,

we have that

fi · fj = − n!
2(n − 1)

when i �= j .
As before, to determine As we compute the coefficients of the fi ’s in the

eigenbasis decomposition of 11̂. Since there is a linear relationship among the fi’s,
there will be a one-parameter family of valid sets of coefficients—we just need one
such valid set of coefficients. We could be methodical and use the Gram–Schmidt
procedure to extract n − 1 orthogonal vectors from the fi’s and then use these
to get a valid set of coefficients, but the guess-and-verify method is less messy.
Consider the function

� =
n∑

i=1

fi(1̂)fi .(15)
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We have

fi · � = n!
2

(
fi(1̂) − 1

n − 1

∑
j �=i

fj (1̂)

)

= n!
2

n

n − 1
fi(1̂).

By comparison

fi · 11̂ = fi(1̂).

Since the dot products with the fi ’s are the same [up to the constant factor
n!n/(2(n − 1))], by linear algebra we conclude that 2(n − 1)/(n!n)� has the
desired coefficients. Next we evaluate this eigenfunction at 0̂ and multiply by
−N = −n! to obtain

As = −n!2(n − 1)

n!n
n∑

i=1

fi(1̂)fi(0̂)

= −2
n − 1

n

n∑
i=1

− cos2
(

π(i − 1/2)

n

)

= n − 1. �

10.6. Shape of the thresholds. In Figures 6–8, where we present numerical
data for separation and variations distances, we also plot some hypothetical
asymptotic curves for the separation and variation distances, in particular,

s(t)
.= 1 − exp(−Asλ

t ),

d(t)
.= erf

(√
π

2
Adλt

)
,

d̄(t)
.= erf

(√
πAdλ

t
)
,

where erf(x) = ∫ x
−x e−t2

dt/
√

π is the error function. For random walk on Z
d
2 , the

variation distance d(t) was shown to take the above form by Diaconis, Graham
and Morrison (1990). The intuition for why it should also hold for the Markov
chains that we are interested in is essentially the same as for their proof for Z

d
2 .

When X is a random state drawn from the uniform distribution, �(X) is well
approximated by a Gaussian. (For Z

d
2 , � is the number of 1’s.) When t is near the

mixing time threshold, �(Xt) should be well approximated by a Gaussian with the
same variance as �(X) but with mean �(X0)λ

t . The intuition, which was made
rigorous for Z

d
2 but appears difficult to prove for the other chains, is that � is the
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FIG. 6. Data for the Luby–Randall–Sinclair lozenge-tiling chain on the hexagon with side
lengths a, b, c, a, b, c.

best test statistic for distinguishing X from Xt . The amount by which these two
Gaussians fail to overlap gives the asymptotic curve for d(t). The curve for d̄(t)

also follows from this heuristic reasoning.
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FIG. 7. Data for random adjacent transpositions on a × b lattice paths.

There does not seem to be any similar intuition for why the asymptotic curve
for s(t) should be that which is given above, other than that it holds for Z

d
2 and

other high-dimensional product graphs, and it appears to be a good fit, at least for
the tiling Markov chains.
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FIG. 8. Data for random adjacent transpositions on the symmetric group Sn .

REMARK. There exist Markov chains for which the asymptotic curves for d(t)

are not given by the above formula. For example, Diaconis, Fill and Pitman (1992)
analyzed the top-to-random shuffle and determined that the curve for d(t) is given
by an explicit piecewise-analytic formula, which in particular is different from the
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above formula. Nonetheless, the chains we are interested in seem to have more in
common with random walk on Z

d
2 than they do with the top-to-random shuffle,

and we are confident that the above formulas for d(t) and d̄(t) are the correct
asymptotic shape of the transition.

10.7. Numerical experiments. Figures 6–8 show numerical data for the
convergence rates of the three classes of Markov chains considered here. The
data were obtained by explicit multiplications of the state-transition matrix, and
assume that 0̂ and 1̂ are the worst starting states for d(t), worst pair of starting
states for d̄(t), and worst start and destination states for s(t). For each system size
the convergence data were scaled and shifted to make the transitions line up. The
amount by which to scale and shift was computed a priori using the preceding
formulas for λ, As and Ad ; in particular, the values for λ and As are exact and the
value for Ad was approximated using (13).

The curves line up quite nicely when d(t), d̄(t) or s(t) are small, and they line
up progressively better with increasing system size. This fact and additional graphs
not shown here indicate that the Markov chains have a clean cutoff and that, hence,
the cutoff phenomenon does indeed occur where we expect it. The data look less
good when d(t), d̄(t) or s(t) are large; this distortion is due in part to the fact
that for finite system sizes there is a small finite xmin, while in the idealized limit
xmin = −∞. For s(t), xmin is about twice as large as for d(t), so this distortion is
much less pronounced for s(t). For d̄(t), xmin is log 2 more negative than for d(t),
which is large enough to make the curves line up noticeably better for d̄(t) than
for d(t).

10.8. Monte Carlo experiments. To estimate the coupling time for the three
classes of Markov chains, one can actually run the Markov chain until the upper
and lower configurations coalesce, repeat many times and compare the results
for different system sizes. The obvious advantage of Monte Carlo over numerical
experiments is that one can do much larger system sizes. However, even with the
large system sizes, when comparing different system sizes it is still much better to
rescale time by

log
1

λ
= log

1

1 − (1 − cos(π/n))/(n − 1)

rather than its asymptotic value (π2/2)/n3.
After rescaling time in this manner it becomes quite clear that the coupling time

for n/2×n/2 lattice paths is about logn/ log 1/λ
.= 2/π2n3 logn, and the coupling

time for permutations is logn2/ log 1/λ
.= 4/π2n3 logn. Of course this coupling

time estimate for lattice paths is actually rigorous thanks to Theorems 11 and 12.
Estimating the correct constant for the tiling Markov chain is, however, much more
challenging and we have not succeeded in doing this.
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Surprisingly one can use Fill’s algorithm to do similar Monte Carlo experiments
to measure the separation distance [Fill (1998), Section 9]; we did not do this since
we already had the numerical data. We are unaware of any similar Monte Carlo
method for measuring the variation distance.

11. Concluding remarks.

• Adding weights to distance functions can be useful when proving mixing
time upper bounds. While the optimal weighting scheme will be related to an
eigenvector of the state-transition matrix, there is no need to diagonalize the
matrix, nor is it even necessary to exhibit a single eigenvector to produce an
effective weighting scheme that yields good upper bounds. For example, one
could use parabolic weights rather than the sinusoidal weights that we did, and
still derive mixing time upper bounds that are only a constant factor worse than
the ones we derived.

• There are a variety of Markov chains for which a mixing time cutoff
phenomenon has been proved. In future work on sharp mixing time thresholds,
it would be worthwhile to determine whether or not the Markov chains exhibit
a clean cutoff as defined in Section 10.1.
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