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CORRECTION
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The paper above contains a substantial error, as shown by example in Section 7.1
of [2]. To correct this error one needs to add a restriction on the data of the model
being analyzed, thus making explicit an assumption that is implicit in the original
development. To enable a precise statement of that additional assumption, the next
paragraph reviews some of the paper’s notation and set-up.

Let r , m and n be positive integers, R an m × n input-output matrix,
A a nonnegative r × n capacity consumption matrix, and λ an m-vector of
exogenous input rates. All of the paper’s formal propositions relate, at least
implicitly, to the following linear program, called the static planning problem
(here displays are numbered exactly as in the original paper, for ease of reference):
choose a scalar ρ and an n-dimensional column vector x of average activity rates
so as to

minimize ρ(2.1)

subject to Rx = λ, Ax ≤ ρe and x ≥ 0,(2.2)

where e is the m-vector of ones. The dual of (2.1)–(2.2), or to be more precise, one
formulation of its dual, is as follows: choose an m-dimensional row vector µ and
r-dimensional row vector π so as to

maximize µλ(2.3)

subject to µR ≤ πA, πe = 1 and π ≥ 0.(2.4)

In the primal problem (2.1)–(2.2) one interprets λi (i = 1, . . . ,m) as the average
rate at which a system manager is obliged to consume input i, or the average rate at
which type i input must be processed. On page 80 of the paper under discussion,
the vector λ is assumed to be nonnegative and nontrivial, but the nonnegativity
is never actually used in the ensuing development; if λi were negative one could
interpret its absolute value as the average rate at which the system manager is
obliged to supply material i.

To articulate the additional assumption referred to earlier, let us define the
polyhedral cone

V = {υ ∈ R
m :Rx = υ for some x ≥ 0}.
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Obviously, then, the primal problem (2.1)–(2.2) is feasible (meaning that there
exists a feasible solution x) if and only if λ ∈ V . Beyond this, however, the
arguments presented in the paper implicitly assume that λ lies in the interior of V .
In the current context that requirement is conveniently expressed as follows.

ASSUMPTION 0. For each δ ∈ R
m one has the following: (λ + 1

t
δ) ∈ V for

all t sufficiently large.

In linear programming language, this says that the primal problem (2.1)–(2.2)
remains feasible for all sufficiently small perturbations of the vector λ. Of course,
such a perturbation might have negative components if λi = 0 for some i. This
motivates use of the term exogenous flow rate in place of “exogenous input rate,”
so that exogenous inputs and exogenous outputs are treated symmetrically. One
crucial implication of Assumption 0 is the following.

PROPOSITION 0. The polyhedral set D of feasible solutions (µ,π) for the
dual problem (2.3)–(2.4) has at least one extreme point.

PROOF. Taking δ = 0 in Assumption 0, we have that λ ∈ V . Thus our primal
problem (2.1)–(2.2) has a feasible solution, and because ρ is bounded below by
zero (remember that A ≥ 0), it necessarily has an optimal solution. Thus the
dual problem has an optimal solution as well, implying that D is nonempty.
Then according to Theorem 2.6 on page 63 of [1], it suffices to show that
D does not contain a line. (The precise mathematical meaning of the phrase
“D contains a line” is explained on that same page.) Now, making reference to
the constraints (2.4) that define D , let α be an n-dimensional row vector such
that πA ≤ α for all π satisfying πe = 1 and π ≥ 0, and define the polyhedron
P = {µ :µR ≤ α}. If (µ,π) ∈ D then obviously µ ∈ P , so it suffices (because
of the restrictions on π in the dual problem) to show that P does not contain
a line. Assumption 0 ensures that the rows of R are linearly independent (i.e.,
R has rank m), so R also has m columns that are linearly independent. The
columns of R are the coefficient vectors of the n linear inequality constraints that
define the nonempty polyhedron P , so a second application of the Theorem 2.6 on
page 63 of [1] establishes that P cannot contain a line. �

The counter-example presented in Section 7.1 of [2] is one where D has no
extreme points. Proposition 0 shows that Assumption 0 rules out such models.
In its proof we have used only the fact that R has rank m, but the full force
of Assumption 0 is in fact needed later in the paper (specifically, in the proof
of Proposition 2). That fact is somewhat obscured by the paper’s expositional
sequence, so we now describe an alternative sequence, including an alternative
version of Proposition 1, that puts the relevant issues in sharper focus. In
this alternative exposition the all-important Assumption 1 (the heavy traffic
assumption) is imposed before Proposition 1 is stated.
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ASSUMPTION 1. The static planning problem (2.1)–(2.2) has a unique
optimal solution (ρ∗, x∗). Moreover, that solution has ρ∗ = 1 and Ax∗ = e.

Recall that we denote by {(µ�,π�) :� = 1, . . . ,L} the extreme points of the
polyhedron D . Equivalently stated, these pairs (µ�,π�) are the basic feasible
solutions of the dual linear program (2.3)–(2.4). Also, the extreme points are
numbered so that {(µ�,π�) :� = 1, . . . ,L∗} are the basic optimal solutions of
(2.3)–(2.4). From Assumption 1 we then have the following:

µ�λ = 1 for 1 ≤ � ≤ L∗ and µ�λ < 1 for L∗ < � ≤ L.(2.5)

The alternative version of Proposition 1 referred to above is the following.

PROPOSITION 1. Let δ ∈ R
m be arbitrary, let t > 0 be large, and consider

the linear programs (2.1)–(2.2) and (2.3)–(2.4) with λ + 1
t
δ in place of λ. For

each sufficiently large t , each of these problems has an optimal solution and their
(common) optimal objective value is

1 + 1

t
max{µ�δ :� = 1, . . . ,L∗}.

REMARK. This is precisely the property of the static planning problem that is
invoked later in the proof of Proposition 2. Assumption 0 is obviously necessary
for this property to hold.

PROOF OF PROPOSITION 1. Exactly as in the proof of Proposition 0,
Assumption 0 ensures that the primal problem (2.1)–(2.2) with λ + 1

t
δ in place

of λ has a feasible solution for all t sufficiently large, and hence that it has an
optimal solution for all such t . Thus the dual problem has an optimal solution as
well, and because D has at least one extreme point by Proposition 0 (note that
D does not depend on λ), there exists an optimal extreme point solution for the
dual problem; cf. Theorem 2.7 on page 65 of [1]. That is, the optimal objective
value is

max
{
µ�

(
λ + 1

t
δ

)
:� = 1, . . . ,L

}
.

Because we are interested only in large t , the desired conclusion is now immediate
from (2.5). �

All of the changes that have been described in this note occur in Section 2, and
once they are made, the development in Sections 3 and beyond need not be altered
in any way. In particular, Proposition 4 (in Section 5) is valid when the indicated
changes have been made in Section 2. It concerns the “canonical representation of
workload” referred to in the paper’s title: as rows of the basis matrix M one can
take any maximal linearly independent subset of {µ� :� = 1, . . . ,L∗}.
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If one imposes additional structural assumptions on the problem data (R,A,λ),
then Assumption 0 can be re-expressed in concrete, easily checkable terms. For
example, conditions are presented in Section 7.2 of [2] which assure the validity
of the “canonical representation” described above, and it is not difficult to verify
that those conditions imply Assumption 0.
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