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A STOCHASTICALLY QUASI-OPTIMAL SEARCH ALGORITHM
FOR THE MAXIMUM OF THE SIMPLE RANDOM WALK

BY P. CHASSAING, J. F. MARCKERT AND M. YOR

Institut Elie Cartan, Université de Versailles St-Quentin-en-Yvelines and
Université Paris VI, Pierre et Marie Curie

Odlyzko [Random Structures Algorithms 6 (1995) 275–295] exhibited
an asymptotically optimal algorithm, with respect to the average cost, among
algorithms that find the maximum of a random walk by using only probes and
comparisons. We extend Odlyzko’s techniques to prove that his algorithm is
indeed asymptotically optimal in distribution (with respect to the stochastic
order). We also characterize the limit law of its cost. Computing its moments
in two ways allows us to recover a surprising identity concerning Euler sums.

1. Introduction.

1.1. The model. In a remarkable paper, Odlyzko [31] introduces a new
model for the study of various searching strategies in an unknown environment.
The model is as follows: consider a simple symmetric random walk ω =
(Sk(ω))k=0,...,n [i.e., S0(ω) = 0, Sk+1(ω) = Sk(ω) ± 1 for 0 ≤ k ≤ n − 1 and the
2n such Bernoulli paths are equiprobable]. Set

Mn(ω) = max{Sk(ω) | 0 ≤ k ≤ n}.
The searcher incurs a cost each time he probes a position, at a given time l, of
the random walker. Therefore, the cost of an algorithm is identified by the number
of probes it uses. The simplest algorithm consists of probing each position l, for
1 ≤ l ≤ n; its cost is n, but Figure 1 suggests that n probes is a crude upper bound
for most of the Bernoulli paths. In the example of Figure 1, the searcher knows,
before the first probe, that 0 ≤ M10 ≤ 10. The first probe shows that S10 = 0
and, accordingly, 0 ≤ M10 ≤ 5 [Figure 1(β)]. The second probe indicates S5 = 1,
leading to 1 ≤ M10 ≤ 3, as one can see in Figure 1(γ). Finally, the third probe
[Figure 1(δ)] gives M10 = 3, for a final cost of three probes.

1.2. Optimality with respect to the stochastic order. Recall that, given two
random variables X and Y , X is said to be stochastically smaller than Y (X ≤S Y )

if and only if, for any x,

Pr(X ≥ x) ≤ Pr(Y ≥ x),

Received August 2000; revised November 2002.
AMS 2000 subject classifications. Primary 68Q25, 60J65; secondary 60F17, 68P10, 90B40.
Key words and phrases. Analysis of algorithms, searching, random walk, stochastic order,

Brownian motion.

1264



A STOCHASTICALLY QUASI-OPTIMAL ALGORITHM 1265

FIG. 1. A search algorithm with n = 10 and Mn = 3.

or, equivalently, if, for any bounded increasing function f ,

E[f (X)] ≤ E[f (Y )].
Let An denote a set of algorithms that solve a given problem for any input ω of

size n. For a ∈ An, let Ca(ω) denote the cost incurred by a to process ω. Finally,
assume that the set of inputs of size n is endowed with a probability distribution,
so that Ca can be seen as a random variable, and set

�n(x) = min
a∈An

Pr
(

Ca

cn

≥ x

)
.

A sequence of algorithms (a(n))n≥1, a(n) ∈ An, is asymptotically optimal in
distribution (with respect to the stochastic order) if there exists a normalizing
coefficient cn (in the specific problem we are interested in, cn = √

n ) such that
limn �n(x) is the tail function F(x) of a proper distribution or of the point mass at
some positive constant, and if, for any x,

lim
n

�n(x) = lim
n

Pr
(

Ca(n)

cn

≥ x

)
.

For the sake of brevity, (a(n))n≥1 will be called stochastically quasi-optimal in An.
In this paper, An will denote the set of adaptive algorithms, that is, algorithms

that decide the next probe taking into account the results of all previous probes. The
information produced by a sequence of k probes is described by a sequence s =
(s0, s1, s2, . . . , sk) of k +1 points of the lattice, including s0 = (0,0), k = |s| being
the number of probes (the cost already incurred) in state s. Let si = (xi, yi) :yi

is the position of the random walker at time xi . The chronology of probes brings
no useful information to the searcher, so it will be convenient to assume that the
sequence xi is strictly increasing and does not reflect this chronology. We only
consider sequences s that can be embedded in a Bernoulli path, to be precise,
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sequences such that 0 ≤ xi ≤ n, xi is a strictly increasing sequence of integers,
|yi+1 − yi| ≤ xi+1 − xi and yi+1 − yi + xi+1 − xi is even. Let Pn be the set
of all such sequences and, for s ∈ Pn, let max(s) denote max0≤i≤|s| yi . If all the
Bernoulli paths (i.e., all the sequences σ of Pn such that |σ | = n) that contain s as
a subsequence have the same maximum, then s is called a final state.

Then an algorithm a can be described as a decision tree, more precisely, a
rooted labeled tree where the labels of leaves are final states. The label of the
root is ((s0), x), 1 ≤ x ≤ n, in which x is the first probe decided by the searcher,
and, more generally, the label of an internal node is a couple (s, x) ∈ Pn × {1,2,

. . . , n} : s is the information collected by the searcher after the |s|th probe, and
x = a(s) /∈ {xi | 0 ≤ i ≤ |s|} is the (|s| + 1)st probe decided by the searcher, based
on s. An internal node (s, x) has one child for each of the possible outcomes of the
probe at time x = a(s).

1.3. Main results. For a ∈ An, let Ca(ω) be the number of probes that
a requires to find the maximum of the path ω. Odlyzko [31] proves that

min
a∈An

E(Ca) = c0
√

n + o
(√

n
)
,

where c0 is given by

c0 =
√

2

π

∫ +∞
0

dy

y

∫ 1

0

1√
w

exp
(
− y2

2w

)
erf

(
y√

2(1 − w)

)
dw,

and he describes a sequence of algorithms, (Od(n))n≥1, such that

E
(
COd(n)

) = c0
√

n + o
(√

n
);

Od(n) is called the average-case asymptotic optimality. A description of Od(n) is
given in Section 1.4. Chassaing [11] and Hwang [21] independently computed

c0 =
√

8

π
log 2.

In this paper, we prove that (Od(n))n≥1 is stochastically quasi-optimal. Set

I = 1

2

∫ 1

0

dt

MB
1 − Bt

,

where (Bt )t≥0 is a linear Brownian motion and MB
1 = max{Bt | 0 ≤ t ≤ 1}; recall

that

�n(x) = min
a∈An

Pr
(

Ca√
n

≥ x

)
.

THEOREM 1.1. For any x,

lim
n

�n(x) = Pr(I ≥ x).
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THEOREM 1.2. For any x,

lim
n

Pr
(

COd(n)√
n

≥ x

)
= Pr(I ≥ x).

A simple description of I ’s distribution (previously unknown, to our knowl-
edge) is given by the Laplace transform of 1/I 2.

THEOREM 1.3. For t ≥ 0,

E

[
exp

(
− t

I 2

)]
= 2 log(cosh

√
2t )

sinh2
√

2t
.

Consequences of Theorem 1.3 are detailed in Section 4, including expressions
of the density of probability of I in terms of Jacobi’s theta function and of the
moments of I in terms of the Riemann zeta function.

REMARKS. (i) For comparison sorting, one can find average-case optimality
results in textbooks ([1], page 92, [26], pages 193–195, or [36], Chapter 1); for the
estimation of (essentially) linear operators in the presence of noisy information, in
[34] and [41]. Some references are also given in [31], for example, [3, 20, 22, 45].
More recent results for combinatorial algorithms are given in [2, 10, 14, 30].

(ii) Stochastic quasi-optimality completes average-case asymptotic optimality
but does not entail it. Actually, the relationship between stochastic and average-
case asymptotic optimality is very much like the relationship between the weak
convergence of a sequence of random variables and the convergence of their
expectations: the weak convergence is more informative than the convergence of
first moments. In this special example, Od(n) satisfies some kind of asymptotic
L1-optimality (see Lemmas 2.1 and 2.2 and Theorem 2.3), entailing the average-
case asymptotic optimality of Od(n). Furthermore, we have the following striking
property:

PROPOSITION 1.4. If b(n) is an average-case asymptotically optimal se-
quence of algorithms, then Cb(n)/

√
n converges weakly to I and is therefore sto-

chastically quasi-optimal.

(iii) Stochastic optimality is not merely a theoretical refinement of average-case
optimality: for instance, in queueing systems, a decrease in the service time with
respect to the stochastic order warrants a decrease in the average sojourn time,
while a decrease in the average service time does not (cf. [4], Chapter 4, or [39],
Section 5.2).
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1.4. Description of the algorithm Od(n). Let d be a positive number. Basic to
the algorithm is the existence of a set �d(n) of sample paths with slow variation,
such that Pr(�d(n)) = o(n−1): �d(n) is the set of sample paths ω such that, for
any positive k and m,

m + k ≤ n �⇒ |Sm+k − Sm| ≤ d
√

k log n.

The bound on Pr(�d(n)) is proven in Section 2.2. If at any step Od(n) detects
that ω belongs to �d(n), then Od(n) probes the n positions, with almost no
contribution to E(COd(n)). In a first stage, Od(n) searches a tight estimate M∗
of Mn, that is, an estimate that satisfies

Mn − M∗ ≤ cn1/8(log1/2 n)(1.1)

for every ω ∈ �d(n) (and Mn ≥ M∗ for any ω), at a low cost. To reach this
goal, Od(n) probes the sample path ω at positions (j l)j=1,...,	n/ l
, where l =
	n1/2 log n
. Then Od(n) scans the vicinity of the “large” Sjl . At this moment,
M∗ is the maximum of the probed positions.

In the second stage, Od(n) covers the sample path from left to right (regardless
of the probes of the first stage), as follows: assume that, at step t , Od(n) just
probed m. At step t + 1:

• If Sm is close to M∗ (i.e., M∗ − Sm ≤ n1/6), then Od(n) probes Sm+1.
• If Sm is far away from M∗ (i.e., M∗ − Sm ≥ n1/6), then Od(n) probes Sm+k ,

where

k = 2(M∗ − Sm) − 10c(M∗ − Sm)1/2(log n)1/2.(1.2)

According to [31], pages 285 and 286, this value of k ensures that the random
walk does not exceed M∗ on [m,m + k].
The paper is organized as follows: Section 2.1 contains the main steps of the

proofs of Theorems 1.1 and 1.2. These steps are detailed in Sections 2.2 and 2.3.
Section 3 contains the proof of Theorem 1.3, and some consequences are listed in
Section 4.

2. Proofs of Theorems 1.1 and 1.2.

2.1. Main steps. Set

Vn = 1

2

n∑
k=1

1

Mn − Sk + 1
.

As in [31], we prove that, on one hand, Vn(1 + o(1)) is a lower bound for the
cost Ca of any algorithm a in An (Lemma 2.1), while, on the other hand, COd(n) is
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well approximated by Vn (Lemma 2.2). Set

Wn(ω) = inf{Ca(ω) | a ∈ An}.

LEMMA 2.1.

(Vn − Wn)+√
n

L1→0.

LEMMA 2.2.

COd(n) − Vn√
n

L1→0.

Compared with [31] or [11], note that, at a small additional cost, we replace
convergence of expectations by L1-convergence. Both lemmas are consequences
of a counting principle explained briefly at the end of this section. The full proof
is given in Section 2.2. We also need the following result.

THEOREM 2.3.

Vn√
n

law→ I = 1

2

∫ 1

0

dt

MB
1 − Bt

.

Theorem 2.3 is not a consequence of Donsker’s invariance principle, as I is
not a continuous functional of the Brownian path. The proof of Theorem 2.3 is
delayed to Section 2.3, where we exhibit a coupling of Vn/

√
n and I through a

Skorohod embedding. Theorem 1.2 is an immediate consequence of Lemma 2.2
and Theorem 2.3.

PROOF OF THEOREM 1.1. By the definitions of �n and Wn, we have

Pr
(
COd(n) ≥ x

√
n

) ≥ �n(x) ≥ Pr
(
Wn ≥ x

√
n

)
.(2.1)

On the other hand, as COd(n) ≥ Wn, we obtain

(COd(n) − Vn)+√
n

≥ (Vn − Wn)−√
n

,

so that Lemmas 2.1 and 2.2 yield

Wn − Vn√
n

L1→0.

Finally, according to Theorem 2.3, both sides of (2.1) have the same limit, and

lim
n

�n(x) = Pr(I ≥ x). �
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FIG. 2.

REMARK. Let us explain briefly the (somewhat unexpected) appearance
of Vn. If the speed v(y) of a traveler at point y of the line satisfies v(y) ≤ z(y),
then the duration t of the journey from point 0 to point x satisfies

t ≥
∫ x

0

dy

z(y)
.(2.2)

But every algorithm a in An defines an increasing sequence ã of positive integer-
valued random variables {m1, . . . ,mCa }, the sequence ã of positions probed by a

during its run time, and two consecutive positions mi and mi+1 of ã satisfy, as will
be explained below,

mi+1 − mi ≤ 2Mn − Smi
− Smi+1,(2.3)

≤ 2(Mn − Smi
+ 1)

(
1 + o(n)

)
.(2.4)

Thus, mi+1 − mi can be seen as the speed v(mi) of the algorithm at point mi and

Z
(n)
k = 2(Mn − Sk + 1)

as the speed limit at point k, yielding, by analogy to (2.2), a lower bound Vn for
the running time of the algorithm.

Note that we do not assume the mi ’s to be numbered chronologically: the lower
bound Vn holds also for algorithms that do not probe the sample path from left to
right. Inequality (2.4) follows from the slow variation of paths of the set �n.

Now we see in Figure 2 that the upper envelope of paths that agree with
the result of probes at positions mi and mi+1 has a maximum, on the interval
[mi,mi+1], given by

Smi
+ Smi+1 + wi

2
;

inequality (2.3) just says that this maximum is not greater than Mn, so a new probe
inside ]mi,mi+1[ would be pointless.

2.2. A counting principle. Lemmas 2.1 and 2.2 rely on a stochastic analog of
inequality (2.2), Theorem 2.4, which we prove in this section. Theorem 2.5 states
the corresponding equality, a counting principle giving approximately the length
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of a sequence subject to some conditions. We learned this principle from [31],
where Odlyzko uses a variant to prove the average-case asymptotic optimality of
(Od(n))n≥1. We believe Odlyzko’s principle can be interesting in its own right: it
allows the proof of asymptotic optimality of other algorithms (cf. [11, 30], and it
also leads to the limit law of the couple (height, width) of simple trees (cf. [12]),
giving incidentally a combinatorial explanation of a result of Jeulin on the local
time of the Brownian excursion through the study of simple trees. We try to give
Odlyzko’s principle in general form, in order to spare the reader many references
to very similar arguments in this paper, and also in [12].

Let (Z
(n)
k )0≤k≤n denote an array of positive integer-valued random variables.

Let α be a positive constant, less than 1, and let G(n) and H(n) be two sequences
of positive numbers. We set

Un =
n∑

k=1

1

Z
(n)
k

and

Ũn = ∑
Z

(n)
k ≤H(n)

1

Z
(n)
k

.

Note that Un ≤ n so that un = E(Un) is well defined. We assume that there exists
a set �n of sample paths such that

Pr(�n) = o

(
un

n

)
,(2.5)

and that, for any ω ∈ �n,

∀ k, l,
∣∣Z(n)

k+l − Z
(n)
k

∣∣ ≤ lαG(n).

Furthermore, we assume that

G(n) = o
(
H(n)1−α

)
and that

E(Ũn) = o(un).(2.6)

We consider a finite or denumerable set Ãn of strictly increasing sequences a of
positive integer-valued random variables {m1, . . . ,m�(a)}, whose length �(a) is
random, such that m0 = 0, m�(a) = n and the increments

wi = mi+1 − mi

satisfy

wi ≤ Z(n)
mi

∨ H(n),(2.7)
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FIG. 3.

at least when ω ∈ �n [at the end of this section, we shall choose Z
(n)
k � 2(Mn −

Sk + 1) in order to prove Lemmas 2.1 and 2.2]. Let �n denote the infimum of
lengths of sequences in Ãn.

Assumptions (2.5) and (2.6) will seem less arbitrary if one considers a simple
problem of calculus, where a strictly increasing sequence u

(ε)
k satisfies u

(ε)
0 = 0

and u
(ε)
k+1 − u

(ε)
k = εz(u

(ε)
k ). The first index kε such that u

(ε)
k ≥ 1 (see Figure 3) is

easily seen to satisfy

kε ∼
∫ 1

0

∑
k≥0

1

εz(u
(ε)
k )

1[u(ε)
k ,u

(ε)
k+1](x) dx

∼ 1

ε

∫ 1

0

dy

z(y)
,

under the assumption of continuity of z, if z is positive. One can view
assumption (2.5) as a stochastic analog of the latter. As regards assumption (2.6), it
is the stochastic analog of a—strong—assumption of integrability for 1/z, if z has
a pole.

THEOREM 2.4.
(Un − �n)+

un

L1→0.

THEOREM 2.5. Assume that, for a sequence an = (m
(n)
i )0≤i≤�(an) ∈ Ãn,

E
(
#
{
i
∣∣Z(n)

mi
≤ H(n)

}
I�n

) = o(un)

and that there exist a positive number δ and a sequence εn of positive numbers
decreasing to 0 such that, for any integer n and any ω ∈ �n, the sequence an

satisfies

w
(n)
i ≥ (1 − εn)Z

(n)
mi

if (1 + δ)Z(n)
mi

≥ H(n).
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Then

Un − �(an)

un

L1→0.

PROOF OF THEOREM 2.4. We shall prove that, for n large enough, indepen-
dently of the sequence a ∈ Ãn, there exists a constant K such that(

Un − �(a)
)
+ ≤ n I�n

+ (
Ũn + KUnG(n)H(n)α−1) I�n,(2.8)

so that

(Un − �n)+ ≤ nI�n
+ Ũn + KUnG(n)H(n)α−1.

Then assumptions (2.5) and (2.6) yield Theorem 2.4 at once.
The obvious formula

�(a) =
�(a)−1∑

i=0

mi+1∑
k=mi+1

1

wi

reflects the fact that 1/wi is somehow the density of the presence of points of the
sequence a over the interval [mi,mi+1]. Inequality (2.7) entails that

�(a) ≥ ∑
i

mi+1∑
k=mi+1

1

Z
(n)
mi

.

Theorem 2.4 follows from the fact that we can replace 1/Z
(n)
mi by 1/Z

(n)
k in the

last sum, due to the assumption (2.5) of slow variation of Z(n)· , obtaining thus a
uniform lower bound Un. This approximation is tight only if Z

(n)
mi

and Z
(n)
k are far

enough from 0, but relation (2.6) takes care of the terms close to 0. So, in order to
obtain (2.8), we bound (Un − Ca)+ by n for ω in �n, and we proceed as follows
for ω in �n:

(
Un − �(a)

)
+ =

(∑
i

mi+1∑
k=mi

wi − Z
(n)
k

Z
(n)
k wi

)
+

≤ ∑
i

mi+1∑
k=mi

1

Z
(n)
k

(
wi − Z

(n)
k

wi

)
+
.

• Assume that wi ≥ H(n)/3. For k ∈ [mi,mi+1], we have

(
wi − Z

(n)
k

wi

)
+

≤
(

Z
(n)
mi − Z

(n)
k

wi

)
+

≤ G(n)wα
i

wi

≤ KG(n)H(n)α−1.
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• Assume that Z
(n)
mi − wi ≥ H(n)/3. For k ∈ [mi,mi+1], we have

wi − Z
(n)
k ≤ −H(n) + Z

(n)
mi − Z

(n)
k

3
≤ −H(n) + H(n)αG(n)

3
,

the last term being negative if n is large enough, independently of a and ω, so
that (wi − Z

(n)
k )+ = 0.

• Finally, let 
 be the set of indices i such that wi ≤ H(n)/3 and Z
(n)
mi − wi ≤

H(n)/3. For k ∈ [mi,mi+1], we have

Z
(n)
k = Z

(n)
k − Z(n)

mi
+ (

Z(n)
mi

− wi

) + wi ≤ H(n)αG(n)

3
+ 2H(n)

3
≤ H(n)

for n large enough so that
( ∑

i∈


mi+1∑
k=mi+1

1

Z
(n)
k

−
mi+1∑

k=mi+1

1

wi

)
+

≤ ∑
i∈


mi+1∑
k=mi+1

1

Z
(n)
k

≤ Ũn. �

PROOF OF THEOREM 2.5. Similarly, let 
′ be the set of indices i such that
(1 + δ)Z

(n)
mi ≤ H(n). For ω ∈ �n, we have

∣∣∣∣∣
∑
i∈
′

mi+1∑
k=mi+1

1

Z
(n)
k

−
mi+1∑

k=mi+1

1

wi

∣∣∣∣∣ ≤ #
′ + ∑
i∈
′

mi+1∑
k=mi+1

1

Z
(n)
k

.

But, for i ∈ 
′ and k ∈ [mi,mi+1], we have

Z
(n)
k ≤ Zmi

+ G(n)wα
i

≤ H(n)

1 + δ
+ G(n)H(n)α

≤ H(n),

provided that n is large enough, so that

∑
i∈
′

mi+1∑
k=mi+1

1

Z
(n)
k

≤ Ũn

and, finally,∣∣∣∣∣
∑
i∈
′

mi+1∑
k=mi+1

1

Z
(n)
k

−
mi+1∑

k=mi+1

1

wi

∣∣∣∣∣ ≤ #
{
i
∣∣Z(n)

mi
≤ H(n)

} + Ũn.
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On the other hand, for i /∈ 
′, we have (1 + δ)Z
(n)
mi ≥ H(n), so that, for

k ∈ [mi,mi+1], ∣∣∣∣wi − Z
(n)
k

wi

∣∣∣∣ ≤ |wi − Z
(n)
mi |

wi

+ |Z(n)
mi − Z

(n)
k |

wi

≤ εn

1 − εn

+ G(n)wα−1
i

≤ εn

1 − εn

+
(

1 − εn

1 + δ

)α−1

G(n)Hα−1
n

and ∣∣∣∣∣
∑
i /∈
′

mi+1∑
k=mi+1

1

Z
(n)
k

− 1

wi

∣∣∣∣∣ ≤ ∑
i /∈
′

mi+1∑
k=mi+1

1

Z
(n)
k

∣∣∣∣wi − Z
(n)
k

wi

∣∣∣∣
≤ Uno(n).

Finally,

|Un − �(an)|
un

≤ Uno(n) + Ũn + #{i|Z(n)
mi ≤ H(n)}I�n + nI�n

un

. �

PROOF OF LEMMA 2.1. We set α = 1/2, G(n) = c
√

log n, H(n) = log3 n

and, for a in An, we consider the sequence ã = {m1, . . . ,m�(ã)} obtained once we
sort positions probed by a in increasing order, ã being eventually supplemented
by position n. So the finite set Ãn of such sequences satisfies

�n − 1 ≤ Wn ≤ �n.(2.9)

For ω ∈ �n, (2.3) yields

wi ≤ 2(Mn − Smi
) + c

√
wi log n

and, when wi ≥ H(n),

wi ≤ 2
Mn − Smi

+ 1

1 − c/ logn
.

Thus, choosing

Z
(n)
k = 2

Mn − Sk + 1

1 − c/ logn
,

on one hand we see that

Un − Vn

un

L1→0
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and, on the other hand, owing to (2.9) and to Theorem 2.4,

(Un + 1 − Wn)+
un

L1→ 0.

To complete the proof, we recall that, according to [11, 21, 31],

E(Vn) �
√

8

π
log 2

√
n,

so that

un = �
(√

n
)
.

Also, we have to check assumptions (2.5) and (2.6). First, for n large enough
(otherwise, let �n be void), let �n be the set �d(n), defined in Section 1.4, of
sample paths ω such that, for any positive k and m,

m + k ≤ n �⇒ |Sm+k − Sm| ≤ d
√

k logn,

and let us choose d smaller than c/2. Due to Chernoff’s bounds (see, e.g., [8],
page 12):

∀x ≥ 0,∀ k, Pr(|Sk| > x) ≤ 2 exp
(
−x2

2k

)
,(2.10)

we deduce as in [31]

Pr
(
�d(n)

) ≥ 1 − 2n2−d2/2,(2.11)

so, finally, c = 5 does the job. To check assumption (2.6), we introduce the local
time Dq(n) of Mn − Sk at height q , that is,

Dq(ω) = #
{
k|0 ≤ k ≤ n and Mn − Sk = q

}
.

According to [31], we have the following result.

LEMMA 2.6. There exists a constant C such that, for every n ∈ N ,

E
(
Dq(n)

) ≤ C(q + 1).

Therefore,

Ũn ≤ 1 − c/ logn

2

∑
Mn−Sk≤log3 n

1

Mn − Sk + 1

≤
log3 n∑
q=0

Dq(n)

q + 1
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and

E(Ũn) = O(log3 n). �

PROOF OF LEMMA 2.2. Let a(n) = (m1, . . . ,mR(n)) be the sequence of
positions probed during the second stage of Od(n) (see Section 1.4). According
to [31], the first stage needs O(

√
n/ logn) probes, on average, so that the proof of

Lemma 2.2 reduces to

R(n) − Vn√
n

L1→0;

that is, it reduces to proving that a(n) satisfies the assumptions of Theorem 2.5.
For α, G(n) and �n, we keep to the same definitions as in the preceding proof,
but, due to the definition of Od(n), we take H(n) = 4n1/6. Assumption (2.7) is
satisfied for

Z
(n)
k = 2(Mn − Sk + 1),

so that this time Un is equal to Vn; checking (2.6), we get E(Ũn) = O(n1/6). We
have

#
{
i
∣∣Z(n)

mi
≤ H(n)

} ≤ #
{
k
∣∣Z(n)

k ≤ H(n)
}

≤
H(n)∑
q=0

Dq;

thus, due to Lemma 2.6,

E
(
#
{
i
∣∣Z(n)

mi
≤ H(n)

}
I�c(n)

) = O
(
H(n)2)

.

Using (1.1) and (1.2), one can see that, for any ω ∈ �n, and provided that
Z

(n)
mi ≥ 3n1/6 (i.e., we choose δ = 1/3 in Theorem 2.5),

wi

Z
(n)
mi

≥ Z
(n)
mi − 2 − 2cn1/8 log1/2 n − 10c

√
Z

(n)
mi logn

Z
(n)
mi

≥ 1 − 10cn−1/12
√

logn

for n large enough (otherwise, let εn = 1), independent of ω ∈ �n. �

2.3. Proof of Theorem 2.3. Set

In = Vn√
n

= 1

2
√

n

n∑
k=1

1

Mn − Sk + 1
;

we are to prove that In converges in distribution to I .



1278 P. CHASSAING, J. F. MARCKERT AND M. YOR

FIG. 4. The Skorohod embedding.

The operator T defined by

T (f ) =
∫ 1

0

dx

maxf − f (x)

does not satisfy the continuity assumption for Donsker’s invariance principle, so
we exhibit a coupling of In and I through a Skorohod embedding and prove that
I − In converges to 0 in probability. Let (Bt )t≥0 denote a standard Brownian
motion and let (S

(n)
k )0≤k≤n be the embedded random walk associated with B

through the standard construction due to Knight [24] (see Figures 4 and 5):
consider the successive times (τ

(n)
k )0≤k≤n, defined by τ

(n)
0 = 0 and for k ≥ 1,

τ
(n)
k = inf{t > τ

(n)
k−1, |Bt − B

τ
(n)
k−1

| = n−1/2}, where the Brownian motion has

moved by n−1/2, and set

S
(n)
k = √

nB
(
τ

(n)
k

)
.

FIG. 5. The embedded random walk.
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The sample path (S
(n)
k )k=0,...,n has the same law as ω = (Sk(ω))k=0,...,n introduced

in the beginning of the paper. Note that, for every k > 0, n(τ
(n)
k+1 − τ

(n)
k ) has the

same law as α1, the hitting time of 1 for a reflected Brownian motion, already
defined in Section 3.

Consider the piecewise constant process β
(n)
t equal to B(τ n

k−1) = n−1/2S
(n)
k−1

for t in the interval ] τ (n)
k−1, τ

(n)
k ]; hence, by construction,

∣∣B(t) − β
(n)
t

∣∣ ≤ 1√
n
.

Let M
(β)
n denote the maximum of (β

(n)
t )0≤t≤n and set, for 0 < ε < 1/2,

τ̃n = τ (n)
n ,

Ĩn = 1

2
√

n

n∑
k=1

1

M
(n)
n − Sk + n−ε+1/2

,

W1 =
∫ τ̃n

0

dt

M
(β)
n − β

(n)
t + n−ε

− 2Ĩn

= √
n

n∑
k=1

τ
(n)
k − τ

(n)
k−1

M
(n)
n − S

(n)
k + n−ε+1/2

− 2Ĩn

= 1√
n

n∑
k=1

n(τ
(n)
k − τ

(n)
k−1) − 1

M
(n)
n − S

(n)
k + n−ε+1/2

,

W2 = 2I −
∫ τ̃n

0

dt

M
(β)
n − β

(n)
t + n−ε

=
∫ 1

0

dt

MB
1 − Bt

−
∫ τ̃n

0

dt

M
(β)
n − β

(n)
t + n−ε

.

We are to prove that Ĩn − In, W1 and W2 converge to 0 in probability. First,

E(In − Ĩn) ≤ n−εE

(
n∑

k=1

1

(M
(n)
n − S

(n)
k + 1)2

)

= n−εE

(
n∑

q=0

Dq(n)

(q + 1)2

)

= O(n−ε logn),

the last line due to Lemma 2.6. Since (τ
(n)
k )0≤k≤n and B(τ

(n)
k )0≤k≤n are

independent, and the r.v.’s n(τ
(n)
k − τ

(n)
k−1) − 1 are independent, centered, with
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variance 1, we obtain

E(W 2
1 ) = 1

n
E

(
n∑

k=1

1

(M
(n)
n − S

(n)
k + n−ε+1/2)2

)

≤ 1

n
E

(
n∑

q=0

Dq(n)

(q + 1)2

)

= O

(
log n

n

)
,

so that W1
L2→0.

Next, we consider W2. Noting that τ̃n has the same law as the average of n

independent copies of α1 and that α1 belongs to any Lp (see, e.g., [28]), we deduce
that

‖τ̃n − 1‖Lp = O

(
1√
n

)
.(2.12)

Now

|W2| ≤ A + B + C,

where

A =
∫ 1∧τ̃n

0

|β(n)
t − Bt | + |M(β)

n − MB
1 | + n−ε

(M
(β)
n − β

(n)
t + n−ε)(MB

1 − Bt )
dt

≤ (
2n−ε + |M(β)

n − MB
1 |) ∫ 1∧τ̃n

0

1

(M
(β)
n − β

(n)
t + n−ε)(MB

1 − Bt )
dt,

B =
∫ 1

τ̃n

dt

MB
1 − Bt

, Iτ̃n≤1,

C =
∫ τ̃n

1

dt

M
(β)
n − β

(n)
t + n−ε

, Iτ̃n≥1.

By Hölder’s inequality, we have successively

B ≤ (1 − τn)
1/p

(∫ 1

τn

dt

(MB
1 − Bt )q

)1/q

, Iτ̃n≤1,

and

E[B] ≤ E
[|1 − τn|]1/p

E

[∫ 1

0

dt

(MB
1 − Bt )q

]1/q

,
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the last term in both equations being defined provided that q < 2, so, due to (2.12),
for any positive η, we have

n−η+1/4B
L1→0.(2.13)

We also have

C ≤ nε|τ̃n − 1|,
which converges to 0 in any Lp due to (2.12). Finally,

A ≤ n−ε
(
2 + nε|M(β)

n − MB
1 |)(A1 + A2),(2.14)

where

A1 =
∫ 1

0

dt

(M
(β)
n − β

(n)
t + n−ε)(MB

1 − Bt )
, Iτ̃n≥1,

A2 =
∫ τ̃n

0

dt

(M
(β)
n − β

(n)
t + n−ε)(MB

1 − Bt )
, Iτ̃n≤1.

At the end of this section we shall prove the following result.

LEMMA 2.7. For any positive η,

n−η+1/4|M(β)
n − MB

1 | prob.→ 0.

It follows that, on the right-hand side of (2.14), 2 + nε|M(β)
n − MB

1 | converges
in probability to 2, provided that ε = 1/5, for instance. We have, for α < 1/2,

A1 ≤ nα
∫ 1

0

Iτ̃n≥1 and MB
1 −Bt≥n−α

M
(β)
n − β

(n)
t + n−ε

+ nε
∫ 1

0

IMB
1 −Bt≤n−α

MB
1 − Bt

dt

≤ n2α

2
+ nε

∫ 1

0

IMB
1 −Bt≤n−α

MB
1 − Bt

dt.

The second inequality follows from

M(β)
n − β

(n)
t ≥ MB

1 − Bt − 2√
n
,

when τ̃n ≥ 1. We shall prove the following result.

LEMMA 2.8. For 0 < α ≤ 1/2,

E

(∫ τ̃n

0

I{M(β)
n −βt≤n−α}

M
(β)
n − β

(n)
t + n−ε

dt

)
= O(n−α).
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This entails

E(A1) ≤ n2α

2
+ O(nε−α).

Finally, for α = 1/20, for instance, we obtain

n−ε(2 + nε|M(β)
n − MB

1 |)A1
prob.→ 0.

Similarly,

A2 ≤ nα
∫ τ̃n

0

I
M

(β)
n −β

(n)
t ≥n−α

MB
1 − Bt

dt +
∫ τ̃n

0

I
M

(β)
n −β

(n)
t ≤n−α

(MB
1 − Bt )(M

(β)
n − β

(n)
t + n−ε)

dt

≤ n2α

2
+

∫ τ̃n

0

I
M

(β)
n −β

(n)
t ≤n−α

(MB
1 − Bt )(M

(β)
n − β

(n)
t + n−ε)

dt

≤ n2α

2
+ nε

∫ τ̃n

0

IMB
1 −Bt≤n−ε

MB
1 − Bt

dt + nε
∫ τ̃n

0

I
M

(β)
n −β

(n)
t ≤n−α,MB

1 −Bt≥n−ε

M
(β)
n − β

(n)
t + n−ε

dt.

The second inequality is a consequence of

MB
1 − Bt ≥ M(β)

n − β
(n)
t − n−1/2,

when τ̃n ≤ 1. We finally obtain

E(A2) ≤ n2α

2
+ O(1) + O(nε−α)

and

n−ε
(
2 + nε|M(β)

n − MB
1 |)A2

prob.→ 0

as consequences of Lemma 2.8 and of the next lemma.

LEMMA 2.9. For α > 0,

E

(∫ 1

0

I{MB
1 −Bt≤n−α}

MB
1 − Bt

dt

)
= O(n−α).

We end the section with the proofs of Lemmas 2.7–2.9.

PROOF OF LEMMA 2.7. Let η and a be positive. Assuming first that τ̃n > 1,
we obtain ∣∣MB

1 − M(β)
n

∣∣ ≤ 1√
n

+ MB
τ̃n

− MB
1 .

So, for any positive φ(n),

Pr
(
n−η+1/4|M(β)

n − MB
1 |Iτ̃n>1 > a

) ≤ An + Bn,
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where

An = Pr
(
τ̃n − 1 > φ(n)

)
,

Bn = Pr
(
n−η+1/4

(
1√
n

+ MB
1+φ(n) − MB

1

)
> a

)

≤ Pr
(
n−η+1/4

(
1√
n

+ MB
φ(n)

)
> a

)

= Pr
(
n−η+1/4

(
1√
n

+
√

φ(n)|N |
)

> a

)

for N a standard Gaussian r.v., so choosing φ(n) = nη−1/2 gives the desired result.
The case τ̃n > 1 can be proven with the same method. �

PROOF OF LEMMA 2.8. Lemma 2.6 yields

E

(∫ τ̃n

0

I{M(β)
n −β

(n)
t ≤n−α}

M
(β)
n − β

(n)
t + 1/

√
n

dt

)
= 1√

n
E

(
n∑

k=0

I{Mn−Sk≤n−α+1/2}
Mn − Sk + 1

)

= 1√
n
E

(
n−α+1/2∑

j=0

Dq(n)

q + 1

)

≤ C√
n
n−α+1/2. �

PROOF OF LEMMA 2.9. Using the Denisov decomposition of the Brownian
path around the place θ where it reaches its maximum, through two independent
Brownian meanders m+

s and m−
s , the decomposition that is described in the first

pages of the next section [see (3.2)], we obtain

∫ 1

0

I{MB
1 −Bt≤nα}

MB
1 − Bt

dt = √
θ

∫ 1

0

I{m−
s

√
θ≤n−α}

m−
s

ds + √
1 − θ

∫ 1

0

I{m+
s

√
1−θ≤n−α}
m+

s

ds,

the two last terms, say A and B , being identically distributed. We have

A = √
θ

∫
0≤x≤n−αθ−1/2

Lx

x
dx,

where Lx denotes the local time of the Brownian meander. On the other hand,
according to [16],

E(Lx) = 2
∫ x

0
exp

(
−(x + y)2

2

)
dy

= √
2π Pr(x ≤ |N | ≤ 2x),
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where N is standard Gaussian. Finally,

E(A) = K1

∫ 1

0

∫
0≤x

√
y≤n−α

Pr(x ≤ |N | ≤ 2x)
dx

x

dy√
1 − y

≤ K2

∫ 1

0

∫
0≤x

√
y≤n−α

exp
(
−x2

2

)
dx

dy√
1 − y

= K2

(
2

∫ n−α

0
exp

(
−x2

2

)
dx +

∫ +∞
n−α

∫ n−2αx−2

0

dy√
1 − y

exp
(
−x2

2

)
dx

)

≤ 2K2

(
n−α +

∫ +∞
n−α

(
1 −

√
1 − n−2αx−2

)
exp

(
−x2

2

)
dx

)

and

∫ +∞
n−α

(
1 −

√
1 − n−2αx−2

)
exp

(
−x2

2

)
dx

= n−α
∫ +∞

1

(
1 −

√
1 − u−2

)
exp

(−n−2αu2)
du

≤ n−α
∫ +∞

1

(
1 −

√
1 − u−2

)
du. �

3. Proof of Theorem 1.3. Theorem 1.3 is a consequence of the following
remarkable property of I .

THEOREM 3.1.

√
SI

law= arctanhU + arctanhV,(3.1)

where U and V are independent uniform variables on [0,1] and S is an
exponential variable, with mean value 2, independent of I . The function arctanh is
defined as usual by

arctanh(u) = 1

2
log

(
1 + u

1 − u

)
.

PROOF. On one hand,

Pr
(√

SI ≥ x
) = Pr

(
S ≥ x2

I 2

)
= E

(
exp

(
− x2

2I 2

))



A STOCHASTICALLY QUASI-OPTIMAL ALGORITHM 1285

and, on the other hand,

Pr(arctanhU + arctanhV ≥ x)

= Pr
(

U + V

1 + UV
≥ tanhx

)

= 1

sinh2 x
log(cosh2 x). �

PROOF OF THEOREM 3.1. We shall produce two random variables X and Y

with the same law as arctanhU and such that
√

SI = X + Y.

Let g = sup{s ≤ 1 :Bs = 0} be the last 0 in [0,1] of the Brownian motion. The
Brownian meander m is the process

mt =
∣∣∣∣ 1√

1 − g
Bg+(1−g)t

∣∣∣∣ for 0 ≤ t ≤ 1.

Let θ be the unique time t in ]0,1[ such that

MB
1 = Bθ .

Using the decomposition due to Denisov [15] (see also [6]) of the sample path
(Bs)0≤s≤1,

Bs = √
θ(m−

1 − m−
1−s/θ )I0≤s≤θ

(3.2)
+ (√

θm−
1 − √

1 − θm+
(s−θ)/(1−θ)

)
Iθ≤s≤1,

where (m−
s ,0 ≤ s ≤ 1) and (m+

s ,0 ≤ s ≤ 1) are two independent Brownian
meanders also independent from θ , we get

I =
∫ 1

0

du

MB
1 − Bu

= √
θ

(∫ 1

0

du

m−
u

)
+ √

1 − θ

(∫ 1

0

du

m+
u

)
.

Set

X = √
θS

(∫ 1

0

du

2m−
u

)

and

Y = √
(1 − θ)S

(∫ 1

0

du

2m+
u

)
.

Before we continue, we have to state a few facts:
(i) θ , 1 − θ and g are arcsine distributed;
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(ii) Sθ and S(1 − θ) are independent and satisfy
√

Sθ
law= √

S(1 − θ)
law= |N |,(3.3)

where N denotes a Gaussian random variable with mean 0 and variance 1;
(iii) (1/2)

∫ 1
0 du/mu =law sup0≤t≤1 |bt |, where bt ,0 ≤ t ≤ 1, is a standard

Brownian bridge;
(iv) Z, defined by Z =def |N | supt≤1 |bt |, where N is independent of b,

satisfies Pr(Z ≤ x) = tanh(x).

Points (i) and (ii) are well known, and (iii) is just [5], formula 5)c)i), page 69
(see also [7]); (iv) may be obtained using excursion theory (see [35], Chapter 12,
Exercise (4.24), question 3), but below we shall give a nice proof which is a special
instance of the methods developed in [9]. Owing to (i) and (ii), X and Y are
independent and identically distributed, and (3.1) reduces to proving that tanh(X)

is uniform. This is just (iv), since (3.3) and (iii) entail that X and Z have the same
law. �

PROOF OF (iv). Let At = sups≤t {B2
s } and, for 0 ≤ t ≤ 1, let b(t) =

(1/
√

g )Btg , so that

Ag = g sup
0≤t≤1

{b2
t }.

Since (b(t))0≤t≤1 is a Brownian bridge independent of g, we get

SAg
law= Z2.

Set αt = inf{s > 0 | As > t} and dt = inf{u ≥ t | Bu = 0}. For a ≥ 0, we have

{Ag < a} = {g < αa} = {
1 < dαa

}
.

Using the scaling property of Brownian motion, we obtain

dαa

law= adα1

and, thus,

Ag
law= 1

dα1

.

Finally,

Pr(Z ≥ x) = Pr(SAg ≥ x2)

= Pr
(
S ≥ x2dα1

) = E

[
exp

(
−x2

2
dα1

)]
.

But α1 and dα1 − α1 are independent due to the Markov property, and

dα1 − α1
law= inf{t > 0 | Bt = 1},
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so, using the well-known Laplace transforms of α1 and dα1 − α1, we get

Pr(Z ≥ x) = 1

cosh(x)
exp(−x) = 1 − tanh(x). �

4. Further results.

4.1. Joint law of MB
1 and I . Through Skorohod embedding, it is straightfor-

ward to extend Theorem 2.3 to the following:

1√
n
(Vn,Mn,Mn − Sn)

law→ (I,MB
1 ,MB

1 − B1).

Furthermore, arguments similar to those of Theorem 3.1 (see the computations in
[32], page 268) yield that

|N |
(∫ 1

0

du

mu

,m1

)
law= (

2X, tanh(X)�
)
,

where m1 is the value of the meander (mu)0≤u≤1 at time 1. As a consequence,
√

S(I,MB
1 ,MB

1 − B1)
law= (

X + Y, (tanhX)�, (tanhY )�′),(4.1)

where X, Y , � and �′ are independent, and � and �′ are γ2,1-distributed random
variables. From (4.1), one finds

E

(
1

M2 exp
(
− h2

2M2

)
II/M≤a/h

)
=

∫ y

0

du

u2 exp
(
−h

u

)
y − u

1 − yu
,

where y = tanh(a). This shows, in some sense, how Mn and COd(n) are related.

4.2. Density of I . Writing Theorem 1.3 in the form

E

[
exp

(
− a2

2I 2

)]
= log(cosh2 a)

a2

a2

sinh2 a
,(4.2)

we observe the familiar Laplace transform (a/ sinh(a))2 in a2/2: indeed, if
�1 denotes the hitting time of 1 for a Bessel process of dimension 3, starting
from 0, then (see [13], pages 168 and 169)

E

(
exp

(
−λ2

2
�1

))
= λ

sinhλ
.

So (a/ sinh(a))2 appears as the Laplace transform of the sum �2 of two
independent copies of �1. As noted by Chung [13], �1 and �2 are surprisingly
related to the supremum M

|b|
1 of the absolute value of the Brownian bridge, that

is, the asymptotic distribution of the Kolmogorov–Smirnov statistic, respectively
to the maximum Me

1 of the normalized Brownian excursion, by

�1
law= 4

π2

(
M

|b|
1

)2
, �2

law= 4

π2 (Me
1)

2;



1288 P. CHASSAING, J. F. MARCKERT AND M. YOR

on this topic, see also the nice developments in [29]. The distributions of these
variables are discussed in detail in [7], and we have kept the notation of that
paper for ease of reference. The distribution of Me

1 is also the distribution or limit
distribution of:

• the maximum of a Bernoulli excursion (cf. [23, 38, 40],
• the normalized height for several classes of trees of size n (cf. [19, 18]),
• the range of the Brownian bridge (cf. [27, 33, 35, 42]).

Denote by U a uniform r.v. and let

�
�
1 = inf{t : |Bt | = 1} and G = sup{t < �

�
1 :Bt = 0}.

Then Williams’ decomposition (cf. [43, 44]) tells us that G and (�
�
1 − G) are

independent and that supu≤G |Bu|=law V , where V is uniform on [0,1], whereas
Knight [25] showed that

E

(
exp

(
−λ2

2
G

))
= tanh(λ)

λ
, E

(
exp

(
−λ2

2
(�

�
1 − G)

))
= λ

sinh(λ)
.

THEOREM 4.1. We have
1

I 2
law= UG + �2

law= H�
�
2 + �2,

where, on the right-hand side, U , G and �2 are independent, H,�
�
2 and �2 are

independent, �
�
2 is the sum of two independent copies of �

�
1 and H has density

Pr(H ∈ dh) =
(

1√
h

− 1
)
I0<h<1 dh.

PROOF. Owing to (4.2), the first identity of Theorem 4.1 reduces to

E[exp(−λUG)] = 1

λ
E

[∫ λ

0
exp(−xG)dx

]

= 1

λ

∫ λ

0

tanh
√

2x√
2x

dx

= log(cosh
√

2λ)

λ
.

Williams’ decomposition entails that G=law V 2�
�
2. Finally, UV 2 is easily shown

to be distributed as H , yielding the second identity in law. �

According to [5], page 74, the density of G is
+∞∑
n=1

exp
(
− ñ2x

2

)
, x > 0, ñ = π

(
n − 1

2

)
.
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Thus, UG has density

θ1(x) =
+∞∑
n=1

∫ +∞
x

exp
(
− ñ2u

2

)
du

u
.

According to [13, 23], we have

Pr(H ≤ x) = ∑
−∞≤n≤+∞

(1 − 4n2x2) exp(−2x2n2)

= π
√

π

x3
√

2
θ ′

(
π

2x2

)
,

where θ denotes the usual Jacobi (theta) function

θ(x) = ∑
−∞≤n≤+∞

e−πn2x, x > 0,

and the second equality makes use of the Poisson identity

θ(x) = 1√
x

θ

(
1

x

)

(for a probabilistic insight on the Poisson identity and other related identities,
see [5], pages 72–74, or [38]).

Thus, the density of �2 is given by

θ2(x) = ∂

∂x

∑
−∞≤n≤+∞

(1 − n2π2x)e−n2π2x/2,

and the density � of 1/I 2 is given by

�(x) =
∫ x

0
θ1(y)θ2(x − y) dy, x ≥ 0.(4.3)

We finally obtain the following result.

THEOREM 4.2. If we denote by γ the density of I , then

γ (u) = 2

u3
�

(
1

u2

)
, u > 0.

Using the power series expansion for x log(1 + x)/(1 − x)2, one can write the
Laplace transform, taken at a2/2, of 1/I 2,

log(cosh2 a)

sinh2 a
= 2a

sinh2 a
+ 8

∞∑
n=1

bne
−2na,
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where

bn = nHn − n log 2 − 1{n odd},

Hn =
n∑

j=1

(−1)j−1

j
,

and we obtain the following formula, to be compared with (4.3):

�(x) = 2√
2π

∫ x

0

θ2(x − t)√
t

dt + 8

√
2

πx3

∞∑
n=1

nbn exp
(
−2n2

x

)
.

4.3. Moments of I . Let � (resp. ζ ) denote the Euler gamma (resp. Riemann
zeta) function. According to the notation of Flajolet and Salvy [17], set

S−+
1,p =

+∞∑
n=1

Hn

np
,

ζ̃ (0) = 1/2, ζ̃ (1) = log 2 and, for k ≥ 2,

ζ̃ (k) = ∑
n≥1

(−1)n+1

nk
= (1 − 21−k)ζ(k).

PROPOSITION 4.3. E(I) = √
8/π log 2 and, for n ≥ 2,

E(In) = 4�((n + 1)/2)√
2nπ

n∑
k=0

ζ̃ (k)ζ̃ (n − k),(4.4)

which is also equal to

E(In) = 4�((n + 1)/2)√
π2n

(
2S−+

1,n−1 − 2 log 2ζ(n − 1)

(4.5)
+ (n − 1)ζ(n) − ζ̃ (n)

)
.

As a consequence, E(I 2) = log2 2 + π2/12, and Var(I ) = (1 − 8/π) log2 2 +
π2/12 � 0.0794565 . . . .

PROOF.
• Using (3.1), we obtain

E(In) = E((X + Y )n)

E(Sn/2)
.

Straightforward computations yield

E(Sn/2) = �

(
n

2
+ 1

)
2n/2
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and

E(Xk) = k!
2k−1 ζ̃ (k),

yielding (4.4).
• Owing to Theorem 1.3, we have, for every positive function f ,∫ +∞

0
f (a)

2 log(cosha)

(sinha)2
da = E

[∫ +∞
0

f (a) exp
(
− a2

2I 2

)
da

]

= E

[
I

∫ +∞
0

f (xI) exp
(
−x2

2

)
dx

]
.

Hence, the choice f (x) ≡ xn−1 yields

E(In) = 21−n/2

�(n/2)

∫ +∞
0

an−1 2 log(cosha)

sinh2 a
da.

Using the duplication formula for the gamma function and the same power series
expansions as in the preceding section, we obtain (4.5). �

Note that we recover in this way a surprising identity concerning Euler sums,
due to Sitaramachandra Rao [37] and rederived by residue computations in [17]:

2S−+
1,n−1 = 2 log 2 ζ(n − 1) − (n − 1)ζ(n) + 2ζ̃ (n) +

n−1∑
k=1

ζ̃ (k)ζ̃ (n − k).

4.4. Laplace transform of I .

COROLLARY 4.4. The Laplace transform of I 2 is given by

�I2

(
λ2

2

)
= E

[
exp

(
−λ2I 2

2

)]

= E
[
Jo

(
2λ(X + Y )

)]
(4.6)

= 1

π

∫ 1

−1

(
E(exp(2iλrX))

)2 dr√
1 − r2

,

where X and Y have the same meaning as in the proof of Theorem 3.1 and,
moreover,

Jo(ξ)
def= 1

π

∫ 1

−1
exp(iξr)

dr√
1 − r2

.

PROOF. We multiply both sides of the identity in law (3.1) by ε
√

g, where
ε is a symmetric Bernoulli variable [i.e., Pr(ε = ±1) = 1

2 ], g is arcsine distributed,
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independent of ε, and the pair (ε, g) is independent of either side of (3.1).
Consequently, we obtain, on the left-hand side of (3.1), NI , where N is a standard
Gaussian variable, independent of I . Now, we take the characteristic functions,
with respect to the argument λ, of both sides. On the left-hand side we obtain

E

[
exp

(
−λ2I 2

2

)]
,

whereas on the right-hand side we obtain

E
[
Jo

(
λ(X + Y )

)]
,

since the c.f. of ε
√

g is

Jo(ξ) ≡ 1

π

∫ 1

−1
exp(iξr)

dr√
1 − r2

.

It may be of some interest to make formula (4.6) in Corollary 4.4 more explicit.
For this purpose, we introduce the incomplete beta function:

Bx(a, b) =
∫ x

0
ua−1(1 − u)b−1 du.

We are now able to express the characteristic function of X in terms of B1/2. �

PROPOSITION 4.5. The c.f. of X is identical to

E[exp(iαX)] = 2B1/2

(
1 − iα

2
, 1 + iα

2

)
,(4.7)

so that

E[cos(αX)] = πα/2

sinh(πα/2)
, E[sin(αX)] = 2

∫ 1/2

0
sin

(
α

2
log

(
−1+ 1

u

))
du.

PROOF. (i) Recall that the distribution of X has density 1{x≥0}/(cosh(x))2.
We shall show the general identity∫ +∞

0
exp(αx)

1

(coshx)β
dx = 2β−1B1/2

(
β − α

2
,
β + α

2

)
(4.8)

for β > 0 and Reα < β, α ∈ C. Assuming for a moment that formula (4.8) holds,
we deduce formula (4.7) by taking β = 2 and replacing α by iα.

(ii) We now prove formula (4.8). Making the change of variable t =
exp(−2x) on the left-hand side of (4.8), which we now denote l(α,β), we obtain

l(α,β) = 2β−1
∫ 1

0

1

(1 + t)β
t(β−α)/2−1 dt,

and making a further change of variable u = t/(1 + t), we have

l(α,β) = 2β−1B1/2

(
β − α

2
,
β + α

2

)
in (4.8), formula as:
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(iii) Denoting by C(α) the left-hand side of (4.7), we deduce from (4.8) that

ReC(α) = 2 ReB1/2(1 − iα/2,1 + iα/2) = B(1 − iα/2,1 + iα/2),

so that with the help of the classical formula of complements for the gamma
function, we obtain

ReC(α) = πα/2

sinh(πα/2)
.

The formula for ImC(α) can be deduced directly from (4.7). �
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