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EXISTENCE OF QUASI-STATIONARY MEASURES FOR
ASYMMETRIC ATTRACTIVE PARTICLE SYSTEMS ON Z¢4

BYy AMINE ASSELAH AND FABIENNE CASTELL

Université de Provence

We show the existence of nontrivial quasi-stationary measures for
conservative attractive particle systems on Z4 conditioned on avoiding an
increasing local set 4. Moreover, we exhibit a sequence of measures {vy},
whose w-limit set consists of quasi-stationary measures. For zero-range
processes, with stationary measure v,, we prove the existence of an Lz(vp)
nonnegative eigenvector for the generator with Dirichlet boundary on +4, after
establishing a priori bounds on the {v,}.

1. Introduction. We consider the “processus des misanthropes,” which in-
cludes the asymmetric exclusion process and zero-range processes. For concrete-
ness, let us describe here the dynamics of a zero-range process. We denote the
path of the process by {n;,t > 0} with n;(i) e Nfori € Z4. At site i and at time 7,
one of the 1, (i) particles jumps to site j at rate g(n;(i)) p(i, j), where

g:N — [0, 0o) is increasing, with g(0) =0
(1.1)
sgp(g(k +1) —gk)) <00

and p(-, -) is the transition kernel of a transient random walk. Under assumptions
that we make precise later, the informal dynamics described above corresponds to
a Markov process with stationary product measures {v,, p > 0} (see [1]).

Our motivation stems from statistical physics where such systems model a gas
of charged particles in equilibrium under an electrical field. An interesting issue is
the distribution of the occurrence time of density fluctuations in equilibrium. Thus,
let A be a finite subset of Z¢ and consider the event

(1.2) Zn(z) } with p’ > p.
|A|teA

Let t be the first time a trajectory {n; :¢ > O} enters 4. As in [4, 5], we consider
two complementary issues:

(i) estimating the tail of the distribution of t;
(ii) characterizing the law of 7, at large time, conditioned on {t > ¢}, when
the initial configurations are drawn from v,,.
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We denote by £ the generator of our process on the domain D(L), by
{S;,t > 0} the associated semigroup and by P, the law of the process with
initial probability . For any probability v, we denote by T;(v) the law of n;
conditioned on {t > ¢}, with respect to P,. Thus, for ¢ continuous and bounded,
JodTi(v) = EvleM)lt > 1].

Now, from a statistical physics point of view, a relevant issue is the existence
of a limit for T;(v,), the so-called Yaglom limit, say u,. A Yaglom limit is
established by Kesten [13] for an irreducible positive recurrent random walk on N
with bounded jump size and with A = {0}. Also, a Yaglom limit is established
in [5] for the symmetric simple exclusion process in dimension d > 5, relying
strongly on the self-adjointness and attractiveness and establishing uniform L (v o)
bounds for {dT;(v,)/dv,,t > 0}. We refer to the Introduction of [12] for a review
of countable Markov chains for which the Yaglom limit is established. This notion
was introduced first by Yaglom [18] in 1947 for subcritical branching processes.

We note that the existence of 1, implies trivially that there is A(p) € [0, o0]
such that, for any s > 0,

P, (t>t+s
(1.3) Py, (t >s)= lim Pot2145)

t—00 Pvp (t>1) - exp(—)»(,o)s),

which, in turn, implies readily that

(1.4) rp) = _tgn;o % log(P,, (T >1)).

Thus, right at the outset, one faces three issues:

(1) When does the ratio in (1.3) have a limit? This is linked with a wide area
of investigations (see, e.g., [9, 11, 13]).

(ii) Is there a formula for A(0)? One recognizes in A(p) the logarithm of the
spectral radius of £:L*(v,) — Ll(vp) with Dirichlet conditions on 4. When
L is a second-order elliptic operator on a bounded domain, and when we work
with the sup-norm topology, Donsker and Varadhan [10] give a variational formula
for (1.4).

(iii) When is A(p) a positive real? In other words, what is the right scaling for
large deviations for the occupation time of 4. For symmetric simple exclusion, it
is shown in [2] and [4] that A(p) > O if and only if d > 3.

Since {T;,t > 0} is a semigroup, the Yaglom limit, when it exists, is a fixed
point of 7; for any ¢. Thus, a preliminary step is to characterize possible fixed
points of {7;}, which are called quasi-stationary measures. In other words, u is
quasi-stationary if there is A > 0 such that, for any ¢ € D (L) and any ¢ > 0,

fEm)[fp(nz)Jlm]dM(no) =e_“/<pdu-
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We note that, in our context, the Dirac measure on the empty configuration
is trivially a quasi-stationary measure with A = 0. Thus, by nontrivial quasi-
stationary measure, we mean one corresponding to A > 0. Finally, we note that,
in dynamical systems, quasi-stationary measures are well studied and named after
Pianigiani and Yorke [15], who prove their existence for expanding C2-maps.

Assume that p is a probability measure with support in A€ such that, for any
t >0, Ty () = . By differentiating this equality at + = 0, we obtain, for ¢ in the
domain of £ with ¢|4 =0,

(1.5) [ £@du=[ £aadn [odn.

Moreover, assume that p is absolutely continuous with respect to a measure v
and that f :=du/dv € L2(v). If £* denotes the adjoint operator in L?(v), then
f € D(L*) and f is a nonnegative solution of

Tacl*f+Af=0 and A:/—OC(ILN)dM.

Thus, the problem of quasi-stationary measure for attractive particle systems is a
problem of finding principal eigenvectors in a context where we lack irreducibility
conditions and where neither the space nor the operator is compact.

Equation (1.5) is the starting point of Ferrari, Kesten, Martinez and Picco [12],
whose work we describe in some detail since ours builds upon it. These authors
consider an irreducible, positive recurrent random walk, {X;,¢ > 0} on N, with
rates of jump {q (i, j), i, j € N}. They study the first time the origin is occupied,
say T, when there is A > 0 and i € N\ {0} such that E;[exp(A1)] < co. Assuming
that u satisfies (1.5), one obtains, for any ¢ with ¢(0) =0,

(1.6) D (G k) 4+ q (0 k) (k) — p())u(j) = 0.
J#0kz£0

Thus, p can be thought of as the invariant measure of a new random walk, say
{X!,t >0} on N\ {0} with rates {g(j, k) + q(j,0)u(k), j, k e N\ {0}}. When
w is such that E,[7] < oo, X f‘ is positive recurrent and has a unique invariant
measure v, and this procedure defines a map u +— ®(u) = v. Thus, the problem
reduces to finding fixed points of ®. They notice also that X/* can be built from the
walk X;, by starting it afresh from a random site drawn from p, each time X; hits 0.

Then, using this renewal representation, an expression of ®(u) is obtained (see
equation (2.4) of [12])
1
E,l7]
In our case, the Laplace-like transform (1.7) is a well-defined map, and as observed
in [8], as soon as E,[T] < 00, u is quasi-stationary if and only if ® (1) = u.
In [12], the authors study the sequence of iterates {®"(;)},>1 for i € N\ {0}.
They show that this sequence is tight and that any limit point belongs to M,

(1.7 P () =

/(;oo T; () Py(t > t)dt.
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the subspace of probability measures under which 7 is an exponential time of
parameter

|
A=— tl_lglo A log(Ps,(t > 1)) > 0.

Then the facts that ®(M;) C M; and ® is continuous on the compact set M
imply that @ has a fixed point in M.

Though the irreducibility assumption no longer holds for attractive particle
systems on Z¢, we show that {®"(v,)} is tight through the a priori bounds
®"(v,) < v,, where < denotes stochastic domination. These bounds permit us
to prove that, as soon as A(p) > 0, T is an exponential time of parameter A(p) > 0
under any limit point of the iterates sequence. We establish that A(p) > 0 in any
dimensions for zero-range processes, whereas A(p) > 0 is only proved to hold in
dimensions larger or equal than 3 for exclusion processes.

Once A(p) > 0 holds, we show that any limit point of the Cesaro mean
(®(vp) + -+ + D"(vp))/n is quasi-stationary. It is useful to have a sequence
converging to a quasi-stationary measure. Indeed, through a priori bounds, one
gets regularity of the limiting quasi-stationary measure. For instance, for zero-
range processes, we can show that, in dimensions d > 3, quasi-stationary measures
obtained as Cesaro limits have a density with respect to v, which is in any L”(v,)
for p > 1. In this way, we establish the existence of a Dirichlet eigenvector, say
f € D(L*) with

Vi ¢ A, L*f) +r(p)f()) =0 and f[4=0.

This, in turn, gives estimates for P, (t > 1), improving on (1.4).

Finally, we note that a natural way to prove the existence of quasi-stationary
measures for our particle systems on Z¢ would have been to work first with
finite-dimensional approximations, where we can rely on the Perron—-Frobenius
theory. This strategy, naively implemented, fails as is shown in a simple example
in Section 5.

2. Notation and results. We consider NZ* with the product topology. The
local events are the elements of the union of all o-algebras o{n(i),i € A} over
a A finite subset of Z¢. We start by recalling the definition of the “processus des
misanthropes” [7]. The rates {p(i, j), i, j € 74 satisfy:

(i) pG,j) =0, > ieze p(0,0) =1;
(i) p(, j) = p(0, j — i) (translation invariance);
(iii) p(i, j)=0if |i — j| > R for some fixed R (finite range);
(iv) if ps(i, j) = p(i., j) + p(j. i), then, Vi € Z4, 3n, p{"(0,i) >0
(irreducibility);
(V) Yieza ip(0,i) # 0 (drifo).

2.1
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Let 5:N x N — [0, 00) be a function with:

(i) b(0,-)=0;
(ii) n +— b(n,m) is increasing for each m;
(2.2)  (iii) m +— b(n,m) is decreasing for each n;
@iv) b(n,m) —b(m,n)=b(n,0) —b(m,0) Vn,m > 1,
(v) A:=sup,(b(n+1,0)—b(n,0)) < oo.
Let g:N — [0, oo) satisfy (1.1) and let g(1) = 1. For any y € [0, sup; g(k)[, we
define a probability 6, on N by

n

14
Z(y) g(l)---g(n)

where Z(y) is the normalizing factor. If we set Y(y) = > 0o, nd,(n), then
T : [0, sup; g(k)[— [0, oo[ is increasing. Let y : [0, sup,, T(y)) — [0, sup; g(k))
be the inverse of T and let v, be the product probability with marginal law 6, ().
Thus, we have

2.4) Vi eZd, /n(i)dvp=,0 and /g(n(i))dvp=y(p).

Following [1] (and [17], Section 2), let

23) 6,0)0=1/Z(y), 0, (n) = when n # 0,

ai)=Y 27"p"(i,0)

n=0
and, for n, ¢ € NZd,
ln—¢ll="Y_ InG) — ¢@)le(i).

iezd
Our state space is 2 = {n:||n|| < oo}, and we call G, the space of a bounded
Lipshitz function from (€2, | - ||) to (R, |- [). In [1], it is shown that a semigroup
can be constructed on G, with generator

(2.5) Lop() = Y pli, Nbn@), n()) (@@} — (),

i,jezd

where 1, (k) =n(k) if k ¢ {i, j}, ;i) =n() — Land 0} (j) =n(j) + 1.

For a function b satisfying (2.2), we assume there is g as above, with b(n,
m—1)g(m) = b(m,n — 1)g(n), which together with (2.2(iv)) and (2.1(i)), implies
that {v,, p € [0, sup,, Y (y))} are invariant with respect to Lp.

In [17], Section 2, L} is extended to a generator, say £, on L2(vp) for any
p > 0. It is also shown that Gy is a core for L.

Now, if we choose b(n,m) = g(n), we obtain the zero-range process. We
describe a way of realizing this process, in a case like ours, where the labeling
of particles is innocuous. We start with an initial configuration n € Q. We
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label arbitrarily particles on each site i from 1 to n(i). We associate to each
particle a path {S,, n € N}, paths being drawn independently from those of a
random walk with rates {p(i, j)}. Then a particle labeled k at site i jumps
with rate g(k) — g(k —1). If it jumps on site j, it gets the last label. Also,
the remaining particles at site i are relabeled from 1 to n(i) — 1. Now, as
A :=sup;. (g(k) — gk — 1)) < oo, we can dominate the Poisson clocks with
independent Poisson clocks of intensity A, so that each particle is coupled with a
random walk wandering faster on the same path.

If we restrict the process to {0, I}Zd and choose b(n,m) =1ifn=1,m =0 and
b(n, m) = 0 otherwise, we obtain the exclusion process. The measure v, is then a
product Bernoulli measure.

We consider also the adjoint (or time-reversed) of £ in Lz(vp) as acting on
bounded Lipshitz functions ¢ and i by

(2.6) /i*((p)lﬂd\)p :=/<p£(1//)dvp.

With our hypothesis, L£* is again the generator of a “processus des misanthropes”
on 2, with the same functions b and g, but with p*(i, j) := p(j, i) (see, e.g., [6]).
We denote by {S;} the associated semigroup, and by P, the associated process
with initial configuration n € Q.

For convenience, we fix an integer k and A a finite subset of 74, and set
A=1{n:) jca n(i) > k}. We consider a density p > 0 such that v, (4A“) > 0. We
denote by £ := 1 4cL and {S;, ¢ > 0}, respectively, the generator and associated
semigroup for the process killed on 4. A core of £ consists of bounded Lipshitz
functions vanishing on .

For n,& € Q, we say that n <& if n(i) <&(@) forall i Z2. Also, a function
is increasing (resp. decreasing) if n < & implies that f(n) < f(&€) [resp. f(n) >
f(&)]; in particular, we say that A C 2 is increasing if 14 is increasing. Finally,
for given probability measures v, u on 2, we say that v < w if [ fdv < [ fdu
for every increasing function f. We recall that the “processus des misanthropes”
is an attractive process; that is, there is a coupling such that P, . (n, < ¢,Vt) =1
whenever n < ¢.

Since # is an increasing local event, attractiveness implies that, for any ¢ > 0,
both P, (r > t) and P,;“ (t > t) are decreasing in 1. As our product measure satisfies
FKG’s inequality, we have

Po(e=t+5) = [LacSia (G dv,

(2.7) :/S,(ﬂAC)Sj(Mc)dvp
> Py, (T >1)Py, (T >5).

Also, it is easy to see that v,(A°) > 0 implies that, for any ¢ > 0, Py, (t>1)>0
[this is true for short time by continuity, and one then uses (2.7) to extend it to
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any time]. Thus, the subadditivity of 7 > — log(Pvp (t > 1)) [as seen in (2.7)] and
Py (t>1)>0 imply the existence of the limit A(p) < oo in (1.4).
A key, though elementary, observation of [8, 12] is as follows.

LEMMA 2.1.  Let j be such that E,[t] < oo. Then,  is quasi-stationary if
and only if ®(u) = .

We recall that, for ¢ € Gy,
Jo° [ Si(p)dpdt
J5° [ S (Lac)dpdt

Thus, Lemma 2.1 follows readily: if p is quasi-stationary, then it is obvious that
@ () = u. Conversely, for any ¢ € Cp,

[ 5urdn= E:[t] /0 - [ 56w dunar = E:[T] / ” [ s ana,

which implies that

[vaoi=

[ Swan :eXP(_E:[r]N wdu.

Now, a key a priori bound relies on the notion of stochastic domination.

LEMMA 2.2. Assume A(p) > 0. If ®" denotes the nth iterate of ®, then
D" (vy) < vy. Also, {®"(v,)} is tight.

This allows us to prove a result analogous to Lemma 3.2 of [12].

LEMMA 2.3.  Assume L(p) > 0. Then, for any integer k > 1,

!
. k n _ .
nll)ngO/ T dd"(vy) = —)»(,O)k'
Moreover, for any s > 0,
(2.8) nli)rrolo Pgn(y,) (T > 5) =exp(—A(p)s).

If we set v, := (1/n)(®(vy) + - -+ ®"(v,)), then our existence result reads as
follows.

THEOREM 2.4. Assume A(p) > 0. Then any limit point along a subsequence
of {Vn, n € N}, which we denote by |i,, is a quasi-stationary measure correspond-
ing to M(p).
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We prove Lemmas 2.2 and 2.3 and Theorem 2.4 in Section 3. We now give
conditions under which A(p) > 0. Note that in the symmetric case [4] established
the following stronger result using spectral representation:

lim Py, (t>u+s) _ s,
u=oo P, (T >u)
2.9)
with A, () :inf{% L FeD(L), fla= 0}.
0

It was established in [4] that, for the symmetric exclusion process, As(p) > 0
for d > 3 and that Ag(p) =0 for d = 1 and d = 2. Using the classical bound
A(p) = As(p) (see, e.g., [16], Lemma 4.1), we have the following result.

LEMMA 2.5. For the exclusion process in d > 3, M(p) given by (1.4) is
positive.

For zero-range processes, we prove in Section 4 the following results.
LEMMA 2.6. For zero-range processes in any dimensions, A(p) > 0.
Moreover, we have the following regularity result.

PROPOSITION 2.7. For zero-range processes in d > 3, any limit points along
a subsequence of {Vn}, say p, is absolutely continuous with respect to v, and
fi=du,/dv, € LP(v,) for any p > 1. Thus, f is in the domain of L* and

(2.10) LYfF+HMP)f=0  as.-v,.

As a consequence of the existence of an eigenvector of (2.10) in L?(v,) for
p > 1, we have estimates for the hitting time.

COROLLARY 2.8. For zero-range processes in d > 3, let f be a solution
of (2.10) and let g be a solution of the adjoint eigenvector equation. Then [ fg dv,
is finite and positive, and, for any time t,

9’

511 H - Py, (t >1) -
(2.11) exp(— (Vp’vp))_m_

with

N fgdv,

dv
_ I8 a HG,, :/1 (—’O>d" .
Vp T fedv, an Vo, vp) og e Vp <00

o
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In Section 5, we see, on the totally asymmetric simple exclusion process, why a
naive finite-dimensional approximation of our problem yields “wrong” results.

Finally, let us mention some open problems. (i) A result similar to Proposi-
tion 2.7 should hold for the asymmetric exclusion process in d > 3. (ii) For asym-
metric misanthrope processes, A(p0) should be positive in any dimension, although
the quasi-stationary measure p, should not be equivalent to v, but in d > 3.
(iii) The Yaglom limit has not been established in the asymmetric case (or in
d = 3,4 for the symmetric simple exclusion [4]), and the existence of a limit for
exp(A(p)t) Py, (T > 1) has also not been established. (iv) When the particle sys-
tem is not attractive, the problem of hitting-time estimates and quasi-stationary
measures is open (see some existence results in [4] in the self-adjoint case).

3. Existence. We begin with some useful expressions for the iterates v, :=
®"(vy). If A(p) > 0, then, Vn € N, fooo u"Pvp(‘r > u)du is finite, and it follows
easily by induction that

/(pdvn _ f(i):"'f(ijf?tl-&-m-&-tn((p)dvp [Ti_, dii
Jo o S Sttt Wae)vp [Ty dti
_ 1o° w1 fS'u(go)dvp du
Jooun=1 [ Sy (Lac)dvydu
Taking ¢ = S; (L) in (3.1) yields
1o° u”_vap(r >t+u)du
Jooun=Py (z >u)du

3.1

P(t>1)=

Integrating over ¢, we obtain
1 Joou" Py, (x> u)du E,, [t"]

(3.2) Eyltl=— JCunTP, (t>uydu  (n+ DE, [t

PROOF OF LEMMA 2.2. Let ¢ be an increasing function in Cp. Then
/Su(p dvy = / Lac EyloMu)Liz>uyldv, = / @Sy (Lae) (1) dvy.

Now, we note that 1 > S*1 4¢(n) is decreasing. Thus, by FKG’s inequality, we
have

/S’ugodvp5/(pdvp/.5‘u(]lm)dvp.

This implies that [¢dv, < [@dv, by (3.1) as we are assuming that A(p) > 0.

Consider now compact subsets of NZ' of the type Kx;) =1{n:Vie 72, n; < k;).
Since these compacts are decreasing, we have inf,, v, (K ,)) > v,(K«;)). More-
over, for all ¢ > 0, a good choice of the sequence (k;) ensures that v,(K«;)) >
1 — &, and tightness follows. [
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PROOF OF LEMMA 2.3. The argument follows closely [12] (proofs of
Lemma 3.2, Proposition 3.3 and Theorem 4.1), the main difference being that we
replace irreducibility by stochastic domination. If v, = ®"(v,), then we show in
three steps that lim £, [t] = 1/A(p).

STEP 1. We first prove that

(3.3) liminf £,,[t]=1/A(p) and P, (t >1) <exp(—A(p)t).
As in Proposition 3.3 of [12], if

1
o =Iliminf E, [7] then Ao > A(p),

o0

and there is a subsequence {n} such that

Vit >0, lim P, (t >1t) =exp(—Aioot).
k— 00 k

The inequality Ao < A(p) follows after observing that, as n +— P,(t > 1) is
decreasing and as v, < v,, we have Pvnk (t>0)= Py, (t>1). Thus,

(3.4) exp(—Acot) = lim P, (t>1t)> P, (t>1).
k—>oo 'k °
This establishes that Ao, = A(p) and (3.3).

STEP 2. We show that
Ev,,[r"]>1/" 1

n!

(3.5) lim (

n—oo

First, by Step 1,

[e.e]
E,,[t"] =/ nu"_vap(t >u)du
0

(3.6)
n!

A(p)

If we set v, = Evp[r”]/n!, we then have lim sup v,l,/n < 1/A(p). Now, by (3.2),
E,, [t]=vp41/vy. Since liminf £, [t] = 1/A(p), it follows that

o0
5/ nu"*exp(—)»(,o)u)du:
0

1 n—no
(7 Veel0, /A, 3no, ¥n = no, vnzvm,(ﬁ—e) .
P

Thus, for any ¢ > 0, liminf v,l,/n > 1/A(p) — €, and this concludes Step 2.

STEP 3. We show that limsup E, [t] < 1/A(p) by following the proof of
Theorem 4.1 of [12]. We omit the argument here.
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Finally, as in [12], it is now easy to conclude that for any integer k > 1 and
s >0,

k k!

k1 — NG —
EV" [7]=k! 1_[ EVnJer[T]n—)oo )»(,O)k
j=1

and

P, (t >s) = e MPs,

g

PROOF OF THEOREM 2.4. For any integer n, set v, = (®(vy) + --- +
®"(v,))/n. Note that from Lemmas 2.2 and 2.3, we have

(3.8) ¥y < vy, E; [tf] —

= T P;, (T > 1) v exp(—A(p)t).

As {v,} is tight, let u,, be a limit point along the subsequence {vy,, }. As A€ is local
and S; preserves Cyp, (3.8) implies that

(3.9) Py, (t>0= lim §@La)dv, = lim Py, (x>1)=e """
k— o0 k— 00 k

We now check that ® () = 1), or, in other words, that, for ¢ € Cy,

(3.10) 2(p) /()ooféﬂpdupdt:/godup.

Now, for all ¢ > 0, the integrable bound

‘ / Sl@ dl_)nk

by (3.8). Thus, limy [ S;¢ dv,, = [ S;¢ du, implies, by dominated convergence,
that

[e%e) _ o0 _
G.11) lim (/ S;(pdf)nk)dt=/ (f S;god//,p> dr.
k—o0 J0 0

However, by definition of the iterates,

_ I S () dt dvg
/¢dvk+1 = B el :

2
: sup, E5,[T°1\ _ Cloloo
< 10loo Py (7 2 1) = Iploo (14 2P0 ) < WIS

Thus,

oo _ 1 1
3.12 f/ S,0)dt di, — — E.t/ v, —>—/ du,.
G12) [ (Se) e nki:ZI wltl [ @dvig o ] e

The result follows by (3.11) and (3.12). O
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4. Positivity of A(p) and regularity. Let N;:Q — Q with N;nk) =
n(k) + &; x, where §; y = 1 if i = k and §; y = O otherwise. For any ¢ € Cp, we
have

@.1) / gtedv, =y (p) / R () dv,.

Note also that, as kA > g(k), we have

7()

2 [ irdv,.

4.2) / nigdv, >

PROOF OF LEMMA 2.6. We prove that P, (T > 1) < exp(—Ar) for A > 0 by
showing that

dP, (t >1) - S
(4.3) _# — —/S;(GC]l,A,c)dUp > )\/St(]lA‘)dUP'
Now,
4.4) ~LLpem =32 D P DNy p iy

igA jeA
We set doA := {n:)_ A n(i) =k} and note that since g(0) =0, for any i ¢ A and
any j € A, gni)1esny = g(”i)]l{n¢A,n}eA}' Hence,

—/ﬁz(cﬁ'ﬂmdvp = —/fﬂAcP,;“(t > 1) dv,

= X v [ saPj=ndy,

i¢h, jeA
=) X PG [ P ndv,
igA, jEA A

where we have used (4.1) and the fact that 94 is independent of n; for i ¢ A.
Since {(i, j) € A x A, s.t. p(i, j) > 0} is finite, we now have to prove that
Vi ¢ A, 3A; > 0 such that

[ B = vy 22 [ B3> v,
oA
This will be done in three steps.

STEP 1. We show that, for i ¢ A, there is &; > 0 such that
4.5) Pf,*;m(r >1)>¢; P,;k(‘f >1).

We need to couple two trajectories, say {7;, ¢;} differing by a particle at i at time 0,
that is, {o = N;no. We describe a basic coupling. We tag the additional particle
at i and call its trajectory {X(i,1),t > 0}. It follows the path {S,,n € N} of a
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random walk with rates p(-,-) and jumps at the time marks of an n-dependent
Poisson clock: at time ¢, its intensity is g(n;(X (i, 1)) + 1) — g(n: (X (i, t))). With
this labeling, the motion of the additional particle does not perturb the n-particles.
Thus, we call the additional particle a second-class particle. As A := sup(g(k +
1) —g(k)) < oo, we can couple {X (i, 1), t > 0} with {5((1', 1), t > 0}, which follows
the same path {S,,, n € N}, but with a Poisson clock of intensity A which dominates
the clock of {X (i, 1), t > 0}. Thus,

(4.6) S(AS) =inf{r: X (i,1) € A} > S(A®) =inf{t: X (i, 1) € A},

and under our coupling, we have that {S(A€) < oo} C (S(A®) < o0} C {S, €
A, n € N}. Therefore,

0= Pyt >0 =Py, (t>0=Pi(r(n) >1, () <1)

< P,;“(‘r(n.) >1, S(A€) < o0)
“a.7 -
< P,;“(t(n.) > 1, S(A€) < 0)

<Pi(S, €A, ne N)P,;‘(T >1).

Now, as the walk is transient, &; :=P; (S, ¢ A,Vn € N) > 0, so that (4.5) holds.

STEP 2. It now remains to show that [; 4 P(t > 1)dv, > A [ P(t > 1)dv,
for some A > 0. This would be easily done by the FKG’s inequality if 04 were a
decreasing event, which is not the case. However, 4Aq:={n:> ;cA n(0) =0} is
a decreasing event, and the idea is to compare [; 4 P,;k(‘r > t)dv, with [ A0 P,;“ (t >

t)dv,. To this end, we are going to compare P,j‘(t > t) for n € dA, with
P;,ln(t > t) for j € A, so that we consider now the case where the second-class
j

particle is initially in j € A. We will ensure that, uniformly in n € 9+, there is
a positive probability that the second-class particle escapes A within a small time
8 > 0. If the second-class particle finds itself on a site with & particles, it jumps with
rate Ay :=g(k+ 1) — g(k). We have A| > 0, but could very well have Ay = 0 for
k > 1. Thus, the second-class particle can move for sure only when on an empty
site. As in Step 1, we have a coupling (1., ¢.), where {o = % 9. For convenience,
we use the notation P, ; instead of P;.
Thus, we impose on the n-particles starting on A the following constraints:

(i) They do not escape from A during [0, §].
(i) They empty one “path” joining j with dA during [0, §/3], while the
second-class particle is frozen.
(iii) They remain still during [§/3,25/3], while the second-class particle
escapes A.
(iv) They go back to their initial configuration during ]25/3, §].
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More precisely, we let I' := {, ..., jn} be the shortest path linking j to A€, that
is,
JU=1Js J2s--sn-1 €A, Jn & A, pUks jk+1) >0 fork <n.

We note i; := j,, the end point of I', and for a subset A of 74, we call o (A) the
first time that an n-particle initially in A exits A. Also, let

Dp:={n:n(y) =0fork=1,...,n—1}N0oA.
Now, we say that (1., X(Jj, ) € Fii [0, 8] if:

1) o(A)(.) >3
(i1) on [0,48/3], X (j,-) = j and ng/3 € Dy;
(iii) on [8/3,258/3], n.la =ns/3|a and X (j, -) reaches i ; before 26/3 along I"
and stays still;
(iv) on[25/3,8], X(j,-) =ij and n.|A = Ns—t|A-

We call 55,} [0, 8] the time-reversed event

{(n.. X)) € F, 10,81} := {(ns—.. X (j. 8 — ) € Fj;,[0,81}.
It is plain that

(4.8) Al = niZig\lfv(i)Ek Jlng\ Py, (¥5.;10,81) > 0.

We prove in this step that there is A > 0 such that, for n such that } ;. n(i) <
k—1,
“o) Py (t>1) =Py ;(t(¢)>1)

' > 1P (t(n) > 1,0(AS) > 8, F}1,[0, 5]).

From the time § on, we couple through our basic coupling, the second-class
particle with a random walk whose Poisson clock has intensity A, so that

(4.10) [S(A€) 065 = 00} C {S(A®) 065 = 00}.

Note that if particles from outside A do not enter A during time [0, §], if the
second-class particle exits A before §, not to ever enter again, and if {t(n.) > ¢},
then {7 (¢.) > t}. In other words,

@10 {t(p) > 1} N{o (A9 > )N F; 1,10, 81N {S(A) 0bs = 00} C (T(£.) > 1}.
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Thus, by conditioning on o {{, s < 6},
Pyi(t(¢) >1t) = Py i(t(n) >1t,0(A°) > 8, F; 10,81, S(A®) 0 65 = 00)
> Py (1'095(7;)>t o (A) >3, F;,,10, 4], S(A) 085 =00 00)

> E, j[Hoo)>5.5; 10,80 Py i, (T(0) > 1 =8, S(A®) = 00)]
> Py, (S, ¢ A, VneN)
X P* (t(n)095>t—8 o (A°) > 8, F,,10, 81).

Under {0 (A€) > §, 35],11. [0, 8]}, no n-particle enters or leaves A during time 6 so
that

Pri(t(n.) 005 >1—8,0(A%) > 8, F;;[0,0])
=P} (t(n) > t,0(A°) > 8, F;,,[0,8]),

and (4.9) follows once we recall that {S,} is transient and that {i ;; j € A} is finite.

STEP 3. We prove the result inductively. We fix one configuration in d+: let
{kj, j € A} be integers such that

(4.12) Y kj=k and B:={n:n;=k;, j €A}
JeA

Let j be such that k; > 0. Then, using (4.2),

./sz:(t>t)dva./ P,;k(t>t)dvp

nj P (t>1)dvy(n)

- 8 kj

V(,O)

Ak _1 Pf;gjn(f>t)d‘)p(77)

Loy (p) N
= P i(t(n) >t,0(A°) >3, Fj;.[0,8])dv,.
T Akj Jw's ”’](T(n)> o (A7) > Jiil dv,

Using the stationarity of v, and reversing time on the interval [0, §], the last
integral becomes

/ Pyi; (55,‘].,]-[0, 8], ns € 9%7158, o (A°) > 8)P*(r >t —38)dvy(n).

Note that in {37, ,jl0,8],ns € %_13 o (A°) > &} the particles from inside and

outside A do not interact and that fF, ,j[0, 8] imposes the same initial and final
configuration for the n-particles in A, so that

Pyi;(%7,.,10,81,n5 € 7' B, 0 (A) > )
=1gN; (M) Py (F5.;,[0,81) Py (0 (A) > 5).
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Thus, from (4.8), there is € > 0 such that
4.13 /P*t>tdv 25/ P (c(AS) >8P (r >t —8)dv .
We iterate the same procedure & times and end up with € > 0 such that
%
'/i? P,7 (t>t)dv,

>¢& . Py(o AC > ké P*f>t—k8 dv n).

Finally, we note that

(AN ]ll'l jeA wlig T Lin:n(j)=0,jeA)>
JEATT]

N> Pp(o(A°) > k§), nr—>P,;k(‘r>t—k8)

are decreasing functions. Thus, by the FKG’s inequality,

P*(t > t)dv

>ev,({n:n(j)=0,j € A})PVP(O’(AC) > k8)Pvp(r >1).
As B C 0.4, this step is concluded.

(4.15)

We establish in the next lemma that P, (o (A€) > k§) > 0, which concludes the

proof. [

LEMMA 4.1. Let o (A€) be the first time one particle starting outside A

enters A. Then, for any k > 0, Py, (o (A > k) >0.

PROOF. We use the coupling described in Section 2. Thus, if 6 (A€) is the
stopping time corresponding to the coupled independent random walks, we have

0 (A°) <o (A°). Thus,
P, (0(A) > k)= P, (6 (A) > k)

4.1 ; Z(y(—=4;
(10 :/HIP’(X(i,t)géA,thK)"(l)dvp:nM,
i¢A ien  ZW)
with §; =P(X (i, 1) € A, t < k). Now, by Jensen’s inequality,
Z(y(1-=36
AU P
Z(y)
Thus,

P
4.17) Pvp(a(Ac)>/c)2<l_[(1—8i)> >0 < Z(Si<oo.

igA iezd
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Now, a particle starting on i reaches A within time « if it makes at least d (i, A)/R
jumps within time « (recall that R is the range of p). Thus, if d(i) is the integer
part of d(i, A)/R,
A
- (D" (M) @
n! T d@)!

(4.18) P(X(G, 1) e, t<k)< >
n>d(i)

Hence, the series in (4.17) is converging. [

PROOF OF PROPOSITION 2.7. The proof follows the same arguments as
in the proof of Theorem 3(c) of [4] once inequality (4.5) is established with
& =Pi(S, ¢ A, Vn € N). It goes as follows. Let v, be the product measure

dve(m) =[] 6y o)) [ | deiy(0)(mi)-

ieA i¢A
Let A, :=[—n:n]? and let Gn be the o-algebra o (n;;i € A;). Then
wps M qp
’ dvplg, jenenn, ZEV)
(4.19) .
dv, & " Z(giy)
Vg P-S. = i T
d‘)&‘ gn iEACﬂAn Z(V)

Let h(a) denote the Laplace transform of 6,,, thatis, h(a) = Z(e*y)/Z(y). Note
that £ is defined for any o such that e*y < supg(k), and & is analytic in this
domain. In particular, % is analytic in a neighborhood of 0. For all i ¢ A, let «; be
defined by e ™% = ¢;. A simple computation then yields, for all p > 1,

/(dvs )pdv _ 1—[ Z(E,'py) Z(y)r _ 1—[ h(—pa;)
dvplg,) " cnenn, ZW) Z(en)P T pna h(—ai)P’
(4.20) f (%

)dv: I Z(e; P y) Z(eiy)r!
) enenn, 20 Zyr!

= I hle(p—D)h(—a)?".

ieANA,

The functions m , : & = h(—pa)/h(—a)? andn) : o +— h(a(p— M)A (—a)P~!
are analytic in a neighborhood of 0 and satisfy m,(0) = n,(0) =1, m;,(O) =
n;(O) =0, mZ(O) = nZ(O) > 0 for p > 1. Therefore, the products in (4.20) have
finite limits when n — 00, as soon as Y ;¢ (1 — &;)? < +00. In the asymmetric
case, the Fourier transform of the Green function has a singularity at 0, which is
square integrable as soon as d > 3, so that the above series is convergent. Thus,
for d > 3, dve/dvylg, is a (Py,, {G,}) martingale, which is uniformly bounded



1586 A. ASSELAH AND F. CASTELL

in L?(v,) for all p > 1. It follows from the martingale convergence theorem that
v, is absolutely continuous with respect to v, with dvg /dv, € L?(v,). In the same
way, v, is absolutely continuous with respect to v,, and dv, /dv, € L (vg).

Following [4], we prove that this yields uniform L’ (dv,)-estimates of f; :=
dT;(vy)/dv, for p > 1. First of all, let us express the density of v, := T;(v,) with
respect to v,,. For ¢ continuous and bounded,

[ (@)L ac dvy S¥(Lac)

AT (v,) = = - dv,,
/‘0 (o) [Si@atacdv, J Y Pra>0""

so that v,-as. f; = P,j‘(t > t)/Pjp (t >1).
Let A9 = {n; Vi € A, n; = 0}. We prove now that, for any increasing
function ¢,

vy (o)
4.21) / pdv; > @dvg.
A ' v, (o) Jag ’

To this end, let us write n = (na, nac) for the decomposition of NZ’ in NA x NAC,
Moreover, if u is a probability measure on NZd, let mac(w) denote its projection
ono(n;,i € A°). We have

dv,
dv,

/ pdv =vp(«>‘\vo)/<p(0, nac) f1(0, nac) ——(mac) dmpe(ve).
Ao

By (4.5), Vi & A, 0 f1(0, nac) = & f1(0, nac) and

Ldvp  1dvy

i .
dv, g dvg

Therefore, f;(0, nac)(dv,/dve)(nac) is an increasing function of nac. Because
ac(vg) is a product measure, it follows from FKG’s inequality that

d
/A v = vy(ho) / (0, nac) dpc (ve) / F10. 180 G2 (0 dac(vo),

&

which is just (4.21).
We now apply (4.21) to the decreasing function ftp_l(dvg/dvp)’, p>1,r>0.

We obtain
dv.\" _1/dve\"
P € p—1 &
d ——/ < ) d
/:A,Ofl (dvp) K Aofl dv, b

A _1/d r
- Ve (Ao) 7 1(&) v,
v, (A0) JAg dv,

< ulAo) [ (%)M dv
= v,(Ao) Jag Tt \dv, -
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It follows by induction that, Vp, r > 0,
dve\" A0) \” dve \ P
/ f/’( ug) dv, < (vt( o)) / <&> dv,.
Ao dv, vy () Ao \dV,
Taking » = 0 and applying once more FKG’s inequality to the decreasing functions
1 4, and ftp, weget,Vp>1,

(Ao) \ P dve \P
UP(AO)/fldePS/AO fldv, < <1l))p((.}%(())))> A()(ﬁ) dv,,

sothat, Vp>1,

4.22) /fpd - 1 / (dvg>pd
. su vV s E— E— Vo.
P = T g \dv, )

This, in turn, implies uniform L7 (v,)-estimates for d®"(v,)/dv,. Indeed,
using expression (3.1), if we define

Py, (T > 0" dt

d 1) = , th
423 (1) Jo2 Py, (t > )t dt e
(4.23) do"(v,) © dT;(vp)
— =/ ——=dm,_(t).
dv, 0o dvy

Thus, using Holder’s inequality for p > 1,

dT, P do” P
(4.24) sup/< l(vp)) dvp, <C = sup/(i(vp)> dv, <C.
>0 dv, n dv,

Moreover, we obtain the same uniform bounds for the Cesaro limit, and
Proposition 2.7 follows. [

PROOF OF COROLLARY 2.8. We define the map ®, associated to the time-
reversed dynamics. If v is such that E[t] < oo, then

/(pdCD*(v) - E;[T] fooof S (p)dvar.

Our previous result (Proposition 2.7) holds equally for v;; := (1/n) (P4 (v,) +---+
@’ (vp)), with the consequences that {V;,n € N} is tight and g, :=dv; /dv, is
uniformly in L?(v,) for any p > 1 in dimensions d > 3. Let f, be the density
of v, with respect to v, and assume that { f,} converge along a subsequence {n;}
to the f solution of (2.10) and that {g,} converge along a subsequence {m;} to
the g solution to the adjoint equation to (2.10). We can also assume that these
convergences hold in weak Lz(vp). As f, and g, are decreasing functions, we
have, by FKG’s inequality,

/f"kgmi dvp Z/f”kdvpfgmi dvp =1.
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After taking first the limit in k, and then in i, we obtain [ fgdv, > 1.

Also, this integral is finite by Cauchy—Schwarz. Thus, we can define dv, =

fgdv,/(f fgdv,). Let d Q;(n.) be the probability measure on paths, defined by

g () f (o)
[ fgdv,

For ¢ such that pg € Lz(vp), we obtain, using (2.10),
[ Eqlom)gm)le=i1f e* " dv, (n)
[ fgdv,
fgt(ﬁl’g)fek(p)td‘)p
T [ fgdv,
_ [ogSi (et dv, _ / ¢ diy.
[ fedv,

(4.25) dQ:(n.) = Lesid Py, (n.).

/ o) dQ:(n.) =

Also, if ¢ is such that ¢f € Lz(vp),

[ Si(@)pfe P dv, .
(1) dQ;(1.) = = [ a5,
/ ! [ fgdv, r
Now, by applying Jensen’s inequality and recalling that f, g € L (v,) for p > 1,

e~ Mot

log(P,,(t > 1)) = log</ fgdvp) + log</ mdQ;(n.))
> tog( [ fedv, ) - [og(en)d0in)

— [ 10g(£ (10 dQ: (1) = 1)t

= tog( [ fgdv, ) - [1oa(r0)d5, ~ 1oy,

This concludes the proof of the corollary. [

5. Example. Let us consider the totally asymmetric simple exclusion in one
dimension. Thus,

VieZ, p,i+1)=1 and p@G, j)=0 if j#£i+1.
Let t be the first time the origin is occupied. Let x (1) := inf{k > 0:n(—k) = 1}
and let N; be a Poisson process of intensity 1. A simple computation yields
Py (x> 1) = [ B(N: < x () dvy ()
(5.1) ~
=Y p(1=p)P(N; <k) = (1 = p)e™"".
k=1
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Thus,
Py, (t>1t+s)

(5-2) Py, (t>1)

1
=e ™ and A(p):= li{n—; log(Py,(t > 1)) =p.
Following the approach of the proof of Theorem 3(c) of [4], it is easy to establish
that the Yaglom limit exists and is

(5.3) du,(m) =1 dBy(m) [ ] dBo(i),

i<0 i>0

where 8, is the Bernoulli probability of parameter p. Can we approximate j1, and
A(p) by the corresponding quantities for the process on a large circle? The answer
is no, as we shall see.

Let Cy ={0,1,..., N}, where sites N and O are identified, and consider the
generator

N—1
(5.4) Ly =Y 11 —=nl +D) (@) — o),
i=0
with as invariant measure vy, which is the uniform measure on all configurations
with [pN] particles on Cy.
Let P, y be the law of the process generated by £y and let 1 be in the support
of vy. Then

_,X(")_ltk
(5.5) Pn(t>t=e" Y —.
= k!

Thus, for a polynomial Q y of degree at most N,

Ppyn(T>0=e"'On01) =
(5.6)

.1
An(p) :=lim —— log(Pyy N(T >1)=1.

Also, it is an easy computation that yields

lim

P;N(r>t) _( N )LON]
t PjN,N(T>t)_

[oN] [ n(—i) and

]

(5.7)

lim Py N(T>1+5) _ s
! PVN,N(T>I)

Thus, as in [4], one concludes the existence of a Yaglom limit ¢ concentrated on
the configurations with particles occupying all [pN] sites to the “left” of 0. Thus,
wy and Ay (p) do converge, but to 11 and 1, respectively, and this approach misses
all the , with p < 1.
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