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EXISTENCE OF QUASI-STATIONARY MEASURES FOR
ASYMMETRIC ATTRACTIVE PARTICLE SYSTEMS ON Z

d

BY AMINE ASSELAH AND FABIENNE CASTELL

Université de Provence

We show the existence of nontrivial quasi-stationary measures for
conservative attractive particle systems on Z

d conditioned on avoiding an
increasing local set A. Moreover, we exhibit a sequence of measures {νn},
whose ω-limit set consists of quasi-stationary measures. For zero-range
processes, with stationary measure νρ , we prove the existence of an L2(νρ)

nonnegative eigenvector for the generator with Dirichlet boundary on A, after
establishing a priori bounds on the {νn}.

1. Introduction. We consider the “processus des misanthropes,” which in-
cludes the asymmetric exclusion process and zero-range processes. For concrete-
ness, let us describe here the dynamics of a zero-range process. We denote the
path of the process by {ηt , t ≥ 0} with ηt (i) ∈ N for i ∈ Z

d . At site i and at time t ,
one of the ηt (i) particles jumps to site j at rate g(ηt (i))p(i, j), where

g : N → [0,∞) is increasing, with g(0) = 0,
(1.1)

sup
k

(
g(k + 1) − g(k)

)
< ∞

and p(·, ·) is the transition kernel of a transient random walk. Under assumptions
that we make precise later, the informal dynamics described above corresponds to
a Markov process with stationary product measures {νρ,ρ > 0} (see [1]).

Our motivation stems from statistical physics where such systems model a gas
of charged particles in equilibrium under an electrical field. An interesting issue is
the distribution of the occurrence time of density fluctuations in equilibrium. Thus,
let � be a finite subset of Z

d and consider the event

A =
{
η :

1

|�|
∑
i∈�

η(i) > ρ′
}
, with ρ′ > ρ.(1.2)

Let τ be the first time a trajectory {ηt : t ≥ 0} enters A. As in [4, 5], we consider
two complementary issues:

(i) estimating the tail of the distribution of τ ;
(ii) characterizing the law of ηt at large time, conditioned on {τ > t}, when

the initial configurations are drawn from νρ .
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We denote by L the generator of our process on the domain D(L), by
{St , t ≥ 0} the associated semigroup and by Pµ the law of the process with
initial probability µ. For any probability ν, we denote by Tt (ν) the law of ηt

conditioned on {τ > t}, with respect to Pν . Thus, for ϕ continuous and bounded,∫
ϕ dTt (ν) := Eν[ϕ(ηt )|τ > t].
Now, from a statistical physics point of view, a relevant issue is the existence

of a limit for Tt (νρ), the so-called Yaglom limit, say µρ . A Yaglom limit is
established by Kesten [13] for an irreducible positive recurrent random walk on N

with bounded jump size and with A = {0}. Also, a Yaglom limit is established
in [5] for the symmetric simple exclusion process in dimension d ≥ 5, relying
strongly on the self-adjointness and attractiveness and establishing uniform L2(νρ)

bounds for {dTt(νρ)/dνρ, t ≥ 0}. We refer to the Introduction of [12] for a review
of countable Markov chains for which the Yaglom limit is established. This notion
was introduced first by Yaglom [18] in 1947 for subcritical branching processes.

We note that the existence of µρ implies trivially that there is λ(ρ) ∈ [0,∞]
such that, for any s > 0,

Pµρ(τ > s) = lim
t→∞

Pνρ (τ > t + s)

Pνρ (τ > t)
= exp

(−λ(ρ)s
)
,(1.3)

which, in turn, implies readily that

λ(ρ) = − lim
t→∞

1

t
log

(
Pνρ (τ > t)

)
.(1.4)

Thus, right at the outset, one faces three issues:

(i) When does the ratio in (1.3) have a limit? This is linked with a wide area
of investigations (see, e.g., [9, 11, 13]).

(ii) Is there a formula for λ(ρ)? One recognizes in λ(ρ) the logarithm of the
spectral radius of L :L∞(νρ) → L1(νρ) with Dirichlet conditions on A. When
L is a second-order elliptic operator on a bounded domain, and when we work
with the sup-norm topology, Donsker and Varadhan [10] give a variational formula
for (1.4).

(iii) When is λ(ρ) a positive real? In other words, what is the right scaling for
large deviations for the occupation time of A. For symmetric simple exclusion, it
is shown in [2] and [4] that λ(ρ) > 0 if and only if d ≥ 3.

Since {Tt , t ≥ 0} is a semigroup, the Yaglom limit, when it exists, is a fixed
point of Tt for any t . Thus, a preliminary step is to characterize possible fixed
points of {Tt}, which are called quasi-stationary measures. In other words, µ is
quasi-stationary if there is λ ≥ 0 such that, for any ϕ ∈ D(L) and any t > 0,∫

Eη0[ϕ(ηt )1τ>t ]dµ(η0) = e−λt
∫

ϕ dµ.
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We note that, in our context, the Dirac measure on the empty configuration
is trivially a quasi-stationary measure with λ = 0. Thus, by nontrivial quasi-
stationary measure, we mean one corresponding to λ > 0. Finally, we note that,
in dynamical systems, quasi-stationary measures are well studied and named after
Pianigiani and Yorke [15], who prove their existence for expanding C2-maps.

Assume that µ is a probability measure with support in Ac such that, for any
t ≥ 0, Tt (µ) = µ. By differentiating this equality at t = 0, we obtain, for ϕ in the
domain of L with ϕ|A = 0,∫

L(ϕ) dµ =
∫

L(1Ac ) dµ

∫
ϕ dµ.(1.5)

Moreover, assume that µ is absolutely continuous with respect to a measure ν

and that f := dµ/dν ∈ L2(ν). If L∗ denotes the adjoint operator in L2(ν), then
f ∈ D(L∗) and f is a nonnegative solution of

1AcL∗f + λf = 0 and λ =
∫

−L(1Ac ) dµ.

Thus, the problem of quasi-stationary measure for attractive particle systems is a
problem of finding principal eigenvectors in a context where we lack irreducibility
conditions and where neither the space nor the operator is compact.

Equation (1.5) is the starting point of Ferrari, Kesten, Martínez and Picco [12],
whose work we describe in some detail since ours builds upon it. These authors
consider an irreducible, positive recurrent random walk, {Xt, t ≥ 0} on N, with
rates of jump {q(i, j), i, j ∈ N}. They study the first time the origin is occupied,
say τ , when there is λ > 0 and i ∈ N \ {0} such that Ei[exp(λτ )] < ∞. Assuming
that µ satisfies (1.5), one obtains, for any ϕ with ϕ(0) = 0,∑

j �=0

∑
k �=0

(
q(j, k) + q(j,0)µ(k)

)(
ϕ(k) − ϕ(j)

)
µ(j) = 0.(1.6)

Thus, µ can be thought of as the invariant measure of a new random walk, say
{Xµ

t , t ≥ 0} on N \ {0} with rates {q(j, k) + q(j,0)µ(k), j, k ∈ N \ {0}}. When
µ is such that Eµ[τ ] < ∞, X

µ
t is positive recurrent and has a unique invariant

measure ν, and this procedure defines a map µ �→ 	(µ) = ν. Thus, the problem
reduces to finding fixed points of 	. They notice also that X

µ
t can be built from the

walk Xt , by starting it afresh from a random site drawn from µ, each time Xt hits 0.
Then, using this renewal representation, an expression of 	(µ) is obtained (see
equation (2.4) of [12])

	(µ) = 1

Eµ[τ ]
∫ ∞

0
Tt (µ)Pµ(τ > t) dt.(1.7)

In our case, the Laplace-like transform (1.7) is a well-defined map, and as observed
in [8], as soon as Eµ[τ ] < ∞, µ is quasi-stationary if and only if 	(µ) = µ.

In [12], the authors study the sequence of iterates {	n(δi)}n≥1 for i ∈ N \ {0}.
They show that this sequence is tight and that any limit point belongs to Mλ,
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the subspace of probability measures under which τ is an exponential time of
parameter

λ = − lim
t→∞

1

t
log

(
Pδi

(τ > t)
)
> 0.

Then the facts that 	(Mλ) ⊂ Mλ and 	 is continuous on the compact set Mλ

imply that 	 has a fixed point in Mλ.
Though the irreducibility assumption no longer holds for attractive particle

systems on Z
d , we show that {	n(νρ)} is tight through the a priori bounds

	n(νρ) ≺ νρ , where ≺ denotes stochastic domination. These bounds permit us
to prove that, as soon as λ(ρ) > 0, τ is an exponential time of parameter λ(ρ) > 0
under any limit point of the iterates sequence. We establish that λ(ρ) > 0 in any
dimensions for zero-range processes, whereas λ(ρ) > 0 is only proved to hold in
dimensions larger or equal than 3 for exclusion processes.

Once λ(ρ) > 0 holds, we show that any limit point of the Cesaro mean
(	(νρ) + · · · + 	n(νρ))/n is quasi-stationary. It is useful to have a sequence
converging to a quasi-stationary measure. Indeed, through a priori bounds, one
gets regularity of the limiting quasi-stationary measure. For instance, for zero-
range processes, we can show that, in dimensions d ≥ 3, quasi-stationary measures
obtained as Cesaro limits have a density with respect to νρ which is in any Lp(νρ)

for p ≥ 1. In this way, we establish the existence of a Dirichlet eigenvector, say
f ∈ D(L∗) with

∀η /∈ A, L∗f (η) + λ(ρ)f (η) = 0 and f |A = 0.

This, in turn, gives estimates for Pνρ (τ > t), improving on (1.4).
Finally, we note that a natural way to prove the existence of quasi-stationary

measures for our particle systems on Z
d would have been to work first with

finite-dimensional approximations, where we can rely on the Perron–Frobenius
theory. This strategy, naively implemented, fails as is shown in a simple example
in Section 5.

2. Notation and results. We consider N
Z

d
with the product topology. The

local events are the elements of the union of all σ -algebras σ {η(i), i ∈ �} over
a � finite subset of Z

d . We start by recalling the definition of the “processus des
misanthropes” [7]. The rates {p(i, j), i, j ∈ Z

d} satisfy:

(i) p(i, j) ≥ 0,
∑

i∈Zd p(0, i) = 1;
(ii) p(i, j) = p(0, j − i) (translation invariance);

(iii) p(i, j) = 0 if |i − j | > R for some fixed R (finite range);
(iv) if ps(i, j) = p(i, j) + p(j, i), then,∀ i ∈ Z

d, ∃n, p
(n)
s (0, i) > 0

(irreducibility);
(v)

∑
i∈Zd ip(0, i) �= 0 (drift).

(2.1)
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Let b : N × N → [0,∞) be a function with:

(i) b(0, ·) ≡ 0;
(ii) n �→ b(n,m) is increasing for each m;

(iii) m �→ b(n,m) is decreasing for each n;
(iv) b(n,m) − b(m,n) = b(n,0) − b(m,0) ∀n,m ≥ 1;
(v) � := supn(b(n + 1,0) − b(n,0)) < ∞.

(2.2)

Let g : N → [0,∞) satisfy (1.1) and let g(1) = 1. For any γ ∈ [0, supk g(k)[ , we
define a probability θγ on N by

θγ (0) = 1/Z(γ ), θγ (n) = 1

Z(γ )

γ n

g(1) · · ·g(n)
when n �= 0,(2.3)

where Z(γ ) is the normalizing factor. If we set ϒ(γ ) = ∑∞
n=1 nθγ (n), then

ϒ : [0, supk g(k)[→ [0,∞[ is increasing. Let γ : [0, supγ ϒ(γ )) → [0, supk g(k))

be the inverse of ϒ and let νρ be the product probability with marginal law θγ (ρ).
Thus, we have

∀ i ∈ Z
d,

∫
η(i) dνρ = ρ and

∫
g(η(i)) dνρ = γ (ρ).(2.4)

Following [1] (and [17], Section 2), let

α(i) =
∞∑

n=0

2−npn(i,0)

and, for η, ζ ∈ N
Z

d
,

‖η − ζ‖ = ∑
i∈Zd

|η(i) − ζ(i)|α(i).

Our state space is � = {η :‖η‖ < ∞}, and we call Cb the space of a bounded
Lipshitz function from (�, ‖ · ‖) to (R, | · |). In [1], it is shown that a semigroup
can be constructed on Cb with generator

Lbϕ(η) := ∑
i,j∈Zd

p(i, j)b
(
η(i), η(j)

)(
ϕ(ηi

j ) − ϕ(η)
)
,(2.5)

where ηi
j (k) = η(k) if k /∈ {i, j}, ηi

j (i) = η(i) − 1 and ηi
j (j) = η(j) + 1.

For a function b satisfying (2.2), we assume there is g as above, with b(n,

m− 1)g(m) = b(m,n− 1)g(n), which together with (2.2(iv)) and (2.1(i)), implies
that {νρ,ρ ∈ [0, supγ ϒ(γ ))} are invariant with respect to Lb.

In [17], Section 2, Lb is extended to a generator, say L, on L2(νρ) for any
ρ > 0. It is also shown that Cb is a core for L.

Now, if we choose b(n,m) = g(n), we obtain the zero-range process. We
describe a way of realizing this process, in a case like ours, where the labeling
of particles is innocuous. We start with an initial configuration η ∈ �. We
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label arbitrarily particles on each site i from 1 to η(i). We associate to each
particle a path {Sn, n ∈ N}, paths being drawn independently from those of a
random walk with rates {p(i, j)}. Then a particle labeled k at site i jumps
with rate g(k) − g(k − 1). If it jumps on site j , it gets the last label. Also,
the remaining particles at site i are relabeled from 1 to η(i) − 1. Now, as
� := supk>1 (g(k) − g(k − 1)) < ∞, we can dominate the Poisson clocks with
independent Poisson clocks of intensity �, so that each particle is coupled with a
random walk wandering faster on the same path.

If we restrict the process to {0,1}Z
d

and choose b(n,m) = 1 if n = 1,m = 0 and
b(n,m) = 0 otherwise, we obtain the exclusion process. The measure νρ is then a
product Bernoulli measure.

We consider also the adjoint (or time-reversed) of L in L2(νρ) as acting on
bounded Lipshitz functions ϕ and ψ by∫

L∗(ϕ)ψ dνρ :=
∫

ϕL(ψ)dνρ.(2.6)

With our hypothesis, L∗ is again the generator of a “processus des misanthropes”
on �, with the same functions b and g, but with p∗(i, j) := p(j, i) (see, e.g., [6]).
We denote by {S∗

t } the associated semigroup, and by P ∗
η the associated process

with initial configuration η ∈ �.
For convenience, we fix an integer k and � a finite subset of Z

d , and set
A := {η :

∑
i∈� η(i) > k}. We consider a density ρ > 0 such that νρ(Ac) > 0. We

denote by L̄ := 1AcL and {S̄t , t ≥ 0}, respectively, the generator and associated
semigroup for the process killed on A. A core of L̄ consists of bounded Lipshitz
functions vanishing on A.

For η, ξ ∈ �, we say that η ≤ ξ if η(i) ≤ ξ(i) for all i ∈ Z
d . Also, a function

is increasing (resp. decreasing) if η ≤ ξ implies that f (η) ≤ f (ξ) [resp. f (η) ≥
f (ξ)]; in particular, we say that A ⊂ � is increasing if 1A is increasing. Finally,
for given probability measures ν,µ on �, we say that ν ≺ µ if

∫
f dν ≤ ∫

f dµ

for every increasing function f . We recall that the “processus des misanthropes”
is an attractive process; that is, there is a coupling such that Pη,ζ (ηt ≤ ζt ,∀ t) = 1
whenever η ≤ ζ .

Since A is an increasing local event, attractiveness implies that, for any t ≥ 0,
both Pη(τ > t) and P ∗

η (τ > t) are decreasing in η. As our product measure satisfies
FKG’s inequality, we have

Pνρ (τ > t + s) =
∫

1Ac S̄t+s(1Ac ) dνρ

=
∫

S̄t (1Ac )S̄∗
s (1Ac ) dνρ(2.7)

≥ Pνρ (τ > t)Pνρ (τ > s).

Also, it is easy to see that νρ(Ac) > 0 implies that, for any t ≥ 0, Pνρ (τ > t) > 0
[this is true for short time by continuity, and one then uses (2.7) to extend it to
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any time]. Thus, the subadditivity of t �→ − log(Pνρ (τ > t)) [as seen in (2.7)] and
Pνρ (τ > t) > 0 imply the existence of the limit λ(ρ) < ∞ in (1.4).

A key, though elementary, observation of [8, 12] is as follows.

LEMMA 2.1. Let µ be such that Eµ[τ ] < ∞. Then, µ is quasi-stationary if
and only if 	(µ) = µ.

We recall that, for ϕ ∈ Cb,∫
ϕ d	(µ) =

∫ ∞
0

∫
S̄t (ϕ) dµdt∫ ∞

0
∫

S̄t (1Ac ) dµdt
.

Thus, Lemma 2.1 follows readily: if µ is quasi-stationary, then it is obvious that
	(µ) = µ. Conversely, for any ϕ ∈ Cb,∫

S̄s(ϕ) dµ = 1

Eµ[τ ]
∫ ∞

0

∫
S̄t

(
S̄s(ϕ)

)
dµdt = 1

Eµ[τ ]
∫ ∞
s

∫
S̄t (ϕ) dµdt,

which implies that ∫
S̄s(ϕ) dµ = exp

(
− s

Eµ[τ ]
)∫

ϕ dµ.

Now, a key a priori bound relies on the notion of stochastic domination.

LEMMA 2.2. Assume λ(ρ) > 0. If 	n denotes the nth iterate of 	, then
	n(νρ) ≺ νρ . Also, {	n(νρ)} is tight.

This allows us to prove a result analogous to Lemma 3.2 of [12].

LEMMA 2.3. Assume λ(ρ) > 0. Then, for any integer k ≥ 1,

lim
n→∞

∫
τ k d	n(νρ) = k!

λ(ρ)k
.

Moreover, for any s ≥ 0,

lim
n→∞P	n(νρ)(τ > s) = exp

(−λ(ρ)s
)
.(2.8)

If we set ν̄n := (1/n)(	(νρ) + · · · + 	n(νρ)), then our existence result reads as
follows.

THEOREM 2.4. Assume λ(ρ) > 0. Then any limit point along a subsequence
of {ν̄n, n ∈ N}, which we denote by µρ , is a quasi-stationary measure correspond-
ing to λ(ρ).
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We prove Lemmas 2.2 and 2.3 and Theorem 2.4 in Section 3. We now give
conditions under which λ(ρ) > 0. Note that in the symmetric case [4] established
the following stronger result using spectral representation:

lim
u→∞

Pνρ (τ > u + s)

Pνρ (τ > u)
= e−λs(ρ)s,

(2.9)
with λs(ρ) = inf

{− ∫
f Lf dνρ∫
f 2 dνρ

:f ∈ D(L), f |A = 0
}
.

It was established in [4] that, for the symmetric exclusion process, λs(ρ) > 0
for d ≥ 3 and that λs(ρ) = 0 for d = 1 and d = 2. Using the classical bound
λ(ρ) ≥ λs(ρ) (see, e.g., [16], Lemma 4.1), we have the following result.

LEMMA 2.5. For the exclusion process in d ≥ 3, λ(ρ) given by (1.4) is
positive.

For zero-range processes, we prove in Section 4 the following results.

LEMMA 2.6. For zero-range processes in any dimensions, λ(ρ) > 0.

Moreover, we have the following regularity result.

PROPOSITION 2.7. For zero-range processes in d ≥ 3, any limit points along
a subsequence of {ν̄n}, say µρ , is absolutely continuous with respect to νρ and
f := dµρ/dνρ ∈ Lp(νρ) for any p ≥ 1. Thus, f is in the domain of L̄∗ and

L̄∗f + λ(ρ)f = 0 a.s.-νρ.(2.10)

As a consequence of the existence of an eigenvector of (2.10) in Lp(νρ) for
p ≥ 1, we have estimates for the hitting time.

COROLLARY 2.8. For zero-range processes in d ≥ 3, let f be a solution
of (2.10) and let g be a solution of the adjoint eigenvector equation. Then

∫
fg dνρ

is finite and positive, and, for any time t ,

exp
(−H(ν̃ρ, νρ)

) ≤ Pνρ (τ > t)

exp(−λ(ρ)t)
≤ 1,(2.11)

with

dν̃ρ = fg dνρ∫
fg dνρ

and H(ν̃ρ, νρ) =
∫

log
(

dν̃ρ

dνρ

)
dν̃ρ < ∞.
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In Section 5, we see, on the totally asymmetric simple exclusion process, why a
naive finite-dimensional approximation of our problem yields “wrong” results.

Finally, let us mention some open problems. (i) A result similar to Proposi-
tion 2.7 should hold for the asymmetric exclusion process in d ≥ 3. (ii) For asym-
metric misanthrope processes, λ(ρ) should be positive in any dimension, although
the quasi-stationary measure µρ should not be equivalent to νρ but in d ≥ 3.
(iii) The Yaglom limit has not been established in the asymmetric case (or in
d = 3,4 for the symmetric simple exclusion [4]), and the existence of a limit for
exp(λ(ρ)t)Pνρ (τ > t) has also not been established. (iv) When the particle sys-
tem is not attractive, the problem of hitting-time estimates and quasi-stationary
measures is open (see some existence results in [4] in the self-adjoint case).

3. Existence. We begin with some useful expressions for the iterates νn :=
	n(νρ). If λ(ρ) > 0, then, ∀n ∈ N,

∫ ∞
0 unPνρ (τ > u)du is finite, and it follows

easily by induction that∫
ϕ dνn =

∫ ∞
0 · · · ∫ ∞

0
∫

S̄t1+···+tn(ϕ) dνρ
∏n

i=1 dti∫ ∞
0 · · · ∫ ∞

0
∫

S̄t1+···+tn(1Ac )νρ

∏n
i=1 dti

(3.1)

=
∫ ∞

0 un−1 ∫
S̄u(ϕ) dνρ du∫ ∞

0 un−1
∫

S̄u(1Ac ) dνρ du
.

Taking ϕ = S̄t (1Ac ) in (3.1) yields

Pνn(τ > t) =
∫ ∞

0 un−1Pνρ (τ > t + u)du∫ ∞
0 un−1Pνρ (τ > u)du

.

Integrating over t , we obtain

Eνn[τ ] = 1

n

∫ ∞
0 unPνρ (τ > u)du∫ ∞

0 un−1Pνρ (τ > u)du
= Eνρ [τn+1]

(n + 1)Eνρ [τn] .(3.2)

PROOF OF LEMMA 2.2. Let ϕ be an increasing function in Cb. Then∫
S̄uϕ dνρ =

∫
1AcEη[ϕ(ηu)1{τ>u}]dνρ =

∫
ϕ(η)S̄∗

u(1Ac )(η) dνρ.

Now, we note that η �→ S̄∗
u1Ac (η) is decreasing. Thus, by FKG’s inequality, we

have ∫
S̄uϕ dνρ ≤

∫
ϕ dνρ

∫
S̄u(1Ac ) dνρ.

This implies that
∫

ϕ dνn ≤ ∫
ϕ dνρ by (3.1) as we are assuming that λ(ρ) > 0.

Consider now compact subsets of N
Z

d
of the type K(ki) = {η :∀ i ∈ Z

d, ηi ≤ ki}.
Since these compacts are decreasing, we have infn νn(K(ki)) ≥ νρ(K(ki)). More-
over, for all ε > 0, a good choice of the sequence (ki) ensures that νρ(K(ki)) ≥
1 − ε, and tightness follows. �
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PROOF OF LEMMA 2.3. The argument follows closely [12] (proofs of
Lemma 3.2, Proposition 3.3 and Theorem 4.1), the main difference being that we
replace irreducibility by stochastic domination. If νn = 	n(νρ), then we show in
three steps that limEνn[τ ] = 1/λ(ρ).

STEP 1. We first prove that

lim inf Eνn[τ ] = 1/λ(ρ) and Pνρ(τ > t) ≤ exp
(−λ(ρ)t

)
.(3.3)

As in Proposition 3.3 of [12], if

1

λ∞
= lim inf Eνn[τ ] then λ∞ ≥ λ(ρ),

and there is a subsequence {nk} such that

∀ t > 0, lim
k→∞Pνnk

(τ > t) = exp(−λ∞t).

The inequality λ∞ ≤ λ(ρ) follows after observing that, as η �→ Pη(τ > t) is
decreasing and as νn ≺ νρ , we have Pνnk

(τ > t) ≥ Pνρ(τ > t). Thus,

exp(−λ∞t) = lim
k→∞Pνnk

(τ > t) ≥ Pνρ (τ > t).(3.4)

This establishes that λ∞ = λ(ρ) and (3.3).

STEP 2. We show that

lim
n→∞

(
Eνρ [τn]

n!
)1/n

= 1

λ(ρ)
.(3.5)

First, by Step 1,

Eνρ [τn] =
∫ ∞

0
nun−1Pνρ (τ > u)du

(3.6)
≤

∫ ∞
0

nun−1 exp(−λ(ρ)u) du = n!
λ(ρ)n

.

If we set vn = Eνρ [τn]/n!, we then have lim supv
1/n
n ≤ 1/λ(ρ). Now, by (3.2),

Eνn[τ ] = vn+1/vn. Since lim inf Eνn[τ ] = 1/λ(ρ), it follows that

∀ ε ∈]0,1/λ(ρ)[ , ∃n0, ∀n ≥ n0, vn ≥ vn0

(
1

λ(ρ)
− ε

)n−n0

.(3.7)

Thus, for any ε > 0, lim inf v
1/n
n ≥ 1/λ(ρ) − ε, and this concludes Step 2.

STEP 3. We show that lim supEνn[τ ] ≤ 1/λ(ρ) by following the proof of
Theorem 4.1 of [12]. We omit the argument here.
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Finally, as in [12], it is now easy to conclude that for any integer k ≥ 1 and
s > 0,

Eνn[τ k] = k!
k∏

j=1

Eνn+j+1[τ ] −→
n→∞

k!
λ(ρ)k

and

Pνn(τ > s) −→
n→∞e−λ(ρ)s.

�

PROOF OF THEOREM 2.4. For any integer n, set ν̄n = (	(νρ) + · · · +
	n(νρ))/n. Note that from Lemmas 2.2 and 2.3, we have

ν̄n ≺ νρ, Eν̄n[τ k] −→
n→∞

k!
λ(ρ)k

, Pν̄n(τ > t) −→
n→∞ exp

(−λ(ρ)t
)
.(3.8)

As {ν̄n} is tight, let µρ be a limit point along the subsequence {ν̄nk
}. As Ac is local

and S̄t preserves Cb, (3.8) implies that

Pµρ(τ > t) = lim
k→∞ S̄t (1Ac ) dνnk

= lim
k→∞Pν̄nk

(τ > t) = e−λ(ρ)t .(3.9)

We now check that 	(µρ) = µρ , or, in other words, that, for ϕ ∈ Cb,

λ(ρ)

∫ ∞
0

∫
S̄tϕ dµρ dt =

∫
ϕ dµρ.(3.10)

Now, for all t ≥ 0, the integrable bound∣∣∣∣
∫

S̄tϕ dν̄nk

∣∣∣∣ ≤ |ϕ|∞Pν̄nk
(τ > t) ≤ |ϕ|∞

(
1 ∧ supn Eν̄n[τ 2]

t2

)
≤ C|ϕ|∞

1 + t2

by (3.8). Thus, limk

∫
S̄tϕ dν̄nk

= ∫
S̄tϕ dµρ implies, by dominated convergence,

that

lim
k→∞

∫ ∞
0

(∫
S̄tϕ dν̄nk

)
dt =

∫ ∞
0

(∫
S̄tϕ dµρ

)
dt.(3.11)

However, by definition of the iterates,∫
ϕ dνk+1 =

∫ ∫ ∞
0 S̄t (ϕ) dt dνk

Eνk
[τ ] .

Thus, ∫ ∫ ∞
0

(S̄tϕ) dt dν̄nk
= 1

nk

nk∑
i=1

Eνi
[τ ]

∫
ϕ dνi+1 → 1

λ(ρ)

∫
ϕ dµρ.(3.12)

The result follows by (3.11) and (3.12). �
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4. Positivity of λ(ρ) and regularity. Let �i :� → � with �iη(k) =
η(k) + δi,k , where δi,k = 1 if i = k and δi,k = 0 otherwise. For any ϕ ∈ Cb, we
have ∫

g(ηi)ϕ dνρ = γ (ρ)

∫
�i(ϕ) dνρ.(4.1)

Note also that, as k� ≥ g(k), we have∫
ηiϕ dνρ ≥ γ (ρ)

�

∫
�i(ϕ) dνρ.(4.2)

PROOF OF LEMMA 2.6. We prove that Pνρ (τ > t) ≤ exp(−λt) for λ > 0 by
showing that

−dPνρ (τ > t)

dt
= −

∫
S̄t (L̄1Ac ) dνρ ≥ λ

∫
S̄t (1Ac ) dνρ.(4.3)

Now,

−L̄1Ac (η) = ∑
i /∈�

∑
j∈�

p(i, j)g(ηi)1{η/∈A,ηi
j ∈A}.(4.4)

We set ∂A := {η :
∑

� η(i) = k} and note that since g(0) = 0, for any i /∈ � and
any j ∈ �, g(ηi)1{η∈∂A} = g(ηi)1{η/∈A,ηi

j ∈A}. Hence,

−
∫

S̄t (L̄1Ac ) dνρ = −
∫

L̄1AcP ∗
η (τ > t) dνρ

= ∑
i /∈�,j∈�

p(i, j)

∫
∂A

g(ηi)P
∗
η (τ > t) dνρ

= γ (ρ)
∑

i /∈�,j∈�

p(i, j)

∫
∂A

P ∗�iη
(τ > t) dνρ,

where we have used (4.1) and the fact that ∂A is independent of ηi for i /∈ �.
Since {(i, j) ∈ �c × �, s.t. p(i, j) > 0} is finite, we now have to prove that

∀ i /∈ �, ∃λi > 0 such that∫
∂A

P ∗�iη
(τ > t) dνρ ≥ λi

∫
P ∗

η (τ > t) dνρ.

This will be done in three steps.

STEP 1. We show that, for i /∈ �, there is εi > 0 such that

P ∗�iη
(τ > t) ≥ εiP

∗
η (τ > t).(4.5)

We need to couple two trajectories, say {ηt , ζt } differing by a particle at i at time 0,
that is, ζ0 = �iη0. We describe a basic coupling. We tag the additional particle
at i and call its trajectory {X(i, t), t > 0}. It follows the path {Sn,n ∈ N} of a
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random walk with rates p(·, ·) and jumps at the time marks of an η-dependent
Poisson clock: at time t , its intensity is g(ηt (X(i, t)) + 1) − g(ηt (X(i, t))). With
this labeling, the motion of the additional particle does not perturb the η-particles.
Thus, we call the additional particle a second-class particle. As � := sup(g(k +
1)−g(k)) < ∞, we can couple {X(i, t), t > 0} with {X̃(i, t), t > 0}, which follows
the same path {Sn,n ∈ N}, but with a Poisson clock of intensity � which dominates
the clock of {X(i, t), t > 0}. Thus,

S(�c) = inf{t :X(i, t) ∈ �} ≥ S̃(�c) = inf{t : X̃(i, t) ∈ �},(4.6)

and under our coupling, we have that {S(�c) < ∞} ⊂ {S̃(�c) < ∞} ⊂ {Sn ∈
�,n ∈ N}. Therefore,

0 ≤ P ∗
η (τ > t) − P ∗�iη

(τ > t) = P ∗
η

(
τ (η·) > t, τ (ζ·) ≤ t

)
≤ P ∗

η

(
τ (η·) > t, S(�c) < ∞)

(4.7)
≤ P ∗

η

(
τ (η·) > t, S̃(�c) < ∞)

≤ Pi (Sn ∈ �, n ∈ N)P ∗
η (τ > t).

Now, as the walk is transient, εi := Pi(Sn /∈ �,∀n ∈ N) > 0, so that (4.5) holds.

STEP 2. It now remains to show that
∫
∂A P ∗

η (τ > t) dνρ ≥ λ
∫

P ∗
η (τ > t) dνρ

for some λ > 0. This would be easily done by the FKG’s inequality if ∂A were a
decreasing event, which is not the case. However, A0 := {η :

∑
i∈� η(i) = 0} is

a decreasing event, and the idea is to compare
∫
∂A P ∗

η (τ > t) dνρ with
∫
A0

P ∗
η (τ >

t) dνρ . To this end, we are going to compare P ∗
η (τ > t) for η ∈ ∂A, with

P ∗
�−1

j η
(τ > t) for j ∈ �, so that we consider now the case where the second-class

particle is initially in j ∈ �. We will ensure that, uniformly in η ∈ ∂A, there is
a positive probability that the second-class particle escapes � within a small time
δ > 0. If the second-class particle finds itself on a site with k particles, it jumps with
rate �k := g(k + 1)− g(k). We have �1 > 0, but could very well have �k = 0 for
k > 1. Thus, the second-class particle can move for sure only when on an empty
site. As in Step 1, we have a coupling (η·, ζ·), where ζ0 = �j η0. For convenience,
we use the notation Pη,j instead of Pζ .

Thus, we impose on the η-particles starting on � the following constraints:

(i) They do not escape from � during [0, δ].
(ii) They empty one “path” joining j with ∂� during [0, δ/3], while the

second-class particle is frozen.
(iii) They remain still during [δ/3,2δ/3], while the second-class particle

escapes �.
(iv) They go back to their initial configuration during ]2δ/3, δ].
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More precisely, we let � := {j1, . . . , jn} be the shortest path linking j to �c, that
is,

j1 = j, j2, . . . , jn−1 ∈ �, jn /∈ �, p(jk, jk+1) > 0 for k < n.

We note ij := jn, the end point of �, and for a subset A of Z
d , we call σ(A) the

first time that an η-particle initially in A exits A. Also, let

D� := {η :η(jk) = 0 for k = 1, . . . , n − 1} ∩ ∂A.

Now, we say that (η·,X(j, ·)) ∈ Fj,ij [0, δ] if:

(i) σ(�)(η·) > δ;
(ii) on [0, δ/3], X(j, ·) = j and ηδ/3 ∈ D�;

(iii) on [δ/3,2δ/3], η·|� = ηδ/3|� and X(j, ·) reaches ij before 2δ/3 along �

and stays still;
(iv) on [2δ/3, δ], X(j, ·) = ij and η·|� = ηδ−t |�.

We call F̃ij ,j [0, δ] the time-reversed event

{(
η·,X(i, ·)) ∈ F̃ij ,j [0, δ]} := {(

ηδ−·,X(j, δ − ·)) ∈ Fj,ij [0, δ]}.
It is plain that

λ1 := inf
η :

∑
i∈� η(i)≤k

inf
j∈�

P ∗
η,j

(
Fj,ij [0, δ]) > 0.(4.8)

We prove in this step that there is λ2 > 0 such that, for η such that
∑

i∈� η(i) ≤
k − 1,

P ∗�j η
(τ > t) = P ∗

η,j

(
τ (ζ·) > t

)
(4.9)

≥ λ2P
∗
η,j

(
τ (η·) > t, σ (�c) > δ,Fj,ij [0, δ]).

From the time δ on, we couple through our basic coupling, the second-class
particle with a random walk whose Poisson clock has intensity �, so that

{
S̃(�c) ◦ θδ = ∞} ⊂ {S(�c) ◦ θδ = ∞}.(4.10)

Note that if particles from outside � do not enter � during time [0, δ], if the
second-class particle exits � before δ, not to ever enter again, and if {τ (η·) > t},
then {τ (ζ·) > t}. In other words,

{τ (η·) > t}∩ {σ(�c) > δ}∩Fj,ij [0, δ]∩ {S(�c)◦ θδ = ∞} ⊂ {τ (ζ·) > t}.(4.11)
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Thus, by conditioning on σ {ζs, s ≤ δ},
P ∗

η,j

(
τ (ζ·) > t

) ≥ P ∗
η,j

(
τ (η·) > t, σ (�c) > δ,Fj,ij [0, δ], S(�c) ◦ θδ = ∞)

≥ P ∗
η,j

(
τ ◦ θδ(η·) > t, σ (�c) > δ,Fj,ij [0, δ], S̃(�c) ◦ θδ = ∞)

≥ E∗
η,j

[
1{σ(�c)>δ,Fj,ij

[0,δ]}P ∗
ηδ,ij

(
τ (η·) > t − δ, S̃(�c) = ∞)]

≥ Pij (Sn /∈ �,∀n ∈ N)

× P ∗
η,j

(
τ (η·) ◦ θδ > t − δ, σ (�c) > δ,Fj,ij [0, δ]).

Under {σ(�c) > δ,Fj,ij [0, δ]}, no η-particle enters or leaves � during time δ so
that

P ∗
η,j

(
τ (η·) ◦ θδ > t − δ, σ (�c) > δ,Fj,ij [0, δ])
= P ∗

η,j

(
τ (η·) > t, σ (�c) > δ,Fj,ij [0, δ]),

and (4.9) follows once we recall that {Sn} is transient and that {ij ; j ∈ �} is finite.

STEP 3. We prove the result inductively. We fix one configuration in ∂A: let
{kj , j ∈ �} be integers such that∑

j∈�

kj = k and B := {η :ηj = kj , j ∈ �}.(4.12)

Let j be such that kj > 0. Then, using (4.2),∫
∂A

P ∗
η (τ > t) dνρ ≥

∫
B

P ∗
η (τ > t) dνρ

=
∫
B

ηj

kj

P ∗
η (τ > t) dνρ(η)

≥ γ (ρ)

�kj

∫
�−1

j B
P ∗�j η(τ > t) dνρ(η)

≥ λ2γ (ρ)

�kj

∫
�−1

j B
P ∗

η,j

(
τ (η·) > t, σ (�c) > δ,Fj,ij [0, δ])dνρ.

Using the stationarity of νρ and reversing time on the interval [0, δ], the last
integral becomes∫

Pη,ij

(
F̃ij ,j [0, δ], ηδ ∈ �−1

j B, σ (�c) > δ
)
P ∗

η (τ > t − δ) dνρ(η).

Note that in {F̃ij ,j [0, δ], ηδ ∈ �−1
j B, σ (�c) > δ} the particles from inside and

outside � do not interact and that F̃i,j [0, δ] imposes the same initial and final
configuration for the η-particles in �, so that

Pη,ij

(
F̃ij ,j [0, δ], ηδ ∈ �−1

j B, σ (�c) > δ
)

= 1B(�j (η))P ∗
η,j

(
Fj,ij [0, δ])Pη

(
σ(�c) > δ

)
.
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Thus, from (4.8), there is ε̃ > 0 such that∫
B

P ∗
η (τ > t) dνρ ≥ ε̃

∫
�−1

j B
Pη

(
σ(�c) > δ

)
P ∗

η (τ > t − δ) dνρ(η).(4.13)

We iterate the same procedure k times and end up with ε > 0 such that∫
B

P ∗
η (τ > t) dνρ

(4.14)
≥ ε

∫
∏

j∈� �−kj
j B

Pη

(
σ(�c) > kδ

)
P ∗

η (τ > t − kδ) dνρ(η).

Finally, we note that

η �→ 1∏
j∈� �−kj

j B
= 1{η : η(j)=0,j∈�},

η �→ Pη

(
σ(�c) > kδ

)
, η �→ P ∗

η (τ > t − kδ)

are decreasing functions. Thus, by the FKG’s inequality,∫
B

P ∗
η (τ > t) dνρ

(4.15) ≥ ενρ

({η :η(j) = 0, j ∈ �})Pνρ

(
σ(�c) > kδ

)
Pνρ (τ > t).

As B ⊂ ∂A, this step is concluded.

We establish in the next lemma that Pνρ (σ (�c) > kδ) > 0, which concludes the
proof. �

LEMMA 4.1. Let σ(�c) be the first time one particle starting outside �

enters �. Then, for any κ > 0, Pνρ (σ (�c) > κ) > 0.

PROOF. We use the coupling described in Section 2. Thus, if σ̃ (�c) is the
stopping time corresponding to the coupled independent random walks, we have
σ̃ (�c) ≤ σ(�c). Thus,

Pνρ

(
σ(�c) > κ

) ≥ Pνρ

(
σ̃ (�c) > κ

)
=

∫ ∏
i /∈�

P
(
X(i, t) /∈ �, ∀ t ≤ κ

)η(i)
dνρ = ∏

i /∈�

Z(γ (1 − δi))

Z(γ )
,

(4.16)

with δi = P(X(i, t) ∈ �, t ≤ κ). Now, by Jensen’s inequality,

Z(γ (1 − δ))

Z(γ )
≥ (1 − δ)ρ.

Thus,

Pνρ

(
σ(�c) > κ

) ≥
( ∏

i /∈�

(1 − δi)

)ρ

> 0 ⇐⇒ ∑
i∈Zd

δi < ∞.(4.17)
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Now, a particle starting on i reaches � within time κ if it makes at least d(i,�)/R

jumps within time κ (recall that R is the range of p). Thus, if d(i) is the integer
part of d(i,�)/R,

P
(
X(i, t) ∈ �, t ≤ κ

) ≤ ∑
n≥d(i)

e−�κ (�κ)n

n! ≤ (�κ)d(i)

d(i)! .(4.18)

Hence, the series in (4.17) is converging. �

PROOF OF PROPOSITION 2.7. The proof follows the same arguments as
in the proof of Theorem 3(c) of [4] once inequality (4.5) is established with
εi = Pi (Sn /∈ �, ∀n ∈ N). It goes as follows. Let νε be the product measure

dνε(η) = ∏
i∈�

dθγ (ρ)(ηi)
∏
i /∈�

dθεiγ (ρ)(ηi).

Let �n := [−n;n]d and let Gn be the σ -algebra σ(ηi; i ∈ �n). Then

νρ p.s.
dνε

dνρ

∣∣∣∣
Gn

= ∏
i∈�c∩�n

ε
ηi

i Z(γ )

Z(εiγ )
,

(4.19)

νε p.s.
dνρ

dνε

∣∣∣∣
Gn

= ∏
i∈�c∩�n

ε
−ηi

i Z(εiγ )

Z(γ )
.

Let h(α) denote the Laplace transform of θγ , that is, h(α) = Z(eαγ )/Z(γ ). Note
that h is defined for any α such that eαγ < supg(k), and h is analytic in this
domain. In particular, h is analytic in a neighborhood of 0. For all i /∈ �, let αi be
defined by e−αi = εi . A simple computation then yields, for all p ≥ 1,∫ (

dνε

dνρ

∣∣∣∣
Gn

)p

dνρ = ∏
i∈�c∩�n

Z(ε
p
i γ )

Z(γ )

Z(γ )p

Z(εiγ )p
= ∏

i∈�c∩�n

h(−pαi)

h(−αi)
p

,

∫ (
dνρ

dνε

∣∣∣∣
Gn

)p

dνε = ∏
i∈�c∩�n

Z(ε
−(p−1)
i γ )

Z(γ )

Z(εiγ )p−1

Z(γ )p−1(4.20)

= ∏
i∈�c∩�n

h
(
αi(p − 1)

)
h(−αi)

p−1.

The functions mp : α �→ h(−pα)/h(−α)p and np : α �→ h(α(p−1))h(−α)p−1

are analytic in a neighborhood of 0 and satisfy mp(0) = np(0) = 1, m′
p(0) =

n′
p(0) = 0, m′′

p(0) = n′′
p(0) > 0 for p > 1. Therefore, the products in (4.20) have

finite limits when n → ∞, as soon as
∑

i∈�c(1 − εi)
2 < +∞. In the asymmetric

case, the Fourier transform of the Green function has a singularity at 0, which is
square integrable as soon as d ≥ 3, so that the above series is convergent. Thus,
for d ≥ 3, dνε/dνρ |Gn is a (Pνρ , {Gn}) martingale, which is uniformly bounded
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in Lp(νρ) for all p ≥ 1. It follows from the martingale convergence theorem that
νε is absolutely continuous with respect to νρ , with dνε/dνρ ∈ Lp(νρ). In the same
way, νρ is absolutely continuous with respect to νε, and dνρ/dνε ∈ Lp(νε).

Following [4], we prove that this yields uniform Lp(dνρ)-estimates of ft :=
dTt (νρ)/dνρ for p ≥ 1. First of all, let us express the density of νt := Tt (νρ) with
respect to νρ . For ϕ continuous and bounded,

∫
ϕ dTt(νρ) =

∫
S̄t (ϕ)1Ac dνρ∫

S̄t (1Ac )1Ac dνρ

=
∫

ϕ
S̄∗

t (1Ac )

P ∗
νρ

(τ > t)
dνρ,

so that νρ -a.s. ft = P ∗
η (τ > t)/P ∗

νρ
(τ > t).

Let A0 = {η; ∀ i ∈ �, ηi = 0}. We prove now that, for any increasing
function ϕ, ∫

A0

ϕ dνt ≥ νt (A0)

νρ(A0)

∫
A0

ϕ dνε.(4.21)

To this end, let us write η = (η�,η�c) for the decomposition of N
Z

d
in N

� ×N
�c

.
Moreover, if µ is a probability measure on N

Z
d
, let π�c(µ) denote its projection

on σ(ηi, i ∈ �c). We have∫
A0

ϕ dνt = νρ(A0)

∫
ϕ(0, η�c)ft (0, η�c)

dνρ

dνε

(η�c) dπ�c(νε).

By (4.5), ∀ i /∈ �, �ift (0, η�c) ≥ εift (0, η�c) and

�i

dνρ

dνε

= 1

εi

dνρ

dνε

.

Therefore, ft (0, η�c)(dνρ/dνε)(η�c) is an increasing function of η�c . Because
π�c(νε) is a product measure, it follows from FKG’s inequality that∫

A0

ϕ dνt ≥ νρ(A0)

∫
ϕ(0, η�c) dπ�c(νε)

∫
ft (0, η�c)

dνρ

dνε

(η�c) dπ�c(νε),

which is just (4.21).
We now apply (4.21) to the decreasing function f

p−1
t (dνε/dνρ)r , p ≥ 1, r ≥ 0.

We obtain ∫
A0

f
p
t

(
dνε

dνρ

)r

dνρ =
∫
A0

f
p−1
t

(
dνε

dνρ

)r

dνt

≤ νt (A0)

νρ(A0)

∫
A0

f
p−1
t

(
dνε

dνρ

)r

dνε

≤ νt (A0)

νρ(A0)

∫
A0

f
p−1
t

(
dνε

dνρ

)r+1

dνρ.



QUASI-STATIONARY MEASURES FOR ATTRACTIVE SYSTEMS 1587

It follows by induction that, ∀p, r ≥ 0,∫
A0

f
p
t

(
dνε

dνρ

)r

dνρ ≤
(

νt (A0)

νρ(A0)

)p ∫
A0

(
dνε

dνρ

)p+r

dνρ.

Taking r = 0 and applying once more FKG’s inequality to the decreasing functions
1A0 and f

p
t , we get, ∀p ≥ 1,

νρ(A0)

∫
f

p
t dνρ ≤

∫
A0

f
p
t dνρ ≤

(
νt (A0)

νρ(A0)

)p ∫
A0

(
dνε

dνρ

)p

dνρ,

so that, ∀p ≥ 1,

sup
t

∫
f

p
t dνρ ≤ 1

νρ(A0)p+1

∫
A0

(
dνε

dνρ

)p

dνρ.(4.22)

This, in turn, implies uniform Lp(νρ)-estimates for d	n(νρ)/dνρ . Indeed,
using expression (3.1), if we define

dmn(t) = Pνρ (τ > t)tn dt∫ ∞
0 Pνρ (τ > t)tn dt

, then

(4.23)
d	n(νρ)

dνρ

=
∫ ∞

0

dTt(νρ)

dνρ

dmn−1(t).

Thus, using Hölder’s inequality for p ≥ 1,

sup
t>0

∫ (
dTt (νρ)

dνρ

)p

dνρ ≤ C �⇒ sup
n

∫ (
d	n(νρ)

dνρ

)p

dνρ ≤ C.(4.24)

Moreover, we obtain the same uniform bounds for the Cesaro limit, and
Proposition 2.7 follows. �

PROOF OF COROLLARY 2.8. We define the map 	∗ associated to the time-
reversed dynamics. If ν is such that E∗

ν [τ ] < ∞, then∫
ϕ d	∗(ν) = 1

E∗
ν [τ ]

∫ ∞
0

∫
S̄∗

t (ϕ) dν dt.

Our previous result (Proposition 2.7) holds equally for ν̄∗
n := (1/n)(	∗(νρ)+· · ·+

	n∗(νρ)), with the consequences that {ν̄∗
n, n ∈ N} is tight and gn := dν̄∗

n/dνρ is
uniformly in Lp(νρ) for any p ≥ 1 in dimensions d ≥ 3. Let fn be the density
of ν̄n with respect to νρ and assume that {fn} converge along a subsequence {nk}
to the f solution of (2.10) and that {gn} converge along a subsequence {mi} to
the g solution to the adjoint equation to (2.10). We can also assume that these
convergences hold in weak L2(νρ). As fn and gn are decreasing functions, we
have, by FKG’s inequality,∫

fnk
gmi

dνρ ≥
∫

fnk
dνρ

∫
gmi

dνρ = 1.
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After taking first the limit in k, and then in i, we obtain
∫

fg dνρ ≥ 1.
Also, this integral is finite by Cauchy–Schwarz. Thus, we can define dν̃ρ =
fg dνρ/(

∫
fg dνρ). Let dQt(η·) be the probability measure on paths, defined by

dQt(η·) := eλ(ρ)tg(ηt )f (η0)∫
fg dνρ

1τ>t dPνρ (η·).(4.25)

For ϕ such that ϕg ∈ L2(νρ), we obtain, using (2.10),∫
ϕ(ηt ) dQt(η·) =

∫
Eη[ϕ(ηt )g(ηt )1τ>t ]f (η)eλ(ρ)t dνρ(η)∫

fg dνρ

=
∫

S̄t (ϕg)f eλ(ρ)t dνρ∫
fg dνρ

=
∫

ϕgS̄∗
t (f )eλ(ρ)t dνρ∫
fg dνρ

=
∫

ϕ dν̃ρ.

Also, if ϕ is such that ϕf ∈ L2(νρ),∫
ϕ(η0) dQt(η·) =

∫
S̄t (g)ϕf eλ(ρ)t dνρ∫

fg dνρ

=
∫

ϕ dν̃ρ.

Now, by applying Jensen’s inequality and recalling that f,g ∈ Lp(νρ) for p ≥ 1,

log
(
Pνρ (τ > t)

) = log
(∫

fg dνρ

)
+ log

(∫
e−λ(ρ)t

g(ηt )f (η0)
dQt(η·)

)

≥ log
(∫

fg dνρ

)
−

∫
log(g(ηt )) dQt(η·)

−
∫

log(f (η0)) dQt(η·) − λ(ρ)t

≥ log
(∫

fg dνρ

)
−

∫
log(fg) dν̃ρ − λ(ρ)t.

This concludes the proof of the corollary. �

5. Example. Let us consider the totally asymmetric simple exclusion in one
dimension. Thus,

∀ i ∈ Z, p(i, i + 1) = 1 and p(i, j) = 0 if j �= i + 1.

Let τ be the first time the origin is occupied. Let χ(η) := inf{k ≥ 0 :η(−k) = 1}
and let Nt be a Poisson process of intensity 1. A simple computation yields

Pνρ (τ > t) =
∫

P
(
Nt < χ(η)

)
dνρ(η)

(5.1)

=
∞∑

k=1

ρ(1 − ρ)kP(Nt < k) = (1 − ρ)e−ρt .
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Thus,

Pνρ (τ > t + s)

Pνρ (τ > t)
= e−ρs and λ(ρ) := lim

t
−1

t
log

(
Pνρ (τ > t)

) = ρ.(5.2)

Following the approach of the proof of Theorem 3(c) of [4], it is easy to establish
that the Yaglom limit exists and is

dµρ(η) = ∏
i<0

dBρ(ηi)
∏
i≥0

dB0(ηi),(5.3)

where Bρ is the Bernoulli probability of parameter ρ. Can we approximate µρ and
λ(ρ) by the corresponding quantities for the process on a large circle? The answer
is no, as we shall see.

Let CN = {0,1, . . . ,N}, where sites N and 0 are identified, and consider the
generator

LNϕ =
N−1∑
i=0

η(i)
(
1 − η(i + 1)

)(
ϕ(ηi

i+1) − ϕ(η)
)
,(5.4)

with as invariant measure νN , which is the uniform measure on all configurations
with [ρN ] particles on CN .

Let Pη,N be the law of the process generated by LN and let η be in the support
of νN . Then

Pη,N(τ > t) = e−t
χ(η)−1∑

k=1

tk

k! .(5.5)

Thus, for a polynomial QN of degree at most N ,

PνN,N(τ > t) = e−tQN(t) �⇒
(5.6)

λN(ρ) := lim
t

−1

t
log

(
PνN,N(τ > t)

) = 1.

Also, it is an easy computation that yields

lim
t

P ∗
η,N(τ > t)

P ∗
νN,N(τ > t)

=
(

N

[ρN ]
) [ρN]∏

i=1

η(−i) and

(5.7)

lim
t

PνN,N(τ > t + s)

PνN,N(τ > t)
= e−s.

Thus, as in [4], one concludes the existence of a Yaglom limit µN concentrated on
the configurations with particles occupying all [ρN ] sites to the “left” of 0. Thus,
µN and λN(ρ) do converge, but to µ1 and 1, respectively, and this approach misses
all the µρ with ρ < 1.
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